
Real-Time Systems, 8, 117-172 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Tools for Specifying Real-Time Systems*

GIACOMO BUCCI

Department of Systems and Informatics, Faculty of Engineering, University of Florence, Florence, Italy.

MAURIZIO CAMPANAI

CESVIT/CQ_ware, Centro per la Qualit'a del Software, Florence, Italy

PAOLO NESI nesi@ingfi I .ing.unifi.it

Department of @sterns and Inforrnatics, Faculty of Engineering, University of Florence, Florence, Italy.

Abstract. Tools for formally specifying software for real-time systems have strongly improved their capabilities
in recent years. At present, tools have the potential for improving software quality as well as engineers'
productivity. Many tools have grown out of languages and methodologies proposed in the early 1970s. In this
paper, the evolution and the state of the art of tools for real-time software specification is reported, by analyzing
their development over the last 20 years. Specification techniques are classified as operational, descriptive or
dual if they have both operational and descriptive capabilities. For each technique reviewed three different
aspects are analyzed, that is, power of formalism, tool completeness, and low-level characteristics. The analysis
is carried out in a comparative manner; a synthetic comparison is presented in the final discussion where the
trend of teclmology improvement is also analyzed.

1. Introduction

In recent years, several techniques for formal specification of real-time systems have
been proposed; a large number of tools - - ranging from research prototypes to marketed
software packages - - supporting these specification techniques have also been introduced.
The growing interest for specification tools can be explained by considering that they
have the potential for improving software quality as well as engineers' productivity.
Furthermore, their use may be the only practical way to guarantee that certain quality
factors (such as safeness, consistency, timeliness, etc.), which are mandatory for real-time
systems, are achieved.

This paper contains a historical review above the tools for the specification of real-time
systems, taking into account their evolution in the last 20 years. To this end, a number
of well-known proposals are examined and criticized in the light of the classification
criteria described in the sequel. The choice of classification criteria has been one of the
major concerns of this paper. In fact, space limitations do not allow going into details
for each tool under examination. Furthermore, the subject matter is far away from being
stable and settled and so we may have overlooked some relevant issues. As a result, we
do not claim that the proposed taxonomy is an exhaustive method for classifying real-
time specification techniques. However, we believe that this paper provides a reasonable

* This work was partially supported by the Italian Research Council, CNR (Consiglio Nazionale delle
Ricerche), n. 93,01865.CTI2.

118 ~. BUCCI, M. CAMPANAI AND P. NESI

picture of their evolution as well as an indication on future developments and research
issues.

A popular method for classifying software specification techniques is based on the
degree of formality used. Formal techniques are based on mathematics, and (pure)
informal techniques on natural languages. The former are generally preferred, be-
cause the latter tend to be incomplete and inconsistent (Meyer, 1985), (Stankovic, 1988),
(Levi and Agrawala, 1990), (Stankovic and Ramamritham, 1992). The formalism can
cover both syntax and semantics of a technique or only a part of them.

Another method for classifying software specification techniques is based on the extent
to which they are descriptive, operational or dual (that is a mixture of descriptive and
operational). Operational techniques are those which are defined in terms of states
and transitions; therefore, they are intrinsically executable. Descriptive techniques are
based on mathematical notations (axioms, clauses, etc.) and produce precise, rigorous
specifications, giving an abstract view of the state space by means of algebraic or logic
equations. These can be automatically processed for verifying the completeness and the
consistency of the specification, by proving properties by means of automatic tools. Dual
techniques tend to integrate both descriptive and operational capabilities, allowing the
formal specification by means of clauses or other mathematical formalisms as well as the
execution of specifications based on state diagrams or Petri nets. For dual techniques, the
main problem is the formal relationship between operational and descriptive notations,
which should be interchangeable.

In the literature, there are many other classifications according to which tools are
divided in process-, data-, control-, and object-oriented (Dorfman, 1990) or in model-,
and property-oriented approaches (Wing, 1990a), (Hall, 1990). In (Zave, 1990), Zave
has made a classification by considering the degree of formalism with respect the degree
of descriptiveness/operationality. This has resulted in a plot having in the abscissa the
formal-informal range, and in the ordinate the descriptive-operational range.

In this paper, a somewhat different approach is taken. The classification is based on
the distinction between operational, descriptive and dual techniques; however, for each
technique reviewed three different aspects are analyzed, that is, power of formalism, toot
completeness, and low-level characteristics.

In the light of this approach, languages and tools for reactive system specification are
historically surveyed. It should be noted that a classification based on the distinction
between operational, descriptive and dual aspects quite mirror the historical evolution
of the subject matter. The remaining part of this section gives a brief account of the
factors which must be considered in assessing tool capabilities. The review is made by
presenting several examples in order to better explain the main characteristics of each
technique with respect to these factors.

In evaluating the power of formalism three different aspects must be considered: the
structural, the functional and the behavioral aspect (Harel, t988), (Wing, 1990a). The
structural aspect refers to the system decomposition into sub-systems. The functional
aspect has to do with the transformational activities (on data) performed by individual
software components. The behavioral aspect (i.e., the system dynamics) refers to the

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 119

system reaction to external stimuli and internally generated events, either synchronously
or asynchronously. The systems in which the behavioral aspect is relevant are usually
denoted as reactive; real-time systems belong to this category. Descriptive methods
usually fail in modeling structural and functional aspects, but they are suitable for de-
scribing system behavior. Operational methods are intrinsically suitable for modeling
system behavior in detail, even if they lack in mathematical foundation for describing
system behavior at the needed level of abstraction in order to allow validation (i.e., the
proving of a required property) without simulation.

Since this paper is focused on tools for real-time systems specification, a particular
attention is devoted to identifying the expressivity of tools in modeling the temporal
constraints (timeout, deadline, etc.) (Stankovic, 1988). At a high level, a formalism can
deal with time either in an explicit or implicit manner. In the first case, the language
allows the representation of time through variables which provide an exact time measure.
Explicit timing constraints can be expressed in relative or absolute form. When time is
expressed in a relative manner, time durations and deadlines are given in time units.
In this case, the relationship between these time units and the absolute measure of
time expressed in seconds (or milliseconds) is not clear. However, the validation of
specifications becomes almost hardware independent. When time is expressed in absolute
form, time durations and deadlines are directly given in seconds or milliseconds (i.e., the
absolute time of the clock) and therefore the meeting of timing constraints depends on the
context (machine type, number of processes, workload, etc.). When time management
is implicit, the formalism is able to represent the temporal ordering of events without
reporting any quantification on time intervals (i.e., in state machines, and in languages
enriched with operators like next and previous). When time is treated implicitly, the
possibility of its exact measure is usually lost.

A tool for specifying real-time system should guarantee both correctness and com-
pleteness of the formal specification, as well as the satisfaction of system behavior with
respect to both the timing constraints defined and the high-level behavioral descriptions.
The verification of correctness and completeness is usually performed statically by con-
trolling the syntax and semantics of the model without executing the specification. The
system validation consists in controlling the conditions of liveness (i.e., absence of dead-
lock), safety, and the meeting of timing constraints (e.g., deadline, timeout, etc.). It is
usually performed statically in descriptive approaches (i.e., by proving properties) and
dynamically in operational approaches (i.e., by simulation). The capability of the method
for yerifying and validating the system specification (by means of mathematical tech-
niques or simulations) must be analyzed in order to establish if the tools are capable of
guaranteeing that the specification produced exactly matches the behavior of the system
under development, with safety, without deadlocks and by meeting all timing constraints.

Please note that the two terms verification and validation do not always receive the
above meaning (Thayer and Dorfman, 1992). For instance, in (Thayer and Dorfman,
1992) the most frequently used definitions for verification are reported, while the term
validation is mentioned as "final verification".

A specification model may be executable or not. Executability is, by definition, a
prerogative of operational approaches. On the other hand, some descriptive specifications

120 G. BUCCI, M. CAMPANAI AND P. NESI

are also executable. Executable means that the model is focused on defining the possible
evolutions of the system state domain, rater than describing what the system should
perform.

A model can provide support for defining strategies for recovering from failures, such as
timeout, overflow, divide by zero, unmet deadline, etc. as well as for managing external
exceptions. These features are usually available in operational approaches. Since there
are some difficulties to guarantee that timing constraints are met, simulation is the way
for detecting where the recovering paths must be defined.

Referring to tool completeness, an integrated specification environment is mandatory.
To this end, a formal language must be endowed with a set of features, helping the user
in its work. A very relevant feature is the availability of a well-defined methodology.
In fact, a tool supported by a methodology is easier to be learned and used, while
the quality of specification improves, and becomes more stable, irrespective of user's
experience. Moreover, a tool should support the analyst in all phases of software life-
cycle. Operational approaches are mainly based on the design aspect of the problem,
while descriptive are better ranked for supporting the analysis phase.

The user interface is also very important. In recent years, graphics user's interfaces
and visual languages have highly improved user's productivity with respect to textual
interfaces. From this point of view, the operational approaches are favoured since they
are intrinsically endowed with a visual notation, while the definition of visual language
supporting the syntax of descriptive approaches is a more difficult task.

Another important factor is the presence of an automatic generator of documentation
and of a code generator for classical high-level languages, like C, C++, ADA, etc. Note
that several tools provide the support for generating a skeleton of the final code; in these
cases, the verification and validation phases are usually performed without considering
the final version of the code. Therefore, its final behavior may be unpredictable.

A further ingredient for improving users' productivity is the support for simulation. The
simulator may either execute the generated code or interpret the specification itself. The
first case is typical of the operational approach, whereas the second corresponds to the
descriptive approach. Of course, the first method produces more trustable results, since
the specification execution is based on the same code as that which will be executed at
run-time. Simulation is usually performed by controlling system behavior with respect to
manually or automatically generated test patterns. Of course, the latter are to be preferred;
however, automatically generated test patterns should be used judiciously, since they may
be affected by vices. The analyst should also check if test patterns provide a sufficient
coverage.

In order to guarantee the possibility of prototype generation, a tool must provide support
for validating partially defined specifications, otherwise the prototype might produce an
unpredictable behavior.

Reuse of old specifications has become an important issue in software engineering.
Many formal methods lead to specifications in which single components are too much
coupled to be easily separated for reuse. Recently produced tools incorporate object-
oriented concepts, since the object-oriented paradigm provides a number of mecha-

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 121

nisms for reuse (e.g., inheritance, instantiation, etc.) (Nierstrasz, 1989), (Booch, 1986),
(Meyer, 1988).

With the term low-level characteristics, we refer to the underlying assumptions and to
the basic environment on which the specified software is to be run.

In many approaches, the system under specification is modeled as a set of communi-
cating sub-systems. The communications among these sub-systems can be synchronous
or asynchronous. Synchronous mechanisms are more predictable, but also more sensi-
tive to deadlocks; on the contrary, asynchronous communications are less predictable
and less sensitive to deadlocks. In general, synchronous mechanisms are more suitable
for specifying real-time systems - - i.e., systems in which predictability is the first goal.
Situations leading to deadlocks can be detected during the validation phase.

In order to guarantee the system predictability several restrictions are usually im-
posed. Most of them are devoted to constrain the possibility of changing the operat-
ing machine conditions. For example, no dynamic creation of processes or data, no
dynamic process priority changes, and no recursion or unbounded loop definition are
allowed. In the object-oriented specification tools, the absence of dynamic inheritance
is usually supposed, and thus the possibility of defining polymorphic class hierarchies
(Nierstrasz, 1989), (Booch, 1986).

Most of the tools proposed in the literature are supported by a specific real-time ker-
nel, which includes a scheduler - - e.g., (Sha and Goodenough, 1990), (Forin, 1992),
(Liu and Layland, 1973), (Tokuda, Nakajima and Rao, 1990). Others approaches gener-
ate a code for platforms in which a real-time operating system is available. A choice
among the several solutions is quite difficult. On the other hand, the specification tools
take usually into account the features of low-level support in their semantics.

As already mentioned, the survey is focused on the historical evolution of tools and is
organized as follows. Section 2 contains a short summary of early supports for modeling
communicating concurrent processes. This is useful since in many cases they are the
foundation for approaches surveyed in this paper. In Section 3 operational methods are
examined, while descriptive methods are discussed in Section 4. Dual methods axe treated
in Section 5. The impact of CASE (Computer Aid Software Engineering) technology on
tools is discussed in this paper with the comments related to the different techniques. In
Section 6, the findings of our analysis are synthesized and some conclusions are drawn.

We are aware that many interesting languages, techniques and tools have not been
considered. This is not to be viewed as a negative aspect, but rather as a necessity
due to space limitations. Moreover, since this paper is mainly focused on tools rather
than on languages, the latter are reported when their quotation is needed to explain the
historical evolution of tools. A complementary survey focused on real-time languages
can be found in (Stoyenko, 1992).

122 G. BUCCI, M. CAMPANAI AND P. NESI

2. Mathematical Supports

In this section, the most frequently used mathematical supports for reasoning on com-
municating concurrent processes are briefly discussed. In the late 1970s, Hoare, with his
work on CSP (Communicating Sequential Processes) (Hoare, 1978), (Hoare, 1985), and
Milner, with his work on CCS (Calculus of Communicating Systems) (Milner, 1980),
have posed the bases for the verification and validation of concurrent systems. The
relationships among these two models have been discussed in (Brookes, 1983). Un-
til (Hoare, 1978) several methods for specifying communicating sequential processes
were widely used, including semaphores (Dijkstra, 1968), conditional critical regions
(Hoare, 1972), monitors and queues (concurrent Pascal) (Brinch-Hansen, 1975), etc. As
observed in (Hoare, 1978), 'most of these are demonstrably adequate for their purpose,
but there is no widely recognized criterion for choosing between them'. This consider-
ation led Hoare to attempt to find a single simple solution to all those problems. In the
light of the subsequent evolution, CSP is considered as a first rigorous approach to the
specification of concurrent systems.

The mathematical bases of CSP have been widely used fbr defining and analyzing con-
current systems regarded as processes communicating via channels (Hoare, 1985). For
this reason, the CSP model is denoted as process-oriented, and each process is modeled
as a sequential machine. The communication mechanism is completely synchronous - -
i.e., the transmitter/receiver is blocked until the receiver/transmitter is ready to perform
the communication. In the CSP notation, sending a message e on a channel c is de-
noted by c.te, while receiving a message e from a channel c is denoted by c?e. This
syntax and communication model have been frequently used for defining programming
languages (e.g., Occam) and specification tools. In CSP model constructs for modeling
parallel (l[), sequential (>>), and interleaved (Ill) executions of processes are also defined
(Hoare, 1985).

Given its popularity, the original CSP model (Hoare, 1978) has been expanded in
many ways, resulting in a set of models of increasing complexity: the Counter Model,
the Trace Model, the Divergence Model, the Readiness Model, and the Failure Model
(Moore, 1990), (Olderog and Hoare, 1986), (Hoare, 1981), (Hoare, 1985), (Misra
and Chandy, 1981). The Failure Model can be profitably used for reasoning about
the safety and liveness conditions of the system under specification, even in the presence
of divergent models (i.e., having an infinite number of states) and non-deterministic pro-
cesses (Barringer, 1985), (Hoare, 1985). The Trace Model can be used to analyze the
history of events on the system channels, and for verifying if the system satisfies abstract
descriptions of system behavior. For these reasons, CSP is an appropriate basis for both
operational and descriptive approaches.

The CSP model does not comprise the concept of time and, thus, the system val-
idation does not take into account timing constraints. For these reasons during the
1980s many extensions have been proposed for adding time support - - e.g., CSP-R
(Koymans, et. al, 1985) (where time managing is added by means of WAIT t instruc-
tion), Timed CSP (Reed and Roscoe, 1986) (where time managing is added by means of

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 123

the special function delay()), CSR (Communicating Shared Resources) (Gerber and Lee,
1989)and in the CRSM (Communicating Real-time State Machines) (Shaw, 1992) (where
time is added by means of time bounds on executions and inputs/outputs), etc.

The syntax and semantics of CCS are based on the concept of observation equiva-
lence between programs: a program is specified by describing its observation equivalent
class which corresponds to the description of its behavior. This is given by means of
a mathematical formalism in which variables, behavior-identifiers and expressions are
defined. Behavior-identifiers are used in behavior expressions where the actions per-
formed by the system are described. This makes the CCS model quite operational as
pointed out in (Milner, 1980) and (Olderog and Hoare, 1983). This model is based on
an asynchronous communication mechanism. The CCS model provided the ground for
several models proposed in the late 1980s - - e.g., (Bolognesi and Brinksma, 1987).

It should be noted that, the fact that the CSP model is strictly synchronous is not
a limitation. In fact, by means of synchronous communicating state machines, asyn-
cba'onous communications can also be defined. This is done through buffers of infinite
capacity which are modeled as state machines as in (Shaw, 1992). In a similar manner,
synchronous communications 1:I (one sender and one receiver) can be expanded to I:N
communications (one sender and N receivers).

3. Operational Approaches

Operational approaches describe the system by means of an executable model. The
model can be mathematically verified (for consistency and completeness) by using static
analysis, and validated by executing the model (i.e., simulation). Though operational
techniques were already introduced in the 1970s (Alford, 1977), it was not after the
paper by Zave (Zave, 1982) that they have attracted large research attention. The most
innovative aspect of Zave's paper was the embodiment of the operational approach into
a programming language named PAISLey.

Operational approaches can be divided in two categories.
The first category comprises languages and methods which are usually based on transition-
oriented models, such as state machines (Bavel, 1983) or Petri nets (Reisig, 1985), that
is, models naturally oriented towards the description of system behavior.
The second category includes methods which are based on abstract notations especially
suitable for supporting the system analysis and design (system decomposition/composition).
In these cases, the notations are mainly oriented towards the description of system struc-
ture and/or functionality. For this reason, these notations are usually associated with
guidelines for system analysis/design and are regarded as methodologies. However, most
of them do not model system behavior and, thus, cannot be directly used for system sim-
ulation and specification execution. Moreover, since these methods have been developed
by starting from visual notations, they lack in formalism and are usually considered as
semiformal.

124 C. BUCCI, M. CAMPANAI AND P. NESI

(~)

: 5 I1

(b)

Figure 1. Example of FSM: (a) Mealy model, (b) Moore model, where I i are input names, Oi outputs and
S i names of states. In this example, the two models do not represent the same behavior. On the contrary, the
Mealy and Moore models are interchangeable by means of simple rules.

3.1. Operational Approaches Based on State Machines

The basic theory of Finite State Machines (FSM) and automata dates back to the 1950s
(Moore, 1956), (Mealy, 1955), (Booth, 1967), (Bavel, 1983). Since state machines are
intrinsically operational, they have been used as a basis for several operational models.

The classical FSM models (by Mealy and Moore) are suitable for the specification of
system behavior. Referring to Fig.l, outputs are produced as a function of the state of
the FSM (i.e., Moore model) or of the state and machine inputs (i.e., Mealy model).
FSMs can be represented by using two different notations: state transition diagrams (see
Fig.l) and state transition matrices (Bavel, 1983).

The definition of FSM can be verified in order to identify its correctness - - i.e., the
teachability of the states, etc. In addition, the consistency and the congruence of a
system description given in term of FSM can be verified by using several mechanisms
as in (Jaffe, et. al, 1991). In a system defined as set of communicating state machines
the number of states depends on the Cartesian product of the state domain of each
machine; therefore, the number of states grows very quickly, and so the complexity of
system verification. Moreover, in the presence of a communicating FSM there exists the
possibility of deadlock and starvation (Hoare, 1985), (Sifakis, 1989). For this reason,
mathematical supports, such as CSP and CCS are useful for reasoning about system and
process (i.e., in this case FSM) liveness.

The classical model for FSM is unsuitable to represent the structural and functional
aspects of the system under specification. To be profitably adopted as a tool for spec-
ifying real-time systems, the FSM model must provide support for describing temporal
dependencies and constraints (e.g., timeout, deadline, etc.) among control flows. For
these reasons, several extensions have been proposed in the literature.

Moreover, the classical FSM model is unsuitable when the number of states is very
high. This problem can be partially avoided by decomposing the system into smaller
communicating FSMs. The result is that the complexity of the system corresponds to
the Cartesian product the of single machines state domains. Another possibility is to
represent the state diagram in a more concise way with respect to the classical notation.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 125

I5~_QS=B>34 I5 Ii

. \ \~"~=" ~ fez
_ - -

A: In teger k._~3=B÷ 2 tl." In teger
B: In teger (a) (b) B: In teger

Figure 2. Example of extended FSMs: (a) Mealy model, (b) Moore model. Presence of expressions and of
auxiliary variables -- i.e., A, B of type Integer.

Classical FSMs are obviously unsuitable (being called Finite State Machines) to represent
systems with a number of infinite states. Some extensions have been defined to give major
expressivity to the graphical notation and to allow the definition of auxiliary variables
(see Fig.2).

In FSM models the timing relationships among different events are implicitly defined
by means of state diagrams. On the other hand, in several cases is not always possible to
predict the state trajectory and, thus, the ordering of events. For this reason, an explicit
model of time has been added to the FSM models in order to cope with the problems of
real-time system specification.

One of the first integrated operational tools for software specification was the SREM
(Software Requirement Engineering Methodology) (Alford, 1977). This was sponsored
by the Ballistic Missile Defence Advanced Technology Center (BMDATC) in 1973.
SREM is based on RSL (Requirement Statement Language) which supports both model-
oriented and property-oriented styles of programming, and on REVS (Requirements En-
gineering Validation System) which is able to control the consistency and completeness
of the specification. A system in SR_EM is decomposed in sub-functions. In SREM, the
elementary function is modeled as an extended finite state machine. The state diagram is
given in terms of the so-called R-nets. An R-net represents the system evolution starting
from a state, by means of reading inputs, producing outputs, iterations, and showing in
this way" the set of possible next states. Since a finite state machine can have only a
single active state, there is only an active R-net. Timing constraints are also defined into
the R-nets. It should be noted that, the decomposition of the system in R-nets allows the
specification of a distinct behavior for each system state without giving a global view of
the system.

SREM, as an operational approach, has been widely used for more than a decade
(Alford, 1985), (Scheffer, Stone and Rzepka, 1985). In parallel, several other operational
methods sustained by mathematical formalisms were introduced and publicized. In the
following subsections, four of them will be discussed - - i.e., PAISLey (Zave, 1982), SDL
(Rockstrom and Saracco, 1982), Esterel (Berry and Cosserat, 1985), and Statecharts
(Harel, 1987).

126 G. BUCCI, M. CAMPANAI AND P. NESI

3.J.1. PAISLey

PAISLey (Process-oriented Applicative and Interpretable Specification Language) was
introduced in 1982. It is an operational specification model for defining embedded real-
time systems (Zave, 1982), (Zave, 1984), (Zave and Schell 1986). The system under
specification is decomposed in processes which communicate asynchronously. Although
the communications are asynchronous, the model presents several methods for process
synchronization. Each process is equivalent to an extended state machine. State machines
are defined by means of a functional language. On the state domain of the system under
specification, union, Cartesian product, and other operations are possible. In PAISLey,
the external environment is also modeled to avoid misunderstandings in validating the
specification. The number of processes, data structures and state domains are finite; these
assumptions augment the predictability of system behavior. For example (Zave, 1982),
a system decomposed in four processes is declared by means of their initial state:

(terminat_l_cycte[btank_display],
terminal_2_cycle[blank_display],
terminal_3_cycle[blank-display],
database_cycle[initial_database]
);

where terminal_3_cycle, etc.. are transition functions, while blank_display, initial_database
are values of variables. For each process the domain range is defined, such as:

terminal_l_cycle: DISPLAY --+ DISPLAY,"

database_cycle: --~ DISPLAY,"

The single process (i.e., transition function) is defined on the basis of other functions,
e.g.:

terminal_l_cycle[d] = display[display_and_transact[(d, think_of_request[d])]];

represents the internal structure of terminat_l_cycle functions.
Communications among processes are obtained from selected combinations between

three modalities: z_, zrn_, and zr_, obtaining four type of mechanisms: (i) (z_, :cm_)
blocked synchronous with mutual exclusion, (ii) (z_, z_) blocked synchronous, (iii)
(zrn_, zr_) mutual exclusion asynchronous, (iv) (z_, zr_) simply asynchronous.

The method adopted for modeling temporal characteristics of the system is based on the
theory of random variables. Therefore, PAISLey is primarily operational, but its timing
constraints are mathematical (Zave, 1990). Timing constraints can be associated with
the execution of state transitions, and are given by means of (i) lower and upper bounds,
or (ii) distributions. For this reason, the static verification of time requirements could be
only verified by means of a statistical reasoning. As a consequence, timing constraints

TOOLS FOR SPECI]PYING REAL-TIME SYSTEMS 127

are checked in the phase of simulation, during which time failures are recorded. The
final system validation is obtained by simulation, being the simulator an interpreter of
the language.

3.1.2. SDL

SDL (Specification and Description Language) is an operational language belonging to
the standard FDT (Formal Description Techniques) defined in 1982 within ISO (Inter-
national Organization of Standardization) (ISO TC97/SC16/WG1) and CCITT (Comit6
Consultatif International T616graphique et T616phonique) for the specification of open
distributed systems (Rockstrom and Saracco, 1982). In particular, the subgroups B and
C have analyzed the descriptive models which combine the concepts of finite state ma-
chines with high-level languages, e.g., Pascal. SDL (Rockstrom and Saracco, 1982),
(Sarraco and Tilanus, 1987), Estelle (Budkowski and Dembinski, 1987), and LOTOS
(Bolognesi and Brinksma, 1987) (see Section 4.1.2) belong to this category of speci-
fication languages. SDL provides both visual and textual representations of its syntax.
The textual representation extends Pascal according to the ISO draft.

In SDL, the system under specification is regarded as a block which can be decom-
posed in sub-blocks, thus modeling the structural aspects of the system (see Fig.3a).
Blocks communicate asynchronously by means of strongly typed channels. The lan-
guage provides support for defining new types of messages modeled as ADTs (Abstract
Data Types) (Guttag, 1977), (Guttag and Homing, 1978). A block can be decomposed
in sub-blocks or in a set of communicating processes (see Fig.3b). A wocess is imple-
mented as an extended state machine, where the communication semantics is defined by
means of a single buffer of infinite length for each state machine. SDL state machines
are a mixture of state diagrams and flow charts (see Fig.3c); in fact, they present states,
transitions and selections (equivalent to the "if" statements of high-level languages). In
SDL state diagrams, reading of inputs and writing of outputs, as well as the execution
of assignments and procedures can be associated with each transition. Reading should
always precede writing, since inputs usually represent the condition for transition. If
no input reading is defined, the change of state is always performed. For example, the
exiting from the initial state is usually performed without reading any input (see Fig.3c).

In SDL, timing constraints are modeled through timers. A timer can be considered as
a separate process which is able to send messages. A process can have a set of timers,
which can be set, read or reset. For example, an SDL state machine that must satisfy
a timeout must set a timer and then wait for the message signalling its occurrence. To
this end, the state machine must be able to receive input messages from the timer in all
its states, and a transition from a state to the next cannot be interrupted. As a result,
definition of deadlines may result in somewhat complicated expressions. SDL permits
the dynamic generation of processes; this is denoted with a dashed line as in Fig.3b.
For the above reasons, the behavior of an SDL specification can be non completely
deterministic. On the other hand, the validation is performed by simulation and, thus,
the analysts achieve the final version by refinement.

128 C. BUCCI, M. CAMPANAI AND P. NESI

(

Declarations

physicaL, lln~

l_
pabx [

ext~rn~o~ line~
e x t a l _ l i n e s

Figure 3a. Example of system specification in SDL 1988: system decomposed in two blocks terminal and
pabx.

DeclarprtiOns

po~,~..i_ii°~ ~ configurator
"~ "1 (1 , 1)

. . . .]

I
I
J
I

{c°°unlatlon t01o_

Figure 3b, Specification in SDL 1988: the block pabx is decomposed in the processes configurator and
communication,

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 129

{FALSEI

+
(T/~t,E) IFALSE)

/

Figure 3c. Specification in SDL 1988: a part of the implementation of process configurator as an SDL state
machine where: banal is a state, the empty rounded box is the initial state of the machine, ext., and ide. are
inputs, ester:, is an output, simple squared boxes contain assignments, etc..

130 G. BUCCI, M. CAMPANAI AND P. NESI

More recently, an object-oriented extension of SDL (i.e., SDL 1992) has been presented
(Braek and Haugen, 1993). This integrates the classical notation of SDL with the power
of the object-oriented paradigm (e.g., Object-oriented SDL, OSDL). The major advantage
is the presence of the mechanisms of inheritance, polymorphism and instantiafion which
have been defined for both the block and state machine levels. For example, new blocks
and processes can be defined and used in more than one place (i.e., instantiation).

There are many SDL tools - - e.g., GEODE (GEODE, 1992) - - which cover all fea-
tures defined in the so-called SDL 88 (version of 1988). Moreover, for supporting
the configuration management, versioning, and report generator, other instruments are
needed. In order to manage the problems of real-time in telecommunications support-
ing functional, behavioral and structural aspects, several extensions of SDL, such as
(Encontre, et. al, 1990), have been presented.

3.1.3. EstereI

Esterel is an operational programming language introduced in 1985, which supports
a set of elementary instructions such as: loop (indefinite), if-then-else, etc. Among
these, there are special instructions for defining expressions of timing requirements
(Berry and Cosserat, 1985). A program specifies the deadline for procedure execution
and let's suppose that the requirements are met at run-time. Consider for instance the
following piece of code:

var A, B: int in;
loop

do
A := Fun(B)*5.6;

uptonext t0 seconds end;
end;

end;

where: A, B are variables, and seconds is a signal. For this program, the instructions in-
side the do-uptonext body are executed for the next 10 seconds. By using the elementary
instructions, more complex instructions can be defined.

Rather than requiring that all timing behavior be known at compile time, Esterel al-
lows the programmer to specify not only the timing requirements, but also allows the
definition of the exception handlers which will be executed if the timing requirements
are not met (recovering from time-failure). This approach to validation is very similar
to that adopted by SDL. The execution is obtained by translating the Esterel specifi-
cations in communicating finite state machines. The number of processes is finite and
their communications are through broadcasting. The execution model is synchronous and
communications are considered instantaneous. These assumptions imply that the com-
munications can be simply described by a discrete history of events where several events

T O O L S F O R SPECIFYING R E A L - T I M E SYSTEMS 131

(a)

e

(b) (c)

Figure 4. Statecharts notation and the operation of state clustering (i.e., the XOR) (a) Traditional state diagram,
(b) Statecharts notations at detailed level, (c) Statecharts notations at abgract level.

can formally occur at the same time instant. As a result, if a message is not received at
the same instant in which it is made available, it is lost. Esterel makes no provision for
exhaustive static analysis before compilation; therefore, it does not ensure predictability,
in the strong meaning of completing without exception. This is essentially due to the
adoption of a strongly synchronous model with instantaneous communications.

3.1.4. Statecharts

Statecharts have been firstly introduced in 1987 as a visual notation for representing
complex state machines, in a more synthetic manner with respect to the usually adopted
notations based on state diagrams (Harel, 1987), (Harel, 1988). With this notation, com-
plex state machines are represented as combinations of simpler machines, through the
XOR and AND mechanisms as shown in Fig.4 and Fig.5, respectively. In this way, the
explosion of the number of states of conventional state diagrams is strongly reduced. On
the other hand, this notation may be less intuitable than conventional state diagrams.

Associated with the notation, an operational semantics has been presented, which de-
scribes how single machines are executed in order to model the equivalent complete state
machine (Harel, 1987). Following this semantics, the single state machines are consid-
ered as concurrent and communicating through broadcasting (similar to Esterel). A state
machine can observe both the current status of other state machines and the history of
their behavior by using special functions provided by this language. The operational se-
mantics is based on a set of micro-steps in which the execution of a single state machine
is decomposed. In some cases, Statecharts can lead to define non-deterministic paths of
execution.

In Statecharts, the notion of time is managed through the special function timeout(E,N)
which becomes true when N time units are passed, after the last occurrence of event
E (STATEMATE, 1987). Statecharts have been defined for modeling only system be-
havior, they can be profitably used as a specification language only if they are inte-
grated in a CASE tool where the structural and functional aspects are addressed by

132 ~. BUCCI, M. CAMPANAI AND P. NESI

(a)

i

, rn~rn

(b)

Figure 5. The operation of state machine composition (i.e., the AND operation) of Statecharts (a) Traditional
state diagram, (b) Statecharts notations where S and T are orthogonal components of the complete state machine.

means of other notations. This has been done with STATEMATE (STATEMATE, 1987),
(Harel, et. al, 1990). This tool makes an explicit distinction among structural, functional
and behavioral aspects. These three aspects are described via three different repre-
sentations, that is, activity-chart, statechart, and module-chart - - modeling functional,
behavioral and structural aspects, respectively. The activity-chart is a sort of RT-DFT
(see Section 3.3.1), while the module-chart is a visual notation for structural decompo-
sition. STATEMATE controls that consistency and completeness are maintained through
the three different notations. STATEMATE has the capability of verifying the correct-
ness of a Statecharts by means of exhaustive and sub-exhaustive execution tests. The
verification of reachability, the presence of non-deterministic conditions and deadlocks,
and the use of transitions, are identified through these tests. Simulation gives the system
a great confidence in producing specifications.

More recently, several extensions of the Statecharts model have been proposed for
improving its capabilities in modeling timing constraints and functional aspects - - e.g.,
Modecharts (Jahanian and Stuart, 1988), Objectcharts (Coleman, Hayes and Bear, 1992),
and ROOMcharts (Selic, 1993). In Objectcharts the model of Statecharts has been ported
in an object-oriented environment. The concepts of temporal constraints on state transi-
tions and those of auxiliary variables for state machines have also been added (see Fig.6).
Object orientation has solved the problems related to the diffbrent views by integrat-
ing them in the concepts of classes (objects). Moreover, other classical object-oriented
concepts such as inheritance, and instantiation have also been added. ROOMcharts is
also supported by an object-oriented methodology (Selic, et. al, 1992) and a CASE tool
named ObjecTime (NorthernTelecom, 1993). The Modecharts model is also discussed
in Section 4.2.1.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 133

ALARMCLOCK]

/C.time?
in timeupdate [0.5,151 sec S-

timeofday:time

I--. . , ,
alarmoff I

Falarmoa
J)cancel

set

alarmtime:time

stop/W.closewindow

/W.closewindow

Figure 6. Example of an alarm clock in the Objectcharts notation, where alarmtime of type time in the state
machine alarmon is an auxiliary variable.

3.1.5. Other Operational Approaches Based on State Machines

In this section, further interesting approaches based on state machines will be discussed
for completeness. The classical model of extended state machine has been modified to of-
fer the capability for defining timing constraints - - e.g., RTRL (Real-Time Requirements
Language) (Taylor, 1980), ESM (Extended State Machine, which will be discussed in
Section 5.1) (Ostroff and Wonham, 1987), and CRSM (Communicating Real-time State
Machines) (Shaw, 1992).

RTRL was firstly developed by the GTE laboratories, for their internal use (Taylor,
1980). The notion of time is modeled through the concept of timer as SDL (on the
other hand, minimum and maximum time constraints on the occurrence of events can be
defined in terms of timers (Dasarathy, 1985)). To avoid the problems of several other
languages which assume the execution time to be instantaneous, in RTRL, time durations
(such as the execution of sending/receiving a signal) are modeled by means of dedicated
constructs which consider the execution time.

CRSM is an extension of the classical CSP model, which adds timing constraints on
the conditions for the execution of transitions (Shaw, 1992). In particular, the minimum
and the maximum time in which the transitions can be enabled is defined. Time is
considered as continuous; therefore, it is represented as a real value (in floating point).
The value of the current real time is available as the common variable rt. In CRSM,
the system is described by means of a set of communicating state machines in which
communications are strictly synchronous, even if asynchronous communications can be
defined by resorting to infinite buffers on the inputs. The system validation is performed
via simulation, and by analyzing the history traces.

134 G. BUCCI, M. CAMPANAI AND P. NESI

before after before after

Figure 7. Example of the execution of simple Petri Nets.

3.2. Operational Approaches Based on Petri Nets

Petri Nets (PNs) were introduced by Petri as early as 1962 (Petri, 1962). They are
more expressive than state machines, which can be proved to be a Petri nets subclass
(Murata, 1989). However, given their lower intuitability, PNs have hardly found their
way into programming languages.

PNs are an operational formalism, especially suitable for modeling synchronizations
among asynchronous processes (Merlin and Faber, 1976), (Reisig, 1985), (Peterson,
1981). A Petri net is a graph comprising a finite number of places (circles) and transitions
(segments) (see Fig.7), connected by oriented arcs. A set of tokens can be associated
with each place. The state of a PN corresponds to the distribution of tokens on the
places (i.e., the marking of the net). The operational semantics is that the presence of
places with at least a token connected with arcs to a transition makes it "firable" - -
i.e., executable. The execution of a transition leads to the generation of a token in each
place connected by an arc going out of the transition itself. In Fig.7, several examples of
executions are reported. When a transition has more outgoing than ingoing arcs, it is a
producer of tokens, and when the number of outgoing arcs is lower than that of ingoing
arcs, the transition is a consumer of tokens. A review of fundamentals about Petri nets

can be found in (Murata, 1989).
A PN is safe if the number of tokens is limited in time; in this case, it can be easily

transformed in a finite state machine which is called Token Machine. On the contrary,
if the PN is unsafe it corresponds to a state machine having an infinite number of
states, defining in this way a divergent behavior. In this case, the verifiability of a PN
is impossible. If the number of tokens of a PN is constant for each state, the PN is
called conservative. On the contrary, PNs are called inconsistent when the behavior (i)
terminates for token consuming, or (ii) diverges for an uncontrolled production of tokens.

The verification of a PN is based on the analysis of the Token Machine. All the clas-
sical verifications, which can be executed on finite state machines to verify reachability,
deadlock free, etc. are performed on the Token Machine. If in a PN there is more than
one transition enabled by the same marking, the execution is non-deterministic (i.e., the
PN has more than one possible next state). PNs in which this condition never occurs

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 135

P.

(~)

P.

(t,)

Figure 8. Example of Petri Nets, where Ti are transitions, Pi places, (a) and (b) are two consequent states of
the net.

behave in a determinism manner and are called decision free nets. The verification of
a PN is computationally possible only for consistent deterministic nets, while for the
non-deterministic nets the problem is NP complete (Willson and Krogh, 1990). For con-
servative nets, the absence of deadlocks can be demonstrated by using algorithms with
exponential complexity. On the other hand, these algorithms cannot be extended to all
the extensions of the classical Petri net model.

It should be noted that, a state diagram can be regarded as a particular Petri net
where the transitions have only one entering and one outgoing arc. On the other hand,
the state diagrams are more intuitive with respect to the visual representation of Petri
nets. The classical notation for Petri nets is unsuitable for representing the functional
and structural aspects of the system under specification; there is no explicit support for
specifying timing constraints, and the tokens are only untyped control messages. For
these reasons, many extensions have been proposed for transforming PNs into suitable
models for the specification of real-time systems. The following subsections are dedicated
to the discussion of several of them.

3.2.1. TPN

The TPN (Time Petri Nets) model has been introduced in 1976. It is an extension of
classical Petri nets for treating the timing constraints. These are expressed explicitly for
each transition, by means of a minimum and a maximum time (Train and Tmax , respec-
tively) (Merlin and Faber, 1976). Train is the minimum time for which the transition
must stay enabled in order to be firable. T m a x is the maximum time for which the transi-
tion can stay enabled without firing. If Train = 0 and T m a x = oo the TPN corresponds
to the classical PN model. The adoption of this time modeling allows the definition of
timeouts, deadlines, etc. A TPN, defined on a structurally safe PN, can be verified for
controlling the absence of deadlocks and other properties (Berthomieu and Diaz, 1991),
(Leveson and Stolzy, 1987). The Token Machine resulting from a TPN is different from
that of the corresponding PN (i.e., the same TPN without timing constraints) and may

136 G. BUCCI, M. CAMPANAI AND P. NESI

present unreachable states, thus requiring a more accurate analysis. Moreover, in certain
conditions, the generation of the Token Machine and the reachability analysis can be
impossible.

3.2.2. SPN

SPNs (Stochastic Petri Nets) are an extension of the classical PN for describing the timing
constraints, introduced in 1983 (Marsan, Balbo and Conte, 1983), (Molloy, 1985). In
this model, a random variable is assigned to each transition Ti representing the firing
delay. In this way, in the presence of several firing conditions in the nets, these are
ordered by means of their respective firing delays. SPNs with geometrical or exponential
distributed delays are isomorphic to homogeneous Markov chains; therefore, they are
appropriate for modeling non-deterministic processes.

PROT nets are an extension of SPN and allow the discovering of critical conditions
(Bruno and Marchetto, 1986). These can be easily translated in ADA language, where
the interactions between a process and a transition take place through two rendez-vous
of ADA. PROT nets are an efficient system for producing the ADA structure of a
system by specifying system behavior. For these nets, a simulator is also available
to validate the specification. This model is also supported by a CASE tool, named
ARTIFEX (ARTIFEX, 1993), which includes the aspects of object-oriented paradigm
and methodology called PROTOB (Baldassari and Bruno, 1991).

3.2.3. Other Operational Approaches Based on Petri Nets

For completeness, other approaches based on Petri nets are briefly discussed in this
sub-section, in the order of their appearance - - i.e., Timed-PN (Timed Petri Nets)
(Ramachandmli, 1974), CPN (Colored Petri Nets) (Jensen, 1981), (Jensen, 1987), HMS
(Hierarchical Multi-State machines) (Gabrielian and Franklin, 1991), ER, TER and TB
nets (Ghezzi, et. al, 1991), and CmPN (Communicating Petri Nets) (Bucci, Mattotine,
and Vicario, 1993), etc.

In Timed-PNs, a duration time is associated with each transition for modeling the exe-
cution time of the transition itself (Ramachandani, 1974), (Ramamoorthy and Ho, 1980).
The semantics of classical PNs is modified by assuming that a transition must fire as
soon as it is enabled. These nets are mainly suited for performance evaluation.

The HMS model is based on state machines, but presents many characteristics which
make this formalism more similar to Petri nets than to state machines (Gabrielian and
Franklin, 1991), In fact, as in Petri nets, in a HMS specification several active states
(i.e., states with a sort of "token") can exist at the same time. In HMS the system under
specification is modeled as a hierarchy of specifications starting from the more abstract to
the more detailed one. This layering allows the reduction of diagram complexity, similar
to the clustering mechanism of Statecharts formalism (see Section 3.1.4). Moreover, the
specification refinement is supported by a process of verification which validates if the
conditions (expressed by means of axioms) for any given abstract level are satisfied by

T O O L S FOR SPECIFYING R E A L - T I M E SYSTEMS 137

re

i%(e e)--Ixl e e +as

Figure 9. Example of a TB net.

x>ol

the specification for the lover level (i.e., more detailed). Timing constraints are defined
in Temporal Interval Logic (TIL). Timing constraints can be used for defining conditions
on state transitions. The complete model is non-deterministic, but executable, and thus
it is suitable for simulation.

In (Ghezzi, et. al, 1991), a collection of extended Petri nets has been presented in order
of complexity: ER, TER and TB nets. In the TB model, the time in which a token has
been produced (i.e., timestamp), is associated with the token itself. In TB nets, tokens are
"functions" which associate values with variables. In addition, a Boolean condition based
on the presence of tokens with their timestamps on the connected places is associated
with each transition. The TB model is to be a generalization of the TPN model proposed
in (Merlin and Faber, 1976). The transformational aspects (i.e., functional aspect) of
the system under specification can also be described by the TB model. Fig.9 reports
an example presented in (Ghezzi, et. al, 1991). It represents a net that models a data
acquisition system which periodically samples data from the environment. Sampled data
are modeled by the tokens fired by transition T1. A controller (represented by a token
in place P3) takes those data (i.e., transition 7) fires) and then elaborates them, i.e.,
transition T3 fires. The sampled data are valid only at most for do time units and the
elaboration takes a minimum of dl and a maximum of d2 time units.

CmPNs are an object-oriented extension of PN. These are suitable for modeling struc-
tural, behavioral aspects of the system under specification (Bucci Mattoline and Vicario,
1993). By means of this model the system is regarded as a set of asynchronously com-
municating subsystems (which can be placed in a single-processor or distributed environ-
ment). In the CmPN model, a priority and an action are associated with each transition.
The scheduler takes into account the priority during its work, and the action corresponds
to the execution of a procedure when the transition is fired. For a specification given in
terms of CmPNs, the absence of deadlocks can be verified. Moreover, a CmPN specifi-
cation can be directly translated into C++ code for a heterogeneous environment based
on MS-DOS and UNIX machines.

3.3. Operational Approaches Based on Other Notations

Most of the operational models have their own visual notations and this increases spec-
ification understandability. Starting with the late 1970s, a number of different notations

138 G. BUCCI, M. CAMPANAI AND P. NESI

were introduced as a substantial component of various methodologies for system analy-
sis and design. Most of them, including Structured Analysis (Ross and Schoman, 1977),
(Yourdon and Constantine, 1979), Data Flow Analysis (DeMarco, 1979), JSP (Jackson
Structured Programming) (Jackson, linebrak 1975), and JSD (Jackson System Develop-
ment) (Jackson, 1983), have found large acceptance by industry. In addition, because
of their expressiveness, these notations have been incorporated in many CASE environ-
ments. As a result, the boundaries between the use of these notations and of operational
visual specification languages are crumbling. In fact, tools supporting methodologies
of the above mentioned category become increasingly similar to visual programming
environments, thus allowing the direct manipulation of graphical elements in order to
visually describe program aspects like structure, flow of data and the like. Following this
trend, conventional approaches like Structured Analysis, have be considered operational,
in spite of their informal nature.

The use of visual techniques reduces the effort of user-machine communication. In this
way, the ability of the user to describe the system is greatly enhanced, further reducing
the intermediation with the system. This aspect has been taken into consideration by the
designer of tools like those described in (Jacob, 1985) and (Harel, 1988).

In recent years, the Object-Oriented Paradigm (OOP) has gained large acceptance
in software analysis and design (Coad and Yourdon, 1991), (Booch, 1991), (Northern-
Telecom, 1993), (Coleman, Hayes and Bear, 1992). This is largely due to the fact that
working with classes and objects is an easy and natural way for partitioning large prob-
lems. The mechanisms for decomposing a system into objects, makes OOP the nat-
ural methods for separating the different activities that can be carried out in parallel.
By supporting strong modularity, code reusability, and extendibility, OOP is having
quite an impact on design, implementation and maintenance of complex systems, and
many formal languages have been extended with object-oriented capabilities, leading
to languages like Z++, VDM++, TRIO+, etc. Several object-oriented methodologies
for real-time systems have also been introduced - - e.g., HOOD (HOOD, 1988), Wirsf-
Brock et al. (Wirsf-Brock, Wilkerson and Winer, 1990), Booch (Booch, 1991), OMT
(Rumbaugh, et. al, 1991), Coad and Yourdon (Coad and Yourdon, 1991), and these have
been adopted as a basis for a number of CASE tools.

3.3.1. Structured Analysis

Structured Analysis is a generic term which denotes a number of analysis and design
methodologies, approaching system specification in a structured manner.

Historically, SADT (Structured Analysis and Design Technique, introduced in 1977)
(Ross and Schoman, 1977) has been the first methodology based on a structured approach
and, more specifically, on the concept of functional decomposition. SADT has its own
diagrammatic notation, with well-defined syntax, semantics. The notation handles the
data and control flows. SADT builds on the concept of models. A model corresponds
to a hierarchy of diagrams describing the system from a particular point of view (for
instance, from the operator's point of view). Models can share common details. A
sub-model which is shared by other models or whose implementation can be changed is

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 139

(,# (c) (o0

@
(b)

Figure 10. Symbols of DFD: (a) external agent, (b) function or process for data transform, (c) data flow, (d)
permanent data repositor.

called a mechanism. A mechanism can remain undeveloped until the later stages, thus
delaying detailed decisions. SADT is a registered trademark of Sof-fech and is available
commercially.

Structured analysis as publicized by Yourdon and Constantine (Yourdon and
Constantine, 1979) and De Marco (DeMarco, 1979) in 1979, is perhaps one of the best
known methodologies (Svoboda, 1990). This is essentially a functional decomposition
technique, used to identify a number of transforms and the data flowing among them
(DeMarco, 1979). This is done by the successive application of the engineering definition
of a black box that transforms an input data stream in an output data stream. Data-Flow
Diagrams (DFD) and data dictionaries are the most important tools used in carrying out
the analysis. Transforms are called processes and represented as bubbles in data flow
diagrams, while flows of data are represented as oriented arcs among bubbles. The data
dictionary keeps track of any data flowing through the network of processes. The graphic
symbols used in Structured Analysis/Data-Flow Analysis are shown in Fig.10.

Data-flow analysis tends to produce a network of (sub)programs corresponding to each
transform, but allows the identification of the central transform, that is, the one that
accepts the most abstract input stream and produces the most abstract output stream.
The central transform corresponds to the most abstract view of the program functional-
ity. By picking up the data-flow diagram from the central transform, a tree representing
the hierarchical structure of the program is obtained. Starting from the so-called con-
text diagram, which contains only a single bubble representing the system in its entirety,
successive refinements are applied (DeMarco, 1979). This leads to a hierarchical decom-
position, where each process is decomposed in a number of lower-level, more detailed
data transforms. Of course, consistency must be kept among levels. In particular, in-
put/output data, flowing in/from a given process, must be preserved when the process is
decomposed in a number of lower-level processes.

Structured Analysis can be applied in a purely manual fashion or it can be automated
to varying degrees (Birrel and Ould, 1985). Almost any CASE tool produced in the last
decade includes Structured Analysis - - e.g., (Teamwork, 1992), (StP, 1991). In addition,
DFDs admit also an operational interpretation.

Structured analysis is still one of the most used techniques for dealing with transfor-
mational applications, as found in data-processing environments, where procedural (i.e.,
static) aspects are relevant. Its strength is also its weakness: it is informal and very
intuitive, and thus can be used also by people not keen in mathematics; however, this
denies rigorous specification validation.

140 G. BUCCI, M. CAMPANAI AND P. NESI

3.3.2. Real-Time Extensions of Structured Analysis

Several extensions to structured analysis have been proposed in the 1980s, in order to take
into account also system dynamics and use it for the specification of real-time systems.

DARTS (Design Approach for Real-time Systems) (Gomaa, 1984), (Gomaa, 1986), and
its recent object-oriented extension (Gornaa, 1992), is an example of design techniques
which closely follow the Structured Analysis/Data-Flow analysis approach to identify the
processes to be implemented in a real-time system, as well as their synchronizations.

Ward and Mellor (Ward and Mellor, 1985), (Ward, 1986), extended data flow diagrams
by adding edges representing control. They also used state machines for representing
behavior. Many commercial CASE tools, including Teamwork (Teamwork, 1992), StP
(Software through Pictures) (StP, 1991) and Excelerator (Excelerator, 1986) have fol-
lowed this lead.

Hatley and Pirbhai (Hatley and Pirbhai, 1987) performed a data-flow analysis and then
proceeded with a control-flow analysis. This leads to augmenting the data flow-diagram
with the so-called control bars, which are introduced to represent event occurrences.
Additional specification tools (i.e., CSPECS (Hatley and Pirbhai, 1987)) are used in order
to express how and when a transformation occurs. As a result, the designer must employ
different tools and languages, depending upon the stage of the analysis. In Fig. 1 la, the top
level of a cruise control system according to the Hatley and Pirbay notation, is reported.
In the diagram, both data and control flows are shown, where square boxes represent
terminal objects. In Fig.llb, the DFD diagram at level 0 shows the decomposition of the
system in "processes" (according to Hatley and Pirbay, but called data transformations in
the more general meaning), data and control flows (i.e., continuous and dashed lines), data
stores (e.g., mile count) and a control bar (i.e., CNT_I). The control bar encapsulates the
system behaviour and process activation in terms of a Mealy state machine (see Fig.llc).

Structured analysis for real-time systems is still based on the notion of the flow of
data between successive transforms, and provides little support to identify the concurrent
processes (in this paper, the word "process" was used to denote a separate sequential
activity, implemented as an independent thread of execution, and not simply a data
transform), that must be implemented in a given application. Depending upon the detail
of the analysis, there is something arbitrary in identifying the system processes. This
may result in the implementation of unnecessary processes and the possibility that a
given process needs concurrency internally.

3.3.3. JSD and Entity Life

Jackson System Development (JSD) (Jackson, 1983), (Cameron, 1986) was introduced
in 1983, and has become since then a well-known method for software development. It
encompasses most of the software life-cycle and, being based on the concept of commu-
nicating sequential processes, it can be used for the design of real-time and concurrent
software.

JSD is an entity-life modeling approach (Sanden, 1989c) to software analysis and de-
sign. In fact, the first phase of the method, the model phase, is devoted to the examination

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 141

_ _ cruise
I- - command "-

W" , oalbrate ._ _ "~]
fuel / , ' i - ~ driver /

~ ~ displays trip ""
fuel in t / com-uter fuet
tank ~ / ^ ~ p .,4 added

ro~h~ifot n 7~o~/~ P i sno p ! d r ~ i v e L shop[

•" . " ~ new
brake on engine ~ ~ nkage
- running currem .. •. . -" / p°siI°nlinkage position ~ j . ~ _ ~

Figure lla. Example of extended DFD in the Hatley and Pirbay notation: Context Diagram,

: I +
~ ~ cruise

~enoin e command
running, I ~ I . . . j f t - ~

I speed ' ~peed speed " count
current 1 * 2 _ _ _ " / \ >....

brake on

/# ~ time 1 mtleje ~
" chiinkati'g~ ~ , , ?

,,'~,?&~o /
<o~b,,,° " f =,o \ , - i ~ U - / ,, I I throttle I ~ /'~" l main

, . ~ 6 ' "~ ,, isplay
..... g,ne _T~.~L*" " "P°Cv~e r W edde(f'el --~tr' comptrip ~

running entry fuel in P comman mon ltor

- I ~ ~ maint

Figure llb. Example of extended DFD in the Hatley and Pirbay notation: level O.

142 a . BUCCI, M. CAMPANAI AND P. NESI

cc not ready
power down

resume
assume to desired speed

i accelerating "

pe'¢~ r off

1 t
ce ready
cc idle

idle

star incr spd
accelerate

%not rea~g
powerdewn

manual overdde
suspend cru!ee

ec activate
get spd

stop incr spd
maint epd reached

reached desired epd

cruising

Figure 11c. Example of extended DFD in the Harley and Pirbay notation: behavior of control speed.

of the real-world environment, in order to identify and model the entities belonging to it.
Entities that have a strong time dimension, that is, when they make transitions between
different states over time, are modeled as software processes. Modeling is done trough
an explicit diagrammatic notation in which three basic structuring concepts are used,
namely: sequence, iteration and selection. The resulting entity structure describes all
the possible life histories of the entity itself. Since JSD makes reference to languages
that do not support concurrent programming, processes are implemented as coroutines,
managed by a tailor-made scheduler.

Elaborating upon JSD, Sanden has proposed the so-called generic entity-life approach
to concun'ent software design (Sanden, 1989c), (Sanden, 1989b), (Sanden, 1989a). In
this approach, the first step is the identification of each independent and asynchronous
thread of events in the problem domain; for any thread of events, a software process is
implemented in the system. The generic entity-life approach avoids certain intricacies of
JSD, as well as the implementation of unnecessary processes. Furthermore, Sanden uses
the ADA language to work out his examples. The task construct of that language avoids
another problem of JSD, that is, the implementation of processes as coroutines and the
consequent need of a tailor-made scheduler.

Entity-life approaches are a step towards clear specifications of concurrent systems. They
take into account functional, structural and behavioral aspects. In the examples presented
in (Sanden, 1989c) and (Sanden, 1989b), system behavior is dealt at the level of interac-
tions among tasks. The specification of internal details is left to other techniques, such
as state machines.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 143

ELCONTROL

_ _]

r JOURNEY *!

' l I G R O U P

WAIT AT GROUND I OSCILLATE

[
. j

L uP up [~,O,~T. , VISIT PASS !
. r

JOURNEY i
PAIR i

~ o --1 f--
1 I __

UP DOWN E
FLOOR FLOOR i

. J

DOWN
PASS

BOTTOM
FLOOR

Figure 12. Structure of control software of an elevator in JSD. Operations, represented by square boxes are
described by decomposition; at the same level they are executed from left to right; iterative executions are
marked by "*'; and selections with an "o".

144 G. BUCCI, M. CAMPANAI AND P. NESI

3.3.4. Object-Oriented Notations

In recent years, the Object-Oriented Paradigm (OOP) has gained a large acceptance
in the software community. Object orientation has also been used for the develop-
ment of real-time systems, due to the fact that the object-oriented model can be consid-
ered intrinsically concurrent. In fact, software objects can be regarded as independent
threads of execution which communicate by means of message passing (Cox, 1984),
(Diederich and Milton, 1989), (Bihari and Gopinath, 1992). More refined models divide
system objects into active and passive, and/or server and client objects (Agha, 1986),
(Ellis and Gibbs, 1989), (Booch, 1991). For these reasons, both object-oriented method-
ologies and languages (e.g., (Ishikawa, Tokuda and Mercer, 1992)), have been defined
for modeling real-time systems. Since, this section is devoted to the operational ap-
proaches, only methodologies are discussed. Pure languages are not mentioned, even
those that are focused on programming distributed and/or real-time systems.

In the early 1990s, many efforts have been made to reuse the good things of the old con-
ventional methodologies, such as DFD, Entity-Relationships diagrams (ER) (Chen, 1976),
etc., by reinterpreting them in the context of an object-oriented methodology - - e.g., Coad
and Yourdon (Coad and Yourdon, 1991), Rumbaugh at al. (OMT) (Rumbaugh, et. al,
1991), and Martin and Odell (Martin and Odell, 1991), Of course, the resulting tech-
niques are influenced by the functional view. More recently, some "pure" object-oriented
methodologies have been proposed - - e.g., Booch (Booch, 1991), and Wirsf-Brock et al.
(Wirsf-Brock, Wilkerson and Winer, 1990). Pure object-oriented methodologies focus
only on the definition of objects and relationships among them (Monarchi and Puhr, 1992).

In many of the above-mentioned approaches, the system is decomposed into objects for
representing the structural aspects of tile system under specification. Object relationships
are defined through extended Entity Relationship diagrams (Coad and Yourdon, 1991),
(Rumbaugh, et. al, 1991) or by using the so-called Object Diagrams (see Fig.13) (Booch,
1991), (Rumbaugh, et. al, 1991), (HOOD, 1988), (Wirsf-Brock, Wilkerson and Winer,
1990). To support all the features of the OOR such as inheritance, polymorphism, ag-
gregation, association, etc., special symbols for Entity Relationship diagrams or special
diagrams, such as Class Hierarchy, have been defined (see Fig.14). In most of the pro-
posed methodologies, system behavior is encapsulated in the implementation of objects
(more specifically in the implementation of class methods). The object behavior is usually
described by means of extended state diagrams or state transition matrices. Shlaer and
Mellor (Shlaer and Mellor, 1988), (Shlaer and Mellor, 1991) and Booch (Booch, 1991),
use a Mealy model; Rumbaugh (OMT) (Rumbaugh, et. al, 1991) uses a notation strongly
similar to Statecharts - - i.e., the ROOMcharts (see Section 3.1.4); Coad and Yourdon
(Coad and Yourdon, 1991) use a state event table.

It should be noted that, the description of the class interface in terms of methods is not
able to represent all the relationships that objects may have with respect to other objects,
especially in a concurrent environment (Bucci, et. al, 1993), (Coleman, Hayes and Bear,
1992), since this does not represent the services that a class of objects requires from
other objects (Wirsf-Brock and Wilkerson, 1989), (Walker, 1992). In fact, these requests
are encapsulated into the methods body and, thus, they are hidden to the outer objects.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 145

theHome

closeAllWalerValves

r~n~o__.um~..R~n~ " ~
respon~ToFumaoeHurnng ~ - "

f the l . l~F l~
Rqulmor

msponaTo . ~ m ~ _ ~ .
respono I o~Mn'~wJ~m

do,,,qeWaterValve

r ~ H e a t
n o t . ~ t

Figure I3. Ex~unple of a home heating system, Object Diagram in Booch's notation.

146 G. BUCCI, M. CAMPANAI AND P. NESI

Figure 14. Example of Class Diagram (also called class tree -- DrawONect is the root), where continuous lines
define relationships of specialization between classes (i.e., inheritance) (is_a), dashed lines those of aggregation
(is_part_@, and dotted lines those of association (is_referred_by).

Furthermore, though many of these methodologies are especially defined for the anal-
ysis and design of reactive systems, some of them are not completely satisfactory for
specifying real-time systems. Usually, these notations only provide support for defining
timing constraints of the system under analysis, but unfortunately they are not strongly
supported by techniques for verifying the consistency and completeness of time relation-
ships. This derives from the fact that these methods are not enough formal for supporting
a formal semantics and for defining an executable model of the system.

In spite of the previous considerations, many CASE tools have been built on the
basis of the above mentioned methodologies. In these CASE tools, model limita-
tions have been partially circumvented through specific notations which add formalism
and executability - - e.g., object-oriented and state machines (e.g., Shlaer and Mellor
(Shlaer and Meltor, 1988), Booch (Booch, 1991)), object-oriented).

4. Descriptive Approaches

The use of descriptive languages for program specification has been proposed by several
researchers during the 1970s - - e.g., (Guttag, 1977), (Liskov, et. al, 1977). Descriptive
approaches are based on mathematical notations (axioms, clauses, set theory, etc.) and
produce precise, rigorous specifications, giving an abstract view of the system state
space. The system is described by specifying its global properties, forcing the analyst to
specify what must be done by the system rather than how it must be done. Descriptive
specifications can usually be automatically processed for verifying their completeness
and consistency. Moreover, a specification can also be validated by proving that high-
level properties are verified by the specification itself. This is performed by means
of theorem provers or Prolog engines. Since most of these are not enough efficient
and predictable (from the performance point of view), descriptive approaches are not

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 147

considered adequate for producing executable real-time specifications. Only in the late
1980s, some descriptive languages have been enriched with primitives for dealing with
time, making them suitable for specifying real-time systems.

In the following, we have tried to classify descriptive approaches on the basis of their
main nature, that is algebraic or logical. Of course, many mixed approaches have been
proposed making this classification questionable. A different classification can be found
in (Wing, 1990a).

4.1. Descriptive Approaches Based on Algebraic Methods

Algebraic methods are based on the concepts of Abstract Data Type (ADT) (Guttag, 1977),
(Guttag and Homing, 1978). With these methods of specification the system is described
in an abstract manner; however, the description remains quite intuitive and lightly oper-
ational to be easily understandable. Most of the algebraic methods allow to specify the
system at different levels of abstraction, starting from a coarse description and arriving
at the most detailed one. For these methods, the system itself is regarded as an ADT, and
its specification consists in describing its syntax and semantics. The syntax definition
gives the description of the operator domains of the ADT, while the semantics is given
by an implementation of these operators by means of mathematical expressions. Seman-
tics is often defined by writing a set of axioms with a programming language based on
first-order logic. Complex abstract data types are defined on the basis of simpler ones;
hence, the semantics of complex types is specified by using the axioms of simple types,
and thus the behavior of complex types can be again validated by using the axioms of
the simple types. This allows to verify the specification correctness at each level of
specification detail.

By iterating the ADT implementations the entire system is specified. Iteration ends
when the elementary data types of the system are defined. Therefore, the system obtained
is specified on the basis of few elementary ADTs, whose operators must be implemented
by means of a traditional programming language (e.g., Pascal, C, etc.). The validation
process is carried out with respect to high-level system properties. Then, if elementary
ADTs are correctly implemented, the overall system will also be correct.

In the 1980s, many interesting specification languages have been proposed, accord-
ing to the concept of ADT - - e.g., ACT ONE (Algebraic Specification Technique
(Ehrig and Mahr, 1985), which inspired LOTOS (Bolognesi and Brinksma, 1987), see
Section 4.1.2), AFFIRM (Musser, 1980), and the Larch family of languages (Guttag,
Horning and Wing, 1985).

Algebraic methods have been used for defining abstract data types in conventional ap-
plications (Musser, 1980); later on, they have been employed for specifying reactive sys-
tems and communication protocols (Sunshine, et. al, 1982). To give an idea of how these
languages are structured, an example of protocol in AFFIRM (Sunshine, et. al, 1982) is
reported in Fig.15, while Fig.16 shows the corresponding state machine in the Mealy

148 G. BUCCI, M. CAMPANAI AND P. NESI

model (see Section 3.1). As can be noted, state variables are modeled by means of ax-
ioms, which in turn are functions of the axioms of other ADTs. For example, in Fig.16
the SimpleMessageSystem is defined by using Message and QueueOfMessage ADTs. For
QueueOfMessage the operations of NewQueueOfMessage, Add, and Remove are defined.
In general, the operators can be classified as constructors (InitializeService, UserSend,
SendComplete, UserReceive), and selectors (ReceiveComplete, Buffer, Sent, Received).
State is the axiom which models the data type behavior.

The completeness can be verified when it is proven that a defined property is verified
by the axioms of the system. This confers a descriptive rather than the operational
nature to these approaches, although the ADT behavior can be in many cases translated
in state machines. The operational descriptions are distributed among the operators and,
therefore, they are not simply executable. The property of liveness can also be verified,
for example by proving that a message transmitted will be received in any case by the
SimpleMessageSystem. In AFFIRM, there is no method for describing timing constraints.

The Larch family of specification languages has been defined on the basis of a common
support, the so-called used traits. This support describes the common Larch model by
means of an algebraic language - - i.e., the Larch Shared Language (Guttag, Horning and
Wing, 1985), (Garland, Guttag and Horning, 1990). By using this language new ADTs
can be defined. An interface support must be defined on the Larch Shared Language by
using a predicative language (e.g., pre- and post-conditions) (Wing, 1987). This layer
plays the role of a support for a host language. For example, the Larch/Pascal provides a
support for programming in Larch style by using the conventions of Pascal. On the con-
trary, each Larch language is based on the same support (i.e., Larch Shared Language).
In the literature, there are many other Larch languages: the Larch/CLU (for CLU see
(Liskov, et. al, 1977), (Liskov and Guttag, 1986)), Larch/ADA (Guaspari, Marceau and
Polak, 1990), Larch/C, and also object-oriented languages such as the Larch/Smalltalk,
the Larch/Modula-3 and the Larch/C++ (Wing, 1990b), (Leavens and Cheon, 1992),
(Cheon and Leveson, 1993).

The above mentioned languages are enough formal to create specifications that can be
easily verified, but unfortunately most of them are not supported by any specific construct
for specifying timing constraints such as timeouts, deadlines, etc.

4.1.1. Z

The Z language is based on the theory of sets and predicate calculus (Abrial, 1982),
(Sufrin, 1986), and was introduced in 1982. Differently from AFFIRM, the operations
on a described data type are given by using the predicate logic (Spivey, 1988). As in
other algebraic approaches, in Z the final specification is reached by refinement, starting
from the most abstract aspects of the system. In Z, there is also a mechanism for
system decomposition known as Schema Calculus. Therefore, a system specification is
decomposed in smaller pieces called schemes where both static and dynamic aspects of
system behavior are described.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 149

type SimpleMessageSystein;
needs types Message, QueueOfMessage;
declare s: SiinpleMessageSystein, in: Message;
interfaces

State(s): {ReadyToSend,Sending,ReadyToReceive,Acking };
Sent(s), Received(s), Buffer(s): QueueOfMessage;
InitializeService(s), UserSend(s,m), SendCoinplete(s): SimpteMessageSystein;
UserReceive(s), ReceiveComplete(s): SiinpleMessageSystem;

axioms
State (UserSend(s,in)) = if State(s) = ReadyToSend

then Sending
else State(s),

State (SendCoinptete(s,in)) = if State(s) = Sending
then ReadyToReceive
else State(s),

State (UserReceive(s)) = if State(s) = ReadyToReceive
then Acking
else State(s),

State (ReceiveComplete(s)) = if State(s) = Acking
then ReadyToSend
else State(s),

State (InitializeService) = ReadyToSend,
Sent (UserSend(s,m)) = if State(s) = ReadyToSend

then Sent(s) Add m,
else Sent(s),

Sent (InitializeService) = NewQueueOfMessage,
Receive (UserReceive(s)) = if State(s) = ReadyToReceive

then Received(s) Add Front(Buffer(s))
else Received(s),

Received (InitializeService) = NewQueueOfMessage,
Buffer (UserSend(s,m)) = if State(s) = ReadyToSend

then Buffer(s) Add m
else Buffer(s),

Buffer (ReceiveCoinplete(s)) = if State(s) = Acking
then Reinove(Buffer(s))
else Buffer(s),

Buffer (InitializeService) = NewQueueOfMessage,
end;

Figure 15. Example of SimpleMessageSystem in AFFIRM.

Inl±iaLServlce

~1 ReadyToSend
I q I UsecSend(NSG)

RecetveComptete BUFFER <- Empty o NSG
BUFFER <- Empty SENT <- SENT o NSG

RECEIVED (- RECEIVED o NSG SendCompte±e

I { ReadyZoRece,ve]1~ l

Figure 16. The corresponding state diagram of the SimpleMessageSystem as previously defined in AFFIRM.

150 G. BUCCI, M. CAMPANAI AND P. NESI

A well-known specification example of the Z language is the Birthday book (Spivey, 1988),
that is a system for recording people's birthday. Each entry contains a NAME and the
DATE of birthday. The first step of specification consists in defining the state space of
the system by means of the following schema:

BirthdayBook

known : 79 NAME
birthday : NAME H DATE
known = dom birthday

specifying that the state space must satisfy the condition that known is equal to the
domain of birthday and that the NAME is a known domain. It should be noted that in
this example one person can have only one birthday, but the same birthday can belong
to more than one person. Operations are defined by using other schemes, for example
the schema AddBirthdayBook for adding a new element is reported in Fig.17.
In the AddBirthdayBook scheme, the qualifier A defines that the operation described can
change the state space of BirthdayBook. The two declarations: name? : NAME and
date? : DATE define that these are inputs (outputs are represented by the symbol "!"
as in the CSP (Hoare, 1985)), while name? ~ known imposes that the name read must
not be already included in the BirthdayBook. The last line simply describes the update
operation on the birthday set (birthday is the updated value). Schemes can be combined
by means of the Z schema calculus, in which operations of and, or, etc., are defined. The
Z language also includes a mathematical tool-kit allowing the definition of operations on
sets and data. It is very useful for describing the mathematical aspects of a problem.

A specification in Z is a mixture of: informal text, definitions, axiomatic descriptions,
constraints, type definitions, and schemes. Therefore, it cannot be considered a fully
descriptive approach (Zave, 1990).

As regards real-time systems specification, the Z language does not have any support for
defining timing constraints. Therefbre, in the recent years, several extensions for adding
time management have been proposed. In (Richardson, Aha and O'Malley, 1992), the
Z language has been integrated with the RTIL (Real-Time Interval Logic) (Razouk and
Gorlick, 1989).

Several object-oriented extensions of the Z language have been presented - - e.g.,
OOZE (Alencar and Goguen, 1991), MooZ (Meira and Cavalcanti, 1991), Z++ (Lano,

- - AddBirthdayBook

A BirthdayBook
name? : NAME
date? : DATE
name? ~ known
birthday' = birthday U { name? +data? }

Figure 17. Schema of AddBirthdayBook in Z language.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 151

199t), Object-Z (Carrington, et. al, 1990). Most of them provide information hiding,
inheritance, polymorphism and instantiation into the Z Schema Calculus. With these
extensions, the system state space is defined as a composition of the state spaces of
the individual system objects. The object-oriented paradigm has added formalism for
modularity and specification reuse. Object-Z integrates also the concepts of temporal
logic (Carrington, et. al, t990), making it suitable for real-time specification. In this
language the object status is a sort of event history of object behavior making the language
more operational than the early version of Z.

4.1.2. LOTOS

LOTOS (Language Of Temporal Ordering Specification) is a formal technique belonging
to the standard FDT defined within ISO (International Organization of Standardization)
for the specification of open distributed systems (Bochmann, et. al, 1982). It was de-
fined by ISO/TC97/SC21/WG1 subgroup C in 1981-86 (Bolognesi and Brinksma, 1987),
(Botognesi and Brinksma, 1989). LOTOS is based on the algebraic descriptive technique
firstly presented by Milner (CCS) (Milner, 1980) and the abstract data type language
ACT ONE (Ehrig and Mahr, 1985). Being based on ADT, LOTOS allows to define new
ADTs. LOTOS uses the concepts of ADT for defining also the structural aspects of
the system under specification, differently from other FDT which do not address the
structural aspects.

LOTOS is strongly based on the concept of process. Structural decomposition is made
on the basis of processes, and a distributed system is also regarded as a process with sub-
processes. Algebraic operators are used to define relationships among processes - - e.g.,
sequential (>>), and parallel (113 executions. For these reasons, LOTOS can be considered
a process-oriented descriptive algebraic language. Processes communicate by means of
messages, through gates. Messages can bring data or controls; they are considered events,
are assumed to be atomic, and their occurrence is supposed to be instantaneous without
time consumption. A system specification consists in the definition of process behavior,
by describing how processes communicate, execute, and synchronize. Process definition
specifies the temporal ordering in which a process interacts with other processes, by
means of its gates. A process definition may include the definition of a set of types
which are equivalent to ADTs.

Consistency among descriptions is verified by a syntax checker and by simulation.
A compiler translating LOTOS specifications into a machine-oriented language is also
available. The LOTOS tool has been produced by the ESPRIT project SEDOS. The
G-LOTOS, which is a graphic editor to produce LOTOS specifications by means of a
visual language is also present (Bolognesi, Najm and Tilanus, 1993). LOTOSPHERE is
an integrated tool environment for defining systems in LOTOS (LOTOSPHERE, 1992).
LOTOSPHERE is the result of an ESPRIT project (n.2304). With this tool the user can
define process behavior in both descriptive and operational manner. The latter resort to
the formalism based on extended finite state machines.

152 G. BUCCI, M. CAMPANAI AND P. NESI

4.1.3. VDM

VDM (Vienna Development Method) dates back to the 1970s and to the work of a
reasearch group at the IBM Laboratory in Vienna, attempting to create a formal approach
capable of defining the programming language PL/I. Afterwards the original group was
dispersed, but the ideas instead of dying spread to a larger community. The final out-
come is reported in (Jones, 1986). At present, VDM is very popular and has become a
British standard. VDM is mainly a specification language, but it can be profitably used
for program designing and developing. Its mathematical support is used to verify the

correctness of the resulting program by proving properties (Andrews, 1992).
The mathematical bases of VDM are the theory of sets and the theory of logic predi-

cates. A VDM system specification consists in defining types, functions and operations,
in the syntax of the so-called Meta-IV language. Data types can be defined by homo-
geneous or heterogeneous combinations of VDM basic types (natural numbers, integer,
Boolean, etc.). For the new types, a set of operations (i.e., sum, etc.) is automatically
available. Functions are defined as procedures which have as arguments, and return
as results, elements of primitives or user-defined data types. Functions can also be
specified through their pre- and post-conditions. An operation is applicable to a set of
states selected on the basis of a pre-condition associated with the operation itself (thus
it seems to be very similar to tile concept of condition on transition). Operations can
contain read and write of external events. A post-condition is also associated with an
operation. The post-condition describes the state domain after the operation execution.
The specification of a system is generated by starting from a coarse description, until
the final specification is obtained by refinement (Fields and Elvang-Goransson, 1992).
Specification consistency is verified by checking if the definitions at different levels of
abstractions are consistent. The validation consists in proving if some selected important
properties are verified by the given specification.

The VDM model has no mechanism for defining the system structure. Data types are
defined in terms of other data types, without partitioning the system into communicating
subsystems. However, the formalism is powerful enough to describe (with a certain
effort) even these conditions, but the reuse of VDM specification, as for other ADT-
based approaches, is very hard. VDM is widely employed for specifying safety critical
systems by using specific extensions for managing timing constraints.

Recently, an object-oriented extension of VDM has been presented - - e.g., VDM++
(Dfirr and vanKatwijk, 1992). This supports inheritance and instantiation without allow-
ing the mechanism related to polymorphism. VDM++ permits the definition of timing
constraints which makes it adequate for real-time system specification.

4.2. Descriptive Approaches Based on Logical Methods

These methods describe the system under specification by means of a set of logic rules,
specifying how the system must evolve from certain conditions. Differently from the op-
erational methods, the state space described by these specifications is limited and abstract.
Rules can be given in the form of first-order clauses of Horn or higher-order logical ex-

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 153

pressions (Maier and Warren, 1988). These languages are unsuitable for representing the
structural aspect of a system, but are very appropriate for describing properties of the
system under specification.

Validation consists in proving high-level properties, which are also given in the form of
logical expressions, by means of theorem solvers or Prolog engines. Simulation is also
based on the same techniques. For this reason, time of execution and time ordering of
events during the proof can be unpredictable and thus the real-time execution of logical
specifications is almost unfeasible.

Of course logic and temporal logic date back to the ancient Greeks. These have been
brought in computer science in the 1970s (Gotzhein, 1992). During the t980s some
papers have been published dealing with the use of temporal logic for program specifi-
cation (Schwartz and Meltiar-Smith, 1982), (Jahanian and Mok, 1986). In the literature,
there are many examples of logic languages for the specification of relationships among
times and actions. These are often integrated with other techniques addressing also the
functional and/or the structural aspects of the system under specification - - e.g., RT-
ASLAN (Real-Time extension of ASLAN) integrates the first-order logic with the ADT
(Auernheimer and Kemmerer, 1986).

4.2.1. RTL

RTL (Real-Time Logic) is a formal language to describe the temporal relationships among
events and actions (Jahanian and Mok, 1986). In RTL, the concept of time is absolute
and the execution semantics quite independent of the scheduling mechanism, since all
the language constructs are defined in terms of the symbol @, which assigns the current
value of time to event occurrence.

In RTL, there are three types of constants, that is, actions, events, and integers. Actions
can be simple or composite: the latter can be sequential or concurrent. In turn, events
are divided in three classes: start/stop, transition, and external. Events and actions are
similar to stimuli and responses, respectively, as defined by Dasarathy (Dasarathy, 1985).
Periodic events are specified through recursive predicates. Integers can be either time
durations or number of events. A system specification in RTL consists in deriving a
set of axioms from the event-action model of the system, considering: (a) the relations
between events and their 'start' and 'stop' occurrences; (b) periodic or sporadic events;
(c) causes of transition; and (d) artificial constraints on the internal behavior. A system
property (i.e., an RTL assertion) can be proven by refutation. For example, considering
the specification reported in (Jahanian and Mok, 1986): "Upon pressing button #1, action
SAMPLE is executed within 30 time units. During each execution of this action, the
information is sampled and sequentially transmitted to the display panel. The computation
time of action SAMPLE is 20 time units.", its translation in RTL results to be:

Vz :@(f~buttonl, x) < @(T SAMPLE, x)A
@(J, SAMPLE, x) < @(ftbuttonl, x) + 30 (1)

Vy: @(] SAMPLE, y) + 20 < @(1 SAMPLE, y)

154 G. BUCCI, M. CAMPANAI AND P. NESI

where f~ means that the variable corresponds to an external event. The so-called Con-
straint Graph is constructed from the RTL specification and is used to verify the safety of
the system. The constraint graph simplification by means of simple rules permits the de-
tection of incongruences among temporal constraints. RTL is supported by an automatic
inference procedure to perform reasoning about timing properties. RTL specifications
can be generated directly from a description given by using the notation of Modecharts
(Jahanian and Stuart, 1988).

4.2.2. TRIO

TRIO (Tempo Reale ImplicitO) is a language based on first-order logic, augmented by
temporal operators (Ghezzi, Mandrioli, and Morzenti, 1990). It allows to define logic
equations which may include timing relationships. A time-dependent TRIO formula is
given with respect to the current time; time is implicit. Temporal relationships between
events are expressed on the basis of the operator Dist(Et) (Mandrioti, Morasca and
Morzenti, 1992, (Felder, Mandrioli, and Morzenti, 1991), which is satisfied at the current
time if and only if the property F holds at an instant which is distant t time units from
the current time. Many other operators are defined for describing system behavior in
TRIO logical expressions in the past and in the future. For example, the special functions
Futr(F,~) = t Z 0 A Dis t (F , t) , and Pas t (F , t) = t >_ 0 A Dist(F, - t) are defined.

Since TRIO is based on a completely formal syntax and semantics, and includes the
managing of time, it is intrinsically executable, in the sense that from a TRIO formula a
precise model can be generated in which the variables inside the predicates have well-
defined values. Expressions are usually given in the implicative forms:

A ~ B'~_f-~A V B

A ~ B ~ J (A ~ B) A (B ~ A)

where ~ is the not, V the or and A the and Boolean operator. For all V and the existence
(i.e., 3xA @f-~Vx~A) qualifier can be used.

The following example is quoted from (Mandrioli, Morasca and Morzenti, 1992). Con-
sider a pondage power station where the quantity of water held in the tank is controlled
by means of a sluice gate. The gate is controlled by the commands: up and down which
respectively open and close the gate. These are represented by a predicate go having a
range { up, down }. The gate can be in one of the states: up, down, mvUp, mvDown. The
state is modeled by a time-dependent variable named position. The following formula
describes that the gate in A time units passed from the down to the up condition after
receiving a go(up) command:

(position=down A go(up)) ~ (Lasts(position=mvUp, A) A Futr(position=up, A))

When a go(up) command reaches the system and the gate is not yet in the down position,
but it is moving down for a previous command go(down), then the direction of motion
is not changed but the system waits until the down position is reached:

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 155

position=mvDown A go(up) ---+
3 t (NextTime(position=down, t) A Futr(Lasts(position=mvUp, A) A Futr(position=up, A), t))

where NextTime(Ed)=Futr(EO A Lasts(-~EO, and Lasts(Et)=Vt' (0 < t' < t --+ Dist
(Et)). Since the gate behavior can be supposed to be symmetric with respect to its
direction of motion, other two similar expressions should be written which describe the
commands and their effects.

A TRIO specification can be validated against high-level properties described by means
of the same formalism. Moreover, an efficient interpreter is available that makes a TRIO
specification executable for real-time systems. Since the time relationships are given
implicitly and the time is expressed in time units, the absolute time constraints cannot
be specified. On the other hand, it has the capability to guaranteeing system safety by
verifying the temporal ordering among events, independently of the underlying hardware.

4.2.3. Other Descriptive Approaches Based on Logical Methods

Many other interesting approaches, which essentially correspond to extensions of tem-
poral logic - - e.g., CTL (Computation Tree Logic) (Emerson and Halpern, 1986), RTIL
(Real-Time Interval Logic) (Razouk and Gorlick, 1989), TCTL (Timed CTL) (Alur,
1990), TPTL (Timed Propositional Temporal Logic) (Alur and Henzinger, 1990), have
been defined. Most of these approaches do not cover the structural and functional aspects
of the system under specification.

5. Dual Approaches

In order to obtain the best benefits from the descriptive and the operational approaches,
in the late 1980s the so-called "dual approaches" have begun to appear (Ostroff, 1989),
(Felder, Mandrioli, and Morzenti, 1991). Dual methods try to integrate in a single ap-
proach the formal verifiability of descriptive approaches and the executability of opera-
tional approaches, though they are often in contrast, especially as regards the reuse and
the verification of software specifications,

In effect, an ideal tool for specifying real-time systems should be:

1. An easy and intuitable method and tool. Where, "easy" means "very close" to the
analyst mindset. For this reason, the tool must be endowed with a graphic user
interface, and it must allow both top-down and bottom-up approaches for software
specification, as well as a combination of these. Operational models seem to be
suitable for this purpose, since they can be visually represented; in the literature,
there are many examples of their use in both top-down and bottom-up approaches
for software specification.

. A model to make easier the reusing of reactive system specifications. This means
that the model adopted must provide support for software composition by reusing
already defined software components. In the specification of reactive systems, both

156 G. BUCCI, M. CAMPANAI AND P. NESI

static (module interface and structure) and dynamic aspects (module behavior with
timing constraints) should be reused. In addition, since the system specification must
be validated to ensure its correctness, also the process of composition/decomposition
must be supported by a validation method technique. For this purpose, descriptive
formal methods are strongly preferable with respect to operational methods, since
the validation of decomposition cannot be performed through simulation but only by
means of proof of properties. This is related to the fact that during the decomposition
low-level details are not yet available.

. A method for verifying and validating the specified software against critical con-
ditions since the early phases of system specification. This feature with that of the
previous point should allow the verification and validation at each level of abstraction
even if the implementation details are not available (such as in the early phases of
system specification - - i.e., partial specification). It should be noted that the opera-
tional models, differently from the descriptive ones, axe not suitable to be executed
when the model is partially specified. For this reason, descriptive methods seem to
be preferable for this purpose, even if with these methods the validation is usually
carried out through properties proof.

. An executable model to allow the validation of system behavior by means of simu-
lation. The simulation of an executable model improves the confidence of system
validation and, together with the above features, provides support for rapid system
prototyping. For this purpose, operational models could be profitably used, while
most of the descriptive models are not efficient since they are usually "executable"
by means of inferential engines which are typically strongly inefficient,

As has been pointed out, the above objectives are often in contrast, and they cannot be
met by a specification approach which is only descriptive or only operational. Recently,
several dual methods to overcome these difficulties have been defined (Bucci, et. al, 1993),
(Mandrioli, 1992).

To a certain extent, several of the already discussed approaches can be considered
dual languages. On the contrary, only those that have both operational and descriptive
semantics allowing the specification executability and the verification of properties should
be considered really dual. One of the first examples of dual approach can be considered
the Transition Axiom Method proposed by Lamport (Lamport, 1993), (Lamport, 1989).
In this method, the specification is equivalent to a state machine, on which the proof of
high-level properties given by means of axioms can be verified.

5.1. ESM/RTTL

ESM/RTTL is a dual approach obtained be the integration of ESM (Extended State Ma-
chine) language and RTTL (Real-Time Temporal Logic) (Ostroff and Wonham, 1987),
(Ostroff, 1989).

ESM is an operational model based on communicating finite state machines in which
variables with arbitrary domains are used (Ostroff and Wonham, 1987). The operations

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 157

allowed are assignments, send or receive. The state machine follows a Mealy model
in which conditions on transitions (in ESM, they are called guards) between states are
equivalent to first-order expressions on state variables, while the output is an assignment
to state variables. Each event is represented by an exit activity Ae, a source activity
As, an operation and a guard: (A~, 9uard, operation, As). A system description refers
to only a single state domain. The concept of time is enforced by means of a global
time variable which can be tested, updated, and increased or not at each state transition.
Time is discrete, and a state transition can be formally executed in zero time units. For
each state transition the minimum and the maximum time can be specified in which the
enabling condition becomes true.

RTTL is a logic language based on the classical operator of temporal logic: until (M),
and next (Q). From these the more useful operators of: eventually (O), henceforth (D),
etc., are derived. RTTL can be used to describe high-level properties of the system under
specification by means of first-order logic formulae.

The integration between RTI~L and ESM is obtained by describing the high-level
behavior of the system with first-order expressions in which conditions for transitions
containing RTTL expressions can be also present. Both RTTL and ESM formulae can
refer to the absolute time value.

5.2. TRIO+

TRIO+ (TRIO object-oriented) is a logical language for modular system specification
(Mandrioli, 1992), (Mandrioli, 1993) extending TRIO (see Section 4.2.2) with object-
oriented capabilities. It is based on a first-order temporal language, providing support for
a variety of validation activities, such as testing, simulation and property proof. TRIO+
is considered a dual language since it combines the use of visual notation, hierarchical
decomposition (typically of operational approaches), with the rigour of the descriptive
logical language. In Fig.18, the example reported in Section 4.2.2 for the TRIO language
has been rebuilt in TRIO+. Since TRIO+ is based on logic programming, the object-
oriented concept of an instance corresponds to a history of the Prolog interpreter (that is
the history of the status of an object).

Differently from TRIO, TRIO+ is endowed with a graphical notation that covers only
the declarative part of the language. With this graphic interface the structural aspects
can be described, by defining the components of a class and their relationships (see
Fig.19). TRIO+ is an executable model which supports the executions of partially defined
specifications.

5.3. TROL

TROL (Tempo Reale Object-oriented Language) is an object-oriented dual language for
the specification of real-time systems (Bucci, et. al, 1994). TROL adopts a dual model
which is able to satisfy the above requirements presenting both descriptive and opera-
tional aspects. TROL adopts a modified object-oriented model, and has the capability to

158 G. BUCCI, M. CAMPANAI AND P. NESI

Class sluice_gate
visible go, position
temporal domain integer
TD Items

Predicates go({up,down})
vars position: { up, down, mvup, mvdown }

TI Items
vats A : integer

axioms
vats t: integer
go_down: position=up A go(down) ~ Lasts(position=mvdown,A) A Futr(position=down,A)
gp_up: position=down A go(up) ~ Lasts(position=mvup,A) A Futr(position=up, A)
move_up: position=mvup A go(down) --+ 3t (NextTime(position=up,t) A

Futr(Lasts(position=mvdown,A) A Futr(position=down,A),t)
move_down: position=mvdown A go(up) ~ 3t (NextTime(position=down,t)/~

Futr(Lasts(position=mvup,A) A Futr(position=up,A),t)
end sluice_gate

Figure 18. Textual description of the class sluice_gate in TRIO+.

r e s e r v o i r l

[ct tor t i - puW te
openInput ..L/open

closetnput [..... _ ~ c l o s e I - ' q ~ l

Figure 19. Visual description of class reservoirl comprised of actuatorl and inputGate objects in TRIO+.

T O O L S FOR SPECIFYING R E A L - T I M E SYSTEMS 159

Es±lmo±orBuf?ered

Estimator

I I

bur s'l:ll SIO-----~----4[err 1

i Buf fe r

Figure 20. The class EstimatorBuffered as comprised of S1 and B1 sub-objects (i.e., its attributes) in TROL.

describe the system behavior, its functionality and structural aspects. Moreover, differ-
ently from other dual models and languages, the TROL model is mainly based on reusing
both static and dynamic aspects of specifications. TROL is based on an extension of
timed CSP - - i.e., the CRSM (Shaw, 1992) (see Section 3.1.5).

In TROL, the system under specification is hierarchically decomposed in objects and
sub-objects. For these objects, the behavior can be specified by means of first-order
clauses, since the early phases of decomposition (see Fig.20, and Fig.21). Moreover,
also timing constraints at the external interface of each object can be defined according
to (Dasarathy, 1985). These constraints can be associated with Provided and Required
services of each class, and to Clauses. TROL allows to describe the system at different
levels of structural abstractions and of specification details without boundaries among the
specification steps. The TROL model allows the verification and validation of composi-
tion/decomposition mechanisms. At each specification level, TROL helps the user in the
verification of consistency, thus allowing the incremental specification and the execution
of partially specified systems (i.e., prototyping) (Bucci, et. aI, 1993). These features are
very useful when a component under reuse can be verified and validated in order to
check if it satisfies the requirements.

Objects that cannot be further decomposed are defined as extended state machines (see
Fig.22a and 22b). These are internally concurrent, defining in this way a high reactive
architecture. The state machine model supports the definition of timing constraints such
as timeout, and minimum and maximum time for transition. Moreover, any time failure
can be recovered by using special functions.

In TROL, the descriptive aspects of the language are used to help the developer to
generate a correct, complete and congruent specification, validating the system com-
position/decomposition by means of clauses and the reasoning on timing constraints.
Also the state machines are validated by using clauses. Thus, the final validated model
is executable by using the operational model of state machines. Is should be noted
that in TROL the analysts use a descriptive language in the phase of analysis while
state machines are used in the phase of design. TROL supports all the aspects of the
object-oriented paradigm allowing inheritance, instantiation, etc. In order to guarantee
the predictability and, hence, an a-priori real-time schedulability, some assumptions have

160 G. BUCCI, M. CAMPANAI AND P. NESI

C l a s s Es t imator spec ia l i z ing X S M
Prov ided_se rv i ces :

eval : S ignal ;
the_datal : DataType;
bur_st1 : Boo lean ;

R e q u i r e d _ s e r v i c e s :
req_datal : S ignal ;
result : Real ;
err ava i l ab l e : Est imatorErrType;

C l a u s e s :
R E Q _ D A T A h New(eval) A e r r==OK -~ R e a d y (req_datal);
W A I T D A T A h r e v e r s e Ready(req_da ta l) --~ New(the_data1);
RESULT: New(the_data1) ~ Ready(resu l t) ;
B U F E M P T Y : bur_st1 --+ e r r = = E M P T Y ;

e n d ;

C l a s s Es t imatorBuffered spec ia l i z ing non_basic_object_class
Provided_ser,~4ces:

data1 : DataType;
f lushB : S ignal ;
elab [4,6] : S ignal ;

R e q u i r e d _ s e r v i c e s :
resul ts : Rea l ;
err a v a i l a b l e : Est imatorErrType;

C l a u s e s :
ESTIMATION: N e w (d a b) A e r r==OK --+ Ready(resu l t s) - - [2, 3.1];
F L U S H : N e w (flushB) - ~ er r==EMPTY;
DATA : N e w (data1) A e r r==EMPTY - 4 er r==OK;

/*** private parts ***/
A t t r i b u t e s :

B1 : Buffer;
$1 : Estimator' ,

C o n n e c t i o n s :
data1 - - B l .da ta in ;
S l . r e su l t - - results;
S l . req_data l - - B l .ge t ;

e n d ;

elab - - S l .eva l ;
S l . e r r - - err;

B 1.dataout - - S 1 . the_datal;
B 1 i s_empty - - S 1.buf_stl; f lushB - - B 1,flush;

Figure 2i. Description in TROL of class EstimatorBuffered with the external description of class Estimator,
where EstimatorErrType is defined as an enumeration: enum EstimatorErrType {EMPTY,OK};.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 161

BuFfer

T
~ou~ I

Figure 22a. Textual descriptions of class Buffer in TROL.

been made on the TROL model: no dynamic binding, no dynamic object instantiation
(no dynamic sizing of object collections), no direct or indirect recursion in class speci-
fications, no multiple inheritance among classes is allowed.

TROL has its visual representation which is supported by a CASE tool named TOOMS
(Bucci, et. al, 1993). TOOMS consists in a set of visual editors, a report generator, a
database for collecting and recovering specifications for reuse, a compiler, an analyzer
to perform the verification of completeness and consistency, a simulator (that can sim-
ulate the system behavior by using both clauses and state machines) and a metricator
(Bucci, et. al, I993), (Campanai and Nesi, 1994). Automatic code generation is also
provided through the TROL-compiler which transforms the TROL code in C++ for an
ad-hoc real-time kernel called TROL-KERNEL working on OS/2 and UNIX.

6. Discussion and Conclusions

The most significative formal methods for the specification of real-time systems have
been reviewed, with respect to the power of formalism, the tool capability, and the low-
level characteristics, as discussed in the introduction. The presentation has been referred
to the historical evolution.

In Tab.1 a summary of the main features of the tools analyzed is reported. The
legend of the Table reported in the caption is self-explicative and thus we refrain from
commenting on it. However, it is worth to spend a few words on columns labelled as
Sere. (for semantics) and Orien. (for orientation). In the column Sem., the approaches
are classified as operational and/or descriptive, considering as dual those which present
both these aspects. Column Orien., indicates whether the approach is Process-, State-,
Functional-, or sTructure-oriented. Process-oriented approaches are those which consider
the system as decomposed in processes; state-oriented approaches are those that are

162 G. BUCCI, M. CAMPANAI AND P. NESI

Class Buffer specializing XSM
Provided_services:

datain : DataType ;
get : Signal ;
flush : Signal ;

Required.services:
dataout : DataType ;
is_empty available : Boolean;

Clauses:
GET : New (get) A~ is_empty --+ Ready (dataout);
FLUSH : New (flush) --+ is_empty;
DATAIN : New (datain) A is_empty -~ -7 is_empty;

/*** private parts ***/
Attributes:

in : Integer ;
out : Integer ;
is_empty : Boolean ;
Buff : DataType [oo];

States:
START: { in=0; is_empty=TRUE; out=0; }
CENTRAL: { }
WRITEIN: { in=in+l; Buff[in]=datain; is_empty=FALSE; }
WRITEOUT: { dataout=Buff[out] - - [0,10.3]; out=out+l; }
ISEMPTY: { is_empty=TRUE; }

Paths:
INIT: { START: + CENTRAL;

CENTRAL: New(flush) --~ START;}
PUT: { CENTRAL: New(datain) --~ WRITEIN;

WRITEIN: ---~CENTRAL; }
GET: { CENTRAL: New(get) A= is-empty ---+ WRITEOUT;

WRITEOUT: in != out + CENTRAL;
WRITEOLrF: in=--out -+ ISEMPTY;
ISEMPTY: -+ CENTRAL;
WRITEOUT: Fail(TIMEFAIL) --+ CENTRAL; }

end;

Figure 22b. Visual descriptions of class Buffer.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 163

focused on describing the system state domain; functional-oriented approaches are those
that decompose the system in data transformations; and structure-oriented approaches are
those that consider the system as a set of sub-systems (i.e., objects or modules). In this
column only the two most relevant aspects are reported.

It can be noted that during the last 20 years most of the early approaches for describing
system behavior (e.g., Z, VDM, SDL, etc.) have been integrated by using high-level
methods in order to improve their capability in modeling all the system aspects (i.e.,
structural, behavioral and functional) and providing support for reusability. In many
cases, this coverage has been reached by transforming the model from process- or state-
or function-oriented to object-oriented (Z++, VDM++, OSDL, etc.). The adoption of
the object-oriented paradigm has added to the early formalisms the capability of system
structuring (by means of the concept of class) and of reusing real-time specifications (by
means of the concepts of inheritance, polymorphism, and instantiation). This trend holds
for both descriptive, and operational approaches as well as for dual approaches.

For most of the formal methods, facilities for managing timing constraints have also
been added. Operational approaches, based on state machines and Petri nets have been
extended so as to include the notion of time by augmenting the model with first-order
logic. The resulting models are more complex to be verified and validated, but the
verification and validation can be performed in the same manner under certain restrictive
conditions.

The operational approaches based on other notations (firstly created as methodolo-
gies for supporting the analysis and/or design phases of the system under specification,
e.g., DFD, JSD, Booch, Wirsf-Brock, etc.) (see Section 3.3) have followed a differ-
ent path. The early versions of most of these methodologies have been integrated by
using low-level methods for supporting the lack of formalities and for covering the de-
sign phase of software life-cycle. Currently, methods exist which are based on DFD
and state machines (e.g., RT-DFD (Hatley and Pirbhai, 1987)), JSD and state machines
(e.g., Entity-Life (Sanden, 1989c), (Sanden, 1989b)), DFD and Petri nets (e.g., IPTES
(Pulli, et. al, 1991)), extended Entity-Relationships and VDM (e.g., ATMOSPHERE
(Dick and Loubersac, 1991)), object-oriented model and state machines (e.g., Booch
(Booch, 1991), Shlaer and Mellor (Shlaer and Mellor, 1991)), object-oriented model and
Petri nets (e.g., PROTOB (Baldassari and Bruno, 1991)), etc.. For most of them, the def-
inition and verification of timing constraints and the final validation are still a problem.
For example, when the definition of timing constraints is allowed in the early phases
of system specification, their consistency is not verified with respect to the low-level
description. On the other hand, the definition of timing constraints is allowed only at the
low-level - - i.e., at the level of state machines or Petri nets, where the consistency can
be verified and the validation performed. It should be noted that, in the latter case, timing
constraints are specified when the system architecture is already defined and, therefore,
their verification can lead to demonstrate that the system structure (e.g., decomposition)
is wrong or partially incorrect.

Due to the fact that formal languages are too far from the analysts mindset to be easily
adopted for specifying real-time systems (since they need too many details), CASE tools
have been implemented including visual editors, compilers, metric support, configuration

164 G. B U C C I , M. C A M P A N A I AND P. N E S I

Table 1. Summary of formalism evaluation, where: Sem. (semantics): Operational
mad/or Descriptive (Algebraic or Logic); Orien. (orientation): Process-, State-,
Functional-, sTructure-oriented; Desc. (description): Textual (5pt), Visual (5pt.);
Coy. (coverage): Structural (3pt.), Behavioral (5pt.), Functional (2pt.); Comm.
(communications among processes); Time (time model): Implicit (3pt.), Explicit
(7pt.) (Relative or Absolute), None (Opt.); Verif (verification of consistency and
congruence): Yes (10pt.) or No (Opt.); Valid. (validation of system behavior):
Static (6pt.) (i.e., by proving properties), Dynamic (4pt.) (i.e., by simulation);
Exec. (executable specification, by means of interpretation or simulation): Yes
(10pt.) or No (Opt.); Prot. (prototyping - - i.e,, simulation or execution of partial
specifications): Yes (10pt.) or No (Opt.).

Sere, Coy , Comm. Time VeriL Valid. Exec. Prot
PAISLey O B,F A ER Y S,D Y Y
SDL O S,B A ER Y D Y Y
OSDL O S,B,F A ER Y D Y Y
Estere] O B,F S EA y S.D Y N
Statecharts O B S ER Y D Y N
Objectcharts O B,S S EA Y D Y N
RTP, L O B N ER Y S Y N
CRSM O P,S B S ER Y D Y N

~- D PN
CmPN
SPN
PROT neLs
TPN
Timed PN
HMS
SADT
D~D
RT-DFD
ISD
Entity-Life
Wits f-Brock
HOOD
BOTCH
OMT
Shlaer-MeIlor
Cozd-Yo~Jrdo~

AFFIRM
Larch
Larch/C++
Z
Object-Z
LOTOS
G-LOTOS
VDM
VDM++
RTL
Modecharls
TRIO
TCTL
CTL

O S
o P,S
o S
O RS
o S
o S
O S
o F.S
O F
O F,S
O T
O P,S
o P,F
O T,S
O RS
O T,S
O T,S
O T,F

DA
DA S
DA S
DA S
DA S
DA RS
DA P,S
DA S
DA S
DL S
DL S
DL S
DL S
DL S

O,DL T
T,

Often. Desc.
P T
P V,T
P V,T
p T
S V
S V
S T

V,T
V
V
V

V,T
V
V
V
V
V
V
V
V
V
V
V
V
V
V
T
T
T
T
T
T

T,V
T
T
T

V,T
T
T
T
T

T,V
T,V

E A I Y N
S ,B A I Y S ,D Y N
B A ER Y S,D Y N

S,B A ER Y S,D Y Y
B A ER Y S,D Y N
B A ER y S,D Y N

B,S A ER Y S,D Y Y
F,S,B N EA Y N N N

F,S N N Y N N N
F,S,B N EA Y D Y Y

S N N Y N N N
S,B A ER Y D Y Y
S,F S N N N N N
S,B A,S EA Y N N N
S,B A,S EA N N N N

S,B,F A EA N N N N
S,B A EA N N N N
S,F A E.A N N N Y
B ~ N v S ~ Y
B N N Y S N Y
B A,S N Y S N Y

S,B N N Y S N Y
B $ HR Y S Y Y

B,S A N Y S Y Y
B,S A N Y S Y Y
B N N Y S N Y
B N ER Y S Y Y
B N ER Y S N "N

B,S S ER Y S,D Y N
B N I Y S,D Y Y
B N ER Y S N N
B N N Y S N N

N ~'R V s,D
N

ESM]RTTL Y N
TRIO+ O,DL B,S Y S,D Y Y
TROL O,DL T,S B,S,F S,A ER Y S.D Y Y

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 165

management support, report generators, simulators, test generators, etc. A CASE tool
with a visual interface makes easier the work of the designer by representing formal
syntax through graphic symbols and, thus, the user is helped by collecting the specifica-
tion details in a structured manner. Of course, a CASE tool must maintain consistency
between the visual representation and the syntax and semantics of the model. As a result,
by means of a CASE tool, a specification language improves its power. From this point
of view, the operational approaches have an advantage over the descriptive approaches,
since they are intrinsically endowed of a visual notation, while the definition of a visual
language supporting the syntax of the latter is a more difficult task. In general, the pres-
ence of an integrated CASE tool gives a major confidence to the specification quality,
improving the fulfilment of requirements, the verification of consistency, the validation
of system behavior with respect to temporal constraints, etc.

A graph reporting the trend of the specification tools capability with respect to last 20
years is reported in Fig.23. This graph has been drawn on the basis of tools analysis
carried out in this paper, considering a particular score for each feature. Scores have
been defined on the basis of their usefulness in specifying real-time systems. Scores
associated with the different features are reported in the caption of Tab. 1. As is appeared
from this graph, the number of positive features is increasing with time. This growth has
been obtained in many cases by integrating different approaches, and thus transforming
the early nature of a model towards a dual approach. In our opinion, in the next years,
we will witness a tangible additional growth of tool capabilities These improvements
will be mainly focused on tools integration, so as to help the analyst in all phases of
the software life-cycle, without boundaries from one phase to another. The integrated
CASE tools will give a major confidence for the specification of per fec t software (e.g.,
a software which is safe, congruent, complete, satisfying temporal constraints, etc.).

Acknowledgments

The authors want to thank CESVIT (High-Tech Agency, Italy) which allowed them to test
most of the tools mentioned in this paper (StP of Interactive Development Environments,
ARTIFEX of ARTIS, GEODE of Verilog, Teamwork of CADRE, EXCELERATOR of
Index Technology, etc.). In addition, they wish to thank also A. Corgiatini, R. Mattolini,
O. Morales, M. Traversi, and E. Vicario, for their help.

References

Jean-Raymond Abrial. The Specification Language Z: Basic Library. Technical reporL Programming Research
Group, Oxford University, UK, 1982.

G. A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The MIT Press,
Cambridge, Massachusetts, London, 1986.

A. J. Alencar and J. A. Goguen. OOZE: An Object Oriented Z Environment. In Proc. of European Cor~'erence
on Object Oriented Programming, ECOOP'91, pages 180-199. Springer Verlag, Lecture Notes in Computer
Sciences, LNCS n.512, 1991.

166 G. BUCCI, M. CAMPANAI AND P, NESI

SCOPe

90

85

80

75

o
o o o

o o
o

o
o o

o o 8
o

o

o o

o

o o o

o o
o o

o

o o
o

70
1973 time 1993

Y

Figure 23. Trend of tool capabilities in modeling specifications for real-time systems in the last 20 years.

M. Alford. A Requirements Engineering Methodology for Real-Time Processing Requirements. IEEE
Transactions on Software Engineering, 3(1), Jan. 1977.

M. Alford. SREM at the Age of Eight; The Distributed Computing Design System. Computer, April 1985.
R. Alur, C. Coucorbertis, and D. Dill. Model-Checking for Real-Time Systems. In Proc. of 5th IEEE. LICS

90, pages 414-425. IEEE, 1990.
R. Alur and T. A. Henzinger. Real Time Logics: complexity and Expressiveness. In Proc. of5th 1EEE LICS

90. IEEE, 1990.
D. Andrews. VDM Specification Language, Proto-Standard. Technical report, BSt IST/5/50, Leicester

University, 1992.
ARTIFEX. ARTIFEX User's Manual, ver.3.0. Technical report, ARTIS, Turin, Italy, 1993.
B. Auernheimer and R. A. Kemmerer, RT-ASLAN: A Specification Language for Real-Time Systems. IEEE

Transactions on Software Engineering, 12(9):879-889, Sept. 1986.
M. Baldassari and G. Bruno. PROTOB: an Object Oriented Methodology for Developing Discrete Event

Dynamic Systems. Computer Languages,, 16(1):39-63, 1991.
H. Barringer. A Survey of Verification Techniques.for Parallel Programs. Lecture Notes in Computer Science

191, Springer Verlag, New York, 1985.
Z. Bavel. Introduction to the Theory of Automata. Reston Publishing Compan3; Prentice-Hall, Reston,

Virginia, 1983.
G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language and Its Mathematical Semantics.

Springer Verlag, Lecture Notes in Computer Science, LNCS n.197, 1985.
B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent Systems Using Time Petri Nets.

1EEE Transactions on Software Engineering, 17(3):259-273, March 1991.
T. E. Bihari and P. Gopinath. Object-Oriented Real-Time Systems: Concepts and Examples. Computer, pages

25-32, Dec. 1992.
N. D. Birrel and M. A. Ould. A practical handbook for software development. Cambridge University Press,

Cambridge U.K., 1985.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 167

G. V. Bochmann, E. Cerny, M. Cagne, C. Jard, A. Leveille, C. Lacaille, M. Maksud, K. S. Raghunathan,
and B. Sarikaya. Experience with Formal Specification Using an Extended State Transition Model. IEEE
Transactions on Communications, 30(12):2505-2513, Dec. 1982.

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. In R H. J. van
Eijk and C. A. Vissers, editors, The Formal Description Technique LOTOS, pages 23-71. Elsevier Science
Publisher, North-Holland, 1989.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer Networks
and ISDN Systems, 14(1):25-29, 1987.

T. Bolognesi, E. Najm, and R A. J. Tilanus. G-LOTOS: a Graphical Language for Concurrent Systems.
Technical report, CNR Istitnto CNUCE, PISA, Italy, March 15 1993.

G. Booch. Object-Oriented Development. IEEE Transactions on Software Engineering, 12(2):211-22t, Feb.
1986.

G. Booch. Object-Oriented Design with Application. The Benjamin/Cummings Publishing Company, Califor-
nia, USA, 1991.

T. L. Booth. Sequential Machines and Automata Theory. John Wiley and Sons, New York, USA, 1967.
R. Braek and O. Haugen. Engineering Real Time Systems: An object-oriented methodology using SDL. Prentice

hall, New York, London, 1993.
R Brinch-Hansen. The programming language concurrent Pascal. IEEE Transactions on Software Engineering,

1(2):199-207, June 1975.
S. D. Brookes. On The Relationship of CCS and CSR In J. Diaz, editor~ Automata, Language and Program-

ming, Proc. qf lOth Colloquium, pages 83-96, Barcelona, Spain, July 1983. Springer Verlag, Lecture Notes
in Computer Science, LNCS 154.

G. Bruno and G. Marchetto. Process-translatable Petri nets for the rapid Prototyping of process control Systems.
IEEE Transactions on Software Engineering, 12(2):346-357, Feb. 1986.

G. Bucci, M. Campanai, R Nesi, and M. Traversi. An Object-Oriented CASE Tool for Reactive System
Specification. In Proc. of 6th International Conference on Software Engineering and Its Applications
(sponsored by: EC2, CXP, CIGREE and SEE), Le CNIT, Paris la Defense, France, 15-19 Nov. I993.

G. Bucci, M. Campanai, R Nesi, and M. Traversi. An Object-Oriented Dual Language for Specifying Reactive
Systems. In Proc. of IEEE International Conference on Requirements Engineering, ICRE'94, Colorado
Spring, Colorado, USA, 18-22 April I994.

G. Bucci, R. Mattolini, and E. Vicario. A Framework for the Development of Distributed Object-Oriented
Systems. In Proc. of the International Symposium on Automated and Decentralized Systems, ISADS'93,
pages 44-51. IEEE Press., Kawasaky, Japan, March 1993.

S. Budkowski and R Dembinski. An Introduction to Estelle: A Specification Language for Distributed Systems.
Computer Networks and ISDN Systems, 14(1):3-23, 1987.

J. R. Cameron. An Overview of JSD. IEEE Transactions on Software Engineering, 12(2):222-240, Feb. 1986.
M. Campanal and E Nesi. Suppoiting Object-Oriented Design with Metrics. In Proc. of the International

Conference on Technology of Object-Oriented languages and Systems, TOOLS Europe'94, Versailles, France,
7-11 March 1994.

D. Carrington, D. Duke, R. Duke, R King, G. Rose, and G. Smith. Object-Z: An Object-Oriented Extension
to Z. In S. T, Voung, editor, Formal Description Techniques. Elsevier Science, 1990.

R R Chen. The Entity Relationship Model -. Toward a Unified View of Data. ACM Transactions on Database
Systems, 1(1):9, March 1976.

Y. Cheon and G, T. Leveson. A Quick Overview of Larch/C++. Technical report, Dept. of Computer Science,
Atanasoff Hall Iowa State University, Ames, Iowa 50011-1040, USA, March 1993.

R Coati and E. Yourdon. Object-Oriented Analysis. Yourdon Press, New Jersey, USA, 1991.
D. Coleman, E Hayes, and S. Bear. Introducing Objectcharts or How to Use Statecharts in Object-Oriented

Design. IEEE Transactions on Software Engineering, 18(1):9-18, Jan. 1992.
B. Cox. Message/Object Programming: an Evolutionary Change in Programming Technology. IEEE Software,

1(1):50-61, 1984.
B. Dasarathy. Timing Constraints of Real-Time Systems: Constructs for Expressing Them, Methods of

Validating Them. IEEE Transactions on Software Engineering, 11(1):80-86, Jan. 1985.
T. DeMarco. Structured Analysis and System Specification. Yourdon Press, Prentice Hall, 1979.
J. Dick and J, Loubersac. Integrating Structured and Formal Methods: A Visual Approach to VDM. In

A. vanLamsweerde and A. Fuggetta, editors, Proc. of 3rd European Software Engineering Conference,

168 G. BUCCI, M. CAMPANAI AND P. NESI

ESEC91, pages 37-59, Milan, Italy, Oct. 1991. Springer Verlag, Lecture Notes in Computer Sciences,
LNCS 550.

L Diederich and J. Milton. Object, Message, and Rules in Database Design. In \V. Kim and E H. Lochovsky,
editors, Object-Oriented Concepts Databases and Applications, pages 177-198. Addison-Wesley Publishing
Company, ACM Press, New York, USA, 1989.

E. W. Dijkstra. Co-operating sequential processes. In E Genuys, editor, Programming Languages, pages
43-112. Academic Press, NY, USA, 1968.

M. Dorfman. System and Software Requirements Engineering. In H.Thayer and M.Doffman, editors, System
and Software Requirements Engineering, pages 4-16. IEEE Compute Society Press, Los Alamitos CA, 1990.

E. H. H. Diirr and J, vanKatwijk. VDM++: A Formal Specification Language for Object-Oriented Designs.
In G. Heeg, B. Mugnusson, and B. Meyer, editors, Proc. of the International Conference on Technology of
Object-Oriented Languages and Systems, TOOLS 7, pages 63-78. Prentice-Hall, 1992.

H. Ehr~g and B. Mahr. Fundamentals of Algebraic Specification - 1. Springer Verlag, Berlin, 1985.
C. A. Ellis and & J. Gibbs. Active Objects: Realities and Possibilities. In W. Kim and E H. Lochovsky,

editors, Object-Oriented Concepts Databases and Applications, pages 561-572. Addison-Wesley Publishing
Company, ACM Press, New York, USA, 1989.

E. A. Emerson and J. Y. Halpern. Sometimes and not never revisited: on branching versus linear time temporal
logic. Journal of the ACM, 33(I), Jan. 1986.

V. Encontre, E. Delboulbe, E Gabaud, R Leblanc, and A. Baussalem. Combining Services, Message Sequence
Charts and SDL: Formalism Methods and Tools. Technical report, Verilog, 1990.

Excelerator. User Manual, Ver.l.2. Technical report, Index Technology Corporation, Cambridge Massachusetts,
USA, 1986.

M. Felder, D. Mandrioli, and A. Morzenti. Proving Properties of Real-Time Systems Through Logical
Specifications and Petri Net Models. Technical report, Politecnico di Milano, Diparfirnento di Elettronica e
Informazione, 91-072, Piazza Leonardo da Vinci 32, Milano, Italy, 1991.

B. Fields and M. Elvang-Goransson. A VDM Case Study in mural. 1EEE Transactions on Software Engi-
neering, 18(4):279-295, April 1992.

A. Forin. Real-Time, UNIX and Mach. Technical report, School of Computer Science, Carnegie Mellon
University~ Pittsburg, Pa 15213, USA, 1992.

A. Gabrielian and M. K. Franklin. Multilevel Specification of Real-Time Systems. Communications of the
ACM, 34(5):50-60, May 1991.

S. L Garland, J. V. Guttag, and J. J. Homing. Debugging Larch Shared Language Specifications. 1EEE
Transactions on Software Engineering, 16(9):1044-1057, Sept. 1990.

GEODE. AGE/GEODE Editor, User's Manual, ver.l.4. Technical report, Verilog, avenue Artistide Briand,
52, 92220 Bagneaux, France, 1992.

R. Gerber and I. l~e. Communicating Shared Resources: A Model for Distributed Real-Time Systems. In
Proc. of the IEEE Real-Time Systems Symposium, pages 68-78. IEEE Computer Society Press, Dec. 1989.

C. Ghezzi, D. Mandfioli, S. Morasca, and M. Pezze. A Unified High-Level Petri Net Formalism for Time-
Critical Systems. 1EEE Transactions on Software Engineering, 17(2):160-172, Feb. 1991.

C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO, a logic language for executable specifications of real-time
systems. Journal of Systems and Software, 12(2):10%123, May 1990.

H. Gomaa. A Software Design Method for Real-Time Systems. Communications of the ACM, 27(9):938-949,
Sept. 1984.

H. Gomaa. Software Development of Real-Time System. Communications of the ACM, 29(7):657-668, July
1986.

H. Gomaa. A Behavioral Analysis and Modeling Method for Real-Time Systems. In International Workshop
on Real-Time Programming WRTP'92, pages 43-48, Bruges, Belgium, 23-26 June 1992. International
Federation of Automatic Control, IFAC International Federation for Information Processing, IFIP Belgian
Federation of Automatic Control, IBRA-BIRA.

R. Gotzhein. Temporal logic and applications - a tutorial. Computer Networks and ISDN Systems, North-
Holland, 24:203-218, 1992.

D. Guaspari, C. Marceau, and W. Polak. Formal Verification of ADA Programs. IEEE Transactions on
Software Engineering, 16(9):t058-1075, Sept. 1990.

J. Guttag. Abstract Data Types and Development of Data Structures. Communications of the ACM, 20(6):396-
404, June 1977.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 169

J. V. Guttag and J. J. Horning. The Algebraic Specification of Abstract Data Types. ACTA In)brmatica, 10,
1978.

J. V. Guttag, J. J. Homing, and J. M. Wing. The Larch Family of Specification Languages. IEEE Software,
pages 24-36, Sept. 1985.

A. Hall. Seven Myths of Formal Methods. IEEE Sofm'am, 7(5):11-19, Sept. 1990.
D. Harel. On Visual Formalism. Communications of the ACM, 31(5):514-530, May 1988.
D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. S.-Trauring, and M. Trakhten-

brot. STATEMATE: A Working Environment for the Development of Complex Reactive Systems. 1EEE
Transactions on Software Engineering, 16(4):403-414, April 1990.

D. Hard, A. Pnueli, J. E Schmidt, and R. Sherman. On the Formal Semantics of Statecharts. In Proc. 2nd
IEEE Symposium on Logic in Computer Science, Ithaca, NY, USA, pages 54-64, 22-24 June 1987.

D. J. Hattey and L A. Pirbhai. Strategies for Real Time System Specification. Dorset House Publishing, New
York, 1987.

C. A. R. Home. Towards a Theory of Parallel Programming,. In Operating Systems Techniques, pages 61-71.
Academic Press, NY, USA, 1972.

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666-677, Aug.
1978.

C. A. R. Hoare. A Calculus of Total Correctness for Communicating Processes. Sci. Comput. Program.,
1:49-72, 1981.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, NY, USA, 1985.
HOOD. An Overview of the HOOD Toolset. Technical report, Software Sciences, 1988.
Y. Ishikawa, H. Tokuda, and C. W. Mercer. An Object-Oriented Real-Time Programming Language. Computer,

pages 66-73, Oct. 1992.
M. A. Jackson. Principle of Program Design. Academic Press, Inc., New York, USA, 1975.
M. A. Jackson. System Development. Prentice Hall International, C. A. R. Hoare Series, New York, USA,

1983.
R. J. K. Jacob. A State Transition Diagram Language for Visual Programming. Computer, pages 51-59, Aug.

1985.
M. S. Jaffe, N. G. Leveson, M. E E. Heimdhal, and B. E. Methart. Software Requirements Analysis for

Real-Time Process-Control Systems. IEEE Transactions on Software Engineering, 17(3):241-258, March
1991.

E Jahanian and A. K.-L. Mok. Safety Analysis of Timing Properties in Real-Time Systems. IEEE Transactions
on Software Engineering, 12(9):890-904, Sept. 1986.

S. Jahanian and D. A. Stuart. A Method for Verifying Properties of Modechart Specifications. In Proc. of 9th
IEEE Real-Time Systems Symposium, pages 12-21, Huntsville, Ala., USA, 1988. IEEE Press.

K. Jensen. Coloured Petri nets and the Invariant-Method. Theoret. Comput. Sci., 14:317-336, 1981.
K. Jensen. Coulored Petri nets. In W. Brauer, W. Resig, and G. Rozenberg, editors, Advanced in Petri Nets

1986. Springer Verlag, New York, USA, 1987.
C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, I986.
R. Koyrnans, R. K. Shyamasundar, W. E deRoever, R. Gerth, and A. Arun-Kumar. Compositional Semantics

for Real-Time Distributed Computing. In Proc. of Logics of Programs Lecture Notes in Computer Sciences,
LNCS 193, New York, 1985. Springer Verlag.

L. Lamport. A Simple Approach to Specifying Concurrent Systems. Communications of the ACM, 32(1):32-
45, Jan. 1989.

L. Lamport. Specifying concurrent program modules, ACM Transactions on Programming Languages and
Systems, 5(2):190-222, April 1993.

K. Lano. Z++, An Object-Oriented Extension to Z. In L E. Nicholls, editor, Proc. of the 4th Annual Z User
Meeting, pages 151-172, Oxford, UK, 1991. Workshop in Computing, Springer Verlag.

G. T. Leavens and Y. Cheon. Preliminary Design of Larch/C++. In U. Martin and J. Wing, editors, Proc. of
First International Workshop on Larch. Springer Verlag, Workshop in Computer Science Series, 1992.

N. Leveson and J. L. Stolzy. Safety Analysis Using Petri Nets. 1EEE Transactions on Software Engineering,
13(3):386-397, March 1987.

S.-T. Levi and A. K. Agrawata. Real-Time System Design. McGraw-Hill Publishing Company, New York,
USA, 1990.

B. Liskov and J. Guttag. Abstraction Specification in Program Development. The MIT Press, Cambridge,
MS, USA, 1986.

170 G. BUCCI, M. CAMPANAI AND P. NESI

B. Liskov, A. Snyder, R. Atkinson, and G. Schaffert. Abstraction Mechanisms in CLU. Communications of
the ACM, 20(8):564-576, Aug. 1977.

C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, 20(1):46-61, 1973.

LOTOSPHERE. User Manual, ESPRIT Project n.2304. Technical report, consortium LOTOSPHERE, 1992.
D. Maier and D. S. Warren. Computing with Logic. The Benjamin/Cummings, Inc., Menlo Park, CA, USA,

1988.
D. Mandrioli. The Specification of Real-Time Systems: a Logical Object-Oriented Approach. In Proc. of the

International Con)erence on Technology of Object-Oriented Languages and Systems, TOOLS'92, 1992.
D. Mandrioli. The Object-Oriented Specification of Real-Time Systems. In Tutorial Note of the International

Conference on Technology of Object-Oriented Languages and Systems, TOOLS Europe "93, Versailles, France,
8-11 March 1993.

D. Mandrioli, S. Morasca, and A. Morzenti. Functional test case generation for real-time systems. Technical
report, Politecnico di Milano, Dipartimento di Elettronica e Informazione, 91-072, Piazza Leonardo da Vinci
32, Milano, Italy, 1992.

M. A. Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri nets. In Proc. of PerCbrmance
83, ACM Sigmetrics, Oct, 1983.

J. Martin and J. Odell. Object Oriented Analysis and Design. Prentice-Hall, Englewood Cliffs, New Jersey,
USA, 1991.

G. H. Mealy. A Method for Sinthesizing Sequential Circuits. BST Journal, 34:1045-1079, 1955.
S. R. L. Meira and A. L. C. Cavalcanti. Modular Object Oriented Z Specifications. In J. E. Nicholls, editor,

Proc. of the 4th Annual Z User Meeting, pages 173-192, Oxford, UK, 1991, Workshop in Computing,
Springer Verlag.

R M. Merlin and D. J. Faber. Recoverability of Communication Protocols Applications of a Theoretical Study.
IEEE Transactions on Communications, 24, Sept. 1976.

B. Meyer. On Formalism in Specifications. IEEE Software, pages 6-26, Jan. 1985.
B. Meyer. Object-Oriented Software Construction. Prentice Hall, C. A. R. Hoare Series, New York, USA,

1988.
R. Milner. A Calculus of" Communicating Systems. Lecture Notes in Computer Science 92, Springer Verlag,

New York, 1980.
J. Misra and K. M. Chandy. Proofs of Networks of Processes. IEEE Transactions on Software Engineering,

7:417-426, 1981.
M. K. Molloy. Discrete Time Stochastic Petri Nets. 1EEE Transactions on Software Engineering, 11(4):417-

423, April 1985.
D. E. Monarchi and G. I. Puhr. A Research Typology for Object Oriented Analysis and Design. Communi-

cations of the ACM, 35(9):35-47, Sept. 1992.
A. E Moore. The Specification and Verified Decomposition of System Requirements Using CSR IEEE

Transactions on Software Engineering, 16(9):932-948, Sept. 1990.
E. E Moore. Gedanken-Experiments on Sequential Machines. In Automata Studies, Annals of Mathematical

Studies, pages 129-153, Preston NJ, USA, 1956. Princeton Univesity Press.
T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541-580, April

1989.
D. R. Musser. Abstract data type specification in the AFFIRM system. IEEE Transactions on Software

Engineering, 6(1):24-32, Jan 1980.
O. Nierstrasz, A Survey of Object-Oriented Concepts. In W. Kim and F. H. Lochovsky, editors, Object-

Oriented Concepts Databases and Applications, pages 3-22. Addison-Wesley Publishing Company, ACM
Press, New York, USA, 1989.

NorthernTeleeom. ObjecTime: Object-Oriented CASE for Real-Time Systems. Technical report, Bell-Northern
Telecom, 1993.

E.-R. Olderog and C. A. R. Hoare. Specification-Oriented Semantics for Communicating Processes. In J. Diaz,
editor, Automata, Language and Programming, Proc. of l Oth Colloquium, pages 561-572, Barcelona, Spain,
July 1983. Springer Verlag, Lecture Notes in Computer Sciences, LNCS 154.

E. R. Olderog and C. A. R. Hoare. Specification Oriented Semantics for Communicating Sequential Process.
ACTA Informatica, 23:9-66, 1986.

J. S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press LTD., Advanced Software
Development Series, I, Taunton, Somerset, England, 1989.

TOOLS FOR SPECIFYING REAL-TIME SYSTEMS 171

J. S. Ostroff and W. Wonham. Modeling and Verifying Real-Time Embedded Computer Systems. In Proc.
1EEE Real-Time Systems Symp., pages 124-132. 1EEE Computer Society Press, Dec. 1987.

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Engehvood Cliffs, t~entice-Hall, NJ, 1981.
C. Petri. Kommunikation mit atomation. Technical report, Ph.D. Thesis. Schriften des Reinsh-Westfalischen

Inst. Fur Instrumentelle Mathematik an der Universitat Bonn, Bonn, West Germany, 1962.
P. Pulli, R. Elmstrom, G. Leon, and J. A. delaPuente. IPTES - Incremental Prototyping Technology for

Embedded real-time Systems. In Proc. of 1991 ESPRIT Conference, I991.
C. Ramachandani. Analysis of asynchronous concurrent systems by timed Petri nets. Technical report,

Massachusetts Inst. Technol. Project MAC, TR. 120, USA, Feb. 1974.
C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asynchronous concurrent systems using Petri

nets. IEEE Transactions on Software Engineering, 6(5), Sept. 1980.
R. R. Razouk and M. M. Gorlick. A Real-Time Interval Logic for Reasoning About Execution of Real-Time

Programs. In Proc. ofACM/SIGSOFT'89 (TAV3). ACM Press, Dec. 1989.
G. Reed and A. Roscoe. A Timed Model for Communicating Sequential Processes. In Proc. ICALP'86, pages

314-323. Springer Verlag, Lecture Notes in Computer Sciences, LNCS 226, 1986,
W. Reisig. Petri Nets. An introduction. EATCS Monographs on Theoretical Computer Science, Springer

Verlag, New York, 1985.
D. Richardson, S. L. Aha, and T. O. O'Malley. Specification-based Test Oracles for Reactive Systems. In Proc.

of l 4th International Conference on Software Engineering, pages 105-118, Melbourne, Australia, 11-t5 May
1992. IEEE press, ACM.

A. Rockstrom and R. Saracco. SDL - CCITT Specification and Description language, fEEE Transactions on
Communications, 30(6):1310-1318, June 1982.

D. T. Ross and K. E. Schoman. Structured Analysis for Requirements Definition. 1EEE Transactions on
Software Engineering, 3(1):6-15, Jan. 1977.

J. Rumbaugh, M. Blalm, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design.
Prentice Hall International, Englewood Cliffs, New Jersey, 1991.

B. Sanden. The Case for Eclectic Design of Real-Time Software. IEEE Transaction on Software Engineering,
35(3):360-363, March 1989a.

B. Sanden. Entity-Life Modeling and Structured Analysis in Real-Time Software Design - - A Comparison.
Communications of the ACM, 32(12):1458-1466, Dec. 1989b.

B. Sanden. An Entity-Life Modeling Approach to the Design of Concurrent Software. Communications of
the ACM, 32(3):330-343, March 1989c.

R. Sarraco and P. A. J. Tilanus. CCITT SDL: Overview of the Language and its Applications. Computer
Networks and 1SDN Systems, 13(2):65-74, 1987.

P. A. Scheffer, A. H. StonellI, and W. E. Rzepka. A Case Study of SREM. Computer, pages 47-54, April
1985.

R. L. Schwartz and P. M. Melliar-Smith. From State Machines to Temporal Logic: Specification Methods for
Protocol Standards. IEEE Transactions on Communications, 30(12):2486-2496, Dec. 1982.

B. Selic. An Efficient Object-Oriented Variation of Statecharts Formalism for Distributed Real-Time Systems.
In Submitted to CHDL'93: IFIP Conference on Hardware Description language and Their Applications,
Ottawa, Canada, 26-28 April 1993.

B. Selic, G. Gullekson J. McGee, and I. Engelberg. ROOM: An Object-Oriented Methodology for Developing
Real-Time Systems. In Proc. of" 5th International Workshop on Computer-Aided Software Engineering,
CASE'92, Montreal, Quebec, Canada, 6-10 July 1992.

L. Sha and J. B. Goodenough. Real time Scheduling Theory and Ada. Computer, pages 53-62, April 1990.
A. C. Shaw. Communicating Real-Time State Machines. 1EEE Transactions on Software Engineering,

18(9):805-816, Sept. 1992.
S. Shlaer and S. J. Mellor. Object Oriented Analysis: Modeling the World in Data. Prentice Hall, Englewood

Cliffs, New Jersey, USA, 1988~
S. Shlaer and S. J. Mellor. Object L!fe Cycles: Modeling the Worm in States. Prentice Hall, Englewood Cliffs,

New Jersey, USA, 1991.
J. Sifakis. Automatic Verification Methods for Finite State Systems, Proc. of' the International Workshop

Grenoble, France, June 12-14. Springer Verlag, Lecture Notes in Computer Science, LNCS n.407, 1989.
J. M. Spivey. The Z Notation - a Reference manual. Prentice-Hall, New York, 1988.
J. A. Stankovic. Misconceptions About Real-Time Computing: A Serious Problem for Next-Generation

Systems. IEEE Computer, pages I0-19, Oct. 1988.

172 G. BUCCI, M. CAMPANAI AND P. NESI

J. A. Stankovic and K. Ramamritham. Advances in Real-Time Systems. IEEE Computer Society Press,
Washington, 1992.

STATEMATE. STATEMATE: The Languages of Statemate. Technical report, i-Logic, Inc., 22 Third Avenue,
Burlington, Mass. 01803, USA, 1987.

A. D. Stoyenko. The Evolution and State-of-the-Art of Real-Time Languages. Journal of Systems and
Software, pages 61-84, April 1992.

StP. Software through Pictures: Products and Services Overview. Technical report, Interactive Development
Environment, 1991.

Bernard A. Sufrin. Formal Methods and the Design of Effective User Interfaces. In M.D. Harrison and A.E
Monk, editors, People and Computers: Designing for Usability. Cambridge University Press, UK, 1986.

C. A. Sunshine, D. H. Thompson, R. W. Erickson, S. L. Gerhart, and D. Schwabe. Specification and Verification
of Communication Protocols in AFFIRM Using State Transition Models. IEEE Transactions on Software
Engineering, 8(5):460-489, Sept. 1982.

C. P. Svoboda. Structured Analysis. In H.Thayer and M.Dorfman, editors, System and Software Requirements
Engineering, pages 218-237. 1EEE Compute Society Press, Los Alamitos CA, 1990.

B. Taylor. A Method for Expressing the Functional Requirements of Real-Time Systems. In Proc. of 9th
IFAC/IFIP Conference of Real-Time Programming, pages 111-120. New-York: Pergamon, 1980.

Teamwork. User Manuals, Ver. 4.0. Technical report, Teamwork Division of CADRE, Providence, R.I., USA,
1992.

H. Thayer and M. Dorfman. System and Software Requirements Engineering. IEEE Compute Society Press,
Los Alamitos CA, 1990.

H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Towards a Predictable Real-Time System. In Proc.
Usenix Mach Workshop, pages 1-10, Oct. 1990.

I. J. Walker. Requirements of an Object-Oriented Design Method. Software Engineering Journal, pages
102-113, March 1992.

P. T. Ward. The Transformation Schema: An Extension of the Data Flow Diagram to Represent Control and
Timing. IEEE Transactions on Software Engineering, 12(2):198-210, Feb. 1986.

P. T. Ward and S. J. Mellor. Structured Development for Real-time Systems. Prentice Hall, Euglewood Cliffs,
NJ, USA, 1985.

R. R. Willson and B. H. Krogh. Petri Net Tool for the Specification and Analysis of Discrete Controllers.
1EEE Transactions on Software Engineering, 16(1):39-50, Jan. 1990.

J. M. Wing. Writing Larch Interface language Specifications. ACM Transactions on Programming Languages
and Systems, 9(1):1-24, Jan. 1987.

J. M. Wing. A Specifier's Introduction for Formal Methods. Computer, pages 8-24, Sept. 1990a.
J. M. Wing. Using Larch to Specify Avalon/C++ Objects. IEEE Transactions on Software Engineering,

16(9):1076-1088, Sept. 1990b.
R. J. Wirfs-Brock, B. Wilkerson, and L. Winer. Designing Object Oriented Software. Prentice Hall, Englewood

Cliffs, N.J., USA, 1990.
R. Wirsf-Brock and B. Wilkerson. Object-Oriented Design: a responsibility-driven approach. In Proc.

OOPSLA'89, pages 71-75, New Orleans, Louisiana,, Oct. 1989. SIGPLAN NOT, ACM Press.
E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a Discipline of Computer Program

and Systems Design. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1979.
P. Zave. An Operational Approach to Requirements Specification for Embedded Systems. IEEE Transactions

on Software Engineering, 8(3):250-269, May 1982.
P. Zave. The Operational Versus the Conventional Approach to Software Development. Communications of

the ACM, 27(2):104-118, Feb. 1984.
P. Zave. A Comparison of the Mayor Approaches to Software Specification and Design. In H.Thayer and

M.Dorfman, editors, System and Sqf~ware Requirements Engineering, pages 197-199. IEEE Compute Society
Press, Los Alamitos CA, 1990.

P. Zave and W. Schell. Salient Features of an Executable Specification Language and Its Environment. 1EEE
Transactions on Software Engineering, 12(2):312-325, Feb. 1986.

