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Abstract. Tools for formally specifying software for real-time systems have strongly improved their capabilities 
in recent years. At present, tools have the potential for improving software quality as well as engineers' 
productivity. Many tools have grown out of languages and methodologies proposed in the early 1970s. In this 
paper, the evolution and the state of the art of tools for real-time software specification is reported, by analyzing 
their development over the last 20 years. Specification techniques are classified as operational, descriptive or 
dual if they have both operational and descriptive capabilities. For each technique reviewed three different 
aspects are analyzed, that is, power of formalism, tool completeness, and low-level characteristics. The analysis 
is carried out in a comparative manner; a synthetic comparison is presented in the final discussion where the 
trend of teclmology improvement is also analyzed. 

1. Introduction 

In recent years, several techniques for formal specification of real-time systems have 
been proposed; a large number of tools - -  ranging from research prototypes to marketed 
software packages - -  supporting these specification techniques have also been introduced. 
The growing interest for specification tools can be explained by considering that they 
have the potential for improving software quality as well as engineers' productivity. 
Furthermore, their use may be the only practical way to guarantee that certain quality 
factors (such as safeness, consistency, timeliness, etc.), which are mandatory for real-time 
systems, are achieved. 

This paper contains a historical review above the tools for the specification of real-time 
systems, taking into account their evolution in the last 20 years. To this end, a number 
of well-known proposals are examined and criticized in the light of the classification 
criteria described in the sequel. The choice of classification criteria has been one of the 
major concerns of this paper. In fact, space limitations do not allow going into details 
for each tool under examination. Furthermore, the subject matter is far away from being 
stable and settled and so we may have overlooked some relevant issues. As a result, we 
do not claim that the proposed taxonomy is an exhaustive method for classifying real- 
time specification techniques. However, we believe that this paper provides a reasonable 
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picture of their evolution as well as an indication on future developments and research 
issues. 

A popular method for classifying software specification techniques is based on the 
degree of formality used. Formal techniques are based on mathematics, and (pure) 
informal techniques on natural languages. The former are generally preferred, be- 
cause the latter tend to be incomplete and inconsistent (Meyer, 1985), (Stankovic, 1988), 
(Levi and Agrawala, 1990), (Stankovic and Ramamritham, 1992). The formalism can 
cover both syntax and semantics of a technique or only a part of them. 

Another method for classifying software specification techniques is based on the extent 
to which they are descriptive, operational or dual (that is a mixture of descriptive and 
operational). Operational techniques are those which are defined in terms of states 
and transitions; therefore, they are intrinsically executable. Descriptive techniques are 
based on mathematical notations (axioms, clauses, etc.) and produce precise, rigorous 
specifications, giving an abstract view of the state space by means of algebraic or logic 
equations. These can be automatically processed for verifying the completeness and the 
consistency of the specification, by proving properties by means of automatic tools. Dual 
techniques tend to integrate both descriptive and operational capabilities, allowing the 
formal specification by means of clauses or other mathematical formalisms as well as the 
execution of specifications based on state diagrams or Petri nets. For dual techniques, the 
main problem is the formal relationship between operational and descriptive notations, 
which should be interchangeable. 

In the literature, there are many other classifications according to which tools are 
divided in process-, data-, control-, and object-oriented (Dorfman, 1990) or in model-, 
and property-oriented approaches (Wing, 1990a), (Hall, 1990). In (Zave, 1990), Zave 
has made a classification by considering the degree of formalism with respect the degree 
of descriptiveness/operationality. This has resulted in a plot having in the abscissa the 
formal-informal range, and in the ordinate the descriptive-operational range. 

In this paper, a somewhat different approach is taken. The classification is based on 
the distinction between operational, descriptive and dual techniques; however, for each 
technique reviewed three different aspects are analyzed, that is, power of formalism, toot 
completeness, and low-level characteristics. 

In the light of this approach, languages and tools for reactive system specification are 
historically surveyed. It should be noted that a classification based on the distinction 
between operational, descriptive and dual aspects quite mirror the historical evolution 
of the subject matter. The remaining part of this section gives a brief account of the 
factors which must be considered in assessing tool capabilities. The review is made by 
presenting several examples in order to better explain the main characteristics of each 
technique with respect to these factors. 

In evaluating the power of formalism three different aspects must be considered: the 
structural, the functional and the behavioral aspect (Harel, t988), (Wing, 1990a). The 
structural aspect refers to the system decomposition into sub-systems. The functional 
aspect has to do with the transformational activities (on data) performed by individual 
software components. The behavioral aspect (i.e., the system dynamics) refers to the 
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system reaction to external stimuli and internally generated events, either synchronously 
or asynchronously. The systems in which the behavioral aspect is relevant are usually 
denoted as reactive; real-time systems belong to this category. Descriptive methods 
usually fail in modeling structural and functional aspects, but they are suitable for de- 
scribing system behavior. Operational methods are intrinsically suitable for modeling 
system behavior in detail, even if they lack in mathematical foundation for describing 
system behavior at the needed level of abstraction in order to allow validation (i.e., the 
proving of a required property) without simulation. 

Since this paper is focused on tools for real-time systems specification, a particular 
attention is devoted to identifying the expressivity of tools in modeling the temporal 
constraints (timeout, deadline, etc.) (Stankovic, 1988). At a high level, a formalism can 
deal with time either in an explicit or implicit manner. In the first case, the language 
allows the representation of time through variables which provide an exact time measure. 
Explicit timing constraints can be expressed in relative or absolute form. When time is 
expressed in a relative manner, time durations and deadlines are given in time units. 
In this case, the relationship between these time units and the absolute measure of 
time expressed in seconds (or milliseconds) is not clear. However, the validation of 
specifications becomes almost hardware independent. When time is expressed in absolute 
form, time durations and deadlines are directly given in seconds or milliseconds (i.e., the 
absolute time of the clock) and therefore the meeting of timing constraints depends on the 
context (machine type, number of processes, workload, etc.). When time management 
is implicit, the formalism is able to represent the temporal ordering of events without 
reporting any quantification on time intervals (i.e., in state machines, and in languages 
enriched with operators like next and previous). When time is treated implicitly, the 
possibility of its exact measure is usually lost. 

A tool for specifying real-time system should guarantee both correctness and com- 
pleteness of the formal specification, as well as the satisfaction of system behavior with 
respect to both the timing constraints defined and the high-level behavioral descriptions. 
The verification of correctness and completeness is usually performed statically by con- 
trolling the syntax and semantics of the model without executing the specification. The 
system validation consists in controlling the conditions of liveness (i.e., absence of dead- 
lock), safety, and the meeting of timing constraints (e.g., deadline, timeout, etc.). It is 
usually performed statically in descriptive approaches (i.e., by proving properties) and 
dynamically in operational approaches (i.e., by simulation). The capability of the method 
for yerifying and validating the system specification (by means of mathematical tech- 
niques or simulations) must be analyzed in order to establish if the tools are capable of 
guaranteeing that the specification produced exactly matches the behavior of the system 
under development, with safety, without deadlocks and by meeting all timing constraints. 

Please note that the two terms verification and validation do not always receive the 
above meaning (Thayer and Dorfman, 1992). For instance, in (Thayer and Dorfman, 
1992) the most frequently used definitions for verification are reported, while the term 
validation is mentioned as "final verification". 

A specification model may be executable or not. Executability is, by definition, a 
prerogative of operational approaches. On the other hand, some descriptive specifications 
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are also executable. Executable means that the model is focused on defining the possible 
evolutions of the system state domain, rater than describing what the system should 
perform. 

A model can provide support for defining strategies for recovering from failures, such as 
timeout, overflow, divide by zero, unmet deadline, etc. as well as for managing external 
exceptions. These features are usually available in operational approaches. Since there 
are some difficulties to guarantee that timing constraints are met, simulation is the way 
for detecting where the recovering paths must be defined. 

Referring to tool completeness, an integrated specification environment is mandatory. 
To this end, a formal language must be endowed with a set of features, helping the user 
in its work. A very relevant feature is the availability of a well-defined methodology. 
In fact, a tool supported by a methodology is easier to be learned and used, while 
the quality of specification improves, and becomes more stable, irrespective of user's 
experience. Moreover, a tool should support the analyst in all phases of software life- 
cycle. Operational approaches are mainly based on the design aspect of the problem, 
while descriptive are better ranked for supporting the analysis phase. 

The user interface is also very important. In recent years, graphics user's interfaces 
and visual languages have highly improved user's productivity with respect to textual 
interfaces. From this point of view, the operational approaches are favoured since they 
are intrinsically endowed with a visual notation, while the definition of visual language 
supporting the syntax of descriptive approaches is a more difficult task. 

Another important factor is the presence of an automatic generator of documentation 
and of a code generator for classical high-level languages, like C, C++, ADA, etc. Note 
that several tools provide the support for generating a skeleton of the final code; in these 
cases, the verification and validation phases are usually performed without considering 
the final version of the code. Therefore, its final behavior may be unpredictable. 

A further ingredient for improving users' productivity is the support for simulation. The 
simulator may either execute the generated code or interpret the specification itself. The 
first case is typical of the operational approach, whereas the second corresponds to the 
descriptive approach. Of course, the first method produces more trustable results, since 
the specification execution is based on the same code as that which will be executed at 
run-time. Simulation is usually performed by controlling system behavior with respect to 
manually or automatically generated test patterns. Of course, the latter are to be preferred; 
however, automatically generated test patterns should be used judiciously, since they may 
be affected by vices. The analyst should also check if test patterns provide a sufficient 
coverage. 

In order to guarantee the possibility of prototype generation, a tool must provide support 
for validating partially defined specifications, otherwise the prototype might produce an 
unpredictable behavior. 

Reuse of old specifications has become an important issue in software engineering. 
Many formal methods lead to specifications in which single components are too much 
coupled to be easily separated for reuse. Recently produced tools incorporate object- 
oriented concepts, since the object-oriented paradigm provides a number of mecha- 
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nisms for reuse (e.g., inheritance, instantiation, etc.) (Nierstrasz, 1989), (Booch, 1986), 
(Meyer, 1988). 

With the term low-level characteristics, we refer to the underlying assumptions and to 
the basic environment on which the specified software is to be run. 

In many approaches, the system under specification is modeled as a set of communi- 
cating sub-systems. The communications among these sub-systems can be synchronous 
or asynchronous. Synchronous mechanisms are more predictable, but also more sensi- 
tive to deadlocks; on the contrary, asynchronous communications are less predictable 
and less sensitive to deadlocks. In general, synchronous mechanisms are more suitable 
for specifying real-time systems - -  i.e., systems in which predictability is the first goal. 
Situations leading to deadlocks can be detected during the validation phase. 

In order to guarantee the system predictability several restrictions are usually im- 
posed. Most of them are devoted to constrain the possibility of changing the operat- 
ing machine conditions. For example, no dynamic creation of processes or data, no 
dynamic process priority changes, and no recursion or unbounded loop definition are 
allowed. In the object-oriented specification tools, the absence of dynamic inheritance 
is usually supposed, and thus the possibility of defining polymorphic class hierarchies 
(Nierstrasz, 1989), (Booch, 1986). 

Most of the tools proposed in the literature are supported by a specific real-time ker- 
nel, which includes a scheduler - -  e.g., (Sha and Goodenough, 1990), (Forin, 1992), 
(Liu and Layland, 1973), (Tokuda, Nakajima and Rao, 1990). Others approaches gener- 
ate a code for platforms in which a real-time operating system is available. A choice 
among the several solutions is quite difficult. On the other hand, the specification tools 
take usually into account the features of low-level support in their semantics. 

As already mentioned, the survey is focused on the historical evolution of tools and is 
organized as follows. Section 2 contains a short summary of early supports for modeling 
communicating concurrent processes. This is useful since in many cases they are the 
foundation for approaches surveyed in this paper. In Section 3 operational methods are 
examined, while descriptive methods are discussed in Section 4. Dual methods axe treated 
in Section 5. The impact of CASE (Computer Aid Software Engineering) technology on 
tools is discussed in this paper with the comments related to the different techniques. In 
Section 6, the findings of our analysis are synthesized and some conclusions are drawn. 

We are aware that many interesting languages, techniques and tools have not been 
considered. This is not to be viewed as a negative aspect, but rather as a necessity 
due to space limitations. Moreover, since this paper is mainly focused on tools rather 
than on languages, the latter are reported when their quotation is needed to explain the 
historical evolution of tools. A complementary survey focused on real-time languages 
can be found in (Stoyenko, 1992). 
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2. Mathematical Supports 

In this section, the most frequently used mathematical supports for reasoning on com- 
municating concurrent processes are briefly discussed. In the late 1970s, Hoare, with his 
work on CSP (Communicating Sequential Processes) (Hoare, 1978), (Hoare, 1985), and 
Milner, with his work on CCS (Calculus of Communicating Systems) (Milner, 1980), 
have posed the bases for the verification and validation of concurrent systems. The 
relationships among these two models have been discussed in (Brookes, 1983). Un- 
til (Hoare, 1978) several methods for specifying communicating sequential processes 
were widely used, including semaphores (Dijkstra, 1968), conditional critical regions 
(Hoare, 1972), monitors and queues (concurrent Pascal) (Brinch-Hansen, 1975), etc. As 
observed in (Hoare, 1978), 'most of these are demonstrably adequate for their purpose, 
but there is no widely recognized criterion for choosing between them'. This consider- 
ation led Hoare to attempt to find a single simple solution to all those problems. In the 
light of the subsequent evolution, CSP is considered as a first rigorous approach to the 
specification of concurrent systems. 

The mathematical bases of CSP have been widely used fbr defining and analyzing con- 
current systems regarded as processes communicating via channels  (Hoare, 1985). For 
this reason, the CSP model is denoted as process-oriented, and each process is modeled 
as a sequential machine. The communication mechanism is completely synchronous - -  
i.e., the transmitter/receiver is blocked until the receiver/transmitter is ready to perform 
the communication. In the CSP notation, sending a message e on a channel c is de- 
noted by c.te, while receiving a message e from a channel c is denoted by c?e. This 
syntax and communication model have been frequently used for defining programming 
languages (e.g., Occam) and specification tools. In CSP model constructs for modeling 
parallel (l[), sequential (>>), and interleaved (Ill) executions of processes are also defined 
(Hoare, 1985). 

Given its popularity, the original CSP model (Hoare, 1978) has been expanded in 
many ways, resulting in a set of models of increasing complexity: the Counter Model, 
the Trace Model, the Divergence Model, the Readiness Model, and the Failure Model 
(Moore, 1990), (Olderog and Hoare, 1986), (Hoare, 1981), (Hoare, 1985), (Misra 
and Chandy, 1981). The Failure Model can be profitably used for reasoning about 
the safety and liveness conditions of the system under specification, even in the presence 
of divergent models (i.e., having an infinite number of states) and non-deterministic pro- 
cesses (Barringer, 1985), (Hoare, 1985). The Trace Model can be used to analyze the 
history of events on the system channels, and for verifying if the system satisfies abstract 
descriptions of system behavior. For these reasons, CSP is an appropriate basis for both 
operational and descriptive approaches. 

The CSP model does not comprise the concept of time and, thus, the system val- 
idation does not take into account timing constraints. For these reasons during the 
1980s many extensions have been proposed for adding time support - -  e.g., CSP-R 
(Koymans, et. al, 1985) (where time managing is added by means of WAIT  t instruc- 
tion), Timed CSP (Reed and Roscoe, 1986) (where time managing is added by means of 
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the special function delay()), CSR (Communicating Shared Resources) (Gerber and Lee, 
1989)and in the CRSM (Communicating Real-time State Machines) (Shaw, 1992) (where 
time is added by means of time bounds on executions and inputs/outputs), etc. 

The syntax and semantics of CCS are based on the concept of observation equiva- 
lence between programs: a program is specified by describing its observation equivalent 
class which corresponds to the description of its behavior. This is given by means of 
a mathematical formalism in which variables, behavior-identifiers and expressions are 
defined. Behavior-identifiers are used in behavior expressions where the actions per- 
formed by the system are described. This makes the CCS model quite operational as 
pointed out in (Milner, 1980) and (Olderog and Hoare, 1983). This model is based on 
an asynchronous communication mechanism. The CCS model provided the ground for 
several models proposed in the late 1980s - -  e.g., (Bolognesi and Brinksma, 1987). 

It should be noted that, the fact that the CSP model is strictly synchronous is not 
a limitation. In fact, by means of synchronous communicating state machines, asyn- 
cba'onous communications can also be defined. This is done through buffers of infinite 
capacity which are modeled as state machines as in (Shaw, 1992). In a similar manner, 
synchronous communications 1:I (one sender and one receiver) can be expanded to I:N 
communications (one sender and N receivers). 

3. Operational Approaches 

Operational approaches describe the system by means of an executable model. The 
model can be mathematically verified (for consistency and completeness) by using static 
analysis, and validated by executing the model (i.e., simulation). Though operational 
techniques were already introduced in the 1970s (Alford, 1977), it was not after the 
paper by Zave (Zave, 1982) that they have attracted large research attention. The most 
innovative aspect of Zave's paper was the embodiment of the operational approach into 
a programming language named PAISLey. 

Operational approaches can be divided in two categories. 
The first category comprises languages and methods which are usually based on transition- 
oriented models, such as state machines (Bavel, 1983) or Petri nets (Reisig, 1985), that 
is, models naturally oriented towards the description of system behavior. 
The second category includes methods which are based on abstract notations especially 
suitable for supporting the system analysis and design (system decomposition/composition). 
In these cases, the notations are mainly oriented towards the description of system struc- 
ture and/or functionality. For this reason, these notations are usually associated with 
guidelines for system analysis/design and are regarded as methodologies. However, most 
of them do not model system behavior and, thus, cannot be directly used for system sim- 
ulation and specification execution. Moreover, since these methods have been developed 
by starting from visual notations, they lack in formalism and are usually considered as 
semiformal. 
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Figure 1. Example of FSM: (a) Mealy model, (b) Moore model, where I i  are input names, Oi outputs and 
S i  names of states. In this example, the two models do not represent the same behavior. On the contrary, the 
Mealy and Moore models are interchangeable by means of simple rules. 

3.1. Operational Approaches Based on State Machines 

The basic theory of Finite State Machines (FSM) and automata dates back to the 1950s 
(Moore, 1956), (Mealy, 1955), (Booth, 1967), (Bavel, 1983). Since state machines are 
intrinsically operational, they have been used as a basis for several operational models. 

The classical FSM models (by Mealy and Moore) are suitable for the specification of 
system behavior. Referring to Fig.l, outputs are produced as a function of the state of 
the FSM (i.e., Moore model) or of the state and machine inputs (i.e., Mealy model). 
FSMs can be represented by using two different notations: state transition diagrams (see 
Fig.l) and state transition matrices (Bavel, 1983). 

The definition of FSM can be verified in order to identify its correctness - -  i.e., the 
teachability of the states, etc. In addition, the consistency and the congruence of a 
system description given in term of FSM can be verified by using several mechanisms 
as in (Jaffe, et. al, 1991). In a system defined as set of communicating state machines 
the number of states depends on the Cartesian product of the state domain of each 
machine; therefore, the number of states grows very quickly, and so the complexity of 
system verification. Moreover, in the presence of a communicating FSM there exists the 
possibility of deadlock and starvation (Hoare, 1985), (Sifakis, 1989). For this reason, 
mathematical supports, such as CSP and CCS are useful for reasoning about system and 
process (i.e., in this case FSM) liveness. 

The classical model for FSM is unsuitable to represent the structural and functional 
aspects of the system under specification. To be profitably adopted as a tool for spec- 
ifying real-time systems, the FSM model must provide support for describing temporal 
dependencies and constraints (e.g., timeout, deadline, etc.) among control flows. For 
these reasons, several extensions have been proposed in the literature. 

Moreover, the classical FSM model is unsuitable when the number of states is very 
high. This problem can be partially avoided by decomposing the system into smaller 
communicating FSMs. The result is that the complexity of the system corresponds to 
the Cartesian product the of single machines state domains. Another possibility is to 
represent the state diagram in a more concise way with respect to the classical notation. 
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Figure 2. Example of extended FSMs: (a) Mealy model, (b) Moore model. Presence of expressions and of 
auxiliary variables --  i.e., A, B of type Integer. 

Classical FSMs are obviously unsuitable (being called Finite State Machines) to represent 
systems with a number of infinite states. Some extensions have been defined to give major 
expressivity to the graphical notation and to allow the definition of auxiliary variables 
(see Fig.2). 

In FSM models the timing relationships among different events are implicitly defined 
by means of state diagrams. On the other hand, in several cases is not always possible to 
predict the state trajectory and, thus, the ordering of events. For this reason, an explicit 
model of time has been added to the FSM models in order to cope with the problems of 
real-time system specification. 

One of the first integrated operational tools for software specification was the SREM 
(Software Requirement Engineering Methodology) (Alford, 1977). This was sponsored 
by the Ballistic Missile Defence Advanced Technology Center (BMDATC) in 1973. 
SREM is based on RSL (Requirement Statement Language) which supports both model- 
oriented and property-oriented styles of programming, and on REVS (Requirements En- 
gineering Validation System) which is able to control the consistency and completeness 
of the specification. A system in SR_EM is decomposed in sub-functions. In SREM, the 
elementary function is modeled as an extended finite state machine. The state diagram is 
given in terms of the so-called R-nets. An R-net represents the system evolution starting 
from a state, by means of reading inputs, producing outputs, iterations, and showing in 
this way" the set of possible next states. Since a finite state machine can have only a 
single active state, there is only an active R-net. Timing constraints are also defined into 
the R-nets. It should be noted that, the decomposition of the system in R-nets allows the 
specification of a distinct behavior for each system state without giving a global view of 
the system. 

SREM, as an operational approach, has been widely used for more than a decade 
(Alford, 1985), (Scheffer, Stone and Rzepka, 1985). In parallel, several other operational 
methods sustained by mathematical formalisms were introduced and publicized. In the 
following subsections, four of them will be discussed - -  i.e., PAISLey (Zave, 1982), SDL 
(Rockstrom and Saracco, 1982), Esterel (Berry and Cosserat, 1985), and Statecharts 
(Harel, 1987). 
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3.J.1. PAISLey 

PAISLey (Process-oriented Applicative and Interpretable Specification Language) was 
introduced in 1982. It is an operational specification model for defining embedded real- 
time systems (Zave, 1982), (Zave, 1984), (Zave and Schell 1986). The system under 
specification is decomposed in processes which communicate asynchronously. Although 
the communications are asynchronous, the model presents several methods for process 
synchronization. Each process is equivalent to an extended state machine. State machines 
are defined by means of a functional language. On the state domain of the system under 
specification, union, Cartesian product, and other operations are possible. In PAISLey, 
the external environment is also modeled to avoid misunderstandings in validating the 
specification. The number of processes, data structures and state domains are finite; these 
assumptions augment the predictability of system behavior. For example (Zave, 1982), 
a system decomposed in four processes is declared by means of their initial state: 

( terminat_l_cycte[btank_display], 
terminal_2_cycle[blank_display], 
terminal_3_cycle[blank-display], 
database_cycle[initial_database] 
); 

where terminal_3_cycle, etc.. are transition functions, while blank_display, initial_database 
are values of variables. For each process the domain range is defined, such as: 

terminal_l_cycle: DISPLAY --+ DISPLAY," 

database_cycle: --~ DISPLAY," 

The single process (i.e., transition function) is defined on the basis of other functions, 
e.g.: 

terminal_l_cycle[d] = display[display_and_transact[(d, think_of_request[d])]]; 

represents the internal structure of terminat_l_cycle functions. 
Communications among processes are obtained from selected combinations between 

three modalities: z_, zrn_, and zr_, obtaining four type of mechanisms: (i) (z_, :cm_) 
blocked synchronous with mutual exclusion, (ii) (z_, z_) blocked synchronous, (iii) 
(zrn_, zr_) mutual exclusion asynchronous, (iv) (z_, zr_) simply asynchronous. 

The method adopted for modeling temporal characteristics of the system is based on the 
theory of random variables. Therefore, PAISLey is primarily operational, but its timing 
constraints are mathematical (Zave, 1990). Timing constraints can be associated with 
the execution of state transitions, and are given by means of (i) lower and upper bounds, 
or (ii) distributions. For this reason, the static verification of time requirements could be 
only verified by means of a statistical reasoning. As a consequence, timing constraints 
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are checked in the phase of simulation, during which time failures are recorded. The 
final system validation is obtained by simulation, being the simulator an interpreter of 
the language. 

3.1.2. SDL 

SDL (Specification and Description Language) is an operational language belonging to 
the standard FDT (Formal Description Techniques) defined in 1982 within ISO (Inter- 
national Organization of Standardization) (ISO TC97/SC16/WG1) and CCITT (Comit6 
Consultatif International T616graphique et T616phonique) for the specification of open 
distributed systems (Rockstrom and Saracco, 1982). In particular, the subgroups B and 
C have analyzed the descriptive models which combine the concepts of finite state ma- 
chines with high-level languages, e.g., Pascal. SDL (Rockstrom and Saracco, 1982), 
(Sarraco and Tilanus, 1987), Estelle (Budkowski and Dembinski, 1987), and LOTOS 
(Bolognesi and Brinksma, 1987) (see Section 4.1.2) belong to this category of speci- 
fication languages. SDL provides both visual and textual representations of its syntax. 
The textual representation extends Pascal according to the ISO draft. 

In SDL, the system under specification is regarded as a block which can be decom- 
posed in sub-blocks, thus modeling the structural aspects of the system (see Fig.3a). 
Blocks communicate asynchronously by means of strongly typed channels. The lan- 
guage provides support for defining new types of messages modeled as ADTs (Abstract 
Data Types) (Guttag, 1977), (Guttag and Homing, 1978). A block can be decomposed 
in sub-blocks or in a set of communicating processes (see Fig.3b). A wocess is imple- 
mented as an extended state machine, where the communication semantics is defined by 
means of a single buffer of infinite length for each state machine. SDL state machines 
are a mixture of state diagrams and flow charts (see Fig.3c); in fact, they present states, 
transitions and selections (equivalent to the "if" statements of high-level languages). In 
SDL state diagrams, reading of inputs and writing of outputs, as well as the execution 
of assignments and procedures can be associated with each transition. Reading should 
always precede writing, since inputs usually represent the condition for transition. If 
no input reading is defined, the change of state is always performed. For example, the 
exiting from the initial state is usually performed without reading any input (see Fig.3c). 

In SDL, timing constraints are modeled through timers. A timer can be considered as 
a separate process which is able to send messages. A process can have a set of timers, 
which can be set, read or reset. For example, an SDL state machine that must satisfy 
a timeout must set a timer and then wait for the message signalling its occurrence. To 
this end, the state machine must be able to receive input messages from the timer in all 
its states, and a transition from a state to the next cannot be interrupted. As a result, 
definition of deadlines may result in somewhat complicated expressions. SDL permits 
the dynamic generation of processes; this is denoted with a dashed line as in Fig.3b. 
For the above reasons, the behavior of an SDL specification can be non completely 
deterministic. On the other hand, the validation is performed by simulation and, thus, 
the analysts achieve the final version by refinement. 
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Figure 3b, Specification in SDL 1988: the block pabx is decomposed in the processes configurator and 
communication, 
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Figure 3c. Specification in SDL 1988: a part of the implementation of process configurator as an SDL state 
machine where: banal is a state, the empty rounded box is the initial state of the machine, ext., and ide. are 
inputs, ester:, is an output, simple squared boxes contain assignments, etc.. 
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More recently, an object-oriented extension of SDL (i.e., SDL 1992) has been presented 
(Braek and Haugen, 1993). This integrates the classical notation of SDL with the power 
of the object-oriented paradigm (e.g., Object-oriented SDL, OSDL). The major advantage 
is the presence of the mechanisms of inheritance, polymorphism and instantiafion which 
have been defined for both the block and state machine levels. For example, new blocks 
and processes can be defined and used in more than one place (i.e., instantiation). 

There are many SDL tools - -  e.g., GEODE (GEODE, 1992) - -  which cover all fea- 
tures defined in the so-called SDL 88 (version of 1988). Moreover, for supporting 
the configuration management, versioning, and report generator, other instruments are 
needed. In order to manage the problems of real-time in telecommunications support- 
ing functional, behavioral and structural aspects, several extensions of SDL, such as 
(Encontre, et. al, 1990), have been presented. 

3.1.3. EstereI 

Esterel is an operational programming language introduced in 1985, which supports 
a set of elementary instructions such as: loop (indefinite), if-then-else, etc. Among 
these, there are special instructions for defining expressions of timing requirements 
(Berry and Cosserat, 1985). A program specifies the deadline for procedure execution 
and let's suppose that the requirements are met at run-time. Consider for instance the 
following piece of code: 

var A, B: int in; 
loop 

do 
A := Fun(B)*5.6; 

uptonext t0 seconds end; 
end; 

end; 

where: A, B are variables, and seconds is a signal. For this program, the instructions in- 
side the do-uptonext body are executed for the next 10 seconds. By using the elementary 
instructions, more complex instructions can be defined. 

Rather than requiring that all timing behavior be known at compile time, Esterel al- 
lows the programmer to specify not only the timing requirements, but also allows the 
definition of the exception handlers which will be executed if the timing requirements 
are not met (recovering from time-failure). This approach to validation is very similar 
to that adopted by SDL. The execution is obtained by translating the Esterel specifi- 
cations in communicating finite state machines. The number of processes is finite and 
their communications are through broadcasting. The execution model is synchronous and 
communications are considered instantaneous. These assumptions imply that the com- 
munications can be simply described by a discrete history of events where several events 
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Figure 4. Statecharts notation and the operation of state clustering (i.e., the XOR) (a) Traditional state diagram, 
(b) Statecharts notations at detailed level, (c) Statecharts notations at abgract level. 

can formally occur at the same time instant. As a result, if a message is not received at 
the same instant in which it is made available, it is lost. Esterel makes no provision for 
exhaustive static analysis before compilation; therefore, it does not ensure predictability, 
in the strong meaning of completing without exception. This is essentially due to the 
adoption of a strongly synchronous model with instantaneous communications. 

3.1.4. Statecharts 

Statecharts have been firstly introduced in 1987 as a visual notation for representing 
complex state machines, in a more synthetic manner with respect to the usually adopted 
notations based on state diagrams (Harel, 1987), (Harel, 1988). With this notation, com- 
plex state machines are represented as combinations of simpler machines, through the 
XOR and AND mechanisms as shown in Fig.4 and Fig.5, respectively. In this way, the 
explosion of the number of states of conventional state diagrams is strongly reduced. On 
the other hand, this notation may be less intuitable than conventional state diagrams. 

Associated with the notation, an operational semantics has been presented, which de- 
scribes how single machines are executed in order to model the equivalent complete state 
machine (Harel, 1987). Following this semantics, the single state machines are consid- 
ered as concurrent and communicating through broadcasting (similar to Esterel). A state 
machine can observe both the current status of other state machines and the history of 
their behavior by using special functions provided by this language. The operational se- 
mantics is based on a set of micro-steps in which the execution of a single state machine 
is decomposed. In some cases, Statecharts can lead to define non-deterministic paths of 
execution. 

In Statecharts, the notion of time is managed through the special function timeout(E,N) 
which becomes true when N time units are passed, after the last occurrence of event 
E (STATEMATE, 1987). Statecharts have been defined for modeling only system be- 
havior, they can be profitably used as a specification language only if they are inte- 
grated in a CASE tool where the structural and functional aspects are addressed by 
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Figure 5. The operation of state machine composition (i.e., the AND operation) of Statecharts (a) Traditional 
state diagram, (b) Statecharts notations where S and T are orthogonal components of the complete state machine. 

means of other notations. This has been done with STATEMATE (STATEMATE, 1987), 
(Harel, et. al, 1990). This tool makes an explicit distinction among structural, functional 
and behavioral aspects. These three aspects are described via three different repre- 
sentations, that is, activity-chart, statechart, and module-chart - -  modeling functional, 
behavioral and structural aspects, respectively. The activity-chart is a sort of RT-DFT 
(see Section 3.3.1), while the module-chart is a visual notation for structural decompo- 
sition. STATEMATE controls that consistency and completeness are maintained through 
the three different notations. STATEMATE has the capability of verifying the correct- 
ness of a Statecharts by means of exhaustive and sub-exhaustive execution tests. The 
verification of reachability, the presence of non-deterministic conditions and deadlocks, 
and the use of transitions, are identified through these tests. Simulation gives the system 
a great confidence in producing specifications. 

More recently, several extensions of the Statecharts model have been proposed for 
improving its capabilities in modeling timing constraints and functional aspects - -  e.g., 
Modecharts (Jahanian and Stuart, 1988), Objectcharts (Coleman, Hayes and Bear, 1992), 
and ROOMcharts (Selic, 1993). In Objectcharts the model of Statecharts has been ported 
in an object-oriented environment. The concepts of temporal constraints on state transi- 
tions and those of auxiliary variables for state machines have also been added (see Fig.6). 
Object orientation has solved the problems related to the diffbrent views by integrat- 
ing them in the concepts of classes (objects). Moreover, other classical object-oriented 
concepts such as inheritance, and instantiation have also been added. ROOMcharts is 
also supported by an object-oriented methodology (Selic, et. al, 1992) and a CASE tool 
named ObjecTime (NorthernTelecom, 1993). The Modecharts model is also discussed 
in Section 4.2.1. 
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Figure 6. Example of an alarm clock in the Objectcharts notation, where alarmtime of type time in the state 
machine alarmon is an auxiliary variable. 

3.1.5. Other Operational Approaches Based on State Machines 

In this section, further interesting approaches based on state machines will be discussed 
for completeness. The classical model of extended state machine has been modified to of- 
fer the capability for defining timing constraints - -  e.g., RTRL (Real-Time Requirements 
Language) (Taylor, 1980), ESM (Extended State Machine, which will be discussed in 
Section 5.1) (Ostroff and Wonham, 1987), and CRSM (Communicating Real-time State 
Machines) (Shaw, 1992). 

RTRL was firstly developed by the GTE laboratories, for their internal use (Taylor, 
1980). The notion of time is modeled through the concept of timer as SDL (on the 
other hand, minimum and maximum time constraints on the occurrence of events can be 
defined in terms of timers (Dasarathy, 1985)). To avoid the problems of several other 
languages which assume the execution time to be instantaneous, in RTRL, time durations 
(such as the execution of sending/receiving a signal) are modeled by means of dedicated 
constructs which consider the execution time. 

CRSM is an extension of the classical CSP model, which adds timing constraints on 
the conditions for the execution of transitions (Shaw, 1992). In particular, the minimum 
and the maximum time in which the transitions can be enabled is defined. Time is 
considered as continuous; therefore, it is represented as a real value (in floating point). 
The value of the current real time is available as the common variable rt. In CRSM, 
the system is described by means of a set of communicating state machines in which 
communications are strictly synchronous, even if asynchronous communications can be 
defined by resorting to infinite buffers on the inputs. The system validation is performed 
via simulation, and by analyzing the history traces. 
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Figure 7. Example of the execution of simple Petri Nets. 

3.2. Operational Approaches Based on Petri Nets 

Petri Nets (PNs) were introduced by Petri as early as 1962 (Petri, 1962). They are 
more expressive than state machines, which can be proved to be a Petri nets subclass 
(Murata, 1989). However, given their lower intuitability, PNs have hardly found their 
way into programming languages. 

PNs are an operational formalism, especially suitable for modeling synchronizations 
among asynchronous processes (Merlin and Faber, 1976), (Reisig, 1985), (Peterson, 
1981). A Petri net is a graph comprising a finite number of places (circles) and transitions 
(segments) (see Fig.7), connected by oriented arcs. A set of tokens can be associated 
with each place. The state of a PN corresponds to the distribution of  tokens on the 
places (i.e., the marking of the net). The operational semantics is that the presence of 
places with at least a token connected with arcs to a transition makes it "firable" - -  
i.e., executable. The execution of a transition leads to the generation of a token in each 
place connected by an arc going out of the transition itself. In Fig.7, several examples of  
executions are reported. When a transition has more outgoing than ingoing arcs, it is a 
producer of tokens, and when the number of outgoing arcs is lower than that of ingoing 
arcs, the transition is a consumer of tokens. A review of fundamentals about Petri nets 

can be found in (Murata, 1989). 
A PN is safe if the number of tokens is limited in time; in this case, it can be easily 

transformed in a finite state machine which is called Token Machine. On the contrary, 
if the PN is unsafe it corresponds to a state machine having an infinite number of 
states, defining in this way a divergent behavior. In this case, the verifiability of a PN 
is impossible. If  the number of tokens of  a PN is constant for each state, the PN is 
called conservative. On the contrary, PNs are called inconsistent when the behavior (i) 
terminates for token consuming, or (ii) diverges for an uncontrolled production of  tokens. 

The verification of  a PN is based on the analysis of the Token Machine. All the clas- 
sical verifications, which can be executed on finite state machines to verify reachability, 
deadlock free, etc. are performed on the Token Machine. If  in a PN there is more than 
one transition enabled by the same marking, the execution is non-deterministic (i.e., the 
PN has more than one possible next state). PNs in which this condition never occurs 
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Figure 8. Example of Petri Nets, where Ti are transitions, Pi places, (a) and (b) are two consequent states of 
the net. 

behave in a determinism manner and are called decision free nets. The verification of 
a PN is computationally possible only for consistent deterministic nets, while for the 
non-deterministic nets the problem is NP complete (Willson and Krogh, 1990). For con- 
servative nets, the absence of deadlocks can be demonstrated by using algorithms with 
exponential complexity. On the other hand, these algorithms cannot be extended to all 
the extensions of the classical Petri net model. 

It should be noted that, a state diagram can be regarded as a particular Petri net 
where the transitions have only one entering and one outgoing arc. On the other hand, 
the state diagrams are more intuitive with respect to the visual representation of Petri 
nets. The classical notation for Petri nets is unsuitable for representing the functional 
and structural aspects of the system under specification; there is no explicit support for 
specifying timing constraints, and the tokens are only untyped control messages. For 
these reasons, many extensions have been proposed for transforming PNs into suitable 
models for the specification of real-time systems. The following subsections are dedicated 
to the discussion of several of them. 

3.2.1. TPN 

The TPN (Time Petri Nets) model has been introduced in 1976. It is an extension of 
classical Petri nets for treating the timing constraints. These are expressed explicitly for 
each transition, by means of a minimum and a maximum time (Train and Tmax ,  respec- 
tively) (Merlin and Faber, 1976). Train is the minimum time for which the transition 
must stay enabled in order to be firable. T m a x  is the maximum time for which the transi- 
tion can stay enabled without firing. If Train = 0 and T m a x  = oo the TPN corresponds 
to the classical PN model. The adoption of this time modeling allows the definition of 
timeouts, deadlines, etc. A TPN, defined on a structurally safe PN, can be verified for 
controlling the absence of deadlocks and other properties (Berthomieu and Diaz, 1991), 
(Leveson and Stolzy, 1987). The Token Machine resulting from a TPN is different from 
that of the corresponding PN (i.e., the same TPN without timing constraints) and may 
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present unreachable states, thus requiring a more accurate analysis. Moreover, in certain 
conditions, the generation of the Token Machine and the reachability analysis can be 
impossible. 

3.2.2. SPN 

SPNs (Stochastic Petri Nets) are an extension of the classical PN for describing the timing 
constraints, introduced in 1983 (Marsan, Balbo and Conte, 1983), (Molloy, 1985). In 
this model, a random variable is assigned to each transition Ti representing the firing 
delay. In this way, in the presence of several firing conditions in the nets, these are 
ordered by means of their respective firing delays. SPNs with geometrical or exponential 
distributed delays are isomorphic to homogeneous Markov chains; therefore, they are 
appropriate for modeling non-deterministic processes. 

PROT nets are an extension of SPN and allow the discovering of critical conditions 
(Bruno and Marchetto, 1986). These can be easily translated in ADA language, where 
the interactions between a process and a transition take place through two rendez-vous 
of ADA. PROT nets are an efficient system for producing the ADA structure of a 
system by specifying system behavior. For these nets, a simulator is also available 
to validate the specification. This model is also supported by a CASE tool, named 
ARTIFEX (ARTIFEX, 1993), which includes the aspects of object-oriented paradigm 
and methodology called PROTOB (Baldassari and Bruno, 1991). 

3.2.3. Other Operational Approaches Based on Petri Nets 

For completeness, other approaches based on Petri nets are briefly discussed in this 
sub-section, in the order of their appearance - -  i.e., Timed-PN (Timed Petri Nets) 
(Ramachandmli, 1974), CPN (Colored Petri Nets) (Jensen, 1981), (Jensen, 1987), HMS 
(Hierarchical Multi-State machines) (Gabrielian and Franklin, 1991), ER, TER and TB 
nets (Ghezzi, et. al, 1991), and CmPN (Communicating Petri Nets) (Bucci, Mattotine, 
and Vicario, 1993), etc. 

In Timed-PNs, a duration time is associated with each transition for modeling the exe- 
cution time of the transition itself (Ramachandani, 1974), (Ramamoorthy and Ho, 1980). 
The semantics of classical PNs is modified by assuming that a transition must fire as 
soon as it is enabled. These nets are mainly suited for performance evaluation. 

The HMS model is based on state machines, but presents many characteristics which 
make this formalism more similar to Petri nets than to state machines (Gabrielian and 
Franklin, 1991), In fact, as in Petri nets, in a HMS specification several active states 
(i.e., states with a sort of "token") can exist at the same time. In HMS the system under 
specification is modeled as a hierarchy of specifications starting from the more abstract to 
the more detailed one. This layering allows the reduction of diagram complexity, similar 
to the clustering mechanism of Statecharts formalism (see Section 3.1.4). Moreover, the 
specification refinement is supported by a process of verification which validates if the 
conditions (expressed by means of axioms) for any given abstract level are satisfied by 
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the specification for the lover level (i.e., more detailed). Timing constraints are defined 
in Temporal Interval Logic (TIL). Timing constraints can be used for defining conditions 
on state transitions. The complete model is non-deterministic, but executable, and thus 
it is suitable for simulation. 

In (Ghezzi, et. al, 1991), a collection of extended Petri nets has been presented in order 
of complexity: ER, TER and TB nets. In the TB model, the time in which a token has 
been produced (i.e., timestamp), is associated with the token itself. In TB nets, tokens are 
"functions" which associate values with variables. In addition, a Boolean condition based 
on the presence of tokens with their timestamps on the connected places is associated 
with each transition. The TB model is to be a generalization of the TPN model proposed 
in (Merlin and Faber, 1976). The transformational aspects (i.e., functional aspect) of 
the system under specification can also be described by the TB model. Fig.9 reports 
an example presented in (Ghezzi, et. al, 1991). It represents a net that models a data 
acquisition system which periodically samples data from the environment. Sampled data 
are modeled by the tokens fired by transition T1. A controller (represented by a token 
in place P3) takes those data (i.e., transition 7) fires) and then elaborates them, i.e., 
transition T3 fires. The sampled data are valid only at most for do time units and the 
elaboration takes a minimum of dl and a maximum of d2 time units. 

CmPNs are an object-oriented extension of PN. These are suitable for modeling struc- 
tural, behavioral aspects of the system under specification (Bucci Mattoline and Vicario, 
1993). By means of this model the system is regarded as a set of asynchronously com- 
municating subsystems (which can be placed in a single-processor or distributed environ- 
ment). In the CmPN model, a priority and an action are associated with each transition. 
The scheduler takes into account the priority during its work, and the action corresponds 
to the execution of a procedure when the transition is fired. For a specification given in 
terms of CmPNs, the absence of deadlocks can be verified. Moreover, a CmPN specifi- 
cation can be directly translated into C++ code for a heterogeneous environment based 
on MS-DOS and UNIX machines. 

3.3. Operational Approaches Based on Other Notations 

Most of the operational models have their own visual notations and this increases spec- 
ification understandability. Starting with the late 1970s, a number of different notations 
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were introduced as a substantial component of various methodologies for system analy- 
sis and design. Most of them, including Structured Analysis (Ross and Schoman, 1977), 
(Yourdon and Constantine, 1979), Data Flow Analysis (DeMarco, 1979), JSP (Jackson 
Structured Programming) (Jackson, linebrak 1975), and JSD (Jackson System Develop- 
ment) (Jackson, 1983), have found large acceptance by industry. In addition, because 
of their expressiveness, these notations have been incorporated in many CASE environ- 
ments. As a result, the boundaries between the use of these notations and of operational 
visual specification languages are crumbling. In fact, tools supporting methodologies 
of the above mentioned category become increasingly similar to visual programming 
environments, thus allowing the direct manipulation of graphical elements in order to 
visually describe program aspects like structure, flow of data and the like. Following this 
trend, conventional approaches like Structured Analysis, have be considered operational, 
in spite of their informal nature. 

The use of visual techniques reduces the effort of user-machine communication. In this 
way, the ability of the user to describe the system is greatly enhanced, further reducing 
the intermediation with the system. This aspect has been taken into consideration by the 
designer of tools like those described in (Jacob, 1985) and (Harel, 1988). 

In recent years, the Object-Oriented Paradigm (OOP) has gained large acceptance 
in software analysis and design (Coad and Yourdon, 1991), (Booch, 1991), (Northern- 
Telecom, 1993), (Coleman, Hayes and Bear, 1992). This is largely due to the fact that 
working with classes and objects is an easy and natural way for partitioning large prob- 
lems. The mechanisms for decomposing a system into objects, makes OOP the nat- 
ural methods for separating the different activities that can be carried out in parallel. 
By supporting strong modularity, code reusability, and extendibility, OOP is having 
quite an impact on design, implementation and maintenance of complex systems, and 
many formal languages have been extended with object-oriented capabilities, leading 
to languages like Z++, VDM++, TRIO+, etc. Several object-oriented methodologies 
for real-time systems have also been introduced - -  e.g., HOOD (HOOD, 1988), Wirsf- 
Brock et al. (Wirsf-Brock, Wilkerson and Winer, 1990), Booch (Booch, 1991), OMT 
(Rumbaugh, et. al, 1991), Coad and Yourdon (Coad and Yourdon, 1991), and these have 
been adopted as a basis for a number of CASE tools. 

3.3.1. Structured Analysis 

Structured Analysis is a generic term which denotes a number of analysis and design 
methodologies, approaching system specification in a structured manner. 

Historically, SADT (Structured Analysis and Design Technique, introduced in 1977) 
(Ross and Schoman, 1977) has been the first methodology based on a structured approach 
and, more specifically, on the concept of functional decomposition. SADT has its own 
diagrammatic notation, with well-defined syntax, semantics. The notation handles the 
data and control flows. SADT builds on the concept of models. A model corresponds 
to a hierarchy of diagrams describing the system from a particular point of view (for 
instance, from the operator's point of view). Models can share common details. A 
sub-model which is shared by other models or whose implementation can be changed is 
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Figure 10. Symbols of DFD: (a) external agent, (b) function or process for data transform, (c) data flow, (d) 
permanent data repositor. 

called a mechanism. A mechanism can remain undeveloped until the later stages, thus 
delaying detailed decisions. SADT is a registered trademark of Sof-fech and is available 
commercially. 

Structured analysis as publicized by Yourdon and Constantine (Yourdon and 
Constantine, 1979) and De Marco (DeMarco, 1979) in 1979, is perhaps one of the best 
known methodologies (Svoboda, 1990). This is essentially a functional decomposition 
technique, used to identify a number of transforms and the data flowing among them 
(DeMarco, 1979). This is done by the successive application of the engineering definition 
of a black box that transforms an input data stream in an output data stream. Data-Flow 
Diagrams (DFD) and data dictionaries are the most important tools used in carrying out 
the analysis. Transforms are called processes and represented as bubbles in data flow 
diagrams, while flows of data are represented as oriented arcs among bubbles. The data 
dictionary keeps track of any data flowing through the network of processes. The graphic 
symbols used in Structured Analysis/Data-Flow Analysis are shown in Fig.10. 

Data-flow analysis tends to produce a network of (sub)programs corresponding to each 
transform, but allows the identification of the central transform, that is, the one that 
accepts the most abstract input stream and produces the most abstract output stream. 
The central transform corresponds to the most abstract view of the program functional- 
ity. By picking up the data-flow diagram from the central transform, a tree representing 
the hierarchical structure of the program is obtained. Starting from the so-called con- 
text diagram, which contains only a single bubble representing the system in its entirety, 
successive refinements are applied (DeMarco, 1979). This leads to a hierarchical decom- 
position, where each process is decomposed in a number of lower-level, more detailed 
data transforms. Of course, consistency must be kept among levels. In particular, in- 
put/output data, flowing in/from a given process, must be preserved when the process is 
decomposed in a number of lower-level processes. 

Structured Analysis can be applied in a purely manual fashion or it can be automated 
to varying degrees (Birrel and Ould, 1985). Almost any CASE tool produced in the last 
decade includes Structured Analysis - -  e.g., (Teamwork, 1992), (StP, 1991). In addition, 
DFDs admit also an operational interpretation. 

Structured analysis is still one of the most used techniques for dealing with transfor- 
mational applications, as found in data-processing environments, where procedural (i.e., 
static) aspects are relevant. Its strength is also its weakness: it is informal and very 
intuitive, and thus can be used also by people not keen in mathematics; however, this 
denies rigorous specification validation. 
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3.3.2. Real-Time Extensions of Structured Analysis 

Several extensions to structured analysis have been proposed in the 1980s, in order to take 
into account also system dynamics and use it for the specification of real-time systems. 

DARTS (Design Approach for Real-time Systems) (Gomaa, 1984), (Gomaa, 1986), and 
its recent object-oriented extension (Gornaa, 1992), is an example of design techniques 
which closely follow the Structured Analysis/Data-Flow analysis approach to identify the 
processes to be implemented in a real-time system, as well as their synchronizations. 

Ward and Mellor (Ward and Mellor, 1985), (Ward, 1986), extended data flow diagrams 
by adding edges representing control. They also used state machines for representing 
behavior. Many commercial CASE tools, including Teamwork (Teamwork, 1992), StP 
(Software through Pictures) (StP, 1991) and Excelerator (Excelerator, 1986) have fol- 
lowed this lead. 

Hatley and Pirbhai (Hatley and Pirbhai, 1987) performed a data-flow analysis and then 
proceeded with a control-flow analysis. This leads to augmenting the data flow-diagram 
with the so-called control bars, which are introduced to represent event occurrences. 
Additional specification tools (i.e., CSPECS (Hatley and Pirbhai, 1987)) are used in order 
to express how and when a transformation occurs. As a result, the designer must employ 
different tools and languages, depending upon the stage of the analysis. In Fig. 1 la, the top 
level of a cruise control system according to the Hatley and Pirbay notation, is reported. 
In the diagram, both data and control flows are shown, where square boxes represent 
terminal objects. In Fig.llb, the DFD diagram at level 0 shows the decomposition of the 
system in "processes" (according to Hatley and Pirbay, but called data transformations in 
the more general meaning), data and control flows (i.e., continuous and dashed lines), data 
stores (e.g., mile count) and a control bar (i.e., CNT_I). The control bar encapsulates the 
system behaviour and process activation in terms of a Mealy state machine (see Fig.llc). 

Structured analysis for real-time systems is still based on the notion of the flow of 
data between successive transforms, and provides little support to identify the concurrent 
processes (in this paper, the word "process" was used to denote a separate sequential 
activity, implemented as an independent thread of execution, and not simply a data 
transform), that must be implemented in a given application. Depending upon the detail 
of the analysis, there is something arbitrary in identifying the system processes. This 
may result in the implementation of unnecessary processes and the possibility that a 
given process needs concurrency internally. 

3.3.3. JSD and Entity Life 

Jackson System Development (JSD) (Jackson, 1983), (Cameron, 1986) was introduced 
in 1983, and has become since then a well-known method for software development. It 
encompasses most of the software life-cycle and, being based on the concept of commu- 
nicating sequential processes, it can be used for the design of real-time and concurrent 
software. 

JSD is an entity-life modeling approach (Sanden, 1989c) to software analysis and de- 
sign. In fact, the first phase of the method, the model phase, is devoted to the examination 
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Figure 11c. Example of extended DFD in the Harley and Pirbay notation: behavior of control speed. 

of the real-world environment, in order to identify and model the entities belonging to it. 
Entities that have a strong time dimension, that is, when they make transitions between 
different states over time, are modeled as software processes. Modeling is done trough 
an explicit diagrammatic notation in which three basic structuring concepts are used, 
namely: sequence, iteration and selection. The resulting entity structure describes all 
the possible life histories of the entity itself. Since JSD makes reference to languages 
that do not support concurrent programming, processes are implemented as coroutines, 
managed by a tailor-made scheduler. 

Elaborating upon JSD, Sanden has proposed the so-called generic entity-life approach 
to concun'ent software design (Sanden, 1989c), (Sanden, 1989b), (Sanden, 1989a). In 
this approach, the first step is the identification of each independent and asynchronous 
thread of events in the problem domain; for any thread of events, a software process is 
implemented in the system. The generic entity-life approach avoids certain intricacies of 
JSD, as well as the implementation of unnecessary processes. Furthermore, Sanden uses 
the ADA language to work out his examples. The task construct of that language avoids 
another problem of JSD, that is, the implementation of processes as coroutines and the 
consequent need of a tailor-made scheduler. 

Entity-life approaches are a step towards clear specifications of concurrent systems. They 
take into account functional, structural and behavioral aspects. In the examples presented 
in (Sanden, 1989c) and (Sanden, 1989b), system behavior is dealt at the level of interac- 
tions among tasks. The specification of internal details is left to other techniques, such 
as state machines. 
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3.3.4. Object-Oriented Notations 

In recent years, the Object-Oriented Paradigm (OOP) has gained a large acceptance 
in the software community. Object orientation has also been used for the develop- 
ment of real-time systems, due to the fact that the object-oriented model can be consid- 
ered intrinsically concurrent. In fact, software objects can be regarded as independent 
threads of execution which communicate by means of message passing (Cox, 1984), 
(Diederich and Milton, 1989), (Bihari and Gopinath, 1992). More refined models divide 
system objects into active and passive, and/or server and client objects (Agha, 1986), 
(Ellis and Gibbs, 1989), (Booch, 1991). For these reasons, both object-oriented method- 
ologies and languages (e.g., (Ishikawa, Tokuda and Mercer, 1992)), have been defined 
for modeling real-time systems. Since, this section is devoted to the operational ap- 
proaches, only methodologies are discussed. Pure languages are not mentioned, even 
those that are focused on programming distributed and/or real-time systems. 

In the early 1990s, many efforts have been made to reuse the good things of the old con- 
ventional methodologies, such as DFD, Entity-Relationships diagrams (ER) (Chen, 1976), 
etc., by reinterpreting them in the context of an object-oriented methodology - -  e.g., Coad 
and Yourdon (Coad and Yourdon, 1991), Rumbaugh at al. (OMT) (Rumbaugh, et. al, 
1991), and Martin and Odell (Martin and Odell, 1991), Of course, the resulting tech- 
niques are influenced by the functional view. More recently, some "pure" object-oriented 
methodologies have been proposed - -  e.g., Booch (Booch, 1991), and Wirsf-Brock et al. 
(Wirsf-Brock, Wilkerson and Winer, 1990). Pure object-oriented methodologies focus 
only on the definition of objects and relationships among them (Monarchi and Puhr, 1992). 

In many of the above-mentioned approaches, the system is decomposed into objects for 
representing the structural aspects of tile system under specification. Object relationships 
are defined through extended Entity Relationship diagrams (Coad and Yourdon, 1991), 
(Rumbaugh, et. al, 1991) or by using the so-called Object Diagrams (see Fig.13) (Booch, 
1991), (Rumbaugh, et. al, 1991), (HOOD, 1988), (Wirsf-Brock, Wilkerson and Winer, 
1990). To support all the features of the OOR such as inheritance, polymorphism, ag- 
gregation, association, etc., special symbols for Entity Relationship diagrams or special 
diagrams, such as Class Hierarchy, have been defined (see Fig.14). In most of the pro- 
posed methodologies, system behavior is encapsulated in the implementation of objects 
(more specifically in the implementation of class methods). The object behavior is usually 
described by means of extended state diagrams or state transition matrices. Shlaer and 
Mellor (Shlaer and Mellor, 1988), (Shlaer and Mellor, 1991) and Booch (Booch, 1991), 
use a Mealy model; Rumbaugh (OMT) (Rumbaugh, et. al, 1991) uses a notation strongly 
similar to Statecharts - -  i.e., the ROOMcharts (see Section 3.1.4); Coad and Yourdon 
(Coad and Yourdon, 1991) use a state event table. 

It should be noted that, the description of the class interface in terms of methods is not 
able to represent all the relationships that objects may have with respect to other objects, 
especially in a concurrent environment (Bucci, et. al, 1993), (Coleman, Hayes and Bear, 
1992), since this does not represent the services that a class of objects requires from 
other objects (Wirsf-Brock and Wilkerson, 1989), (Walker, 1992). In fact, these requests 
are encapsulated into the methods body and, thus, they are hidden to the outer objects. 
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Figure 14. Example of Class Diagram (also called class tree --  DrawONect is the root), where continuous lines 
define relationships of specialization between classes (i.e., inheritance) (is_a), dashed lines those of aggregation 
(is_part_@, and dotted lines those of association (is_referred_by). 

Furthermore, though many of these methodologies are especially defined for the anal- 
ysis and design of reactive systems, some of them are not completely satisfactory for 
specifying real-time systems. Usually, these notations only provide support for defining 
timing constraints of the system under analysis, but unfortunately they are not strongly 
supported by techniques for verifying the consistency and completeness of time relation- 
ships. This derives from the fact that these methods are not enough formal for supporting 
a formal semantics and for defining an executable model of the system. 

In spite of the previous considerations, many CASE tools have been built on the 
basis of the above mentioned methodologies. In these CASE tools, model limita- 
tions have been partially circumvented through specific notations which add formalism 
and executability - -  e.g., object-oriented and state machines (e.g., Shlaer and Mellor 
(Shlaer and Meltor, 1988), Booch (Booch, 1991)), object-oriented). 

4. Descriptive Approaches 

The use of descriptive languages for program specification has been proposed by several 
researchers during the 1970s - -  e.g., (Guttag, 1977), (Liskov, et. al, 1977). Descriptive 
approaches are based on mathematical notations (axioms, clauses, set theory, etc.) and 
produce precise, rigorous specifications, giving an abstract view of the system state 
space. The system is described by specifying its global properties, forcing the analyst to 
specify what  must be done by the system rather than how it must be done. Descriptive 
specifications can usually be automatically processed for verifying their completeness 
and consistency. Moreover, a specification can also be validated by proving that high- 
level properties are verified by the specification itself. This is performed by means 
of theorem provers or Prolog engines. Since most of these are not enough efficient 
and predictable (from the performance point of view), descriptive approaches are not 
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considered adequate for producing executable real-time specifications. Only in the late 
1980s, some descriptive languages have been enriched with primitives for dealing with 
time, making them suitable for specifying real-time systems. 

In the following, we have tried to classify descriptive approaches on the basis of their 
main nature, that is algebraic or logical. Of course, many mixed approaches have been 
proposed making this classification questionable. A different classification can be found 
in (Wing, 1990a). 

4.1. Descriptive Approaches Based on Algebraic Methods 

Algebraic methods are based on the concepts of Abstract Data Type (ADT) (Guttag, 1977), 
(Guttag and Homing, 1978). With these methods of specification the system is described 
in an abstract manner; however, the description remains quite intuitive and lightly oper- 
ational to be easily understandable. Most of the algebraic methods allow to specify the 
system at different levels of abstraction, starting from a coarse description and arriving 
at the most detailed one. For these methods, the system itself is regarded as an ADT, and 
its specification consists in describing its syntax and semantics. The syntax definition 
gives the description of the operator domains of the ADT, while the semantics is given 
by an implementation of these operators by means of mathematical expressions. Seman- 
tics is often defined by writing a set of axioms with a programming language based on 
first-order logic. Complex abstract data types are defined on the basis of simpler ones; 
hence, the semantics of complex types is specified by using the axioms of simple types, 
and thus the behavior of complex types can be again validated by using the axioms of 
the simple types. This allows to verify the specification correctness at each level of 
specification detail. 

By iterating the ADT implementations the entire system is specified. Iteration ends 
when the elementary data types of the system are defined. Therefore, the system obtained 
is specified on the basis of few elementary ADTs, whose operators must be implemented 
by means of a traditional programming language (e.g., Pascal, C, etc.). The validation 
process is carried out with respect to high-level system properties. Then, if elementary 
ADTs are correctly implemented, the overall system will also be correct. 

In the 1980s, many interesting specification languages have been proposed, accord- 
ing to the concept of ADT - -  e.g., ACT ONE (Algebraic Specification Technique 
(Ehrig and Mahr, 1985), which inspired LOTOS (Bolognesi and Brinksma, 1987), see 
Section 4.1.2), AFFIRM (Musser, 1980), and the Larch family of languages (Guttag, 
Horning and Wing, 1985). 

Algebraic methods have been used for defining abstract data types in conventional ap- 
plications (Musser, 1980); later on, they have been employed for specifying reactive sys- 
tems and communication protocols (Sunshine, et. al, 1982). To give an idea of how these 
languages are structured, an example of protocol in AFFIRM (Sunshine, et. al, 1982) is 
reported in Fig.15, while Fig.16 shows the corresponding state machine in the Mealy 
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model (see Section 3.1). As can be noted, state variables are modeled by means of ax- 
ioms, which in turn are functions of the axioms of other ADTs. For example, in Fig.16 
the SimpleMessageSystem is defined by using Message and QueueOfMessage ADTs. For 
QueueOfMessage the operations of NewQueueOfMessage, Add, and Remove are defined. 
In general, the operators can be classified as constructors (InitializeService, UserSend, 
SendComplete, UserReceive), and selectors (ReceiveComplete, Buffer, Sent, Received). 
State is the axiom which models the data type behavior. 

The completeness can be verified when it is proven that a defined property is verified 
by the axioms of the system. This confers a descriptive rather than the operational 
nature to these approaches, although the ADT behavior can be in many cases translated 
in state machines. The operational descriptions are distributed among the operators and, 
therefore, they are not simply executable. The property of liveness can also be verified, 
for example by proving that a message transmitted will be received in any case by the 
SimpleMessageSystem. In AFFIRM, there is no method for describing timing constraints. 

The Larch family of specification languages has been defined on the basis of a common 
support, the so-called used traits. This support describes the common Larch model by 
means of an algebraic language - -  i.e., the Larch Shared Language (Guttag, Horning and 
Wing, 1985), (Garland, Guttag and Horning, 1990). By using this language new ADTs 
can be defined. An interface support must be defined on the Larch Shared Language by 
using a predicative language (e.g., pre- and post-conditions) (Wing, 1987). This layer 
plays the role of a support for a host language. For example, the Larch/Pascal provides a 
support for programming in Larch style by using the conventions of Pascal. On the con- 
trary, each Larch language is based on the same support (i.e., Larch Shared Language). 
In the literature, there are many other Larch languages: the Larch/CLU (for CLU see 
(Liskov, et. al, 1977), (Liskov and Guttag, 1986)), Larch/ADA (Guaspari, Marceau and 
Polak, 1990), Larch/C, and also object-oriented languages such as the Larch/Smalltalk, 
the Larch/Modula-3 and the Larch/C++ (Wing, 1990b), (Leavens and Cheon, 1992), 
(Cheon and Leveson, 1993). 

The above mentioned languages are enough formal to create specifications that can be 
easily verified, but unfortunately most of them are not supported by any specific construct 
for specifying timing constraints such as timeouts, deadlines, etc. 

4.1.1. Z 

The Z language is based on the theory of sets and predicate calculus (Abrial, 1982), 
(Sufrin, 1986), and was introduced in 1982. Differently from AFFIRM, the operations 
on a described data type are given by using the predicate logic (Spivey, 1988). As in 
other algebraic approaches, in Z the final specification is reached by refinement, starting 
from the most abstract aspects of the system. In Z, there is also a mechanism for 
system decomposition known as Schema Calculus. Therefore, a system specification is 
decomposed in smaller pieces called schemes where both static and dynamic aspects of 
system behavior are described. 
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type SimpleMessageSystein; 
needs types Message, QueueOfMessage; 
declare s: SiinpleMessageSystein, in: Message; 
interfaces 

State(s): {ReadyToSend,Sending,ReadyToReceive,Acking }; 
Sent(s), Received(s), Buffer(s): QueueOfMessage; 
InitializeService(s), UserSend(s,m), SendCoinplete(s): SimpteMessageSystein; 
UserReceive(s), ReceiveComplete(s): SiinpleMessageSystem; 

axioms 
State (UserSend(s,in)) = if State(s) = ReadyToSend 

then Sending 
else State(s), 

State (SendCoinptete(s,in)) = if State(s) = Sending 
then ReadyToReceive 
else State(s), 

State (UserReceive(s)) = if State(s) = ReadyToReceive 
then Acking 
else State(s), 

State (ReceiveComplete(s)) = if State(s) = Acking 
then ReadyToSend 
else State(s), 

State (InitializeService) = ReadyToSend, 
Sent (UserSend(s,m)) = if State(s) = ReadyToSend 

then Sent(s) Add m, 
else Sent(s), 

Sent (InitializeService) = NewQueueOfMessage, 
Receive (UserReceive(s)) = if State(s) = ReadyToReceive 

then Received(s) Add Front(Buffer(s)) 
else Received(s), 

Received (InitializeService) = NewQueueOfMessage, 
Buffer (UserSend(s,m)) = if State(s) = ReadyToSend 

then Buffer(s) Add m 
else Buffer(s), 

Buffer (ReceiveCoinplete(s)) = if State(s) = Acking 
then Reinove(Buffer(s)) 
else Buffer(s), 

Buffer (InitializeService) = NewQueueOfMessage, 
end; 

Figure 15. Example of SimpleMessageSystem in AFFIRM. 
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Figure 16. The corresponding state diagram of the SimpleMessageSystem as previously defined in AFFIRM. 
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A well-known specification example of the Z language is the Birthday book (Spivey, 1988), 
that is a system for recording people's birthday. Each entry contains a NAME and the 
DATE of birthday. The first step of specification consists in defining the state space of 
the system by means of the following schema: 

BirthdayBook 

known : 79 NAME 
birthday : NAME H DATE 
known = dom birthday 

specifying that the state space must satisfy the condition that known is equal to the 
domain of birthday and that the NAME is a known domain. It should be noted that in 
this example one person can have only one birthday, but the same birthday can belong 
to more than one person. Operations are defined by using other schemes, for example 
the schema AddBirthdayBook for adding a new element is reported in Fig.17. 
In the AddBirthdayBook scheme, the qualifier A defines that the operation described can 
change the state space of BirthdayBook. The two declarations: name? : NAME and 
date? : DATE define that these are inputs (outputs are represented by the symbol "!" 
as in the CSP (Hoare, 1985)), while name? ~ known imposes that the name read must 
not be already included in the BirthdayBook. The last line simply describes the update 
operation on the birthday set (birthday is the updated value). Schemes can be combined 
by means of the Z schema calculus, in which operations of and, or, etc., are defined. The 
Z language also includes a mathematical tool-kit allowing the definition of operations on 
sets and data. It is very useful for describing the mathematical aspects of a problem. 

A specification in Z is a mixture of: informal text, definitions, axiomatic descriptions, 
constraints, type definitions, and schemes. Therefore, it cannot be considered a fully 
descriptive approach (Zave, 1990). 

As regards real-time systems specification, the Z language does not have any support for 
defining timing constraints. Therefbre, in the recent years, several extensions for adding 
time management have been proposed. In (Richardson, Aha and O'Malley, 1992), the 
Z language has been integrated with the RTIL (Real-Time Interval Logic) (Razouk and 
Gorlick, 1989). 

Several object-oriented extensions of the Z language have been presented - -  e.g., 
OOZE (Alencar and Goguen, 1991), MooZ (Meira and Cavalcanti, 1991), Z++ (Lano, 

- -  AddBirthdayBook 

A BirthdayBook 
name? : NAME 
date? : DATE 
name? ~ known 
birthday' = birthday U { name? +data? } 

Figure 17. Schema of AddBirthdayBook in Z language. 
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199t), Object-Z (Carrington, et. al, 1990). Most of them provide information hiding, 
inheritance, polymorphism and instantiation into the Z Schema Calculus. With these 
extensions, the system state space is defined as a composition of the state spaces of 
the individual system objects. The object-oriented paradigm has added formalism for 
modularity and specification reuse. Object-Z integrates also the concepts of temporal 
logic (Carrington, et. al, t990), making it suitable for real-time specification. In this 
language the object status is a sort of event history of object behavior making the language 
more operational than the early version of Z. 

4.1.2. LOTOS 

LOTOS (Language Of Temporal Ordering Specification) is a formal technique belonging 
to the standard FDT defined within ISO (International Organization of Standardization) 
for the specification of open distributed systems (Bochmann, et. al, 1982). It was de- 
fined by ISO/TC97/SC21/WG1 subgroup C in 1981-86 (Bolognesi and Brinksma, 1987), 
(Botognesi and Brinksma, 1989). LOTOS is based on the algebraic descriptive technique 
firstly presented by Milner (CCS) (Milner, 1980) and the abstract data type language 
ACT ONE (Ehrig and Mahr, 1985). Being based on ADT, LOTOS allows to define new 
ADTs. LOTOS uses the concepts of ADT for defining also the structural aspects of 
the system under specification, differently from other FDT which do not address the 
structural aspects. 

LOTOS is strongly based on the concept of process. Structural decomposition is made 
on the basis of processes, and a distributed system is also regarded as a process with sub- 
processes. Algebraic operators are used to define relationships among processes - -  e.g., 
sequential (>>), and parallel (113 executions. For these reasons, LOTOS can be considered 
a process-oriented descriptive algebraic language. Processes communicate by means of 
messages, through gates. Messages can bring data or controls; they are considered events, 
are assumed to be atomic, and their occurrence is supposed to be instantaneous without 
time consumption. A system specification consists in the definition of process behavior, 
by describing how processes communicate, execute, and synchronize. Process definition 
specifies the temporal ordering in which a process interacts with other processes, by 
means of its gates. A process definition may include the definition of a set of types 
which are equivalent to ADTs. 

Consistency among descriptions is verified by a syntax checker and by simulation. 
A compiler translating LOTOS specifications into a machine-oriented language is also 
available. The LOTOS tool has been produced by the ESPRIT project SEDOS. The 
G-LOTOS, which is a graphic editor to produce LOTOS specifications by means of a 
visual language is also present (Bolognesi, Najm and Tilanus, 1993). LOTOSPHERE is 
an integrated tool environment for defining systems in LOTOS (LOTOSPHERE, 1992). 
LOTOSPHERE is the result of an ESPRIT project (n.2304). With this tool the user can 
define process behavior in both descriptive and operational manner. The latter resort to 
the formalism based on extended finite state machines. 
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4.1.3. VDM 

VDM (Vienna Development Method) dates back to the 1970s and to the work of a 
reasearch group at the IBM Laboratory in Vienna, attempting to create a formal approach 
capable of defining the programming language PL/I. Afterwards the original group was 
dispersed, but the ideas instead of dying spread to a larger community. The final out- 
come is reported in (Jones, 1986). At present, VDM is very popular and has become a 
British standard. VDM is mainly a specification language, but it can be profitably used 
for program designing and developing. Its mathematical support is used to verify the 

correctness of the resulting program by proving properties (Andrews, 1992). 
The mathematical bases of VDM are the theory of sets and the theory of logic predi- 

cates. A VDM system specification consists in defining types, functions and operations, 
in the syntax of the so-called Meta-IV language. Data types can be defined by homo- 
geneous or heterogeneous combinations of VDM basic types (natural numbers, integer, 
Boolean, etc.). For the new types, a set of operations (i.e., sum, etc.) is automatically 
available. Functions are defined as procedures which have as arguments, and return 
as results, elements of primitives or user-defined data types. Functions can also be 
specified through their pre- and post-conditions. An operation is applicable to a set of 
states selected on the basis of a pre-condition associated with the operation itself (thus 
it seems to be very similar to tile concept of condition on transition). Operations can 
contain read and write of external events. A post-condition is also associated with an 
operation. The post-condition describes the state domain after the operation execution. 
The specification of a system is generated by starting from a coarse description, until 
the final specification is obtained by refinement (Fields and Elvang-Goransson, 1992). 
Specification consistency is verified by checking if the definitions at different levels of 
abstractions are consistent. The validation consists in proving if some selected important 
properties are verified by the given specification. 

The VDM model has no mechanism for defining the system structure. Data types are 
defined in terms of other data types, without partitioning the system into communicating 
subsystems. However, the formalism is powerful enough to describe (with a certain 
effort) even these conditions, but the reuse of VDM specification, as for other ADT- 
based approaches, is very hard. VDM is widely employed for specifying safety critical 
systems by using specific extensions for managing timing constraints. 

Recently, an object-oriented extension of VDM has been presented - -  e.g., VDM++ 
(Dfirr and vanKatwijk, 1992). This supports inheritance and instantiation without allow- 
ing the mechanism related to polymorphism. VDM++ permits the definition of timing 
constraints which makes it adequate for real-time system specification. 

4.2. Descriptive Approaches Based on Logical Methods 

These methods describe the system under specification by means of a set of logic rules, 
specifying how the system must evolve from certain conditions. Differently from the op- 
erational methods, the state space described by these specifications is limited and abstract. 
Rules can be given in the form of first-order clauses of Horn or higher-order logical ex- 
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pressions (Maier and Warren, 1988). These languages are unsuitable for representing the 
structural aspect of a system, but are very appropriate for describing properties of the 
system under specification. 

Validation consists in proving high-level properties, which are also given in the form of 
logical expressions, by means of theorem solvers or Prolog engines. Simulation is also 
based on the same techniques. For this reason, time of execution and time ordering of 
events during the proof can be unpredictable and thus the real-time execution of logical 
specifications is almost unfeasible. 

Of course logic and temporal logic date back to the ancient Greeks. These have been 
brought in computer science in the 1970s (Gotzhein, 1992). During the t980s some 
papers have been published dealing with the use of temporal logic for program specifi- 
cation (Schwartz and Meltiar-Smith, 1982), (Jahanian and Mok, 1986). In the literature, 
there are many examples of logic languages for the specification of relationships among 
times and actions. These are often integrated with other techniques addressing also the 
functional and/or the structural aspects of the system under specification - -  e.g., RT- 
ASLAN (Real-Time extension of ASLAN) integrates the first-order logic with the ADT 
(Auernheimer and Kemmerer, 1986). 

4.2.1. RTL 

RTL (Real-Time Logic) is a formal language to describe the temporal relationships among 
events and actions (Jahanian and Mok, 1986). In RTL, the concept of time is absolute 
and the execution semantics quite independent of the scheduling mechanism, since all 
the language constructs are defined in terms of the symbol @, which assigns the current 
value of time to event occurrence. 

In RTL, there are three types of constants, that is, actions, events, and integers. Actions 
can be simple or composite: the latter can be sequential or concurrent. In turn, events 
are divided in three classes: start/stop, transition, and external. Events and actions are 
similar to stimuli and responses, respectively, as defined by Dasarathy (Dasarathy, 1985). 
Periodic events are specified through recursive predicates. Integers can be either time 
durations or number of events. A system specification in RTL consists in deriving a 
set of axioms from the event-action model of the system, considering: (a) the relations 
between events and their 'start' and 'stop' occurrences; (b) periodic or sporadic events; 
(c) causes of transition; and (d) artificial constraints on the internal behavior. A system 
property (i.e., an RTL assertion) can be proven by refutation. For example, considering 
the specification reported in (Jahanian and Mok, 1986): "Upon pressing button #1, action 
SAMPLE is executed within 30 time units. During each execution of this action, the 
information is sampled and sequentially transmitted to the display panel. The computation 
time of action SAMPLE is 20 time units.", its translation in RTL results to be: 

Vz :@(f~buttonl, x) < @(T SAMPLE,  x)A 
@(J, SAMPLE,  x) < @(ftbuttonl, x) + 30 (1) 

Vy: @(] SAMPLE,  y) + 20 < @(1 SAMPLE,  y) 
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where f~ means that the variable corresponds to an external event. The so-called Con- 
straint Graph is constructed from the RTL specification and is used to verify the safety of 
the system. The constraint graph simplification by means of simple rules permits the de- 
tection of incongruences among temporal constraints. RTL is supported by an automatic 
inference procedure to perform reasoning about timing properties. RTL specifications 
can be generated directly from a description given by using the notation of Modecharts 
(Jahanian and Stuart, 1988). 

4.2.2. TRIO 

TRIO (Tempo Reale ImplicitO) is a language based on first-order logic, augmented by 
temporal operators (Ghezzi, Mandrioli, and Morzenti, 1990). It allows to define logic 
equations which may include timing relationships. A time-dependent TRIO formula is 
given with respect to the current time; time is implicit. Temporal relationships between 
events are expressed on the basis of the operator Dist(Et) (Mandrioti, Morasca and 
Morzenti, 1992, (Felder, Mandrioli, and Morzenti, 1991), which is satisfied at the current 
time if and only if the property F holds at an instant which is distant t time units from 
the current time. Many other operators are defined for describing system behavior in 
TRIO logical expressions in the past and in the future. For example, the special functions 
Futr(F,~)  = t Z 0 A Dis t (F , t ) ,  and Pas t (F , t )  = t >_ 0 A Dist(F,  - t )  are defined. 

Since TRIO is based on a completely formal syntax and semantics, and includes the 
managing of time, it is intrinsically executable, in the sense that from a TRIO formula a 
precise model can be generated in which the variables inside the predicates have well- 
defined values. Expressions are usually given in the implicative forms: 

A ~ B'~_f-~A V B 

A ~ B ~ J ( A  ~ B)  A (B ~ A) 

where ~ is the not, V the or and A the and Boolean operator. For all V and the existence 
(i.e., 3xA  @f-~Vx~A) qualifier can be used. 

The following example is quoted from (Mandrioli, Morasca and Morzenti, 1992). Con- 
sider a pondage power station where the quantity of water held in the tank is controlled 
by means of a sluice gate. The gate is controlled by the commands: up and down which 
respectively open and close the gate. These are represented by a predicate go having a 
range { up, down }. The gate can be in one of the states: up, down, mvUp, mvDown. The 
state is modeled by a time-dependent variable named position. The following formula 
describes that the gate in A time units passed from the down to the up condition after 
receiving a go(up) command: 

(position=down A go(up)) ~ (Lasts(position=mvUp, A) A Futr(position=up, A)) 

When a go(up) command reaches the system and the gate is not yet in the down position, 
but it is moving down for a previous command go(down), then the direction of motion 
is not changed but the system waits until the down position is reached: 
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position=mvDown A go(up) ---+ 
3 t (NextTime(position=down, t) A Futr( Lasts(position=mvUp, A) A Futr(position=up, A), t ) ) 

where NextTime(Ed)=Futr(EO A Lasts(-~EO, and Lasts(Et)=Vt' (0 < t' < t --+ Dist 
(Et)). Since the gate behavior can be supposed to be symmetric with respect to its 
direction of motion, other two similar expressions should be written which describe the 
commands and their effects. 

A TRIO specification can be validated against high-level properties described by means 
of the same formalism. Moreover, an efficient interpreter is available that makes a TRIO 
specification executable for real-time systems. Since the time relationships are given 
implicitly and the time is expressed in time units, the absolute time constraints cannot 
be specified. On the other hand, it has the capability to guaranteeing system safety by 
verifying the temporal ordering among events, independently of the underlying hardware. 

4.2.3. Other Descriptive Approaches Based on Logical Methods 

Many other interesting approaches, which essentially correspond to extensions of tem- 
poral logic - -  e.g., CTL (Computation Tree Logic) (Emerson and Halpern, 1986), RTIL 
(Real-Time Interval Logic) (Razouk and Gorlick, 1989), TCTL (Timed CTL) (Alur, 
1990), TPTL (Timed Propositional Temporal Logic) (Alur and Henzinger, 1990), have 
been defined. Most of these approaches do not cover the structural and functional aspects 
of the system under specification. 

5. Dual Approaches 

In order to obtain the best benefits from the descriptive and the operational approaches, 
in the late 1980s the so-called "dual approaches" have begun to appear (Ostroff, 1989), 
(Felder, Mandrioli, and Morzenti, 1991). Dual methods try to integrate in a single ap- 
proach the formal verifiability of descriptive approaches and the executability of opera- 
tional approaches, though they are often in contrast, especially as regards the reuse and 
the verification of software specifications, 

In effect, an ideal tool for specifying real-time systems should be: 

1. An easy and intuitable method and tool. Where, "easy" means "very close" to the 
analyst mindset. For this reason, the tool must be endowed with a graphic user 
interface, and it must allow both top-down and bottom-up approaches for software 
specification, as well as a combination of these. Operational models seem to be 
suitable for this purpose, since they can be visually represented; in the literature, 
there are many examples of their use in both top-down and bottom-up approaches 
for software specification. 

. A model to make easier the reusing of reactive system specifications. This means 
that the model adopted must provide support for software composition by reusing 
already defined software components. In the specification of reactive systems, both 
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static (module interface and structure) and dynamic aspects (module behavior with 
timing constraints) should be reused. In addition, since the system specification must 
be validated to ensure its correctness, also the process of composition/decomposition 
must be supported by a validation method technique. For this purpose, descriptive 
formal methods are strongly preferable with respect to operational methods, since 
the validation of decomposition cannot be performed through simulation but only by 
means of proof of properties. This is related to the fact that during the decomposition 
low-level details are not yet available. 

. A method for verifying and validating the specified software against critical con- 
ditions since the early phases of system specification. This feature with that of the 
previous point should allow the verification and validation at each level of abstraction 
even if the implementation details are not available (such as in the early phases of 
system specification - -  i.e., partial specification). It should be noted that the opera- 
tional models, differently from the descriptive ones, axe not suitable to be executed 
when the model is partially specified. For this reason, descriptive methods seem to 
be preferable for this purpose, even if with these methods the validation is usually 
carried out through properties proof. 

. An executable model to allow the validation of system behavior by means of simu- 
lation. The simulation of an executable model improves the confidence of system 
validation and, together with the above features, provides support for rapid system 
prototyping. For this purpose, operational models could be profitably used, while 
most of the descriptive models are not efficient since they are usually "executable" 
by means of inferential engines which are typically strongly inefficient, 

As has been pointed out, the above objectives are often in contrast, and they cannot be 
met by a specification approach which is only descriptive or only operational. Recently, 
several dual methods to overcome these difficulties have been defined (Bucci, et. al, 1993), 
(Mandrioli, 1992). 

To a certain extent, several of the already discussed approaches can be considered 
dual languages. On the contrary, only those that have both operational and descriptive 
semantics allowing the specification executability and the verification of properties should 
be considered really dual. One of the first examples of dual approach can be considered 
the Transition Axiom Method proposed by Lamport (Lamport, 1993), (Lamport, 1989). 
In this method, the specification is equivalent to a state machine, on which the proof of 
high-level properties given by means of axioms can be verified. 

5.1. ESM/RTTL 

ESM/RTTL is a dual approach obtained be the integration of ESM (Extended State Ma- 
chine) language and RTTL (Real-Time Temporal Logic) (Ostroff and Wonham, 1987), 
(Ostroff, 1989). 

ESM is an operational model based on communicating finite state machines in which 
variables with arbitrary domains are used (Ostroff and Wonham, 1987). The operations 
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allowed are assignments, send or receive. The state machine follows a Mealy model 
in which conditions on transitions (in ESM, they are called guards) between states are 
equivalent to first-order expressions on state variables, while the output is an assignment 
to state variables. Each event is represented by an exit activity Ae, a source activity 
As, an operation and a guard: (A~, 9uard, operation, As). A system description refers 
to only a single state domain. The concept of time is enforced by means of a global 
time variable which can be tested, updated, and increased or not at each state transition. 
Time is discrete, and a state transition can be formally executed in zero time units. For 
each state transition the minimum and the maximum time can be specified in which the 
enabling condition becomes true. 

RTTL is a logic language based on the classical operator of temporal logic: until (M), 
and next (Q). From these the more useful operators of: eventually (O), henceforth (D), 
etc., are derived. RTTL can be used to describe high-level properties of the system under 
specification by means of first-order logic formulae. 

The integration between RTI~L and ESM is obtained by describing the high-level 
behavior of the system with first-order expressions in which conditions for transitions 
containing RTTL expressions can be also present. Both RTTL and ESM formulae can 
refer to the absolute time value. 

5.2. TRIO+ 

TRIO+ (TRIO object-oriented) is a logical language for modular system specification 
(Mandrioli, 1992), (Mandrioli, 1993) extending TRIO (see Section 4.2.2) with object- 
oriented capabilities. It is based on a first-order temporal language, providing support for 
a variety of validation activities, such as testing, simulation and property proof. TRIO+ 
is considered a dual language since it combines the use of visual notation, hierarchical 
decomposition (typically of operational approaches), with the rigour of the descriptive 
logical language. In Fig.18, the example reported in Section 4.2.2 for the TRIO language 
has been rebuilt in TRIO+. Since TRIO+ is based on logic programming, the object- 
oriented concept of an instance corresponds to a history of the Prolog interpreter (that is 
the history of the status of an object). 

Differently from TRIO, TRIO+ is endowed with a graphical notation that covers only 
the declarative part of the language. With this graphic interface the structural aspects 
can be described, by defining the components of a class and their relationships (see 
Fig.19). TRIO+ is an executable model which supports the executions of partially defined 
specifications. 

5.3. TROL 

TROL (Tempo Reale Object-oriented Language) is an object-oriented dual language for 
the specification of real-time systems (Bucci, et. al, 1994). TROL adopts a dual model 
which is able to satisfy the above requirements presenting both descriptive and opera- 
tional aspects. TROL adopts a modified object-oriented model, and has the capability to 
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Class sluice_gate 
visible go, position 
temporal domain integer 
TD Items 

Predicates go({up,down}) 
vars position: { up, down, mvup, mvdown } 

TI Items 
vats A : integer 

axioms 
vats t: integer 
go_down: position=up A go(down) ~ Lasts(position=mvdown,A) A Futr(position=down,A) 
gp_up: position=down A go(up) ~ Lasts(position=mvup,A) A Futr(position=up, A) 
move_up: position=mvup A go(down) --+ 3t (NextTime(position=up,t) A 

Futr(Lasts(position=mvdown,A) A Futr(position=down,A),t ) 
move_down: position=mvdown A go(up) ~ 3t (NextTime(position=down,t)/~ 

Futr(Lasts(position=mvup,A) A Futr(position=up,A),t ) 
end sluice_gate 

Figure 18. Textual description of the class sluice_gate in TRIO+. 

r e s e r v o i r  l 

[ ct  tor t i - puW te 
openInput ..L/open 

closetnput [ ..... _ ~ c l o s e  I - ' q ~ l  

Figure 19. Visual description of class reservoirl comprised of actuatorl and inputGate objects in TRIO+. 
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Es±lmo±orBuf?ered 

Estimator 

I I 

bur s'l:ll SIO-----~----4[ err 1 

i Buf fe r  

Figure 20. The class EstimatorBuffered as comprised of S1 and B1 sub-objects (i.e., its attributes) in TROL. 

describe the system behavior, its functionality and structural aspects. Moreover, differ- 
ently from other dual models and languages, the TROL model is mainly based on reusing 
both static and dynamic aspects of specifications. TROL is based on an extension of 
timed CSP - -  i.e., the CRSM (Shaw, 1992) (see Section 3.1.5). 

In TROL, the system under specification is hierarchically decomposed in objects and 
sub-objects. For these objects, the behavior can be specified by means of first-order 
clauses, since the early phases of decomposition (see Fig.20, and Fig.21). Moreover, 
also timing constraints at the external interface of each object can be defined according 
to (Dasarathy, 1985). These constraints can be associated with Provided and Required 
services of each class, and to Clauses. TROL allows to describe the system at different 
levels of structural abstractions and of specification details without boundaries among the 
specification steps. The TROL model allows the verification and validation of composi- 
tion/decomposition mechanisms. At each specification level, TROL helps the user in the 
verification of consistency, thus allowing the incremental specification and the execution 
of partially specified systems (i.e., prototyping) (Bucci, et. aI, 1993). These features are 
very useful when a component under reuse can be verified and validated in order to 
check if it satisfies the requirements. 

Objects that cannot be further decomposed are defined as extended state machines (see 
Fig.22a and 22b). These are internally concurrent, defining in this way a high reactive 
architecture. The state machine model supports the definition of timing constraints such 
as timeout, and minimum and maximum time for transition. Moreover, any time failure 
can be recovered by using special functions. 

In TROL, the descriptive aspects of the language are used to help the developer to 
generate a correct, complete and congruent specification, validating the system com- 
position/decomposition by means of clauses and the reasoning on timing constraints. 
Also the state machines are validated by using clauses. Thus, the final validated model 
is executable by using the operational model of state machines. Is should be noted 
that in TROL the analysts use a descriptive language in the phase of analysis while 
state machines are used in the phase of design. TROL supports all the aspects of the 
object-oriented paradigm allowing inheritance, instantiation, etc. In order to guarantee 
the predictability and, hence, an a-priori real-time schedulability, some assumptions have 
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C l a s s  Es t imator  spec ia l i z ing  X S M  
Prov ided_se rv i ces :  

eval : S ignal ;  
the_datal  : DataType;  
bur_st1 : Boo lean ;  

R e q u i r e d _ s e r v i c e s :  
req_datal  : S ignal ;  
result  : Real ;  
err ava i l ab l e  : Est imatorErrType;  

C l a u s e s :  
R E Q _ D A T A h  New(eval)  A e r r==OK -~  R e a d y  (req_datal);  
W A I T D A T A h  r e v e r s e  Ready( req_da ta l )  --~ New(the_data1);  
RESULT:  New(the_data1)  ~ Ready(resu l t ) ;  
B U F E M P T Y :  bur_st1 --+ e r r = = E M P T Y  ; 

e n d ;  

C l a s s  Es t imatorBuffered  spec ia l i z ing  non_basic_object_class 
Provided_ser,~4ces:  

data1 : DataType;  
f lushB : S ignal ;  
elab [4,6] : S ignal ;  

R e q u i r e d _ s e r v i c e s :  
resul ts  : Rea l ;  
err a v a i l a b l e  : Est imatorErrType;  

C l a u s e s :  
ESTIMATION:  N e w ( d a b )  A e r r==OK --+ Ready( resu l t s )  - - [2, 3.1]; 
F L U S H  : N e w  (flushB) - ~  er r==EMPTY; 
DATA : N e w  (data1) A e r r==EMPTY - 4  er r==OK; 

/***  private  parts ***/  
A t t r i b u t e s :  

B1 : Buffer;  
$1 : Estimator' ,  

C o n n e c t i o n s :  
data1 - - B l .da ta in ;  
S l . r e su l t  - - results;  
S l . req_data l  - - B l .ge t ;  

e n d ;  

elab - - S l .eva l ;  
S l . e r r  - - err; 

B 1.dataout - - S 1 . the_datal;  
B 1 i s_empty  - - S 1.buf_stl;  f lushB - - B 1,flush; 

Figure 2i. Description in TROL of class EstimatorBuffered with the external description of class Estimator, 
where EstimatorErrType is defined as an enumeration: enum EstimatorErrType {EMPTY,OK};. 
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BuFfer 

T 
~ou~ I 

Figure 22a. Textual descriptions of class Buffer in TROL. 

been made on the TROL model: no dynamic binding, no dynamic object instantiation 
(no dynamic sizing of object collections), no direct or indirect recursion in class speci- 
fications, no multiple inheritance among classes is allowed. 

TROL has its visual representation which is supported by a CASE tool named TOOMS 
(Bucci, et. al, 1993). TOOMS consists in a set of visual editors, a report generator, a 
database for collecting and recovering specifications for reuse, a compiler, an analyzer 
to perform the verification of completeness and consistency, a simulator (that can sim- 
ulate the system behavior by using both clauses and state machines) and a metricator 
(Bucci, et. al, I993), (Campanai and Nesi, 1994). Automatic code generation is also 
provided through the TROL-compiler which transforms the TROL code in C++ for an 
ad-hoc real-time kernel called TROL-KERNEL working on OS/2 and UNIX. 

6. Discussion and Conclusions 

The most significative formal methods for the specification of real-time systems have 
been reviewed, with respect to the power of formalism, the tool capability, and the low- 
level characteristics, as discussed in the introduction. The presentation has been referred 
to the historical evolution. 

In Tab.1 a summary of the main features of the tools analyzed is reported. The 
legend of the Table reported in the caption is self-explicative and thus we refrain from 
commenting on it. However, it is worth to spend a few words on columns labelled as 
Sere. (for semantics) and Orien. (for orientation). In the column Sem., the approaches 
are classified as operational and/or descriptive, considering as dual those which present 
both these aspects. Column Orien., indicates whether the approach is Process-, State-, 
Functional-, or sTructure-oriented. Process-oriented approaches are those which consider 
the system as decomposed in processes; state-oriented approaches are those that are 
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Class Buffer specializing XSM 
Provided_services: 

datain : DataType ; 
get : Signal ; 
flush : Signal ; 

Required.services: 
dataout : DataType ; 
is_empty available : Boolean; 

Clauses: 
GET : New (get) A~ is_empty --+ Ready (dataout); 
FLUSH : New (flush) --+ is_empty; 
DATAIN : New (datain) A is_empty -~ -7 is_empty; 

/*** private parts ***/ 
Attributes: 

in : Integer ; 
out : Integer ; 
is_empty : Boolean ; 
Buff : DataType [oo ]; 

States: 
START: { in=0; is_empty=TRUE; out=0; } 
CENTRAL: { } 
WRITEIN: { in=in+l; Buff[in]=datain; is_empty=FALSE; } 
WRITEOUT: { dataout=Buff[out] - - [0,10.3]; out=out+l; } 
ISEMPTY: { is_empty=TRUE; } 

Paths: 
INIT: { START: + CENTRAL; 

CENTRAL: New(flush) --~ START;} 
PUT: { CENTRAL: New(datain) --~ WRITEIN; 

WRITEIN: ---~CENTRAL; } 
GET: { CENTRAL: New(get) A= is-empty ---+ WRITEOUT; 

WRITEOUT: in != out + CENTRAL; 
WRITEOLrF: in=--out -+ ISEMPTY; 
ISEMPTY: -+ CENTRAL; 
WRITEOUT: Fail(TIMEFAIL) --+ CENTRAL; } 

end; 

Figure 22b. Visual descriptions of class Buffer. 
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focused on describing the system state domain; functional-oriented approaches are those 
that decompose the system in data transformations; and structure-oriented approaches are 
those that consider the system as a set of sub-systems (i.e., objects or modules). In this 
column only the two most relevant aspects are reported. 

It can be noted that during the last 20 years most of the early approaches for describing 
system behavior (e.g., Z, VDM, SDL, etc.) have been integrated by using high-level 
methods in order to improve their capability in modeling all the system aspects (i.e., 
structural, behavioral and functional) and providing support for reusability. In many 
cases, this coverage has been reached by transforming the model from process- or state- 
or function-oriented to object-oriented (Z++, VDM++, OSDL, etc.). The adoption of 
the object-oriented paradigm has added to the early formalisms the capability of system 
structuring (by means of the concept of class) and of reusing real-time specifications (by 
means of the concepts of inheritance, polymorphism, and instantiation). This trend holds 
for both descriptive, and operational approaches as well as for dual approaches. 

For most of the formal methods, facilities for managing timing constraints have also 
been added. Operational approaches, based on state machines and Petri nets have been 
extended so as to include the notion of time by augmenting the model with first-order 
logic. The resulting models are more complex to be verified and validated, but the 
verification and validation can be performed in the same manner under certain restrictive 
conditions. 

The operational approaches based on other notations (firstly created as methodolo- 
gies for supporting the analysis and/or design phases of the system under specification, 
e.g., DFD, JSD, Booch, Wirsf-Brock, etc.) (see Section 3.3) have followed a differ- 
ent path. The early versions of most of these methodologies have been integrated by 
using low-level methods for supporting the lack of formalities and for covering the de- 
sign phase of software life-cycle. Currently, methods exist which are based on DFD 
and state machines (e.g., RT-DFD (Hatley and Pirbhai, 1987)), JSD and state machines 
(e.g., Entity-Life (Sanden, 1989c), (Sanden, 1989b)), DFD and Petri nets (e.g., IPTES 
(Pulli, et. al, 1991)), extended Entity-Relationships and VDM (e.g., ATMOSPHERE 
(Dick and Loubersac, 1991)), object-oriented model and state machines (e.g., Booch 
(Booch, 1991), Shlaer and Mellor (Shlaer and Mellor, 1991)), object-oriented model and 
Petri nets (e.g., PROTOB (Baldassari and Bruno, 1991)), etc.. For most of them, the def- 
inition and verification of timing constraints and the final validation are still a problem. 
For example, when the definition of timing constraints is allowed in the early phases 
of system specification, their consistency is not verified with respect to the low-level 
description. On the other hand, the definition of timing constraints is allowed only at the 
low-level - -  i.e., at the level of state machines or Petri nets, where the consistency can 
be verified and the validation performed. It should be noted that, in the latter case, timing 
constraints are specified when the system architecture is already defined and, therefore, 
their verification can lead to demonstrate that the system structure (e.g., decomposition) 
is wrong or partially incorrect. 

Due to the fact that formal languages are too far from the analysts mindset to be easily 
adopted for specifying real-time systems (since they need too many details), CASE tools 
have been implemented including visual editors, compilers, metric support, configuration 
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Table 1. Summary of formalism evaluation, where: Sem. (semantics): Operational 
mad/or Descriptive (Algebraic or Logic); Orien. (orientation): Process-, State-, 
Functional-, sTructure-oriented; Desc. (description): Textual (5pt), Visual (5pt.); 
Coy. (coverage): Structural (3pt.), Behavioral (5pt.), Functional (2pt.); Comm. 
(communications among processes); Time (time model): Implicit (3pt.), Explicit 
(7pt.) (Relative or Absolute), None (Opt.); Verif (verification of consistency and 
congruence): Yes (10pt.) or No (Opt.); Valid. (validation of system behavior): 
Static (6pt.) (i.e., by proving properties), Dynamic (4pt.) (i.e., by simulation); 
Exec. (executable specification, by means of interpretation or simulation): Yes 
(10pt.) or No (Opt.); Prot. (prototyping - -  i.e,, simulation or execution of partial 
specifications): Yes (10pt.) or No (Opt.). 

Sere, Coy ,  Comm. Time VeriL Valid. Exec. Prot 
PAISLey O B,F A ER Y S,D Y Y 
SDL O S,B A ER Y D Y Y 
OSDL O S,B,F A ER Y D Y Y 
Estere] O B,F S EA y S.D Y N 
Statecharts O B S ER Y D Y N 
Objectcharts O B,S S EA Y D Y N 
RTP, L O B N ER Y S Y N 
CRSM O P,S B S ER Y D Y N 

~- D PN 
CmPN 
SPN 
PROT neLs 
TPN 
Timed PN 
HMS 
SADT 
D~D 
RT-DFD 
ISD 
Entity-Life 
Wits f-Brock 
HOOD 
BOTCH 
OMT 
Shlaer-MeIlor 
Cozd-Yo~Jrdo~ 

AFFIRM 
Larch 
Larch/C++ 
Z 
Object-Z 
LOTOS 
G-LOTOS 
VDM 
VDM++ 
RTL 
Modecharls 
TRIO 
TCTL 
CTL 

O S 
o P,S 
o S 
O RS 
o S 
o S 
O S 
o F.S 
O F 
O F,S 
O T 
O P,S 
o P,F 
O T,S 
O RS 
O T,S 
O T,S 
O T,F 

DA 
DA S 
DA S 
DA S 
DA S 
DA RS 
DA P,S 
DA S 
DA S 
DL ........ S 
DL S 
DL S 
DL S 
DL S 

O,DL T 
T, 

Often. Desc. 
P T 
P V,T 
P V,T 
p T 
S V 
S V 
S T 

V,T 
V 
V 
V 

V,T 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
T 
T 
T 
T 
T 
T 

T,V 
T 
T 
T 

V,T 
T 
T 
T 
T 

T,V 
T,V 

E A I Y N 
S ,B A I Y S ,D Y N 
B A ER Y S,D Y N 

S,B A ER Y S,D Y Y 
B A ER Y S,D Y N 
B A ER y S,D Y N 

B,S A ER Y S,D Y Y 
F,S,B N EA Y N N N 

F,S N N Y N N N 
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management support, report generators, simulators, test generators, etc. A CASE tool 
with a visual interface makes easier the work of the designer by representing formal 
syntax through graphic symbols and, thus, the user is helped by collecting the specifica- 
tion details in a structured manner. Of course, a CASE tool must maintain consistency 
between the visual representation and the syntax and semantics of the model. As a result, 
by means of a CASE tool, a specification language improves its power. From this point 
of view, the operational approaches have an advantage over the descriptive approaches, 
since they are intrinsically endowed of a visual notation, while the definition of a visual 
language supporting the syntax of the latter is a more difficult task. In general, the pres- 
ence of an integrated CASE tool gives a major confidence to the specification quality, 
improving the fulfilment of requirements, the verification of consistency, the validation 
of system behavior with respect to temporal constraints, etc. 

A graph reporting the trend of the specification tools capability with respect to last 20 
years is reported in Fig.23. This graph has been drawn on the basis of tools analysis 
carried out in this paper, considering a particular score for each feature. Scores have 
been defined on the basis of their usefulness in specifying real-time systems. Scores 
associated with the different features are reported in the caption of Tab. 1. As is appeared 
from this graph, the number of positive features is increasing with time. This growth has 
been obtained in many cases by integrating different approaches, and thus transforming 
the early nature of a model towards a dual approach. In our opinion, in the next years, 
we will witness a tangible additional growth of tool capabilities These improvements 
will be mainly focused on tools integration, so as to help the analyst in all phases of 
the software life-cycle, without boundaries from one phase to another. The integrated 
CASE tools will give a major confidence for the specification of per fec t  software (e.g., 
a software which is safe, congruent, complete, satisfying temporal constraints, etc.). 
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