
DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

1

AXMEDIS
Automating Production of Cross Media Content

for Multi-channel Distribution
www.AXMEDIS.org

DE3.1.2.2.13
Specification of AXMEDIS

Certifier and Supervisor and networks of
AXCS, first update of part of DE3.1.2

Version: 1.5
Date: 09-05-2006
Responsible: DSI (chellini@dsi.unifi.it, martini@dsi.unifi.it)

(verified and closed by coordinator)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes
Deliverable Number: DE3.1.2.2.13
Contractual Date of Delivery: M18
Actual Date of Delivery: 15/04/2006
Title of Deliverable: Specification of AXMEDIS Certifier and Supervisor and networks of AXCS,
first update of part of DE3.1.2
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, FUPF
Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area of protection Certification and suerpvision including AXCS

Keyword List: Certification and supervision, event reporting, action log, user registration, device
registration and certification, requests of actions logs, statistical data on content rights exploitation,
object registration, object identification.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 9

1.1 THIS DOCUMENT CONCERNS (DSI) ... 10
1.2 LIST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THIS DOCUMENT (DSI, FUPF)................................. 10
1.3 LIST OF FORMATS SPECIFIED IN THIS DOCUMENT (DSI, FUPF) ... 11
1.4 LIST OF DATABASES SPECIFIED IN THIS DOCUMENT (DSI)... 11
1.5 LIST OF PROTOCOLS SPECIFIED IN THIS DOCUMENT (DSI, FUPF).. 11

2 GENERAL USE CASES AND SCENARIOS (DSI, FUPF)... 13
2.1 USER REGISTRATION THROUGH A DISTRIBUTOR ... 13
2.2 USER REGISTRATION THROUGH THE AXMEDIS REGISTRATION PORTAL ... 14
2.3 BUSINESS MODEL (DISTRIBUTOR POINT OF VIEW) ... 15
2.4 BUSINESS MODEL (COLLECTING SOCIETY OR CREATOR POINT OF VIEW)... 16
2.5 CONTENT TRACKING AND ACCOUNTING (DSI, FUPF) ... 17
2.6 SINGLE COLLECTION (SINGLE AXCS)... 18
2.7 HIERARCHICAL COLLECTION OF INFORMATION FROM THE SEVERAL AXCS, THE SUPER AXCS....................... 19
2.8 OBJECT ID GENERATION ... 20
2.9 OBJECT METADATA REGISTRATION... 21
2.10 SUCCESSFUL AUTHORISATION SCENARIO (FUPF) ... 22
2.11 UNSUCCESSFUL AUTHORISATION SCENARIO (FUPF)... 23
2.12 CERTIFICATION OF TOOL AND USER SCENARIO (FUPF)... 24
2.13 CERTIFICATION OF TOOL AND USER SCENARIO (FUPF)... 25
2.14 VERIFICATION OF AXMEDIS USERS USING AXMEDIS TOOLS ON A DEVICE DURING CONTENT CONSUMPTION
(FUPF) 26
2.15 VERIFICATION OF AXMEDIS USERS USING AXMEDIS TOOLS ON A DEVICE DURING CONTENT CONSUMPTION
(FUPF) 27

3 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED........... 28

4 AXMEDIS CERTIFICATION AND VERIFICATION, AXCV (FUPF)... 30
4.1 GENERAL DESCRIPTION OF THE MODULE... 31
4.2 MODULE DESIGN IN TERMS OF CLASSES .. 32
4.3 TECHNICAL AND INSTALLATION INFORMATION ... 33
4.4 EXAMPLES OF USAGE .. 37
4.5 INTEGRATION AND COMPILATION ISSUES.. 37
4.6 CONFIGURATION PARAMETERS... 37
4.7 FORMAL DESCRIPTION OF AXCV ALGORITHMS ... 38

5 AXMEDIS SUPERVISOR, AXS (FUPF)... 42
5.1 GENERAL DESCRIPTION OF THE MODULE... 43
5.2 MODULE DESIGN IN TERMS OF CLASSES .. 45
5.3 TECHNICAL AND INSTALLATION INFORMATION ... 45
5.4 EXAMPLES OF USAGE .. 47
5.5 INTEGRATION AND COMPILATION ISSUES.. 47
5.6 CONFIGURATION PARAMETERS... 47
5.7 FORMAL DESCRIPTION OF AXS ALGORITHMS .. 48
5.8 FORMAL DESCRIPTION OF ALGORITHM TO CALCULATE THE HISTORY OF ACTION LOGS FINGERPRINT.............. 50
5.9 FORMAL DESCRIPTION OF ALGORITHM TO CHECK THE CONSISTENCY OF THE HISTORY OF ACTION LOGS
FINGERPRINT... 50

6 AXCS USERS REGISTRATION WEB SERVICE (DSI).. 52
6.1 GENERAL DESCRIPTION OF THE MODULE... 53
6.2 MODULE DESIGN IN TERMS OF CLASSES .. 55
6.3 USER INTERFACE DESCRIPTION ... 55
6.4 TECHNICAL AND INSTALLATION INFORMATION ... 55
6.5 DRAFT USER MANUAL.. 57

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

5

6.6 EXAMPLES OF USAGE .. 57
6.7 INTEGRATION AND COMPILATION ISSUES.. 57
6.8 CONFIGURATION PARAMETERS... 57
6.9 ERRORS REPORTED AND THAT MAY OCCUR .. 57
6.10 FORMAL DESCRIPTION OF ALGORITHM USER REGISTRATION... 57

7 AXCS OBJECTS REGISTRATION WEB SERVICE (DSI) .. 60
7.1 GENERAL DESCRIPTION OF THE MODULE... 61
7.2 MODULE DESIGN IN TERMS OF CLASSES .. 63
7.3 USER INTERFACE DESCRIPTION ... 63
7.4 TECHNICAL AND INSTALLATION INFORMATION ... 63
7.5 DRAFT USER MANUAL.. 65
7.6 EXAMPLES OF USAGE .. 65
7.7 INTEGRATION AND COMPILATION ISSUES.. 65
7.8 CONFIGURATION PARAMETERS... 65
7.9 ERRORS REPORTED AND THAT MAY OCCUR .. 65
7.10 FORMAL DESCRIPTION OF ALGORITHM OBJECT REGISTRATION ... 66

8 AXCS REPORTING WEB SERVICE (DSI)... 69
8.1 GENERAL DESCRIPTION OF THE MODULE... 70

8.1.1 Action log received by AXCS ... 72
8.2 MODULE DESIGN IN TERMS OF CLASSES .. 72
8.3 USER INTERFACE DESCRIPTION ... 73
8.4 TECHNICAL AND INSTALLATION INFORMATION ... 73
8.5 DRAFT USER MANUAL.. 75
8.6 EXAMPLES OF USAGE .. 75
8.7 INTEGRATION AND COMPILATION ISSUES.. 75
8.8 CONFIGURATION PARAMETERS... 75
8.9 ERRORS REPORTED AND THAT MAY OCCUR .. 76
8.10 FORMAL DESCRIPTION OF ALGORITHM REPORTING.. 76

9 AXCS STATISTICS WEB SERVICE (DSI) ... 78
9.1 GENERAL DESCRIPTION OF THE MODULE... 79

9.1.1 Data returned by Statistics Web Service ... 81
9.2 MODULE DESIGN IN TERMS OF CLASSES .. 81
9.3 USER INTERFACE DESCRIPTION ... 82
9.4 TECHNICAL AND INSTALLATION INFORMATION ... 82
9.5 DRAFT USER MANUAL.. 84
9.6 EXAMPLES OF USAGE .. 84
9.7 INTEGRATION AND COMPILATION ISSUES.. 84
9.8 CONFIGURATION PARAMETERS... 84
9.9 ERRORS REPORTED AND THAT MAY OCCUR .. 84
9.10 FORMAL DESCRIPTION OF ALGORITHM STATISTICS .. 85

10 AXCS DATABASE INTERFACE (DSI) ... 87
10.1 GENERAL DESCRIPTION OF THE MODULE... 88
10.2 MODULE DESIGN IN TERMS OF CLASSES .. 89
10.3 USER INTERFACE DESCRIPTION ... 90
10.4 TECHNICAL AND INSTALLATION INFORMATION ... 91
10.5 DRAFT USER MANUAL.. 92
10.6 EXAMPLES OF USAGE .. 92
10.7 INTEGRATION AND COMPILATION ISSUES.. 92
10.8 CONFIGURATION PARAMETERS... 92
10.9 ERRORS REPORTED AND THAT MAY OCCUR .. 93
10.10 FORMAL DESCRIPTION OF ALGORITHM AXCS DATABASE INTERFACE ... 93

11 AXCS SOFTWARE TOOL OFF LINE REGISTRATION (DSI).. 97
11.1 GENERAL DESCRIPTION OF THE MODULE... 98
11.2 MODULE DESIGN IN TERMS OF CLASSES .. 100
11.3 USER INTERFACE DESCRIPTION ... 100

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

6

11.4 TECHNICAL AND INSTALLATION INFORMATION ... 100
11.5 DRAFT USER MANUAL.. 100
11.6 EXAMPLES OF USAGE .. 100
11.7 INTEGRATION AND COMPILATION ISSUES.. 100
11.8 CONFIGURATION PARAMETERS... 100
11.9 ERRORS REPORTED AND THAT MAY OCCUR .. 101
11.10 FORMAL DESCRIPTION OF ALGORITHM TOOL OFF-LINE REGISTRATION.. 101

12 AXCS MANAGER USER INTERFACE (DSI) .. 103
12.1 GENERAL DESCRIPTION OF THE MODULE... 104
12.2 MODULE DESIGN IN TERMS OF CLASSES .. 105
12.3 USER INTERFACE DESCRIPTION ... 106
12.4 TECHNICAL AND INSTALLATION INFORMATION ... 106
12.5 DRAFT USER MANUAL.. 106
12.6 EXAMPLES OF USAGE .. 106
12.7 INTEGRATION AND COMPILATION ISSUES.. 106
12.8 CONFIGURATION PARAMETERS... 106
12.9 ERRORS REPORTED AND THAT MAY OCCUR .. 106
12.10 FORMAL DESCRIPTION OF ALGORITHM... 107

13 AXCSS/PMSS: DATA REQUEST AND DIFFUSION (DSI).. 108
13.1 GENERAL DESCRIPTION OF THE MODULE... 109
13.2 MODULE DESIGN IN TERMS OF CLASSES .. 110

13.2.1 AXCS Synchronizer .. 110
13.2.2 AXCS Collector... 112
13.2.3 Axmedis Registration of AXCSs .. 113

13.3 USER INTERFACE DESCRIPTION ... 115
13.4 TECHNICAL AND INSTALLATION INFORMATION ... 115
13.5 DRAFT USER MANUAL.. 115
13.6 EXAMPLES OF USAGE .. 115
13.7 INTEGRATION AND COMPILATION ISSUES.. 115
13.8 CONFIGURATION PARAMETERS... 115
13.9 ERRORS REPORTED AND THAT MAY OCCUR .. 115
13.10 FORMAL DESCRIPTION OF ALGORITHM... 116

13.10.1 AXMEDIS Registration of AXCSs WEB Service interface formalization ... 118
14 AXMEDIS USER REGISTRATION PORTAL (DSI)... 120

14.1 GENERAL DESCRIPTION OF THE MODULE... 121
14.2 MODULE DESIGN IN TERMS OF CLASSES .. 121
14.3 USER INTERFACE DESCRIPTION ... 121
14.4 TECHNICAL AND INSTALLATION INFORMATION ... 123
14.5 DRAFT USER MANUAL.. 123
14.6 EXAMPLES OF USAGE .. 123
14.7 INTEGRATION AND COMPILATION ISSUES.. 123
14.8 CONFIGURATION PARAMETERS... 123
14.9 ERRORS REPORTED AND THAT MAY OCCUR .. 123
14.10 FORMAL DESCRIPTION OF ALGORITHM SELF USER REGISTRATION ... 124

15 AXCS GLOBAL OBJECT LIST WEB SERVICE (DSI) .. 125
15.1 GENERAL DESCRIPTION OF THE MODULE... 126
15.2 MODULE DESIGN IN TERMS OF CLASSES .. 128
15.3 USER INTERFACE DESCRIPTION ... 128
15.4 TECHNICAL AND INSTALLATION INFORMATION ... 128
15.5 DRAFT USER MANUAL.. 128
15.6 EXAMPLES OF USAGE .. 128
15.7 INTEGRATION AND COMPILATION ISSUES.. 128
15.8 CONFIGURATION PARAMETERS... 128
15.9 ERRORS REPORTED AND THAT MAY OCCUR .. 129
15.10 FORMAL DESCRIPTION OF ALGORITHM GLOBAL OBJECT LIST... 129

16 PROVIDED API NAMED ”AXCS-DB-INTERFACE” (DSI) .. 131

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

7

17 TABLE DESCRIPTION FOR AXCS REGISTRATION AND CERTIFICATION DATABASE (DSI) 133
17.1 ENTITY-RELATIONSHIP DESCRIPTION ... 133
17.2 RELATIONAL DATABASE SCHEMA EXTENDED DESCRIPTION... 135

18 TABLE DESCRIPTION FOR AXCS OBJECTSID DATABASE (DSI)... 145
18.1 ENTITY-RELATIONSHIP DESCRIPTION ... 145
18.2 RELATIONAL DATABASE SCHEMA EXTENDED DESCRIPTION... 145

19 TABLE DESCRIPTION FOR AXCS ACCOUNTING DATABASE (DSI, FUPF) 152
19.1 ENTITY-RELATIONSHIP DESCRIPTION ... 152
19.2 RELATIONAL DATABASE SCHEMA EXTENDED DESCRIPTION... 153

20 TABLE DESCRIPTION FOR USER REGISTRATION DATABASE FOR USER REGISTRATION
PORTAL (DSI) ... 158

20.1 ENTITY-RELATIONSHIP DESCRIPTION ... 158
20.2 RELATIONAL DATABASE SCHEMA EXTENDED DESCRIPTION... 158

21 TABLE DESCRIPTION FOR ACTIVE AXCSS LIST DATABASE (DSI) ... 161
21.1 ENTITY-RELATIONSHIP DESCRIPTION ... 161
21.2 RELATIONAL DATABASE SCHEMA EXTENDED DESCRIPTION... 161

22 FORMAL DESCRIPTION OF AXMEIDS PREFIXES FORMAT (DSI) .. 163

23 FORMAL DESCRIPTION OF AXMEDIS ID FORMAT (DSI).. 164

24 AXMEDIS ACTION LOG FORMAT (DSI, FUPF)... 166

25 AXCS/PMS DATA DIFFUSION FORMAT (DSI)... 168
25.1 DIFFERENT KIND OF DATA... 168

26 FORMAL DESCRIPTION OF AXS AXS.PROPERTIES FILE FORMAT (FUPF) 170

27 FORMAL DESCRIPTION OF AXCV NEXTSERIAL.TXT FILE FORMAT (FUPF)............................ 171

28 FORMAL DESCRIPTION OF AXCV AXCSCAPKCS12.P12 AND AXCVTOOLCERTSTORE.P12
FILE FORMAT (FUPF).. 172

29 FORMAL DESCRIPTION OF AXCV AXCV.PROPERTIES FILE FORMAT (FUPF)......................... 173

30 FORMAL DESCRIPTION OF AXCV TOOLBASE64PKCS12 OUTPUT PARAMETER FORMAT
(FUPF) 174

31 FORMAL DESCRIPTION OF THE DISTRIBUTION OF THE OIDS TREE ASSIGNED BY IANA TO
AXMEDIS ... 175

32 FORMAL DESCRIPTION OF TOOLFINGERPRINT INPUT PARAMETER FORMAT IN AXCV
CERTIFY METHOD (FUPF)... 176

33 FORMAL DESCRIPTION OF TOOLFINGERPRINT INPUT PARAMETER FORMAT IN AXCV
REVERIFY METHOD (FUPF).. 177

34 FORMAL DESCRIPTION OF TOOLFINGERPRINTDIGEST INPUT PARAMETER FORMAT IN
AXCV VERIFY METHOD (FUPF) .. 178

35 FORMAL DESCRIPTION OF REGDEADLINE INPUT PARAMETER FORMAT IN AXCV
CERTIFY METHOD (FUPF)... 179

36 FORMAL DESCRIPTION OF COMMUNICATION PROTOCOL AXCSUSERREGISTRATION (DSI)
 180

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

8

37 FORMAL DESCRIPTION OF COMMUNICATION PROTOCOL AXCSOBJECTREGISTRATION
(DSI) 184

38 FORMAL DESCRIPTION OF COMMUNICATION PROTOCOL AXCSREPORTING (DSI) 190

39 FORMAL DESCRIPTION OF COMMUNICATION PROTOCOL AXCSSTATISTICS (DSI)............ 194

40 FORMAL DESCRIPTION OF COMMUNICATION PROTOCOL FOR AXS WEB SERVICES (FUPF)
 197

41 FORMAL DESCRIPTION OF COMMUNICATION PROTOCOL FOR AXCV WEB SERVICES
(FUPF) 201

42 ASYNCHRONOUS TOOL VERIFICATION (AUTHENTICATION, NO ACTION LOG ONLY
VERIFY) (FUPF) ... 209

43 BIBLIOGRAPHY (MANDATORY).. 210

44 GLOSSARY (MANDATORY).. 210

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

9

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE
number

Deliverable title respons
ible

DE3.1.2.2.1 Specification of General Aspects of AXMEDIS framework, first update of DE3.1.2 part A

AXMEDIS-DE3-1-2-2-1-Spec-of-AX-Gen-Asp-of-AXMEDIS-framework-upA-v1-0.doc

DSI

DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B

AXMEDIS- DE3-1-2-2-2-Spec-of-AX-Cmd-Man-upB-v1-0.doc

DSI

DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-3-Spec-of-AXOM-and-ProtProc-upB-v1-0.doc

DSI

DE3.1.2.2.4 Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-4-Spec-of-AX-Editors-and-Viewers-upB-v1-0.doc

DSI

DE3.1.2.2.5 Specification of External AXMEDIS Editors/Viewers and Players, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-5-Spec-of-External-Editors-Viewers-Players-upB-v1-0.doc

EPFL

DE3.1.2.2.6 Specification of AXMEDIS Content Processing, first update of DE3.1.2 part C

AXMEDIS-DE3-1-2-2-6-Spec-of-AX-Content-Processing-upC-v1-0.doc

DSI

DE3.1.2.2.7 Specification of AXMEDIS External Processing Algorithms

AXMEDIS-DE3-1-2-2-7-Spec-of-AX-External-Processing-Algorithms-v1-0.doc

FHGIGD

DE3.1.2.2.8 Specification of AXMEDIS CMS Crawling Capabilities, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-8-Spec-of-AX-CMS-Crawling-Capab-v1-0.doc

DSI

DE3.1.2.2.9 Specification of AXMEDIS database and query support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-9-Spec-of-AX-database-and-query-support-v1-0.doc

EXITEC
H

DE3.1.2.2.10 Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-10-Spec-of-AXEPTool-and-AXMEDIA-tools-v1-0.doc

CRS4

DE3.1.2.2.11 Specification of AXMEDIS Programme and Publication tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-11-Spec-of-AX-Progr-and-Pub-tool-v1-0.doc

UNIVLE
EDS

DE3.1.2.2.12 Specification of AXMEDIS Workflow Tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-12-Spec-of-AX-Workflow-Tools-v1-0.doc

IRC

DE3.1.2.2.13 Specification of AXMEDIS Certifier and Supervisor and networks of AXCS, first update of part of
DE3.1.2

AXMEDIS-DE3-1-2-2-13-Spec-of-AXCS-and-networks-v1-0.doc

DSI

DE3.1.2.2.14 Specification of AXMEDIS Protection Support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-14-Spec-of-AX-Protection-Support-v1-0.doc

FUPF

DE3.1.2.2.15 Specification of AXMEDIS accounting and reporting, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-15-Spec-of-AX-Accounting-and-Reporting-v1-0.doc

EXITEC
H

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

10

1.1 This document concerns (DSI)
AXMEDIS Certifier and Supervisor (AXCS) and network of AXCSs.

AXCS is the authority put in charge of supervising the certification process over all its phases. Its own
proper tasks concern about user and tool registration, certification and managements, object identifier
generation and manipulation, object metadata collection, object usage data registration and managements.
All the data collected, managed and elaborated by AXCS have to be available for other subjects in the
system entitled to get pertinent information.

Please note that:

• AXCSs do not contain detailed data about users: they know only users ID and all related data about
objects usage. Users registration data is collected exclusively by Distributors and/or AXMEDIS
Portal.

• AXCSs do not contain any AXMEDIS object, rather they contain metadata about them, such as IDs,
Dublin Core metadata, business dependent metadata and so on.

In order to perform its own work, AXCS has to handle a lot of data and to manage a huge number of
connections from clients, PMSs and any other subject entitled to deal whith AXCS. Moreover, there must be
an AXCS for every single distribution channel. Therefore the AXCS cannot be a unique entity but a set of
AXCSs capable of sharing data and satisfying system requests is needed. In order to realize this purpose a
network of AXCS has been conceived.

1.2 List of Modules or Executable Tools Specified in this document (DSI, FUPF)
A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDIS based solutions.
The modules/tools have to include effective components and/or tools and also testing components and tools.

Module/tool

Name
Module/Tool Description and purpose, state also in

which other AXMEDIS area is used
Standards exploited

if any
AXMEDIS
Certification and
Verification
(AXCV)

This module is in charge of certifying and verifying users and tools,
providing the appropriate certificates and blocking functionalities

AMEDIS
Supervisor (AXS)

This module keeps track of the information related to user actions in the
AXMEDIS system. It also provides access to the security information

AXCS Users
Registration Web
Service

Web Service used to register new users in the AXMEDIS system. It is also
used to update data already registered.
It is used by Distributors supporting directly users registration and by the
AXMEDIS Registration Portal

UUID, WSDL, SOAP

AXCS Objects
Registration Web
Service

Web Service used to register new objects in the AXMEDIS system. It is also
used to update data already registered.
It is used by Creators, Content Aggregators, etc.

PLEASE NOTE: registering a new object does not mean to insert it (the file
itself) in the AXMEDIS database (AXDB). It means only to insert in the
AXCS databases the object related metadata; the object itself is not involved
and it is neither transferred to the AXCS

UUID, Dublin Core,
WSDL, SOAP

AXCS Reporting
Web Service

Web Service used to gather data about object usages. It gives back complete
information on usages but only about object related to the requestor.
It is used by CAMART upon requests received from Collecting Societies,
Distributors, Creators, etc.

UUID, WSDL, SOAP

AXCS Statistic
Web Service

Web Service used to gather data about object usages. It gives back
anonymous information on usages about all the objects statisfying the
specified criteria.
It is used by CAMART upon requests received from Collecting Societies,
Distributors, Creators, etc.

WSDL, SOAP

AXCS Database
Interface

Abstraction layer to give uniform access to the AXCS databases, regardless
of the specific RDBMS engine used to realise the databases

SQL

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

11

AXCS Tool Off-
line Registration

Web application to let tool producers submit their software in order to be
examined and tested to become an AXMEDIS compliant tool

AXCS Manager
User Interface

This is a grphic interface to easily administer AXCS databases.

AXMEDIS User
Registration Portal

Web Portal to let users register in AXMEDIS.

AXCS Object List
Web Service

Web service used to get information about all the objects present in the
AXMEDIS system. It can be queried by Distributors, Creators, Integrators,
and so on (in general B2B Users).

UUID, WSDL, SOAP

1.3 List of Formats Specified in this document (DSI, FUPF)
A format can be (i) an XML content file for modeling some information, (ii) a file format for storing
information, (iii) a format that is manipulated by the tools described in this document, etc...

Format Name Format Description and purpose, state

also in which other modules is used
Standards exploited if any

AXMEIDS prefixes Coded three character strings. Codes are reported in
section 22.

AXMEDIS ID An URN composed of the “axmedis” namespace
identifier, an AXCS identifier an AXMEDIS prefix and
an UUID

UUID

AXS formats Action log Based on and expanding MPEG-21 Event
Reporting

AXV formats X.509 certificates

1.4 List of Databases Specified in this document (DSI)

Database
Name

database Description and purpose, state also in which
other AXMEDIS area is using

Standards exploited
if any

AXCS Registration
and Certification
Database

It stores data about users and tools.
User data are organized grouping generic data (needed for all kinds of user)
and separating the others distinguishing among varios business categories
(Creators, Distributors, Collecting Societies, Tool Producers)
Tool data are organised distinguishing between registered and certified tools.

AXCS ObjectsID
Database

It stores objects metadata, both standard ones (Dublin Core) and business
model specific ones.

Dublin Core

AXCS Accounting
Database

It stores data about object usages

1.5 List of Protocols Specified in this document (DSI, FUPF)
A protocol is a communication modality among distinct processes that can be located or not on different
computers.

Protocol Name protocol Description and
purpose, state also in which

other modules is used

Who is the master and
who is the slave

Standards
exploited if any

AXCSUserRegistration The client sends non personal data
(nickname, password, email,
affiliation, etc.) about the user to be
registered. The web service returns an
object containing indication about the
operation outcome and either the result
in case of success (i.e. the assigned
AXUID) or an error string in case of
failure

Master is the web service, slave
or clients are other modules of
the framework, such as kiosks,
distributors, AXMEDIS Portal,
etc.

UUID, WSDL

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

12

AXCSObjectRegistration The client sends metadata (Dublin
Core metadata, business model
dependant etadata, protection
information, etc.) about the object to
be registered. The web service returns
an object containing indication about
the operation outcome and either the
result in case of success (the assigned
AXOID) or an error string in case of
failure

Master is the web service, slave
or clients are other modules of
the framework (in particular
editors) used by users such as
creators, etc.

UUID, Dublin Core,
WSDL

AXCSReporting The client sends nickname, password
and some eventual criteria to filter
action log data. The web service
returns an object containing indication
about the operation outcome and either
the result in case of success (requested
data) or an error string in case of
failure

Master is the web service, slave
or client is CAMART

UUID, WSDL

AXCSStatistics The client sends nickname, password
and some eventual criteria to filter
action log data. The web service
returns an object containing indication
about the operation outcome and either
the result in case of success (requested
data in anonymous format) or an error
string in case of failure

Master is the web service, slave
or client is CAMART

UUID, WSDL

AXS web services Web service for storing user actions
information and retrieving protection
information data

Master is AXCV (called by
protection processor via PMS)

Event reporting

AXCV web services Web service for certifying and
verifying users and tools.

Master is protection processor
(which performs the calls via
PMS)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

13

2 General use cases and scenarios (DSI, FUPF)

2.1 User registration through a distributor

1. Upon first use the AXMEDIS tool (tailored by a distributor) checks for an user certificate. Assuming no

certificate is found, the tool opens a web browser connecting to the web site of a distributor supporting
registration of new users;

2. End user asks for registration in AXMEDIS, giving his personal data (name, city, address, phone
number, etc.) to the distributor;

3. Distributor registers the new user using the user registration web service provided by AXCS: only data
needed for registration are sent, such as email, nickname, password, nationality; no personal data are
communicated to the AXCS; the information is stored in the AXCS database

4. AXCS generate a new AXUID, inserts it (with a new couple of private/public keys) in a specific
certificate;

5. AXCS gives the certificate back to the distributor;
6. The distributor sends the certificate to the user via email;
7. The user import the certificate in the tool;

End User

Distributor
web site

AXCS

2

3

User
certificate

4

5
6

AXMEDIS
tailored

Tool

1,7

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

14

2.2 User registration through the AXMEDIS Registration Portal

1. Upon first use the AXMEDIS tool checks for an user certificate. Assuming no certificate is found, the

tool redirects the user to the AXMEDIS Portal
2. End user visits the web site of AXMEDIS Portal through the AXMEDIS Tool (not via web browser) and

asks for registration in AXMEDIS, giving his personal data (name, city, address, phone number, etc.);
3. AXMEDIS Portal temporarily stores user personal data and sends a confirmation request via email to the

user;
4. The user has to confirm his registration willing clicking on a link inserted in the received email; this

brings him back to the AXMEDIS Portal to finally confirm the registration;
5. The AXMEDIS Portal registers the new user using the user registration web service provided by AXCS:

only data needed for registration are sent, such as email, nickname, password, nationality; no personal
data are communicated to the AXCS;

6. AXCS generate a new AXUID, inserts it (with a new couple of private/public keys) in a specific
certificate;

7. AXCS gives the certificate back to the AXMEDIS Portal, which consolidates user personal data
8. AXMEDIS Portal returns the user certificate directly back to the tool, so that the certificate gets

automatically imported.

AXMEDIS
Tool

End User

AXMEDIS
Registration

Portal

AXCS

1,2,3,4,8

5

User
certificate

6

7

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

15

2.3 Business Model (Distributor point of view)

1. End User requests to perform an action on an AXMEDIS Protected Object
2. AXMEDIS Player asks PMS to perform an Action (assuming client has been already certified)
3. PMS checks in the LicenceDB if the Action is allowed (assuming OK)
4. PMS sends AXCS the action performed
5. AXCS gives back the key to access the content (if necessary)
6. PMS gives the grant to access the content and possibly the key to the AXMEDIS Player
7. CAMART retrieves from AXCS the actions performed by all the End Users on objects distributed by the

distributor
8. CAMART stores the transactions in the AXDB
9. Adm. Integrator gets transactions performed from the DB
10. Administrative information are mapped into the Distributor CMS

EndUser

1 AXMEDIS
Player
AXMEDIS
OBJECT

AXCS

5

Actions done 4

Administrative
Information
Integrator

Distributor
CMS

9

10

PMS
Server 2

CAMART

AXDB

4
6

8

7

Distributor Site

End User Site

7a

9a

3
Licences

DB

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

16

2.4 Business Model (Collecting society or creator point of view)

1. End User uses an AXMEDIS tool to operate on an AXMEDIS Protected Objects that are on different

distribution channels
2. Protection Manager Support allow only authorized operations on the object
3. Objects are accessed on different channels and each AXCS stores its Action-Logs
4. Via the AXCS sync general information on objects or information that allow SuperAXCS to recover

Action-Logs from the different AXCSs are transferred to the SuperAXCS Collector
5. SuperAXCS collects information
6. Administrative reports are created
7. Administrative Information Integrator transfer Action-Logs on CMS

End user

1 AXMEDIS
TOOL

AXCS

PMS
AXCS

AXCS

AXCS Sync.

AXCS Sync.

AXCS Sync.

SuperAXCS SuperAXCS
Collector

Administrative Information
Integrator

Collecting Society
Creator CMS

2

3
4

56
7

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

17

2.5 Content Tracking and accounting (DSI, FUPF)

1. Distributor performs actions on objects
2. Action-Logs are generated (both on line and off line) reporting actions performed on objects
3. Action-Logs are stored by the AXCS
4. Core accounting manager and reporting tool extract information from AXCS allowing the generation of

different reports type
5. Marketing reports, Statistical reports and accounting reports can be generated on demand

CAMART

End user

1 AXMEDIS
TOOL

AXCS

Action-Logs

Marketing reports

Statistical reports

Accounting reports

2 3

4

5

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

18

2.6 Single collection (single AXCS)

1. A Distributor wants to recover information on actions performed on the objects he has rights.
2. CAMART queries the correct tool for obtaining the Action-Logs in the correct form (anonymous or not,

aggregated or not, etc)
3. AXMEDIS Statistic or reporting tools query AXCS-DB and extract the required Action-Logs
4. AXMEDIS Statistic or reporting tools communicate required Action Logs to CAMART to return results

in the desired form
5. . Different reports are generated on the basis of the information collected.

AXMEDIS reporting,
Web Service

Distributor

CAMART

Marketing reports

Statistical reports

Accounting reports

AXCS-DB

1

3 2, 4

5

AXMEDIS Statistics, Web
Service

AXCS

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

19

2.7 Hierarchical collection of information from the several AXCS, the Super AXCS

1. An Actor, that is collecting society or creator, wants to recover information on actions performed on the

objects he has rights.
2. Core accounting manager and reporting tool query the correct tool for obtaining the Action-Logs in the

correct form (anonymous or not, aggregated or not, etc)
3. AXMEDIS Statistic or reporting tools query the SuperAXCS
4. SuperAXCS recover information from the different AXCSs
5. The different AXCSs extract the required Action-Logs and communicate them to the tools that perform

actions to return results in the desired form
6. Different reports are generated on the basis of the information collected.

Creator
Collecting
Society

Core accounting
manager and
reporting tool

Marketing reports

Statistical reports

Accounting reports

AXMEDIS reporting,
Web Service

SuperAXCS 1
2 3

4

5

6

AXMEDIS Statistic analysis
tool, Web Service

Action-Logs

AXCS

Action-Logs

AXCS

Action-Logs

AXCS

Action-Logs

AXCS

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

20

2.8 Object ID generation

1. A Creator wants to create a new AXMEDIS Object.
2. The tool with whom the user is creating the object requests to the AXCS (via PMS) a new object ID
3. Object registration generates a new AXOID and stores it in the AXCS database (assuming success)
4. Object registration returns back to requestor the generated ID
5. A new AXMEDIS object is created with the assigned ID

Object
Creator

PMS 1 2, 4AXMEDIS
TOOL

Object
registration,
Web service

AXMEDIS
OBJECT

5

AXCS-DB

3

AXCS

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

21

2.9 Object metadata registration

1. A Creator wants to register metadata about a new AXMEDIS object
2. The tool with whom the user is editing the object metadata requests to the AXCS (via PMS) for

registration
3. Object registration stores received metadata in the AXCS database (assuming success)
4. Object registration returns back a successful value to the requestor

Object
Creator

PMS 1 2, 4AXMEDIS
TOOL

Object
registration,
Web service

AXMEDIS
OBJECT

5

AXCS-DB

3

AXCS

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

22

2.10 Successful authorisation scenario (FUPF)

1. PMS Server asks Authorisation Support to authorise an action
2. Authorisation Support determines that the user is granted to perform that action
3. PMS Server sends a supervisorInputData to AXCS-AXS to notify the successful authorisation
4. AXCS-AXS stores the supervisorInputData in AXCS database
5. AXCS-AXS notifies the successful storage of the received supervisorInputData
6. PMS Server requests AXCS-AXS the object keys or protection information
7. AXCS-AXS retrieves the keys or protection information from AXCS database
8. AXCS-AXS returns the keys or protection information

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

23

2.11 Unsuccessful authorisation scenario (FUPF)

1. PMS Server asks Authorisation Support to authorise an action
2. Authorisation Support determines that the user is not granted to perform that action
3. PMS Server sends a supervisorInputData to AXCS-AXS to notify the unsuccessful authorisation
4. AXCS-AXS stores the supervisorInputData in AXCS database
5. AXCS-AXS notifies the successful storage of the received supervisorInputData

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

24

2.12 Certification of Tool and User scenario (FUPF)
 The scenario in the next figure represents the certification of a user and the corresponding AXMEDIS tool
on a device, when the user is already registered in the system.

A Final User wants to use a tool for the first time

1. The tool uses PMS Client to send the PMS Server the following information: AXUID, AXRTID, tool

Fingerprint, etc. in order to certify the tool.
2. PMS Client retrieves and adds domain information and contacts PMS Server
3. PMS Server contacts AXCS-AXCV
4. AXCS-AXCV checks the user status and tool integrity and determines that the tool was not already

certified. AXCV generates AXTID, tool certificate and enabling code and creates a new entry in AXCS
RegCert database.

5. AXCV sends AXS a SupervisorInputData (SID) which indicates that the user has certified a tool on a
device.

6. AXS stores SID in the AXCS database
7. AXS confirms the storage
8. AXCV returns the result of the operation, and if the certification is successful it also returns AXTID, tool

certificate and enabling code
9. PMS Server passes the received information to PMS Client
10. PMS Client gives the information to AXMEDIS Tool

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

25

2.13 Certification of Tool and User scenario (FUPF)
The scenario represents the relationship among the different components of AXCS when a user is not
verified or tool is not certified. This scenario also shows the AXCS AXS functionality in this case.

A Final User wants to use a tool for the first time

1. The tool uses PMS Client to send the PMS Server the following information: AXUID, AXRTID, tool

Fingerprint (includes only software part), etc. in order to certify the tool
2. PMS Client retrieves and adds domain information and contacts PMS Server
3. PMS Server contacts AXCS-AXCV
4. AXCS-AXCV checks the user status and tool integrity and determines that user status is not correct or

that the tool that the user is trying to certify does not match the data present in the database (the tool has
been manipulated)

5. If the tool has been manipulated AXCV blocks the user and sends AXS a SupervisorInputData (SID)
which indicates the reason why the user was blocked

6. AXS stores SID in the AXCS database
7. AXS confirms the storage
8. AXCV returns an error code that denotes the reason why the certification was not successful
9. PMS Server passes the received information to PMS Client
10. PMS Client gives the information to AXMEDIS Tool

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

26

2.14 Verification of AXMEDIS Users using AXMEDIS Tools on a Device during
content consumption (FUPF)

The scenario represents the relation among the different components of AXCS during successful content
consumption inside a Domain

A Final User wants to consume an AXMEDIS object on a tool that has been already certified in AXMEDIS:

1. The tool uses PMS Client to send the PMS Server the following information: AXUID, AXTID, tool

Fingerprint Digest (includes software and device hardware and installation information), list of
performed actions to be resynchronized, etc. in order to verify user and tool status and integrity

2. PMS Client retrieves and adds domain information and contacts PMS Server
3. PMS Server contacts AXCS-AXCV
4. AXCS-AXCV checks the user status, tool certification in AXMEDIS and tool integrity
5. AXCS-AXCV sends AXCS-AXS the list of performed actions
6. AXCS-AXS checks that the list of actions is consistent in terms of fingerprint history
7. AXCS-AXS notifies AXCS-AXCV the successful storage
8. AXCV notifies PMS Server the successful verification
9. PMS Server passes the received information to PMS Client
10. PMS Client gives the information to AXMEDIS Tool

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

27

2.15 Verification of AXMEDIS Users using AXMEDIS Tools on a Device during
content consumption (FUPF)

The scenario represents the relationship among the different components of AXCS during unsuccessful
content consumption due to a mismatch in the verification of the history of performed actions.

A Final User wants to consume an AXMEDIS object on a tool that has been already certified in AXMEDIS:

1. The tool uses PMS Client to send the PMS Server the following information: AXUID, AXTID, tool

Fingerprint Digest (includes software and device hardware and installation information), list of
performed actions to be resynchronized, etc. in order to verify user and tool status and integrity

2. PMS Client retrieves and adds domain information and contacts PMS Server
3. PMS Server contacts AXCS-AXCV
4. AXCS-AXCV checks the user status, tool certification in AXMEDIS and tool integrity
5. AXCS-AXCV sends AXCS-AXS the list of performed actions
6. AXCS-AXS determines that the list of performed actions is not consistent in terms of fingerprint history,

marks these actionLogs setting to “1” the histVerSuccess field and to “invalid” instantLastFPPA field of
the received actionLogs and stores them in the AXCS database

7. AXCS-AXS notifies AXCS-AXCV the unsuccessful verification of the history of performed actions
8. AXCV blocks the certified tool and the user and sends a SupervisorInputData to AXS that explains the

reasons why
9. AXS stores SID in the AXCS database
10. AXS confirms the storage
11. AXCV notifies PMS Server the unsuccessful verification
12. PMS Server passes the received information to PMS Client
13. PMS Client gives the information to AXMEDIS Tool

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

28

3 General architecture and relationships among the modules produced

AXMEDIS
Reporting, WEB

Service

AXCS Accounting
Database

AXCS Database
Interface

AXMEDIS
Supervisor

AXMEDIS Certification
and Verification

AXMEDIS Users
Registration, WEB Service

AXCS Registration and
Certification DatabasePMS

CAMART

AXMEDIS Statistics, WEB
Service

AXMEDIS Objects
Registration, WEB

Service

AXCS Objects ID
Database

Distribution Server /
AXMEDIS registration

portal

AXMEDIS Certifier and Supervisor

AXCS
Manager

User
Interface

Business partners such as Content
Producers, Distributors, Integrators, etc.

Supervisor

AXCS

AXMEDIS Certifier and Supervisor is the AXMEDIS certification authority that provides services for
Content Providers and Distributors and verify the correctness of the Clients (as “Clients” are intended also
software agents, not only physics or legal people).
AXMEDIS Certifier and Supervisor database structure is designed considering the distribution of services
provided with the aim of scalable architecture capable of supporting a huge amount of transactions per
second. These transactions can be of various kinds:
• requests of key and/or protection information,
• requests of verification,
• requests of logs,
• Registrations, etc…

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

29

The architecture of AXMEDIS Certifier and Supervisor has to be flexible enough to support centralised
Certification and Supervision as well as distributed. In the centralised version only one AXMEDIS Certifier
and Supervisor is set up for the whole network, in the other case can be present more than one Certifier and
Supervisor (one for each distribution channel). They could be connected as a hierarchical or a peer-to-peer
structure or stand alone, limiting in this case the navigation of content.

The architecture of the AXMEDIS Certifier and Supervisor has to be scalable and the internal services
should be well separable to cope with large traffic for the certification and supervision and to allow the
decentralisation of some of the services in an easy and reconfigurable manner.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

30

4 AXMEDIS Certification and Verification, AXCV (FUPF)

Module/Tool Profile
AXMEDIS Certification and Certification, AXCV

Responsible Name Víctor Torres
Responsible Partner FUPF
Status (proposed/approved) Approved
Implemented/not
implemented

Implemented

Status of the implementation First version available
Executable or Library/module
(Support)

Library and Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs-axcv

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Framework/bin/axcs-axcv/axcv.jar
https://cvs.axmedis.org/repos/WebServices/axcs-axcv/bin/wsaxcv.jar

Reference to the AXFW
location of the demonstrator
executable tool for public
download

N/A

Address for accessing to
WebServices if any, add
accession information (user
and Passwd) if any

http://193.145.45.173:8080/axis/AXCV
https://193.145.45.173:8443/axis/AXCV

http://flauto.dsi.unifi.it:8080/axis/services/AXCV

Test cases (present/absent) Present
Test cases location http://cvs.axmedis.org/repos/Framework/doc/test/axcs-axcv

http://cvs.axmedis.org/repos/WebServices/axcs-axcv/doc/test
Usage of the AXMEDIS
configuration manager
(yes/no)

No

Usage of the AXMEDIS
Error Manager (yes/no)

No

Major Problems not solved
Major pending requirements

Interfaces API with other
tools, named as

Name of the communicating
tools References to other major
components needed

Communication model and format
(protected or not, etc.)

PMS Server (AXCS proxy)
AXMEDIS Supervisor
AXCS Database Interface

Formats Used Shared with format name or reference to a section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

31

Protocol Used Shared with Protocol name or reference to a section

Used Database name
AXCSRegCert

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Bouncy Castle bcprov-jdk15-128.jar http://www.bouncycastle.org/licence.html
Doomdark jug.jar LGPL
Unrestricted policy files for
the Sun JCE:

local_policy.jar
US_export_policy.jar

MySql mysql-connector-java-3.1.8-
bin.jar

4.1 General Description of the Module

AXCV
Methods Description
verifyUser

This method is called by the AXCS Proxy integrated in PMS Client, which reaches
AXCV through PMS Server. It can be used to verify the status of a user, optionally
inside a domain. It verifies if the user is registered in the specified domain (if present)
and checks that the user status and registration deadline are valid, so that the user can
still use the AXMEDIS tools and the AXMEDIS framework.

certify This method is called by the AXCS Proxy integrated in PMS Client, which reaches
AXCV through PMS Server. It is used to certify that the original tool has not been
modified and to activate it. It creates a new entry in the CerTools table of the AXCS
database which associates the user, tool and device and returns to the Protection
Processor an activation code, a tool identifier and a PKCS12 structure with the tool
certificate and private key issued by AXCS.

verify This method is called by the AXCS Proxy integrated in PMS Client, which reaches
AXCV through PMS Server. It is used to verify that the tool installed on a device has
neither been modified nor blocked, that the user is not blocked and that the registered
tool is not blocked. It is also responsible for resynchronizing the offline tool
operation through AXMEDIS Supervisor (AXS).

reverify This method is similar to verify method (see previous). It must be called when the
verify method fails because of the tool fingerprint hash doesn’t match (error code: –

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

32

12) to perform a new verification with the full fingerprint. Thus, the reverify method
has the same input parameters as the verify method except the full tool fingerprint,
which has to be sent instead of the hash.

verifyPmsActionLog This method is used to store a single ActionLog after the authorisation of a user in
PMS Server, if AXCS is online. The difference between this method and verify
method is that in this case, it is PMS Server who partially fills and sends the single
input ActionLog. Moreover, PMS does not send the lastFPPA of the client, because it
is not known. Therefore, AXS will calculate the new lastFPPA and store it in AXCS
database without verifying it. We can suppose that, as AXCV verify method is called
just before performing the authorisation, the operation history will be already
verified.

ping This method is used by PMS to determine if AXCV is online.

4.2 Module Design in terms of Classes
The following figure shows the UML diagram of this module, together with the definition of its operations.
ActionLog class is defined in AXMEDIS Supervisor.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

33

4.3 Technical and Installation information
The following installation information refers to the web service of AXCV, which uses AXCV and other
libraries:
References to other major
components needed

AXMEDIS AXCS AXCV library
AXMEDIS AXCS AXS library
AXCS Database Interface library

Problems not solved None
Configuration and execution
context

How to deploy/undeploy the web service

To deploy/undeploy the AXCV AXIS web service in your Tomcat server you
can use the org.apache.axis.client.AdminClient class using the provided
deploy.wsdd or undeploy.wsdd files as parameters. See the example below.

Classes needed to use the software

- Client side: wsaxcv.jar library, which contains client side classes:

- CertificationAndVerification
- CertificationAndVerificationService
- CertificationAndVerificationServiceLocator
- AXCVSoapBindingStub
- CertificationResult
- VerificationResult

- Server side: wsaxcv.jar library, which contains server side classes:

- CertificationAndVerification
- AXCVSoapBindingImpl
- AXCVSoapBindingSkeleton
- CertificationResult
- VerificationResult

Libraries needed to run the software

- Client side

- bcprov-jdk15-128.jar (only for testing)
- mysql-connector-java-3.1.8-bin.jar (only for testing)
- junit.jar (only for testing)
- AXIS related libraries:
 - mail.jar
 - activation.jar
 - axis.jar
 - jaxrpc.jar
 - saaj.jar
 - commons-logging-1.0.4.jar
 - commons-discovery-0.2.jar
 - wsdl4j-1.5.1.jar
- other dependencies

- AXS library
- AXCS Database Interface library (only for testing)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

34

- Server side
- bcprov-jdk15-128.jar
- mysql-connector-java-3.1.8-bin.jar
- jug.jar
- AXIS related libraries
 - mail.jar
 - activation.jar
 - axis.jar
 - jaxrpc.jar
 - saaj.jar
 - commons-logging-1.0.4.jar
 - commons-discovery-0.2.jar
 - wsdl4j-1.5.1.jar
- other dependencies

- AXCV library
- AXS library
- AXCS Database Interface library

Files needed for the deployment of AXCV library in the Server side

The following files must be included anywhere in the local classpath where
the software is executed:

• AxcsCAPkcs12.p12: This key store contains the AXCV certificate
and private key used to generate the tool certificates.

• axcvToolCertStore.p12: This key store contains the tool certificates
that have been generated by the AXCV. It does not contain the
associated private keys.

• axcv.properties: This java properties file contains the information
necessary for the initialisation of the AXCV module. It can be
customised to change the names and passwords of the corresponding
files and key stores that the AXCV needs to access. RegCertDSN,
AxcsDbUser and AxcsDbPassword parameters are only used if the
axcsdb.ini file from DSI AXCS database is not found in the system.

• nextSerial.txt: This file stores the next serial to be used for the tool
certificate generation. Every time a tool certificate is generated, it is
incremented by 1.

The following files must substitute the original files available in the <java-
home>\lib\security directory in order to be able to use the maximum strength
in the cryptographic algorithms:

• Unrestricted policy files for the Sun JCE: local_policy.jar,
US_export_policy.jar. If these jar files are not installed, then the
pkcs12 structures generated when certifying tools cannot be
encrypted with the whole AXUID password, and a the 8 first
characters of the AXUID are then used.

Note: <java-home> refers to the directory where the J2SE Runtime
Environment (JRE) was installed. It is determined based on whether you are
running JCE on a JRE with or without the JDK installed. The JDK
contains the JRE, but at a different level in the file hierarchy. For example, if
the JDK is installed in /home/user1/jdk1.5.0 on Solaris or in C:\jdk1.5.0 on
Win32, then <java-home> is

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

35

• /home/user1/jdk1.5.0/jre [Solaris]
• C:\jdk1.5.0\jre [Win32]

If on the other hand the JRE is installed in /home/user1/jre1.5.0 on Solaris or
in C:\jre1.5.0 on Win32, and the JDK is not installed, then <java-home> is

• /home/user1/jre1.5.0 [Solaris]
• C:\jre1.5.0 [Win32]

Example of deployment in Linux server

cd ($AXIS_HOME)
java -cp
"($AXIS_HOME)/WEB-INF/lib/wsaxcv.jar:
($AXIS_HOME)/WEB-INF/lib/axcv.jar:
($AXIS_HOME)/WEB-INF/lib/axs.jar:
($AXIS_HOME)/WEB-INF/lib/axcs-db-interface.jar:
($AXIS_HOME)/WEB-INF/lib/mysql-connector-java-3.1.8-bin.jar:
($AXIS_HOME)/WEB-INF/lib/bcprov-jdk15-128.jar:
($AXIS_HOME)/WEB-INF/lib/jug.jar:
($AXIS_HOME)/WEB-INF/lib/activation.jar:
($AXIS_HOME)/WEB-INF/lib/mail.jar:
($AXIS_HOME)/WEB-INF/lib/xerces.jar:
($AXIS_HOME)/WEB-INF/lib/axis.jar:
($AXIS_HOME)/WEB-INF/lib/axis-ant.jar:
($AXIS_HOME)/WEB-INF/lib/jaxrpc.jar:
($AXIS_HOME)/WEB-INF/lib/saaj.jar:
($AXIS_HOME)/WEB-INF/lib/commons-logging-1.0.4.jar:
($AXIS_HOME)/WEB-INF/lib/commons-discovery-0.2.jar:
($AXIS_HOME)/WEB-INF/lib/wsdl4j-1.5.1.jar:
($AXIS_HOME)/WEB-INF/lib/log4j-1.2.8.jar:
($AXIS_HOME)/WEB-INF/classes/"
org.apache.axis.client.AdminClient -p80 "($AXIS_HOME)/WEB-
INF/($WSDD_PATH)/deploy.wsdd"

In the above example "($AXIS_HOME)/WEB-INF/lib/" contains all
necessary libraries and dependencies, and "($AXIS_HOME)/WEB-
INF/classes/" contains the files needed by dependent libraries:
- AXCV library needed files:

- AxcsCAPkcs12.p12
- axcvToolCertStore.p12
- nextSerial.txt
- axcv.properties

- AXS library needed files (see AXMEDIS Supervisor, AXS):
- axs.properties

How to configure the server to have secure AXIS Web Services using
Tomcat 5.5

You can configure your Tomcat server so that it provides AXIS web services
over a secure channel (SSL).

First of all you must configure server.xml file in your Tomcat server:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

36

- Uncomment the code:

<-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->
<!--
<Connector
 port="8443" minProcessors="5" maxProcessors="75"
 enableLookups="true" disableUploadTimeout="true"
 acceptCount="100" debug="0" scheme="https" secure="true";
 clientAuth="false" sslProtocol="TLS"/>
-->

- Customise it to request for client authentication:

 <Connector
 port="8443" maxHttpHeaderSize="8192" maxThreads="150"
 minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="true" sslProtocol="TLS"
 keystoreFile="C:\path\to\keystore\AxcsCAPkcs12.p12"
 keystorePass="AXCSpwd" keystoreType="PKCS12"
 truststoreFile="C:\path\to\trustore\AxcsCAPkcs12.p12"
 truststorePass="AXCSpwd" truststoreType="PKCS12"
/>

Where,

- keystoreFile: JKS or PKCS12 keystore file that contains the server
certificate and private key used to authenticate the server.

- truststoreFile: JKS or PKCS12 keystore file that contains the
certificates of the CAs that the server will accept when a client
presents a certificate signed by one of them.

When using a self-signed or CA certificate for the server, both keystore files
can be the same, if necessary.

For more details on how to configure the options in server.xml file refer to
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html.

How to configure the client to have secure AXIS Web Services

You can configure your AXIS client so that it connects to a secure web
service using a secure channel (SSL). You can also configure it to perform
client authentication by presenting his own certificate

In the Java code of your client you can set, for example:

//add BouncyCastle JCE provider
Security.addProvider(new BouncyCastleProvider());

//Secure Web Service initialisation
CertificationAndVerificationServiceLocator service = new
CertificationAndVerificationServiceLocator();
java.net.URL secureURL = new

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

37

java.net.URL("https://localhost:8443/axis/services/AXCV");
CertificationAndVerification axcv = service.getAXCV(secureURL);

//System settings to present a client certificate (client authentication)
System.setProperty("javax.net.ssl.keyStore", “C:\\path\\to\\keystore.p12");
System.setProperty("javax.net.ssl.keyStorePassword", "password");
System.setProperty("javax.net.ssl.keyStoreType", "pkcs12");
System.setProperty("javax.net.ssl.keyStoreProvider", "BC");

//System settings to trust on the server certificate (server authentication)
System.setProperty("javax.net.ssl.trustStore",
“C:\\path\\to\\truststore.p12");
System.setProperty("javax.net.ssl.trustStorePassword", "password");
System.setProperty("javax.net.ssl.trustStoreType", "pkcs12");
System.setProperty("javax.net.ssl.trustStoreProvider", "BC");

//Other System settings
System.setProperty("java.protocol.handler.pkgs",
"com.sun.net.ssl.internal.www.protocol");
System.setProperty("javax.net.debug","all");
System.setProperty("java.security.debug","all");
Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

Where,

- keyStore: keystore file that contains the client certificate and
private key used to authenticate the client.

- trustStore: keystore file that contains the certificates of the CAs that
the client will trust on, when a server presents a certificate signed by
one of them.

You can choose between any different provider available in your machine
and also customise the keystore types and SSL provider.

4.4 Examples of usage
A Junit-based Test is provided to perform a full test of AXCV web service functionalities. It shows how the
AXS web service can be invoked to obtain many different results. It is available at:
http://cvs.axmedis.org/repos/WebServices/axcs-axcv/doc/test/wsAXCVAXSTest.java

A simple test is provided to show how a simple invocation of the method can be performed. It is available at:
http://cvs.axmedis.org/repos/WebServices/axcs-axcv/doc/test/wsAXCVAXSTest_simple.java

4.5 Integration and compilation issues
You can deploy the provided web service libraries on any device, which supports AXIS and Java. For other
Web Services platforms you must generate the corresponding classes and files from the AXCV web service
wsdl file.

4.6 Configuration Parameters
The following parameters can be configured in axcv.properties file
Config parameter Possible values

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

38

axcsCertStore PKCS12 store file name where AXCV certificate and private key are stored
E.g: AxcsCAPkcs12.p12

axcsCertStorePasswd Password for PKCS12 store where AXCV certificate and private key are stored
E.g.: password

axcvToolCertStore PKCS12 store file name where the generated tool certificates are stored (private key not stored)
E.g.: axcvToolCertStore.p12

axcvToolCertStorePasswd Password for PKCS12 store where the generated tool certificates are stored
E.g.: password

nextSerial File name where serial number for next tool Certificate is stored
E.g.: nextSerial.txt

RegCertDSN AXCS Registration and Certification database DSN. This parameter will be only used if the axcsdb.ini
file from DSI database is not found in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: jdbc:mysql://193.145.45.173/axcsregcert

AxcsDbUser AXCS Database User. This parameter will be only used if the axcsdb.ini file from DSI database is not
found in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: databaseUser

AxcsDbPassword AXCS Database Password. This parameter will be only used if the axcsdb.ini file from DSI database is
not found in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: databasePassword

4.7 Formal description of AXCV algorithms
AXCV library and Web Service

Method verifyUser
Description This method is called by the AXCS Proxy integrated in PMS Client, which reaches AXCV

through PMS Server. It can be used to verify the status of a user, optionally inside a domain. It
verifies if the user is registered in the specified domain (if present) and checks that the user
status and registration deadline are valid, so that the user can still use the AXMEDIS tools and
the AXMEDIS framework.

Input
parameters

xsd:string axid: identifier of the AXMEDIS final user or B2BUser (AXUID)
xsd:string axdom: AXMEDIS domain of certified user (if any)

Output
parameters

VerificationResult complex type formed by sequence of:
xsd:int verificationResult, which indicates the result of the verification, according to the
following numeration:
 0: Verification OK
 -1: invalid AXID
 -2: user is not registered
 -3: user is blocked
 -4: user domain mismatch
 -5: user registration deadline expired

When an error code x is returned, it means that all the possible errors y, x<y<0 did not occur,
but all possible errors y<x have not been checked. (E.g error code –2 means that AXID is valid
but doesn’t inform about if the user is blocked or not, or if the deadline has expired or not).

AXCV library and Web Service
Method certify
Description This method is called by the AXCS Proxy integrated in PMS Client, which reaches AXCV

through PMS Server. It is used to certify that the original tool has not been modified and to
activate it. It creates a new entry in the CerTools table of the AXCS database which associates

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

39

the user, tool and device and returns to the Protection Processor an activation code, a tool
identifier and a PKCS12 structure with the tool certificate and private key issued by AXCS.

Input
parameters

xsd:string axid: identifier of the AXMEDIS final user or B2BUser (AXUID)
xsd:string axrtid: identifier of the registered AXMEDIS tool
xsd:string axdom: domain where the user is registered.
xsd:string toolFingerprint: fingerprint (software and hardware parts) of the installed tool
xsd:string regDeadline: registration deadline of the installed tool.

Output
parameters

CertificationResult complex type formed by sequence of:
xsd:string axtid, the identifier of the installed tool associated to a user and device.
xsd:int certificationResult, which indicates the result of the certification, according to
the following numeration:

0: OK
 -1: invalid AXID
 -2: user not registered
 -3: user blocked
 -4: user domain mismatch
 -5: user registration deadline expired
 -6: tool not registered (RegTools table)
 -7: registered tool is blocked
 -8: received tool deadline exceeds registered tool deadline (user and tool have
been blocked)
 -9: received tool deadline has expired
 -10: registered tool fingerprint mismatch. Tool has been manipulated (user
and tool have been blocked)
 -11: user-tool-device had already been certified. New tool certificate should
be created
 -20: error updating user status in database
 -21: error inserting new entry in CerTools table
 -22: error in AXSupervisor when communicating with database
 -30: internal AXCV error

 xsd:string enablingCode, AXMEDIS tool activation code sent to the Protection
 Processor (bytes are encoded using Base64).

xsd:string toolBase64PKCS12, PKCS12 structure bytes encoded in Base. It includes
tool certificate signed by the AXCS CA Root Certificate and tool private key together
and protected with a password. If the unrestricted policy files for Sun JCE were
available at the server (default configuration), the password will be the full AXMEDIS
AXID. Otherwise, the password will be the first 8 characters of the AXMEDIS AXID.
It proves that an
AXMEDIS tool has been certified and can be used in the AXMEDIS framework

When an error code x is returned, it means that all the possible errors y, x<y<0 did not occur,
but all possible errors y<x have not been checked. (E.g error code –2 means that AXID is valid
but doesn’t inform about if the registered tool is blocked or not, or if the tool fingerprint did
match or not).

AXCV library and Web Service
Method verify
Description This method is called by the AXCS Proxy integrated in PMS Client, which reaches AXCV

through PMS Server. It is used to verify that the tool installed on a device has neither been
modified nor blocked, that the user is not blocked and that the registered tool is not blocked. It
is also responsible for resynchronizing the offline tool operation through AXMEDIS
Supervisor (AXS).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

40

Input
parameters

xsd:string axid: identifier of the AXMEDIS final user or B2BUser (AXUID)
xsd:string axtid: identifier of the certified tool (the single instance of the tool installed on a
device).
xsd:string axdom: domain where the user is registered.
xsd:string toolFingerprintDigest: hash of the full fingerprint (software and hardware parts) of
the installed tool.
xsd:string regDeadline: registration deadline of the installed tool.
xsd:string LastFPPA: fingerprint actions performed during the offline operation.
tns2:ActionLog listOfPA: Array of ActionLogs, which is a complex type defined in
AXMEDIS Supervisor, including the actions performed during the offline operation.

Output
parameters

VerificationResult complex type formed by sequence of:
xsd:int verificationResult, which indicates the result of the verification, according to
the following numeration:

0: OK
-1: invalid AXID
-2: user not registered
-3: user blocked
-4: user domain mismatch
-5: user registration deadline expired
-6: AXTID does not exist
-7: installed (and certified) tool is blocked
-8: tool deadline has expired
-9: toolFingerprintDigest (toolFingerprint hash) mismatch
-10: toolFingerprint mismatch (user and tool have been blocked)
-11: registered tool is blocked
-12: user has been blocked and installed tool has been blocked again
-13: tool has been blocked
-20: error updating user status in database
-21: error updating tool status in database
-22: error updating LastFPPA in database
-23: error retrieving regtool data from database
-24: error in AXSupervisor when communicating with AXCS accounting database in
storeListActionLog or storePMSActionLog
-25: error in AXSupervisor when communicating with AXCS accounting database in
storeSID
-30: internal AXCV error

xsd:int storeListActionLogResult, which indicates the result of the storage of the
received ActionLog list, which is performed by AXS:

 0: ActionLog(s) has been stored: it includes the case of empty list
-1: ActionLog(s) has been stored: tool should have been already blocked
-2: ActionLog(s) has been stored: tool operation history hash (LastFPPA) is not
consistent
-3: ActionLog(s) has not been stored: error in AXSupervisor when communicating
with AXCS database
-4: ActionLog(s) has not been stored: input actionLog(s) do not refer to the same
AXTID
-5: ActionLog(s) has not been stored: input actionLog(s) have some non-nillable null
fields
-6: ActionLog(s) has not been stored: user or tool data unsuccessfully verified by
AXCV

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

41

When an error code x is returned, it means that all the possible errors y, x<y<0 did not occur,
but all possible errors y<x have not been checked. (E.g error code –2 means that AXID is valid
but doesn’t inform about if the user is blocked or not, or if the received tool deadline has
expired or not).

AXCV library and Web Service
Method reverify
Description This method is similar to verify method (see previous). It must be called when the verify

method fails because of the tool fingerprint hash doesn’t match (error code: –12) to perform a
new verification with the full fingerprint. Thus, the reverify method has the same input
parameters as the verify method except the full tool fingerprint, which has to be sent instead of
the hash.

Input
parameters

xsd:string axid: identifier of the AXMEDIS final user or B2BUser (AXUID)
xsd:string axtid: identifier of the certified tool (the single instance of the tool installed on a
device).
xsd:string axdom: domain where the user is registered.
xsd:string toolFingerprint: full fingerprint (software and hardware parts) of the installed tool.
xsd:string regDeadline: registration deadline of the installed tool.
xsd:string LastFPPA: fingerprint actions performed during the offline operation.
tns2:ActionLog listOfPA: Array of ActionLogs, which is a complex type defined in
AXMEDIS Supervisor, including the actions performed during the offline operation.

Output
parameters

The results are the same as for the verify method.

AXCV library and Web Service
Method verifyPmsActionLog
Description This method is used to store a single ActionLog after the authorisation of a user in PMS

Server, if AXCS is online. The difference between this method and verify method is that in
this case, it is PMS Server who partially fills and sends the single input ActionLog. Moreover,
PMS does not send the lastFPPA of the client, because it is not known. Therefore, AXS will
calculate the new lastFPPA and store it in AXCS database without verifying it. We can
suppose that, as AXCV verify method is called just before performing the authorisation, the
operation history will be already verified.

Input
parameters

tns2:ActionLog pmsActionLog: single ActionLog, which is a complex type defined in
AXMEDIS Supervisor, including the action performed during the online operation.

Output
parameters

The same as in previous methods: verify and reverify

AXCV Web Service

Method ping
Description This method is used by PMS to determine if AXCV is online.
Input
parameters

xsd:int input: any integer

Output
parameters

xsd:int pingReturn: an integer with value 2 if AXCV web service is online

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

42

5 AXMEDIS Supervisor, AXS (FUPF)

Module/Tool Profile
AXMEDIS Supervisor, AXS

Responsible Name Víctor Torres
Responsible Partner FUPF
Status (proposed/approved) Approved
Implemented/not
implemented

Implemented

Status of the implementation First version available
Executable or Library/module
(Support)

Library and Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported All
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs-axs
https://cvs.axmedis.org/repos/WebServices/axcs-axs/source

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Framework/bin/axcs-axs/axs.jar
https://cvs.axmedis.org/repos/WebServices/axcs-axs/bin/wsaxs.jar

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user
and Passwd) if any

http://193.145.45.173:8080/axis/AXS
https://193.145.45.173:8443/axis/AXS
http://flauto.dsi.unifi.it:8080/axis/services/AXS

Test cases (present/absent) present
Test cases location http://cvs.axmedis.org/repos/Framework/doc/test/axcs-axs

http://cvs.axmedis.org/repos/WebServices/axcs-axs/doc/test
Usage of the AXMEDIS
configuration manager
(yes/no)

No

Usage of the AXMEDIS
Error Manager (yes/no)

No

Major Problems not solved
Major pending requirements

Interfaces API with other
tools, named as

Name of the communicating
tools References to other major
components needed

Communication model and format
(protected or not, etc.)

PMS Server (AXCS proxy)
AXMEDIS Certification And
Verification

AXCS Database Interface

Formats Used Shared with format name or reference to a section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

43

Protocol Used Shared with Protocol name or reference to a section

Used Database name
AXCSAccounting

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Bouncy Castle bcprov-jdk15-128.jar http://www.bouncycastle.org/licence.html
MySql mysql-connector-java-3.1.8-

bin.jar

5.1 General Description of the Module
AXS

Methods Description
storeSID

This function is used to receive SupervisorInputData and to store them in the AXCS
database.
1) AXCV uses this method to store SupervisorInputData when auser is blocked
during certification or verification: to be able to know the reason why it was blocked
2) PMS Server uses this method to store SupervisorInputData when:
2.1 an AXMEDIS user requests a license to consume an AXMEDIS object (on-line
or off-line). The information about the license request is sent to Supervisor.
2.2 an end user requests permission to perform an action on an AXMEDIS Object,
PMS Server does not positively authorize the user and sends Supervisor the
information about the negative authorization of the user. Then, Supervisor stores that
information in AXCS Database.

storeListActionLog This method is used by AXCV to store through Supervisor a list of Action Logs.
When a user has performed some off-line actions, if PMS Client gets connection to
the system, it calls verify method, which reaches AXCV through PMS Server in
order to resynchronize the actions that are stored in the local cache.

getProtectionInfo This method is used to retrieve the protection information related to an object from

the Objects Table of the AXCS Objects ID Database.
saveProtectionInfo This method is used to insert or update the protection information related to an

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

44

AXMEDIS object in the Objects Table of the AXCS Objects ID Database.
storePMSActionLog This method is used to store a single ActionLog after the authorisation of a user in

PMS Server, if AXCS is online.
The difference between this method and storeListActionLog is that in this case, it is
PMS Server who partially fills and sends the full ActionLog. Moreover, PMS does
not send the lastFPPA of the client, because it is not known. Therefore, AXS will
calculate the new lastFPPA and store it in AXCS database without verifying it. We
can suppose that, as AXCV verify method is called just before performing the
authorisation, the operation history will be already verified.

getProtectionInfo This method is used to retrieve the protection information related to an object from
the Objects Table of the AXCS Objects ID Database.

updateProtectionInfo This method is used to insert or update the protection information related to an
AXMEDIS object in the Objects Table of the AXCS Objects ID Database.

Difference between Action Log and Supervisor Input Data:

The difference between Action Log and Supervisor Input Data is that the first one is directly related with the
AXMEDIS Object (it is created when any action over the object is done) and Supervisor Input Data is not
directly related to the object (it is not created when an action over the object is done, but it can refers to the
object). The Supervisor Input Data is created to notify to Supervisor any event in (or between) modules.

Mainly both of them have the structure of the MPEG-21 Event Report, however the Supervisor Input Data
does not use some fields and there is an additional data field added.

The objective of this difference is to clarify when the notifications come from the object (actions done over
the object) and when they are between modules.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

45

5.2 Module Design in terms of Classes

5.3 Technical and Installation information
References to other major
components needed

AXMEDIS AXS (Supervisor) library
AXCS Database Interface library

Problems not solved None
Configuration and execution
context

How to deploy/undeploy the web service

To deploy/undeploy the AXS AXIS web service in your Tomcat server
you can use the org.apache.axis.client.AdminClient class using the
provided deploy.wsdd or undeploy.wsdd files as parameters. See the
example below.

Classes needed to use the software

- Client side: wsaxs.jar library, which contains client side classes:

- es.fupf.dmag.axmedis.wsaxs.Supervisor
- es.fupf.dmag.axmedis.wsaxs.SupervisorService
- es.fupf.dmag.axmedis.wsaxs.SupervisorServiceLocator

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

46

- es.fupf.dmag.axmedis.wsaxs.AxsSoapBindingStub
- es.fupf.dmag.axmedis.wsaxs.SupervisorInputData
- es.fupf.dmag.axmedis.wsaxs.ActionLog

- Server side: wsaxs.jar library, which contains server side classes:

- es.fupf.dmag.axmedis.wsaxs.Supervisor
- es.fupf.dmag.axmedis.wsaxs.AxsSoapBindingImpl
- es.fupf.dmag.axmedis.wsaxs.AxsSoapBindingSkeleton
- es.fupf.dmag.axmedis.wsaxs.SupervisorInputData
- es.fupf.dmag.axmedis.wsaxs.ActionLog

Libraries needed to run the software

- Client side

- bcprov-jdk15-128.jar (only for testing)
- mysql-connector-java-3.1.8-bin.jar (only for testing)
- junit.jar (only for testing)
- AXIS related libraries:
 - mail.jar
 - activation.jar
 - axis.jar
 - jaxrpc.jar
 - saaj.jar
 - commons-logging-1.0.4.jar
 - commons-discovery-0.2.jar
 - wsdl4j-1.5.1.jar
- other dependencies

- AXS library
- AXCS Database Interface library (only for testing)

- Server side

- bcprov-jdk15-128.jar
- mysql-connector-java-3.1.8-bin.jar
- AXIS related libraries
 - mail.jar
 - activation.jar
 - axis.jar
 - jaxrpc.jar
 - saaj.jar
 - commons-logging-1.0.4.jar
 - commons-discovery-0.2.jar
 - wsdl4j-1.5.1.jar
- other dependencies

- AXS library
- AXCS Database Interface library

Files needed for the deployment of AXS library in the Server side

The following files must be included anywhere in the local classpath
where the software is executed:

• axs.properties: RegCertDSN, AccountingDSN,
ObjectsIdDSN, AxcsDbUser and AxcsDbPassword
parameters can be customised but are only used if the
axcsdb.ini file from DSI database is not found in the system.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

47

Example of deployment in Linux server

cd ($AXIS_HOME)
java -cp
"($AXIS_HOME)/WEB-INF/lib/wsaxs.jar:
($AXIS_HOME)/WEB-INF/lib/axs.jar:
($AXIS_HOME)/WEB-INF/lib/axcs-db-interface.jar:
($AXIS_HOME)/WEB-INF/lib/mysql-connector-java-3.1.8-bin.jar:
($AXIS_HOME)/WEB-INF/lib/bcprov-jdk15-128.jar:
($AXIS_HOME)/WEB-INF/lib/activation.jar:
($AXIS_HOME)/WEB-INF/lib/mail.jar:
($AXIS_HOME)/WEB-INF/lib/xerces.jar:
($AXIS_HOME)/WEB-INF/lib/axis.jar:
($AXIS_HOME)/WEB-INF/lib/axis-ant.jar:
($AXIS_HOME)/WEB-INF/lib/jaxrpc.jar:
($AXIS_HOME)/WEB-INF/lib/saaj.jar:
($AXIS_HOME)/WEB-INF/lib/commons-logging-1.0.4.jar:
($AXIS_HOME)/WEB-INF/lib/commons-discovery-0.2.jar:
($AXIS_HOME)/WEB-INF/lib/wsdl4j-1.5.1.jar:
($AXIS_HOME)/WEB-INF/lib/log4j-1.2.8.jar:
($AXIS_HOME)/WEB-INF/classes/"
org.apache.axis.client.AdminClient -p80 "($AXIS_HOME)/WEB-
INF/($WSDD_PATH)/deploy.wsdd"

In the above example "($AXIS_HOME)/WEB-INF/lib/" contains all
necessary libraries and dependencies, and "($AXIS_HOME)/WEB-
INF/classes/" contains the files needed by dependent libraries:

- AXS library needed files (see AXMEDIS Supervisor, AXS):

- axs.properties
How to configure the server to have secure AXIS Web Services using
Tomcat 5.5

Refer to section 4.4 for details

How to configure the client to have secure AXIS Web Services

Refer to section 4.4 for details

5.4 Examples of usage
A JUnit-based Test is provided to perform a full test of AXS web service functionalities. It shows how the
AXS web service can be invoked to obtain many different results. It is available at:
http://cvs.axmedis.org/repos/WebServices/axcs-axs/doc/test/wsAXSTest.java

5.5 Integration and compilation issues
You can deploy the provided web service libraries on any device, which supports AXIS and Java. For other
Web Services platforms you must generate the corresponding classes and files from the AXCV web service
wsdl file.

5.6 Configuration Parameters
The following parameters can be configured in axs.properties file.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

48

Config

parameter
Possible values

AccountingDSN AXCS Accounting database DSN. This parameter will be only used if the axcsdb.ini file from DSI database

is not found in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: jdbc:mysql://193.145.45.173/axcsaccounting

ObjectsIdDSN AXCS Objects ID database DSN. This parameter will be only used if the axcsdb.ini file from DSI database
is not found in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: jdbc:mysql:// 193.145.45.173/axcsobjectsid

AxcsDbUser AXCS Database User. This parameter will be only used if the axcsdb.ini file from DSI database is not found
in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: databaseUser

AxcsDbPassword AXCS Database Password. This parameter will be only used if the axcsdb.ini file from DSI database is not
found in the system.
Possible values:
If DSI database is present in the system: foo
If DSI database is not present in the system: databasePassword

5.7 Formal description of AXS Algorithms

AXS Library and Web Service
Method storeSID
Description This function is used to receive SupervisorInputData and to store them in the AXCS database.

1) AXCV uses this method to store SupervisorInputData when a user is blocked during
certification or verification: to be able to know the reason why it was blocked
2) PMS Server uses this method to store SupervisorInputData when:
2.1 an AXMEDIS user requests a license to consume an AXMEDIS object (on-line or off-
line). The information about the license request is sent to Supervisor.
2.2 an end user requests permission to perform an action on an AXMEDIS Object, PMS
Server does not positively authorize the user and sends Supervisor the information about the
negative authorization of the user. Then, Supervisor stores that information in AXCS
Database.

Input
parameters

axs:SupervisorInputData complex type formed by sequence of:
 additionalData type="xsd:string"

axs:SupervisorInputData extends axs:ActionLog. axs:ActionLog is a complex type f formed
by sequence of:

AXCID type="xsd:string"
AXCSID type="xsd:string"
AXDID type="xsd:string"
AXDOM type="xsd:string"
AXLID type="xsd:string"
AXOID type="xsd:string"
AXTID type="xsd:string"
AXUID type="xsd:string"
AXWID type="xsd:string"
estimatedHwFingerprint type="xsd:string"
executionTimestamp type="xsd:string"
histVerSuccess type="xsd:string"
instantLastFPPA type="xsd:string"

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

49

location type="xsd:string"
logID type="xsd:string"
objectVersion type="xsd:string"
operationDetailsID type="xsd:string"
operationID type="xsd:string"
ownerName type="xsd:string"
registrationTimestamp type="xsd:string"

Output
parameters

StoreSIDReturn of type="xsd:int", which indicates the result of this request, according to the
following numeration:

0: ok
-1: SupervisorInputData has some non-nillable null fields
-2: operationID should be set to: "PMS SupervisorInputData" or "AXCV
SupervisorInputData"
-3: error in AXSupervisor when communicating with AXCS accounting database

AXS Library and Web Service

Method storeListActionLog
Description This method is used by AXCV to store through Supervisor a list of Action Logs. When a user

has performed some off-line actions, if PMS Client gets connection to the system, it calls
verify method, which reaches AXCV through PMS Server in order to resynchronize the
actions that are stored in the local cache.

Input
parameters

Array of axs:ActionLog, which is a complex type previously defined.

Output
parameters

type="xsd:int" storeListActionLogReturn, which indicates the result of this request,
according to the following numeration:

0: ActionLog(s) has been stored: it includes the case of empty list
-1: ActionLog(s) has been stored: tool should have been already blocked
-2: ActionLog(s) has been stored: tool operation history hash (LastFPPA) is not
consistent
-3: ActionLog(s) has not been stored: error in AXSupervisor when communicating
with AXCS database
-4: ActionLog(s) has not been stored: input actionLog(s) do not refer to the same
Axtid
-5: ActionLog(s) has not been stored: input actionLog(s) have some non-nillable null
fields

AXS Library and Web Service

Method getProtectionInfo
Description This method is used by PMS Server to retrieve the protection information related to an object

from the Objects Table of the AXCS Objects ID Database.
Input
parameters

The following fields of the Objects table in the AXCS Objects ID database:
type="xsd:string" AXOID, AXMEDIS object identifier
type="xsd:string" ObjectVersion, object version
type="xsd:string" ProtectionStamp, protection stamp

Output
parameters

type="xsd:string" ProtectionInfo, protection information associated to the object or a
"wrong_object" result if there is no ProtectionInfo for the requested object

AXS Library and Web Service

Method updateProtectionInfo
Description This method is used by PMS Server to insert or update the protection information related to an

AXMEDIS object in the Objects Table of the AXCS Objects ID Database.
Input The following fields of the Objects table in the AXCS Objects ID database:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

50

parameters type="xsd:string" AXOID, AXMEDIS object identifier
type="xsd:string" ObjectVersion, object version
type="xsd:string" ProtectionStamp, protection stamp
type="xsd:string" ProtectionInfo, protection information to be updated
type="xsd:int" Update, denotes if the protection info must be inserted (0) or updated (1)

Output
parameters

type="xsd:int" updateProtectionInfoReturn, which indicates the result of this request,
according to the following numeration:

0: OK
-1: there is not any entry in AXCS Objects database that matches the input information

 -2: error in AXSupervisor when updating ProtectionInfo in AXCS Objects database

5.8 Formal description of algorithm to calculate the history of Action Logs
fingerprint

This algorithm in used by AXS to calculate the history of Action Logs fingerprint (history hash or
lastFPPA). The same algorithm must be used in the client side so that the appropriate checks can be
performed, as explained in the next section.

FP1 = MD5 (AXOID1 | ObjectVersion1 | ProtectionStamp1 | AXUID1 | AXTID1 | OperationID1 |
ExecutionTimestamp1 | estimatedHWFingerprint1 | AXLID1 | AXDOM1)

FP2 = MD5 (FP1 | AXOID2 | ObjectVersion2 | ProtectionStamp2 | AXUID2 | AXTID2 | OperationID2 |
ExecutionTimestamp2 | estimatedHWFingerprint2 | AXLID2 | AXDOM2), where FP2 is the fingerprint to be
inserted in the secod Action Log of a user.

…

FPn = MD5 (FPn-1 | AXOIDn | ObjectVersionn | ProtectionStampn | AXUIDn | AXTIDn | OperationIDn |
ExecutionTimestampn | estimatedHWFingerprintn | AXLIDn | AXDOMn)

Where,

FP1 is the fingerprint to be inserted in the first Action Log of a user on a tool
FPn is the fingerprint to be inserted in the nth Action Log of a user on a tool
AXOIDn, ObjectVersionn, etc.denote the AXOID, ObjectVersion, etc. involved in the nth Action Log of a
user on a tool denotes the concatenation of strings

MD5 denotes the calculation of the MD5 hash which is finally encoded in Base64 and returned as a byte[].

5.9 Formal description of algorithm to check the consistency of the history of
Action Logs fingerprint

This algorithm in used by AXS to check if the fingerprint of the history of Action Logs is consistent
regarding the information that is stored in AXCS database and the list of action logs and lastFPPA received
in storeListActionLog method. It has been revised according to the adopted solution: 2) To have a single
LastFPPA common for all users in the same tool.

1. Get the last history hash (lastFPPA) of the certified tool from AXCS CerTools table of AXCS RegCert
database.

2a. If it is not present, set tmpLastFingerprint to “” (blank). Go to step 3.

2b. If it is present, and its value is not “invalid”, set tmpLastFingerprint to lastFPPA value. Go to step 3.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

51

2c. If it is present, and its value is “invalid”, block the certified tool (this case should not happen, as it should
have been already blocked). A SupervisorInputData is stored to explain why. End.

3. For each element of the ActionLog input array, beginning by element 0 until i-th, do step 4.

4. Calculate FPn as explained in the previous section, where FPn-1 will be tmpLastFingerprint value. Set
tmpLastFingerprint to FPn.

5. Compare tmpLastFingerprint obtained at the end of the whole iteration in step 4 to LastFPPA field
received as an input parameter (this parameter is set in the client side).

6a. If they match, the history is consistent. The received ActionLogs histVerSuccess field is set to “1” (true)
and they are stored in the AXCS Accounting database. LastFPPA is updated in CerTools table of AXCS
RegCert database to the value of tmpLastFingerprint. End.

6b. If they do not match, the history is not consistent. The received histVerSuccess field of all the received
action logs is set to “0” (false) and they are stored in the AXCS Accounting database. LastFPPA is updated
in CerTools table of AXCS RegCert database to the value “invalid”. The certified tool is blocked. A
SupervisorInputData is stored to explain why. End.

Note: The received list of Action Logs must be in a predefined order. That is, element 0 must be the oldest or
least recent performed action in the certified tool.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

52

6 AXCS Users Registration Web Service (DSI)

Module/Tool Profile
AXCS Users Registration Web Service

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation In refinement
Executable or Library/module
(Support)

Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported Anyone on which can be installed a servlet container and a JRE 1.5.0

(5.0). It has been tested using Tomcat 5.5, Axis 1.3, JRE 1.5.0_06
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs/axcs-
framework/src/org/axmedis/axcs/services

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/WebServices/axcs-registration

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

http://flauto.dsi.unifi.it:8080/axis/services/AXCSUserRegistrator

Test cases (present/absent) present
Test cases location https://cvs.axmedis.org/repos/WebServices/axcs-

registration/bin/org/axmedis/axcs/ws/registration/ClientRegistration.class
Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved None
Major pending requirements User data updates are not possible, status of the requestor is not checked,

communication is not using a protected channel

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

registration axcs-db-interface Protected (SSL)

Formats Used Shared with format name or reference to a

section
AXMEDIS prefixes All AXCS Web services See section 20
AXMEDIS ID All AXCS Web services See section 23

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

53

Protocol Used Shared with Protocol name or reference to a

section
AXCS user registration protocol AXCSUserRegistration (see section

36)

Used Database name
AXCSRegCert

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
UUID generation Jug (Doomdark)
MySQL JDBC driver Connector/J 3.1.10 GPL, but commercial licenses are

available

6.1 General Description of the Module
All AXMEDIS users must be registered by an AXCS. Several information collected by Distributors or the
AXMEDIS registration portal in the registration phase has to be transferred to an AXCS. The User
Registration Web Service is the AXCS module that receives this information and stores it in the AXCS
Registration and Certification Database. Once the user is registered in the system and the related data are
stored in the AXCS Registration and Certification Database, other AXCS modules can access this database
to retrieve user information to perform their work (please note that each date is considered in the format
yyyy-mm-ddThh:mm:ss, where “T” is used as separator between date and time and the time is assumed to be
referred to GMT+0).
The following figure shows which AXCS modules are involved in the user registration process:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

54

AXMEDIS
Reporting, WEB

Service

AXCS Accounting
Database

AXCS Database
Interface

AXMEDIS
Supervisor

AXMEDIS Certification
and Verification

AXMEDIS Users
Registration, WEB Service

AXCS Registration and
Certification Database

AXMEDIS Statistics, WEB
Service

AXMEDIS Objects
Registration, WEB

Service

AXCS Objects ID
Database

Distribution Server /
AXMEDIS registration

portal

AXCS
Manager

User
Interface

Supervisor

AXCS

It can be identified the following logical decomposition in the structure of the User Registration Web
Service:
− Request Manager: this component receives registration requests from Distributor or the AXMEDIS

registration portal and prepares them to be processed by the Data Manager. The communication channel
connecting Distributor and Request Manager is protected using a secure protocol (for instance SSL). It
implements the interface with requestors and manage the whole application.

− Data Manager: this component receives data from Request Manager and inserts it in the AXCS
Registration and Certification Database. If necessary elaborates and fits data before insert it in the
database. The database management is performed using the related API (AXCS-DB-INTERFACE API).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

55

6.2 Module Design in terms of Classes
The logic at the base of the registration mechanism has been subdivided in some classes in order to separate
concerns and to make it easier to reuse some functionalities in other modules. The following figure shows
the class diagram of the AXCS User Registration web service (the name of the packages have been truncated
to keep the figure clear):

6.3 User interface description
No user interface is available.

6.4 Technical and Installation information
Since the AXCS Users Registration is a web service, it has to be deployed on the chosen platform (ie
Tomcat/AXIS, Tomcat/JWSDP, SAS, etc).

References to other major
components needed

Axcs-db-interface, AXCSRegCert database

Problems not solved NONE
Configuration and execution
context

DEPLOY PROCEDURE:
1. Use the AdminClient utility that comes with Axis distribution

to deploy this web services with the deploy_regs.wsdd file
supplied.

2. You need also to create a directory called "axcs" (lower case).
Place this directory in one of the following location
(depending on the OS):

WINDOWS: C:\axcs

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

56

*NIX: /axcs

3. In the axcs directory create a new text file named "axcsdb.ini"
(lower case) in which you have to specify location of the
AXCS databases and authentication data to access these
databases.
The file has to be written in the following format.

AXCSAccounting =
jdbc:mysql://<location_of_AXCSAccouning_db>/AXCSAcco
unting
AXCSRegCert =
jdbc:mysql://<location_of_AXCSRegCert_db>/AXCSRegCer
t
AXCSObjectsID =
jdbc:mysql://<location_of_AXCSObjectsID_db>/AXCSObjec
tsID

AXCSDbUser = <user_name>
AXCSDbPassword = <password>

[dbLog = <log_file_name_with_path>]

The last line is optional. It lets you specify a logging file in
which errors can be written during execution. This file can be
placed anywhere you like, but the complete path has to be
specified, escaping backslash characters (escape character is a
backslash itself). If the last line is not supplied, no log will be
created.
All data can be specified in any order and white spaces do not
matter.
Please note that the autentication data have to be the same for
all the three databases.

For instance, if the databases would be hosted on a machine
called "MyHost", autentication data would be username:
"User" and password: "Pw" and logging file would be
"C:\axcs\log_file.txt", the file would appear something similar
to:

AXCSAccounting = jdbc:mysql://MyHost/AXCSAccounting
AXCSRegCert = jdbc:mysql://MyHost/AXCSRegCert
AXCSObjectsID = jdbc:mysql://MyHost/AXCSObjectsID

AXCSDbUser = User
AXCSDbPassword = Pw

dbLog = C:\\axcs\\log_file.txt

UNDEPLOY PROCEDURE
Use the AdminClient utility that comes with Axis distribution to
undeploy this web services with the undeploy_regs.wsdd file supplied.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

57

Platform used in development:Tomcat 5.5 / Axis 1.3, JRE 5.0

6.5 Draft User Manual
Since the AXCS User Registration is a web service, the public methods it provides should be called using a
web service client application. The web service client should call the needed method giving the necessary
input parameters and receiving the results. The web service client applications should be implement to use
the “Document” style and “Literal“ use.
The requestor calls the “registration” method, providing his user name and password and the user data he is
requesting registration for. If his credentials are correct, he obtains the access to the system and the sent user
data are checked and stored in the appropriate database tables. At the end the user is registered in the system.
Note that the requestor can be a distributor (which is a granting subject for the user) or the AXMEDIS Portal
(in this case the user has no granting subject).

6.6 Examples of usage
A simple Java client application is provided as example of usage. It is available at
https://cvs.axmedis.org/repos/WebServices/axcs-
registration/source/org/axmedis/axcs/ws/registration/ClientRegistration.java

6.7 Integration and compilation issues
Since the AXCS Users Registration is a web service, it should work on every supported platform. It has been
developed and tested with Tomcat 5.5 with AXIS 1.3 and Java 5. Interoperability is granted by the respect of
the specification included in the related WSDL, which is compliant with the WS-I Basic Profile. This has
been achieved realising the web service in “Document” style and “Literal” use.
To deploy the web service it is enough to place Jug and Connector/J libraries in the “lib” directory included
in the Axis subtree.

6.8 Configuration Parameters
Config

parameter
Possible values

NONE NONE

6.9 Errors reported and that may occur
Error code Description and rationales

1 The required operation failed. More details are provided in the error message returned
by the service

6.10 Formal description of algorithm User Registration
The RequestManager class implements the following functions:
− Accepting authentication data, needful to verify Distributors credentials and make them access the

system
− Accepting Users registration data and preparing them to be transferred to Data Manager
− Reply to requestor with the most appropriate message (on the basis of Data Manager responses)

The DataManager class implements the following functions:
− Receiving verification requests and data from the Request Manager

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

58

− Accessing the database (using the AXCS-DB-INTERFACE API) to verify Distributors Credential
information

− Accessing the database to store received Users registration data
− Reply to Request Manager according to the performed actions

RequestManager
Method registration
Description It is the only public method of this web service. It collects Distributor credentials needful to

access the system and uses the verifyLogin() (a DataManager method) to verify requestor
credentials. It collects also registration data (regInfo) provided by the requesting distributor
and uses the other methods (described below) to insert them in database and to provide the
result to the requesting distributor.

Input
parameters

UserRegistrationInfo regInfo – a data structure containing the nickname and password of the
requesting distributor and a nested data structure containing the data to be inserted/updated

Output
parameters

RegistrationResult – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “definitiveUID”: this field returns the definitive AXUID in case of success, a null

value otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise

RequestManager
Method dataPrepare
Description It prepares the User registration data received from the Distributor by the web service to be

stored in DB. It distinguishes between Users and B2B Users (like Creators, Distributors and so
on) on the basis of received data. It also uses an UUID generator to get the definitive ID
(AXUID) to be inserted in the database and to be sent to requestor

Input
parameters

UserDataType data – the data to be prepared

Output
parameters

UserDataType – data prepared to be stored in the database

RequestManager

Method encryptComm
Description It encrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – encrypted data

RequestManager

Method decryptComm
Description It decrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – decrypted data

DataManager

Method verifyLogin
Description It accesses AXCS Registration and Certification Database to verify if the couple NickName

and Password is the same provided through the registration process. It also retrieves the user

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

59

public key stored in the DB.
If this method returns null it means the user is not trusted (is not present in the database
pertinent table).
Note: the password is encrypted both the one received as input from the method and the one
stored in DB. The equality check is made between encrypted strings

Input
parameters

String nickName – the nickname of a business user entitled to register new users or to update
users data
String password – the password of a business user entitled to register new users or to update
users data

Output
parameters

UserLoginData – a data structure containing the AXUID and the public key of the user
requesting the registration/update operation in case of success, a null value otherwise

DataManager

Method storeData
Description Stores received data in the AXCS Registration and Certification Database
Input
parameters

Boolean replace – it specifies whether to perform an insert or an update
UserDataType userData – a data structure containing data to be rgistered/updated

Output
parameters

Boolean – true if the operation succeeds, false otherwise

Note that two encrypting/decrypting methods (DecryptComm, EncryptComm) have been introduced to
enforce the encrypting robustness. In fact we can suppose to use an encrypted protocol (like SSL), but we
can enforce encryption robustness (and therefore security) encrypting ourselves data too using a
Public/Private key paradigm. You have to remember that the Distributor public key is stored in AXCS
Registration and Certification Database.

In order to generate a user ID that is unique in the whole system, it has been considered to use a standard
algorithm: the UUID generator algorithm.
UUID is an identifier that is unique across both space and time, with respect to the space of all UUIDs. A
UUID can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably
identifying very persistent objects across a network. The generation of UUIDs does not require a registration
authority for each single identifier. Instead, it requires a unique value over space for each UUID generator.
This spatially unique value is specified as an IEEE 802 address, which is usually already applied to network-
connected systems. This 48-bit address can be assigned based on an address block obtained through the IEEE
registration authority. This UUID specification assumes the availability of an IEEE 802 address. The UUID
consists of a record of 16 octets and must not contain padding between fields. The total size is 128 bits.

More information about UUID generation can be found at the following web address:

http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

60

7 AXCS Objects Registration Web Service (DSI)

Module/Tool Profile
AXCS Objects Registration Web Service

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation In refinement
Executable or Library/module
(Support)

Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported Anyone on which can be installed a servlet container and a JRE 1.5.0

(5.0). It has been tested using Tomcat 5.5, Axis 1.3, JRE 1.5.0_06
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs/axcs-
framework/src/org/axmedis/axcs/services

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/WebServices/axcs-oid-generator

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

http://flauto.dsi.unifi.it:8080/axis/services/AXCSObjectRegistrator

Test cases (present/absent) present
Test cases location https://cvs.axmedis.org/repos/WebServices/axcs-oid-

generator/bin/web_service/original_code/org/axmedis/axcs/ws/
objectsmetadatamanager/ClientRegistrator.class

Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved No
Major pending requirements Object data updates are not possible, registration of metadata about

composed objects is not possible, status of the requestor is not checked,
object hash is not signed, communication is not using a protected
channel

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

generateAxoid axcs-db-interface Protected (SSL)
registration

Formats Used Shared with format name or reference to a

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

61

section
AXMEDIS prefixes All AXCS Web Services See section 20
AXMEDIS ID All AXCS Web services See section 23

Protocol Used Shared with Protocol name or reference to a

section
AXCS object registration
protocol

 AXCSObjectRegistration (see
section 37)

Used Database name
AXCSRegCert
AXCSObjectsID

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
UUID generation Jug (Doomdark)
MySQL JDBC driver Connector/J 3.1.10 GPL, but commercial licenses are

available

7.1 General Description of the Module
All AXMEDIS objects must be registered by an AXCS.
It is important to distinguish between object registration and object insertion in the AXMEDIS database
(AXDB). Object registration is about insertion of metadata about the object in the AXCSObjectsID database
of an AXCS: no content is inserted in that database, the object is never transferred. Object insertion in the
AXDB is about transferring the content (i.e. the object itself) to insert it in the AXDB, which is not part of
any AXCS.
An object can be inserted in the AXDB only after it has been registered, i.e. only after AXMEDIS system
knows about it. The registration of metadata (in the following named shortly “registration of the object” for
sake of simplicity) is a preliminary operation, required to perform the insertion of the content in the AXDB,
since the registration assigns a unique identifier to that object and the identifier is needed to do the content
insertion.

The registration of an object is a process composed by two different phases: the assignment of an identifier
(called AXOID) to the object and the real insertion of metadata in the AXCSObjectsID database (please note
that each date is considered in the format yyyy-mm-ddThh:mm:ss, where “T” is used as separator between

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

62

date and time and the time is assumed to be referred to GMT+0). Upon insertion, object’s hash (i.e. the hash
of the block composed by the resource plus the metadata) is signed by the AXCS and returned; in this way it
is always guaranteed that the metadata associated to a resource are those effectively used during registration.
These tow phases are completely separated, so that an ID can be assigned to an object some time before it
gets registered. This allows content creators to create a new object, obtain an ID for it and then continue to
work with the object as long as they desire. This also allows the creation of composed objects; in fact when a
composed object is to be registered, all the composing objects must already have unique IDs since their
registration is required to happen before the registration of the composed one.

The Object Registration Web Service is the AXCS module that is put in charge for both assigning new
AXOIDs and registering object metadata, inserting them in the AXCS Objects ID Database. Finally, the
AXCS signs and returns the object hash
The following figure shows which AXCS modules are involved in the object registration process:

AXMEDIS
Reporting, WEB

Service

AXCS Accounting
Database

AXCS Database
Interface

AXMEDIS
Supervisor

AXMEDIS Certification
and Verification

AXMEDIS Users
Registration, WEB Service

AXCS Registration and
Certification DatabasePMS

AXMEDIS Statistics, WEB
Service

AXMEDIS Objects
Registration, WEB

Service

AXCS Objects ID
Database

AXCS
Manager

User
Interface

Supervisor

AXCS

Please note that the AXCS Registration and Certification database is involved even if it is not directly related
to the object registration task; it is only used to verify the credentials of the user requesting the new
registration or the update of data already present in the database.

It can be identified the following logical decomposition in the structure of the Object Registration Web
Service:
− Request Manager: this component receives requests from creators through the PMS and prepares them

to be processed by the Data Manager. The communication channel connecting PMS and Request
Manager is protected using a secure protocol (for instance SSL). It implements the interface with
requestors and manage the whole application.

− Data Manager: this component receives data from Request Manager and inserts it in the AXCS Objects
ID Database. If necessary elaborates and fits data before insert it in the database. The database
management is performed using the related API (AXCS-DB-INTERFACE API).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

63

7.2 Module Design in terms of Classes
The logic at the base of the registration mechanism has been subdivided in some classes in order to separate
concerns and to make it easier to reuse some functionalities in other modules. The following figure shows
the class diagram of the AXCS Object registration web service (the name of the packages have been
truncated to keep the figure clear):

7.3 User interface description
No user interface is available.

7.4 Technical and Installation information
Since the AXCS Users Registration is a web service, it has to be deployed on the chosen platform (ie
Tomcat/AXIS, Tomcat/JWSDP, SAS, etc).

References to other major Axcs-db-interface, AXCSRegCert database, AXCSObjectsID database

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

64

components needed
Problems not solved NONE
Configuration and execution
context

DEPLOY PROCEDURE:
1. Use the AdminClient utility that comes with Axis distribution

to deploy this web services with the deploy_regs.wsdd file
supplied.

2. You need also to create a directory called "axcs" (lower case).
Place this directory in one of the following location
(depending on the OS):

WINDOWS: C:\axcs
*NIX: /axcs

3. In the axcs directory create a new text file named "axcsdb.ini"
(lower case) in which you have to specify location of the
AXCS databases and authentication data to access these
databases.
The file has to be written in the following format.

AXCSAccounting =
jdbc:mysql://<location_of_AXCSAccouning_db>/AXCSAcco
unting
AXCSRegCert =
jdbc:mysql://<location_of_AXCSRegCert_db>/AXCSRegCer
t
AXCSObjectsID =
jdbc:mysql://<location_of_AXCSObjectsID_db>/AXCSObjec
tsID

AXCSDbUser = <user_name>
AXCSDbPassword = <password>

[dbLog = <log_file_name_with_path>]

The last line is optional. It lets you specify a logging file in
which errors can be written during execution. This file can be
placed anywhere you like, but the complete path has to be
specified, escaping backslash characters (escape character is a
backslash itself). If the last line is not supplied, no log will be
created.
All data can be specified in any order and white spaces do not
matter.
Please note that the autentication data have to be the same for
all the three databases.

For instance, if the databases would be hosted on a machine
called "MyHost", autentication data would be username:
"User" and password: "Pw" and logging file would be
"C:\axcs\log_file.txt", the file would appear something similar
to:

AXCSAccounting = jdbc:mysql://MyHost/AXCSAccounting
AXCSRegCert = jdbc:mysql://MyHost/AXCSRegCert
AXCSObjectsID = jdbc:mysql://MyHost/AXCSObjectsID

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

65

AXCSDbUser = User
AXCSDbPassword = Pw

dbLog = C:\\axcs\\log_file.txt

UNDEPLOY PROCEDURE
Use the AdminClient utility that comes with Axis distribution to
undeploy this web services with the undeploy_regs.wsdd file supplied.

Platform used in development:Tomcat 5.5 / Axis 1.3, JRE 5.0

7.5 Draft User Manual
Since the AXCS User Registration is a web service, the public methods it provides should be called using a
web service client application. The web service client should call the needed method giving the necessary
input parameters and receiving the results. The web service client applications should be implement to use
the “Document” style and “Literal“ use.
The requestor calls the “generateAxoid” method, providing his user name and password and a temporary id
(used to identify the object inside his factory). If his credentials are correct, he obtains the access to the
system and a new AXOID is generated and returned back.
When the creators thinks the object is ready for registration, he calls the “registration” method providing his
user name and password, the object metadata he is requesting registration for and the object’s hash. If his
credentials are correct, he obtains the access to the system, the sent object metadata are checked and stored in
the appropriate database tables and the hash is signed and returned. At the end the object is registered in the
system.

7.6 Examples of usage
A simple Java client application is provided as example of usage. It is available at
https://cvs.axmedis.org/repos/WebServices/axcs-oid-
generator/source/client_stubs/original_code/org/axmedis/axcs/ws/objectsmetadatamanager/ClientRegistrator.
java

7.7 Integration and compilation issues
Since the AXCS Objects Registration is a web service, it should work on every supported platform. It has
been developed and tested with Tomcat 5.5 with AXIS 1.3 and Java 5. Interoperability is granted by the
respect of the specification included in the related WSDL, which is compliant with the WS-I Basic Profile.
This has been achieved realising the web service in “Document” style and “Literal” use.
To deploy the web service it is enough to place Jug and Connector/J libraries in the “lib” directory included
in the Axis subtree.

7.8 Configuration Parameters
Config

parameter
Possible values

NONE NONE

7.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

66

1 The required operation failed. More details are provided in the error message returned
by the service

7.10 Formal description of algorithm Object Registration
The Request Manager class implements the following functions:
− Accepting authentication data, needful to verify Creators credentials and make them access the system
− Accepting Objects registration data and preparing them to be transferred to Data Manager
− Reply to requestor with the most appropriate message (on the basis of Data Manager responses)

The Data Manager class implements the following functions:
− Receiving verification requests and data from the Request Manager
− Accessing the database (using the AXCS-DB-INTERFACE API) to verify Distributors Credential

information
− Accessing the database to store received Objects registration data
− Reply to Request Manager according to the performed actions

RequestManager
Method generateAxoid
Description generates a definitive AXOID to be used in the registration process
Input
parameters

GenerationInfo genInfo – a data structure containing the nickname and password of the
requesting creator and a temporary identifier

Output
parameters

GenOutputType - The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “axoid”: this field returns the definitive AXOID in case of success, a null value

otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise

RequestManager
Method registration
Description It collects requestor credentials needful to access the system and uses the verifyLogin() (a

DataManager method) to verify requestor credentials. It also collects object metadata (regInfo)
provided by the requestor and uses the AXCS-DB-INTERFACE API methods provided by
AXCS Database Interface to insert received information into database and to provide the result
to the requestor.

Input
parameters

RegistrationInfo regInfo – a data structure containing the nickname and password of the
requesting creator and a nested data structure containing the data to be inserted/updated

Output
parameters

RegOutputType – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “signature”: this field returns the object’s hash signed by the AXCS in case of success,

a null value otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise

RequestManager
Method dataPrepare
Description It prepares the Object registration data received from the Creator by the web service to be

stored in DB. It uses an UUID generator to get the definitiveID (AXOID) to be inserted in the
database and to be sent to requestor

Input
parameters

ObjectDataType data – the data to be prepared

Output ObjectDataType – data prepared to be stored in the database

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

67

parameters

RequestManager
Method encryptComm
Description It encrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – encrypted data

RequestManager

Method decryptComm
Description It decrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – decrypted data

DataManager

Method verifyLogin
Description It accesses AXCS Registration and Certification Database to verify if the couple NickName

and Password is the same provided through the registration process. It also retrieves the user
public key stored in the DB.
If this method returns null it means the user is not trusted (is not present in the database
pertinent table).
Note: the password is encrypted both the one received as input from the method and the one
stored in DB. The equality check is made between encrypted strings

Input
parameters

String nickName – the nickname of a business user entitled to register new users or to update
users data
String password – the password of a business user entitled to register new users or to update
users data

Output
parameters

UserLoginData – a data structure containing the AXUID and the public key of the user
requesting the registration/update operation in case of success, a null value otherwise

DataManager

Method saveObjectData
Description Stores received data in the AXCS Object ID Database
Input
parameters

Boolean replace – it specifies whether to perform an insert or an update
ObjectDataType objData– the password of a business user entitled to register new users or to
update users data

Output
parameters

String – the axoid of the object whose metadata have been inserted/updated in case of success,
a null values otherwise

Note that two encrypting/decrypting methods (DecryptComm, EncryptComm) have been introduced to
enforce the encrypting robustness. In fact we can suppose to use an encrypted protocol (like SSL), but we
can enforce encryption robustness (and therefore security) encrypting ourselves data too using a
Public/Private key paradigm. You have to remember that the Distributor public key is stored in AXCS
Registration and Certification Database.

In order to generate an object ID that is unique in the whole system, it has been considered to use a standard
algorithm: the UUID generator algorithm.
UUID is an identifier that is unique across both space and time, with respect to the space of all UUIDs. A
UUID can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably
identifying very persistent objects across a network. The generation of UUIDs does not require a registration

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

68

authority for each single identifier. Instead, it requires a unique value over space for each UUID generator.
This spatially unique value is specified as an IEEE 802 address, which is usually already applied to network-
connected systems. This 48-bit address can be assigned based on an address block obtained through the IEEE
registration authority. This UUID specification assumes the availability of an IEEE 802 address. The UUID
consists of a record of 16 octets and must not contain padding between fields. The total size is 128 bits.

More information about UUID generation can be found at the following web address:

http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

69

8 AXCS Reporting Web Service (DSI)

Module/Tool Profile
AXCS Reporting Web Service

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation In refinement
Executable or Library/module
(Support)

Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported Anyone on which can be installed a servlet container and a JRE 1.5.0

(5.0). It has been tested using Tomcat 5.5, Axis 1.3, JRE 1.5.0_06
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs/axcs-
framework/src/org/axmedis/axcs/services

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/WebServices/axcs-reporting

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

http://flauto.dsi.unifi.it:8080/axis/services/AXCSReporting

Test cases (present/absent) present
Test cases location https://cvs.axmedis.org/repos/WebServices/axcs-

reporting/bin/org/axmedis/axcs/ws/reporting/ClientReportingWS.class
Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved None
Major pending requirements Status of the requestor is not checked, communication is not using a

protected channel

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

acceptRequest axcs-db-interface Protected (SSL)

Formats Used Shared with format name or reference to a

section
AXMEDIS prefixes All AXCS Web services See section 20
AXMEDIS ID All AXCS Web services See section 23

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

70

Protocol Used Shared with Protocol name or reference to a

section
AXCS reporting protocol AXCSReporting (see section 38)

Used Database name
AXCSRegCert
AXCSAccounting

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
MySQL JDBC driver Connector/J 3.1.10 GPL, but commercial licenses are

available

8.1 General Description of the Module
The object usage accounting activity is a fundamental asset in the AXMEDIS system. Distributors, Creators,
Integrators, Collecting Societies have to know all the operations performed over their pertinent objects to
receive the correctness fee from the object users. This is a vital activity if we want to guarantee the owner
rights are respected. All the accounting needful information are stored in AXCS Accounting Database. The
AXMEDIS Reporting unit is the high-level interface to this database that provides a sequence of services
needful to retrieve information in a correct way, with no errors and with respect to the users privacy and the
companies/societies confidential data; it reports only data related to usages of objects pertinent to the
requestor (please note that each date is considered in the format yyyy-mm-ddThh:mm:ss, where “T” is used
as separator between date and time and the time is assumed to be referred to GMT+0).
The AXMEDIS Reporting Web Services deals with CAMART (Core accounting Manager and Reporting
Tool). CAMART is a sort of client application, used by requestors, that queries AXMEDIS Reporting Web
Services to retrieve all the needful information. The CAMART can be considered as the client part of the
reporting system and the AXMEDIS Reporting Web Service can be considered as the server part.
The following figure shows which AXCS modules are involved in the reporting process:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

71

AXMEDIS
Reporting, WEB

Service

AXCS Accounting
Database

AXCS Database
Interface

AXMEDIS
Supervisor

AXMEDIS Certification
and Verification

AXMEDIS Users
Registration, WEB Service

AXCS Registration and
Certification Database

CAMART

AXMEDIS Statistics, WEB
Service

AXMEDIS Objects
Registration, WEB

Service

AXCS Objects ID
Database

AXCS
Manager

User
Interface

Supervisor

AXCS

Please note that the AXCS Registration and Certification database is involved even if it is not directly related
to the object registration task; it is only used to verify the credentials of the user requesting the new
registration or the update of data already present in the database.

It can be identified the following logical decomposition in the structure of the Reporting Web Service:
− Request Manager: this component receives reporting requests from CAMART and prepares them to be

processed by the Data Manager. The communication channel connecting CAMART and Request
Manager is protected using a secure protocol (for instance SSL). It implements the interface with
requestors and manage the whole application.

− Data Manager: this component receives data from Request Manager and retrieves requested data from
the AXCS Accounting Database. If necessary elaborates and fits retrieved data before returning them
back. The database management is performed using the related API (AXCS-DB-INTERFACE API).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

72

8.1.1 Action log received by AXCS
This section describes the data received by the AXCS when an event report is generated; these are also the
data returned by the AXCS Reporting Web Service.

The information received by the AXCS could be:
• An ActionLog entity or a list of ActionLog entities
• A SupervisorInputData entity

The ActionLog entity has the following elements:

• LogID : Registration ID in Action-Log Registry. Identifies an ActionLog.
• AXOID: The action log references to a certain Axmedis Object, that it is identified by its ID.
• ObjectVersion: Reference to an Axmedis Object version. The action log references to a certain version

of the object related.
• ProtectionStamp: Indicates the way to protect the related object.
• AXWID: Indicates the Work ID. This element is not necessary.
• AXDOM: Indicates the User Domain, if the user has a domain related.
• AXUID: The action log references to a certain User, that it is identified by its ID.
• AXDID: Indicates the pertinent Object Distributor ID.
• AXCID: Indicates the pertinent Object Creator ID.
• OwnerName: Indicates the pertinent Object Owner.
• AXTID: The action log references to a certain certified tool, that it is identified by its ID.
• AXLID: Indicates the pertinent License ID.
• Location: Indicates the nation.
• OperationDetailsIDPk : Reference to an operation details.
• OperationIDPk: Reference to an operaction.
• RegistrationTimestamp: Time of the operation Registration.
• ExecutionTimestamp: Time of the operation Execution.
• InstantLastFPPA: Last Fingerprint of Performed Actions.
• EstimatedHWFingerprint: Indicates the estimated HW Fingerprint of the related terminal.

8.2 Module Design in terms of Classes
The logic at the base of the reporting mechanism has been subdivided in some classes in order to separate
concerns and to make it easier to reuse some functionalities in other modules. The following figure shows
the class diagram of the AXCS Reporting web service (the name of the packages have been truncated to keep
the figure clear):

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

73

8.3 User interface description
No user interface is available.

8.4 Technical and Installation information
Since the AXCS Users Registration is a web service, it has to be deployed on the chosen platform (ie
Tomcat/AXIS, Tomcat/JWSDP, SAS, etc).

References to other major
components needed

Axcs-db-interface, AXCSRegCert database, AXCSAccounting
database

Problems not solved NONE
Configuration and execution
context

DEPLOY PROCEDURE:
1. Use the AdminClient utility that comes with Axis distribution

to deploy this web services with the deploy_regs.wsdd file
supplied.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

74

2. You need also to create a directory called "axcs" (lower case).
Place this directory in one of the following location
(depending on the OS):

WINDOWS: C:\axcs
*NIX: /axcs

3. In the axcs directory create a new text file named "axcsdb.ini"
(lower case) in which you have to specify location of the
AXCS databases and authentication data to access these
databases.
The file has to be written in the following format.

AXCSAccounting =
jdbc:mysql://<location_of_AXCSAccouning_db>/AXCSAcco
unting
AXCSRegCert =
jdbc:mysql://<location_of_AXCSRegCert_db>/AXCSRegCer
t
AXCSObjectsID =
jdbc:mysql://<location_of_AXCSObjectsID_db>/AXCSObjec
tsID

AXCSDbUser = <user_name>
AXCSDbPassword = <password>

[dbLog = <log_file_name_with_path>]

The last line is optional. It lets you specify a logging file in
which errors can be written during execution. This file can be
placed anywhere you like, but the complete path has to be
specified, escaping backslash characters (escape character is a
backslash itself). If the last line is not supplied, no log will be
created.
All data can be specified in any order and white spaces do not
matter.
Please note that the autentication data have to be the same for
all the three databases.

For instance, if the databases would be hosted on a machine
called "MyHost", autentication data would be username:
"User" and password: "Pw" and logging file would be
"C:\axcs\log_file.txt", the file would appear something similar
to:

AXCSAccounting = jdbc:mysql://MyHost/AXCSAccounting
AXCSRegCert = jdbc:mysql://MyHost/AXCSRegCert
AXCSObjectsID = jdbc:mysql://MyHost/AXCSObjectsID

AXCSDbUser = User
AXCSDbPassword = Pw

dbLog = C:\\axcs\\log_file.txt

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

75

UNDEPLOY PROCEDURE
Use the AdminClient utility that comes with Axis distribution to
undeploy this web services with the undeploy_regs.wsdd file supplied.

Platform used in development:Tomcat 5.5 / Axis 1.3, JRE 5.0

8.5 Draft User Manual
Since the AXCS User Registration is a web service, the public methods it provides should be called using a
web service client application. The web service client should call the needed method giving the necessary
input parameters and receiving the results. The web service client applications should be implement to use
the “Document” style and “Literal“ use.
The requestor calls the “acceptRequest” method, providing his user name and password and the criteria to be
used to filter all the action logs (only those relative to him), e.g. a couple of dates specifying the period of
interest. If his credentials are correct, he obtains the access to the system and the required data are retrieved
from the appropriate database tables.
As for the criteria that can be used to filter data, they are to be expressed in standard SQL syntax as a where
clause (without the WHERE keyword) using only the following operators:

equal (=), not equal (<>), logical and (AND), logical or (OR)

to filter with respect to these fields: any identifier (AXUID, AXDID, AXOID, ecc.), Location, Operation,
RegistrationTimeStamp, ExecutionTimeStamp
In case that a filtering with respect to dates is needed (i.e. with respect to RegistrationTimeStamp and/or
ExecutionTimeStamp), the following additional operators are allowed:

greater than (>), greater than or equal (>=), less than (<), less than or equal (<=).
Eventually, an empty caluse can be used if no filtering is desired.

8.6 Examples of usage
A simple Java client application is provided as example of usage. It is available at
https://cvs.axmedis.org/repos/WebServices/axcs-
reporting/source/org/axmedis/axcs/ws/reporting/ClientReportingWS.java

8.7 Integration and compilation issues
Since the AXCS Reporting is a web service, it should work on every supported platform. It has been
developed and tested with Tomcat 5.5 with AXIS 1.3 and Java 5. Interoperability is granted by the respect of
the specification included in the related WSDL, which is compliant with the WS-I Basic Profile. This has
been achieved realising the web service in “Document” style and “Literal” use.
To deploy the web service it is enough to place Connector/J library in the “lib” directory included in the Axis
subtree.

8.8 Configuration Parameters
Config

parameter
Possible values

NONE NONE

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

76

8.9 Errors reported and that may occur
Error code Description and rationales

1 The required operation failed. More details are provided in the error message returned
by the service

8.10 Formal description of algorithm Reporting
The Reporting Request Manager class implements the following functions:
− Accepting authentication data, needful to verify CAMART credentials and make it access the system
− Accepting reporting requests and preparing them to be transferred to Reporting Data Manager
− Reply to requestor with the most appropriate data or error messages (on the basis of Reporting Data

Manager responses)

The Reporting Data Manager class implements the following functions:
− Receiving requests and data from the Reporting Request Manager
− Accessing the database (using the AXCS-DB-INTERFACE API) to verify CAMART Users credentials

information
− Accessing the database to retrieve data on the basis of CAMART Users requests (received from

Reporting Request Manager) and CAMART Users profile (note that requestors can access only pertinent
data)

− Reply to Reporting Request Manager according to the performed actions and obtained results

RequestManager
Method acceptRequest
Description It is the only public method of this web service. It collects CAMART credentials needful to

access the system and uses the “verifyLogin” (a DataManager method) to verify requestor
credentials. It also collects the CAMART query (in a field called CAMARTQuery).
CAMARTQuery contains criteria to be used to filter data returned.
This method uses private methods described below to perform its tasks and to answer to
requestor.

Input
parameters

ReportingInfo repInfo – a data structure containing the nickname and password of the
requesting distributor and a CAMARTQuery

Output
parameters

ReportingResponse – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “logDataTypes”: this field returns the requested information as a set of structured data

in case of success, a null value otherwise
“errorMessage”: this filed returns the error message in case of failure, a null value otherwise

RequestManager

Method createQuery
Description It prepares a suitable query (adapting it at the specific database engine used) to retrieve

requested data from the database
Input
parameters

String b2bUserID – AXUID of the user requesting to retrieve data
String camartQuery – criteria to be used to filter the requested data

Output
parameters

String – a query to be performed to retrieve the requested data

RequestManager

Method requestElaborate
Description “It elaborates CAMART requests. The CAMARTQuery field is managed (with the

“createQuery” method) to extract the needful data to perform the query on database. The query
is performed by “queryExecuter”, a DataManager method. It also elaborates query results to
be sent to the requesting CAMART

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

77

Input
parameters

String b2bUserID – AXUID of the user requesting to retrieve data
String camartQuery – criteria to be used to filter the requested data

Output
parameters

ReportingResponse – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “logDataTypes”: this field returns the requested information as a set of structured data

in case of success, a null value otherwise
“errorMessage”: this filed returns the error message in case of failure, a null value otherwise

RequestManager

Method encryptComm
Description It encrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – encrypted data

RequestManager

Method decryptComm
Description It decrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – decrypted data

DataManager

Method verifyLogin
Description It accesses AXCS Registration and Certification Database to verify if the couple NickName

and Password is the same provided through the registration process. It also retrieves the user
public key stored in the DB.
If this method returns null it means the user is not trusted (is not present in the database
pertinent table).
Note: the password is encrypted both the one received as input from the method and the one
stored in DB. The equality check is made between encrypted strings

Input
parameters

String nickName – the nickname of a business user entitled to register new users or to update
users data
String password – the password of a business user entitled to register new users or to update
users data

Output
parameters

UserLoginData – a data structure containing the AXUID and the public key of the user
requesting the registration/update operation in case of success, a null value otherwise

DataManager

Method queryExecuter
Description It performs the query on the basis of data elaborated by “acceptRequest”, a method of the

RequestManager
Input
parameters

String queryConstraints – the cquery to be used to retrieve the requested data

Output
parameters

ResultSet – a set containing requested datain case of success, an empty set otherwise

Note that two encrypting/decrypting methods (DecryptComm, EncryptComm) have been introduced to
enforce the encrypting robustness. In fact we can suppose to use an encrypted protocol (like SSL), but we
can enforce encryption robustness (and therefore security) encrypting ourselves data too using a
Public/Private key paradigm. You have to remember that the Distributor public key is stored in AXCS
Registration and Certification Database.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

78

9 AXCS Statistics Web Service (DSI)

Module/Tool Profile
AXCS Statistics Web Service

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation In refinement
Executable or Library/module
(Support)

Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported Anyone on which can be installed a servlet container and a JRE 1.5.0

(5.0). It has been tested using Tomcat 5.5, Axis 1.3, JRE 1.5.0_06
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs/axcs-
framework/src/org/axmedis/axcs/services

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/WebServices/axcs-statistics

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

http://flauto.dsi.unifi.it:8080/axis/services/AXCSStatistics

Test cases (present/absent) present
Test cases location https://cvs.axmedis.org/repos/WebServices/axcs-

statistics/bin/org/axmedis/axcs/ws/statistics/ClientStatisticsWS.class
Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved None
Major pending requirements Status of the requestor is not checked, communication is not using a

protected channel

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

acceptRequest axcs-db-interface Protected (SSL)

Formats Used Shared with format name or reference to a

section
AXMEDIS prefixes All AXCS Web services See section 20
AXMEDIS ID All AXCS Web services See section 23

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

79

Protocol Used Shared with Protocol name or reference to a

section
AXCS statistics protocol AXCSStatistics (see section 39)

Used Database name
AXCSRegcert
AXCSAccounting

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
MySQL JDBC driver Connector/J 3.1.10 GPL, but commercial licenses are

available

9.1 General Description of the Module
In the AXMEDIS environment, statistics can represent an important asset for the whole system. A
Distributor, Creator, Integrator, etc. could be interested in knowing where, when and how an object is used:
this interest could be used for commercial and marketing purpose. Knowing usage, distribution and
integration statistics could be an important resource for an AXMEDIS subject to improve his business.
Therefore has been introduced a statistical tool called AXMEDIS Statistics Web Service which task is
retrieving anonymous statistical information from the AXCS Accounting Database. This tool can be queried
by all AXMEDIS subjects and produce anonymous statistics concerning objects (please note that each date is
considered in the format yyyy-mm-ddThh:mm:ss, where “T” is used as separator between date and time and
the time is assumed to be referred to GMT+0).
The AXMEDIS Statistics Analysis Tool deals with CAMART (Core accounting Manager and Reporting
Tool). CAMART is a sort of client application, used by requestors, that queries AXMEDIS Statistics
Analysis Tool to retrieve all the needful information. The CAMART can be consider the client part of the
Statistic Analysis system and the AXMEDIS Statistics Analysis Tool can be consider the server part.
The following figure shows which AXCS modules are involved in the user registration process:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

80

AXMEDIS
Reporting, WEB

Service

AXCS Accounting
Database

AXCS Database
Interface

AXMEDIS
Supervisor

AXMEDIS Certification
and Verification

AXMEDIS Users
Registration, WEB Service

AXCS Registration and
Certification Database

CAMART

AXMEDIS Statistics, WEB
Service

AXMEDIS Objects
Registration, WEB

Service

AXCS Objects ID
Database

AXCS
Manager

User
Interface

Supervisor

AXCS

Please note that the AXCS Registration and Certification database is involved even if it is not directly related
to the object registration task; it is only used to verify the credentials of the user requesting the new
registration or the update of data already present in the database.

It can be identified the following logical decomposition in the structure of the Statistics Web Service:
− Statistics Request Manager: this component receives requests from CAMART, and prepares them to be

processed by the Data Manager. The communication channel connecting CAMART and Statistics
Request Manager is protected using a secure protocol (for instance SSL). It implements the interface
with requestors and manage the whole application.

− Statistics Data Manager: this component receives data from Request Manager and retrieves requested
data from the AXCS Accounting Database. If necessary elaborates and fits retrieved data before
returning them back. The database management is performed using the related API (AXCS-DB-
INTERFACE API).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

81

9.1.1 Data returned by Statistics Web Service
Similarly to the Reporting web Service, the Statistics Web Service returns data about object usages. Anyway,
the difference is that this web service cannot give back only anonymous data. Therefore, data returned by it
are a subset of those described in section 8.1.1. Please refer to that section for more details, here is reported
only a list of data returned by this web service:

• AXOID
• ObjectVersion
• ProtectionStamp
• AXWID
• AXDOM
• AXDID
• AXCID
• OwnerName
• AXCSID
• Location
• OperationDetailsIDPk
• OperationIDPk
• RegistrationTimestamp
• ExecutionTimestamp

9.2 Module Design in terms of Classes
The logic at the base of the statistics mechanism has been subdivided in some classes in order to separate
concerns and to make it easier to reuse some functionalities in other modules. The following figure shows
the class diagram of the AXCS Reporting web service (the name of the packages have been truncated to keep
the figure clear):

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

82

9.3 User interface description
No user interface is available.

9.4 Technical and Installation information
Since the AXCS Users Registration is a web service, it has to be deployed on the chosen platform (e.g.
Tomcat/AXIS, Tomcat/JWSDP, SAS, etc).

References to other major
components needed

Axcs-db-interface, AXCSRegCert database, AXCSAccounting
database

Problems not solved NONE
Configuration and execution
context

DEPLOY PROCEDURE:
1. Use the AdminClient utility that comes with Axis distribution

to deploy this web services with the deploy_regs.wsdd file
supplied.

2. You need also to create a directory called "axcs" (lower case).
Place this directory in one of the following location
(depending on the OS):

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

83

WINDOWS: C:\axcs
*NIX: /axcs

3. In the axcs directory create a new text file named "axcsdb.ini"
(lower case) in which you have to specify location of the
AXCS databases and authentication data to access these
databases.
The file has to be written in the following format.

AXCSAccounting =
jdbc:mysql://<location_of_AXCSAccouning_db>/AXCSAcco
unting
AXCSRegCert =
jdbc:mysql://<location_of_AXCSRegCert_db>/AXCSRegCer
t
AXCSObjectsID =
jdbc:mysql://<location_of_AXCSObjectsID_db>/AXCSObjec
tsID

AXCSDbUser = <user_name>
AXCSDbPassword = <password>

[dbLog = <log_file_name_with_path>]

The last line is optional. It lets you specify a logging file in
which errors can be written during execution. This file can be
placed anywhere you like, but the complete path has to be
specified, escaping backslash characters (escape character is a
backslash itself). If the last line is not supplied, no log will be
created.
All data can be specified in any order and white spaces do not
matter.
Please note that the autentication data have to be the same for
all the three databases.

For instance, if the databases would be hosted on a machine
called "MyHost", autentication data would be username:
"User" and password: "Pw" and logging file would be
"C:\axcs\log_file.txt", the file would appear something similar
to:

AXCSAccounting = jdbc:mysql://MyHost/AXCSAccounting
AXCSRegCert = jdbc:mysql://MyHost/AXCSRegCert
AXCSObjectsID = jdbc:mysql://MyHost/AXCSObjectsID

AXCSDbUser = User
AXCSDbPassword = Pw

dbLog = C:\\axcs\\log_file.txt

UNDEPLOY PROCEDURE
Use the AdminClient utility that comes with Axis distribution to
undeploy this web services with the undeploy_regs.wsdd file supplied.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

84

Platform used in development:Tomcat 5.5 / Axis 1.3, JRE 5.0

9.5 Draft User Manual
Since the AXCS User Registration is a web service, the public methods it provides should be called using a
web service client application. The web service client should call the needed method giving the necessary
input parameters and receiving the results. The web service client applications should be implement to use
the “Document” style and “Literal“ use.
The requestor calls the “acceptRequest” method, providing his user name and password and the criteria to be
used to filter all the action log, e.g. a couple of dates specifying the period of interest. If his credentials are
correct, he obtains the access to the system and the required data are retrieved in an anonymous format from
the appropriate database tables.
As for the criteria that can be used to filter data, they are to be expressed in standard SQL syntax as a where
clause (without the WHERE keyword) using only the following operators:

equal (=), not equal (<>), logical and (AND), logical or (OR)

to filter with respect to these fields: any identifier (AXUID, AXDID, AXOID, ecc.), Location, Operation,
RegistrationTimeStamp, ExecutionTimeStamp
In case that a filtering with respect to dates is needed (i.e. with respect to RegistrationTimeStamp and/or
ExecutionTimeStamp), the following additional operators are allowed:

greater than (>), greater than or equal (>=), less than (<), less than or equal (<=).
Eventually, an empty caluse can be used if no filtering is desired.

9.6 Examples of usage
A simple Java client application is provided as example of usage. It is available at
https://cvs.axmedis.org/repos/WebServices/axcs-
statistics/bin/org/axmedis/axcs/ws/statistics/ClientStatisticsWS.java

9.7 Integration and compilation issues
Since the AXCS Reporting is a web service, it should work on every supported platform. It has been
developed and tested with Tomcat 5.5 with AXIS 1.3 and Java 5. Interoperability is granted by the respect of
the specification included in the related WSDL, which is compliant with the WS-I Basic Profile. This has
been achieved realising the web service in “Document” style and “Literal” use.
To deploy the web service it is enough to place Connector/J library in the “lib” directory included in the Axis
subtree.

9.8 Configuration Parameters
Config

parameter
Possible values

NONE NONE

9.9 Errors reported and that may occur
Error code Description and rationales

1 The required operation failed. More details are provided in the error message returned
by the service

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

85

9.10 Formal description of algorithm Statistics
The Statistics Request Manager class implements the following functions:
− Accepting authentication data, needful to verify CAMART credentials and make it access the system
− Accepting requests and preparing them to be transferred to Statistics Data Manager
− Reply to requestor with the most appropriate data or error messages (on the basis of Statistics Data

Manager responses)

The Statistics Data Manager class implements the following functions:
− Statistics requests and data from the Statistics Request Manager
− Accessing the database (using the AXDB-API) to verify CAMART Users credentials information
− Accessing the database to retrieve statistics data on the basis of CAMART Users requests (received from

Statistics Request Manager)
− Reply to Statistics Request Manager according to the performed actions and obtained results

RequestManager
Method acceptRequest
Description It is the only public method of this web service. It collects CAMART credentials needful to

access the system and uses the “verifyLogin” (a DataManager method) to verify requestor
credentials. It also collects the CAMART query (in a field called CAMARTQuery).
CAMARTQuery contains criteria to be used to filter data returned.
This method uses private methods described below to perform its tasks and to answer to
requestor.

Input
parameters

StatisticsInfo statInfo - a data structure containing the nickname and password of the
requesting distributor and a CAMARTQuery

Output
parameters

StatisticsResponse – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “logDataTypes”: this field returns the requested information as a set of structured data

in case of success, a null value otherwise
“errorMessage”: this filed returns the error message in case of failure, a null value otherwise

RequestManager

Method createQuery
Description It prepares a suitable query (adapting it at the specific database engine used) to retrieve

requested data from the database
Input
parameters

String b2bUserID – AXUID of the user requesting to retrieve data
String camartQuery – criteria to be used to filter the requested data

Output
parameters

String – a query to be performed to retrieve the requested data

RequestManager

Method requestElaborate
Description “It elaborates CAMART requests. The CAMARTQuery field is managed (with the

“createQuery” method) to extract the needful data to perform the query on database. The query
is performed by “queryExecuter”, a DataManager method. It also elaborates query results to
be sent to the requesting CAMART

Input
parameters

String b2bUserID – AXUID of the user requesting to retrieve data
String camartQuery – criteria to be used to filter the requested data

Output
parameters

ReportingResponse – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “logDataTypes”: this field returns the requested information as a set of structured data

in case of success, a null value otherwise

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

86

“errorMessage”: this filed returns the error message in case of failure, a null value otherwise

RequestManager
Method encryptComm
Description It encrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – encrypted data

RequestManager

Method decryptComm
Description It decrypts clear data with the provided asymmetric key (asymKey)
Input
parameters

String asymKey – the key to be used for encryption
String clearData – data to be encrypted

Output
parameters

String – decrypted data

DataManager

Method verifyLogin
Description It accesses AXCS Registration and Certification Database to verify if the couple NickName

and Password is the same provided through the registration process. It also retrieves the user
public key stored in the DB.
If this method returns null it means the user is not trusted (is not present in the database
pertinent table).
Note: the password is encrypted both the one received as input from the method and the one
stored in DB. The equality check is made between encrypted strings

Input
parameters

String nickName – the nickname of a business user entitled to register new users or to update
users data
String password – the password of a business user entitled to register new users or to update
users data

Output
parameters

UserLoginData – a data structure containing the AXUID and the public key of the user
requesting the registration/update operation in case of success, a null value otherwise

DataManager

Method queryExecuter
Description It performs the query on the basis of data elaborated by “acceptRequest”, a method of the

RequestManager
Input
parameters

String queryConstraints – the cquery to be used to retrieve the requested data

Output
parameters

ResultSet – a set containing requested datain case of success, an empty set otherwise

Note that two encrypting/decrypting methods (DecryptComm, EncryptComm) have been introduced to
enforce the encrypting robustness. In fact we can suppose to use an encrypted protocol (like SSL), but we
can enforce encryption robustness (and therefore security) encrypting ourselves data too using a
Public/Private key paradigm. You have to remember that the Distributor public key is stored in AXCS
Registration and Certification Database.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

87

10 AXCS Database Interface (DSI)

Module/Tool Profile
AXCS Database Interface

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation First prototype
Executable or Library/module
(Support)

Library (jar file)

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported Anyone on which can be installed a JRE 1.5.0 (5.0) and MySQL
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axcs/axcs-
framework/src/org/axmedis/axcs/db

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Framework/bin/axcs

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent) absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved None
Major pending requirements None

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section
AXMEDIS prefixes All AXCS Web services See section 20
AXMEDIS ID All AXCS Web services See section 23

Protocol Used Shared with Protocol name or reference to a

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

88

section

Used Database name
AXCSRegCert
AXCSObjectsID
AXCSAccounting

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
UUID generation Jug (Doomdark)
MySQL JDBC driver Connector/J 3.1.10 GPL, but commercial licenses are

available

10.1 General Description of the Module
The AXCS Database Interface (called AXCS-DB Interface) is the abstraction layer that has the task of giving
to the rest of AXCS modules a view of the database that is independent from the database that is really
employed.
Thie following figure shows which place this module occupies in the AXCS architecture:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

89

AXMEDIS
Reporting, WEB

Service

AXCS Accounting
Database

AXCS Database
Interface

AXMEDIS
Supervisor

AXMEDIS Certification
and Verification

AXMEDIS Users
Registration, WEB Service

AXCS Registration and
Certification Database

AXMEDIS Statistics, WEB
Service

AXMEDIS Objects
Registration, WEB

Service

AXCS Objects ID
Database

AXCS
Manager

User
Interface

Supervisor

This module can be decomposed in other two layers used to realize the abstraction from the database. The
first layer (logical layer) is an object model of the database structure: every table is represented as a class and
related managing methods have been implemented. The second layer (physical layer) is realized to decouple
database model among the specific DataBase Management System used. In this way, different DBMS such
as Mysql, MS-SQL Server, etc. have their own physical layer, and a change in DBMS used does not require
a logical layer change.

10.2 Module Design in terms of Classes
The logic at the base of this module has been subdivided in some classes in order to separate concerns and to
make it easier to reuse some functionalities in other modules. The following figure shows the class diagram
of the AXCS database Interface web service (the name of the packages have been truncated to keep the
figure clear):

AXCS-DB Interface

DBMS

Physical layer

Logical layer

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

90

10.3 User interface description
No user interface is available.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

91

10.4 Technical and Installation information
The axcs-db-interface.jar file has to be placed in a directory included in the classpath environment variable.
It also needs the presence of a configuration file named “axcsdb.ini”, to be placed in a directory called:

• C:\axcs in Windows environments
• /axcs in *nix environments

See below for more details on the configuration file format.

References to other major
components needed

Connector/J, Jug

Problems not solved NONE
Configuration and execution
context

Here are reported some instructions to create the configuration file
“axcsdb.ini”:

1. You need also to create a directory called "axcs" (lower case).
Place this directory in one of the following location
(depending on the OS):

WINDOWS: C:\axcs
*NIX: /axcs

2. In the axcs directory create a new text file named "axcsdb.ini"
(lower case) in which you have to specify location of the
AXCS databases and authentication data to access these
databases.
The file has to be written in the following format.

AXCSAccounting =
jdbc:mysql://<location_of_AXCSAccouning_db>/AXCSAcco
unting
AXCSRegCert =
jdbc:mysql://<location_of_AXCSRegCert_db>/AXCSRegCer
t
AXCSObjectsID =
jdbc:mysql://<location_of_AXCSObjectsID_db>/AXCSObjec
tsID

AXCSDbUser = <user_name>
AXCSDbPassword = <password>

[dbLog = <log_file_name_with_path>]

The last line is optional. It lets you specify a logging file in
which errors can be written during execution. This file can be
placed anywhere you like, but the complete path has to be
specified, escaping backslash characters (escape character is a
backslash itself). If the last line is not supplied, no log will be
created.
All data can be specified in any order and white spaces do not
matter.
Please note that the autentication data have to be the same for
all the three databases.

For instance, if the databases would be hosted on a machine
called "MyHost", autentication data would be username:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

92

"User" and password: "Pw" and logging file would be
"C:\axcs\log_file.txt", the file would appear something similar
to:

AXCSAccounting = jdbc:mysql://MyHost/AXCSAccounting
AXCSRegCert = jdbc:mysql://MyHost/AXCSRegCert
AXCSObjectsID = jdbc:mysql://MyHost/AXCSObjectsID

AXCSDbUser = User
AXCSDbPassword = Pw

dbLog = C:\\axcs\\log_file.txt

10.5 Draft User Manual
Since the AXCS-DB-INTERFACE is a Java library, please refer to the Javadoc documentation, available at
https://cvs.axmedis.org/repos/Framework/doc/code/axcs.

10.6 Examples of usage
Suppose we need to register a new user in the system. Int his case the code has only to create a new instance
of the AxcsdbInterface class and use th setUsrData method (see section 16 for further details):

MysqlAxcsdbManager regDbManager = new MysqlAxcsdbManager(AXCSDbName.AXCSRegCert, 10, 5);
AxcsdbInterface dbInterface = new AxcsdbInterface(regDbManager);

dbInterface.setUsrData(false, new UserDataType(null, "USR_36351030-8315-6070-8280-380689855558",
"546f8c8312323da", " user@fakedomain.it", "italian", "nickname", "password",
"30818902818100f749ec9ad8a22482f9", “2005-01-01”, “2009-31-12”, “U”));

Then setUsrData will use the generic class method to do some checks and finally store the data:

…
GenericUsers user = new GenericUsers(dbManager);
…
user.saveOnDb(isReplace, conn);
…

10.7 Integration and compilation issues
Since the AXCS-DB-INTERFACE is a Java library, it is enough to place it in a directory included in the
classpath environment variable. The only issue is the location of the configuration file “axcsdb.ini”, which is
to be placed in C:\axcs in Windows systems or in /axcs in *nix systems.

10.8 Configuration Parameters
Config

parameter
Possible values

AXCSAccounting jdbc:mysql://<host_name>/AXCSAccounting

Es: jdbc:mysql://flauto.dsi.unifi.it/AXCSAccounting

AXCSRegCert jdbc:mysql://<host_name>/AXCSRegCert

Es: jdbc:mysql://flauto.dsi.unifi.it/AXCSRegCert

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

93

AXCSObjectsID jdbc:mysql://<host_name>/AXCSObjectsID

Es: jdbc:mysql://flauto.dsi.unifi.it/AXCSObjectsID

dbLog dbLog = <log_file_name_with_path>

Es: dbLog = C:\\axcs\\log_file.txt

10.9 Errors reported and that may occur
Error codes depend on the specific method invoked, please refer to the Javadoc documentation available at
https://cvs.axmedis.org/repos/Framework/doc/code/axcs.

10.10 Formal description of algorithm AXCS Database Interface
Each layer (either physical or logical) is composed by a proper interface and a group of classes which realize
it.
The logical layer interface defines the minimal set of methods needed to manage data in database tables;
each class realizes these methods and an other set of more specific ones related to the pertinent tables.
Since this layer is used to access all the different AXCS databases, it is composed of some specific parts. It
can be identified the following modules performing their pertinent tasks:

- Registration: It provides a way to access AXCS Registration and Certification Database; it is

implemented in the package org.axmedis.axcs.db.registration.
- Objects: It provides a way to access AXCS Objects ID Database; it is implemented in the package

org.axmedis.axcs.db.objects.
- Accounting: It provides a way to access AXCS Accounting Database; it is implemented in the package

org.axmedis.axcs.db.accounting.

Each module has the same structure as the others. They are composed by the following four methods defined
by the interface used in this layer, and each class realizes a 1 to 1 mapping with the related database table.
Concerning to the following methods, please note that the referential integrity cosntraint checks are
performed by the DBMS when these constraints are defined in the database. However, it is not possible to
define constraints between tables contained in different databases. So, the following methods are defined to
perform by default the additional referential integrity constraint checks as needed; this can be avoided if the
methods are called setting to false the related optional parameter (named constarintsCheck). These
constraints are defined in the related database sections.

Generic class methods (common for each class)
Method saveOnDb
Description It saves the object on the DB. If the input parameter is set to false no replace is performed but

only an insert that can fail, otherwise it performs an update.
Input
parameters

boolean replace – it specifies if the operation required is an insert or an update
(optional) boolean constarintsCheck – it specifies if the method has to perform the additional
referential integrity constraint checks over the related tables and databases. If it is set to false
these checks are not performed

Output
parameters

int errorCode – It spcifies the operation result: 0 means ok; see the code documentation for
other values.

Generic class methods (common for each class)

Method deleteObject
Description This methods eliminates from the current data table of the DB the object having the primary

key alredy set
Input
parameters

(optional) boolean constarintsCheck – it specifies if the method has to perform the additional
referential integrity constraint checks over the related tables and databases. If it is set to false
these checks are not performed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

94

Output
parameters

int errorCode – It spcifies the operation result: 0 means ok; see the code documentation for
other values

Generic class methods (common for each class)

Method loadFromDb
Description This method loads the object with the parameters related to PK that is alredy present in the

instance of the object. Returns true if the object has been found and loaded correctly, false
otherwise. If a false value is returned there is no guarantee the values in the fields have some
sense.

Input
parameters

None

Output
parameters

boolean resultStatus – True if the object whose axoid is given as a parameter has been loaded.

Generic class methods (common for each class)

Method loadFromDbMulti
Description This method returns the records with the data related to the constraint specified. Returns a

ResultSet if the query has been performed correctly, null otherwise.
Input
parameters

string constraint – It specifies the criteria to select records from table (it is the condition after
the SQL ‘WHERE’ clause).

Output
parameters

ResultSet result – A ResultSet typed object (eventually empty) if the query could be
performed; a null value otherwise.

The physical layer interface defines the minimal set of methods needed to take into account the usage of
different DBMS. This interface defines methods used to mange the connection, the transactions and the
execution of queries at a lower level.

Physichal layer interface methods
Method beginTransaction
Description Disables autocommit and allows to perform a set of trasactional queries.
Input
parameters

None

Output
parameters

java.sql.Connection connection – Connection to be used for executing sql statements.

Physichal layer interface methods

Method commitTransaction
Description Commits a transaction and returns the connection in the pool of available conncetions.
Input
parameters

java.sql.Connection connection – Connection to be used

Output
parameters

None

Physichal layer interface methods

Method executeSql
Description Executes a generic SQL statement.
Input
parameters

java.sql.Connection connection – Connection to be used.
string sqlStatement – Sql statement to be executed.

Output
parameters

boolean isResulSet – true if the first result is a ResultSet object; false if it is an update count or
there are no results.

Physichal layer interface methods

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

95

Method executeSqlUpdate
Description Executes an Update, Insert or Delete SQL Statement.
Input
parameters

java.sql.Connection connection – Connection to be used.
string sqlUpdateInsertDeleteStatement – Sql statement to be executed: must be an INSERT,
UPDATE, DELETE statement.

Output
parameters

int count – Either the row count for INSERT, UPDATE or DELETE statements, or 0 for SQL
statements that return nothing.

Physichal layer interface methods

Method getConnection
Description This method gets an available and working connection from the internal pool of connections.
Input
parameters

None

Output
parameters

java.sql.Connection connection – a connection in the pool of internal connections.

Physichal layer interface methods

Method returnConnection
Description Returns a connection in the pool of the available connections.
Input
parameters

java.sql.Connection connection – The connection to be put again in the pool.

Output
parameters

None

Physichal layer interface methods

Method rollbackTransaction
Description Undoes all changes made in the current transaction and releases any database locks currently

held by the connection passed as parameter.
Input
parameters

java.sql.Connection connection – Connection to be used.

Output
parameters

None

Physichal layer interface methods

Method rollbackTransaction
Description Undoes all changes made after the given Savepoint object was set.
Input
parameters

java.sql.Connection connection – Connection to be used.
java.sql.Savepoint savepoint – Savepoint to be used for rolling back.

Output
parameters

None

Physichal layer interface methods

Method setTransactionSavePoint
Description Sets a savepoint in the transaction for a future rollback.
Input
parameters

java.sql.Connection connection – Connection to be used.

Output
parameters

java.sql.Savepoint savepoint – a Savepoint object to be used for rollback.

Physichal layer interface methods

Method sqlQueryClose
Description Closes and invalid the results of a previously issued Select.
Input java.sql.Statement statement – Statement to be used for getting results.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

96

parameters
Output
parameters

None

Physichal layer interface methods

Method sqlQueryIssue
Description Issues a Select sql statement and gets results
Input
parameters

java.sql.Connection connection – Connection to be used.
string sqlStatement – Sql statement to be executed.

Output
parameters

java.sql.ResulSet result – a ResulSet object that is managed to get query results.

Physical connections to the DBMS used are managed by means of a connection pool manager. It creates a
predefined but configurable set of connections (the pool) when it is used for the first time. These connections
can be used at request and when they are no more used they are released but not destroyed: they return into
the pool to be available again. In this way the overhead due to the creation of connections can be avoided at
the time a connection is needed. If the pool of available connections becomes empty it gets incremented by a
fixed (but configurable) amount of new connections. The management of the pool is completely transparent
and it does not require any operation from the requestors.

Endling there is also an higher layer used to make available some particular methods intented to give a
different representation of the database to make easier the management. At the moment it includes some
methods representing the complex user hierarchy as a single object. This layer is called AXCSdbInterface
and it is described in section 16.

A detailed description of each method is provided in the Javadoc documentation available at
https://cvs.axmedis.org/repos/Framework/doc/code/axcs.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

97

11 AXCS Software Tool Off Line Registration (DSI)

Module/Tool Profile
AXCS Software Tool Off Line Registration

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) proposed
Implemented/not implemented Not yet implemented
Status of the implementation
Executable or Library/module
(Support)

Web Application

Single Thread or Multithread Multithread
Language of Development
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent) absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved
Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Tool Producer Area Protected
SuperAXCS:Registration and
Certifiaction Database

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

98

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Web Interface

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

11.1 General Description of the Module

The Software Tool Off-line Registration is a web application oriented to AXMEDIS Tool Producers. Its role
is to allow tool producers the submission of their candidate software to become certified AXMEDIS Tools.
Tool checking activity is not part of this module: it is made in a second time, after receiving the aspirant tool.
It has to remember that a candidate tool has to be checked and tested to verify if it accomplishes AXMEDIS
guidelines. The Software Tool Off-line Registration module has to supply also an interface intended to
collect data about tool and to insert it in AXCS object database.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

99

SuperAXCS Registration and
Certification Database

AXMEDIS SW Tools
OffLine Registration

Tool Producer

Super AXCS

tool
submission

response

Tool off-line registration application scenario

This module has to provide the following functions:
- Receive the software tool candidate from tool producers
- Provide a web interface to SuperAXCS Manager in order to manage the software reception, and to

complete data about the received software
- Access SuperAXCS database to manage (register and retrieve data) about candidate tools.

SW-OLR-
Submission

SW-OLR-
data-Manager DBMS DB

Tool Producer
Tool Off-line Registration Module

SW-OLR-
app-Manager

To perform its own task it can be found the following logical decomposition:

Sw-OLR-submission: it realizes the web interface needed to accept and receive the software tool candidate.
The received software is temporarily stored on the web server to be retrieved for the necessarily tests. It also
place a web interface used by software tool producer to give some more information about the provided
candidate.

Sw-OLR-app-manager: It is only a web interface needed by the Super AXCS manager to complete data
about the received software, accept or discharge it and manage the whole Software Tool Off-line
Registration process.

Sw-OLR-data-manager: It is a module intended to provide the above modules some method to access
database (retrieve and store data).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

100

11.2 Module Design in terms of Classes
The logic at the base of the Tool Off-line Registration mechanism has been subdivided in some classes in
order to separate concerns and to make it easier to reuse some functionalities in other modules. The
following figure shows the class diagram of the AXCS Tool Off line Registration :

SW-OLR-Submission

SW-OLR-
data-Manager

<<uses>>

Tool Producer

SW-OLR-app-Manager

<<uses>>

SuperAXCS Registration
and Certification Database

11.3 User interface description
The user interface of this module will consist of a web page at which users have to provide some
identification data (such as Factory name, address telephone number, etc.) and which will provide a
mechanism to send the candidate software to become an AXMEDIS compliant tool.

11.4 Technical and Installation information
Not yet available

11.5 Draft User Manual
Not yet available

11.6 Examples of usage
Not yet available

11.7 Integration and compilation issues
None

11.8 Configuration Parameters
Config

parameter
Possible values

None None

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

101

11.9 Errors reported and that may occur
Error code Description and rationales

None None

11.10 Formal description of algorithm Tool Off-line Registration
Method name and parameters Output Description

scope: public
SW-OLR-Submission::ReceiveTool (string
NickName, string Password, toolinfoType
ToolInfoData)

String ResultStatus It is a public method. It collects
requestor credentials needful to
access the system and uses the
VerifyLogin() (a SW-OLR-
DataManager method) to verify
requestor credentials. It also collects
tool relate data (in a field called
ToolInfoData typed toolinfoType),
according to TypeofTool table in
Registration and certification
database. It also receives the
candidate software tool and store it
in a folder on the web server.
This method uses private methods
described below to perform its own
tasks. The ResultStatus output
parameter is set to 0 if the task is
successful and is set to 1 otherwise.

SW-OLR-app-Manager::Management (string
NickName, string Password)

String ResultStatus It is a public method. In implements
the application management. It
collects module manager credentials
needful to access the Application
Manager and uses the VerifyLogin()
(a SW-OLR-DataManager method)
to verify user credentials.
This module provides also a web
interface (a panel) allowing
SuperAXCS manager to perform the
following tasks:
a. candidate tool related data

management (edit and
complete)

b. acception or rejection of
candidate software tool

c. sending a message to tool
producer about the outcome of
candidate tool analysis (using
the SW-OLR-app-
Manager::Response method)

d. type of tool fingerprint
calculation (using the SW-OLR-
app-Manager::FingerprintCalc
method)

scope: private
SW-OLR-app-Manager::Response (String
ToolProducer-email, string message)

String ResultStatus It sends a message to software tool
candidate producer related to the
result of software candidate
analysis. The ResultStatus output
parameter is set to 0 if the task is
successful and is set to 1 otherwise.

SW-OLR-app-Manager::FingerprintCalc String ResultStatus It calculates the software tool

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

102

(String ToolPath) String ToolFinerprint fingerprint and return it in the
ToolFingerprint field to be used by
the calling method. The
ResultStatus output parameter is set
to 0 if the task is successful and is
set to 1 otherwise.

CollectorTransferManager::EncryptComm
(string ClearData, string asimKey)

String EncodedData Encrypt ClearData with provided
asymmetric key (asymKey)

CollectorTransferManager::DecryptComm
(string String EncodedData, string asimKey)

String ClearData Decrypt EncodedData with provided
asymmetric key (asymKey)

SW-OLR-DataManager::Data-
Retriever(string Query)
(the needful input data can be stored in the
class attributes or sent as method parameters)

String ResultQuery This method retrieve data from
database according to its input
values. The ResultQuery field
returns query response data

SW-OLR-DataManager::Data-Inserter()
(the needful input data can be stored in the
class attributes or sent as method parameters)

String ResultQuery This method inserts data into
database according to its input
values. The ResultQuery field
returns a value to indicate if
operation was successful

SW-OLR-DataManager::Data-Modifier()
(the needful input data can be stored in the
class attributes or sent as method parameters)

String ResultQuery This method modifies data into
database according to its input
values. The ResultQuery field
returns a value to indicate if
operation was successful

SW-OLR-DataManager::VerifyLogin (string
NickName, string Password)

boolean IsTrusted

It accesses Registration and
Certification Database to verify if
the couple NickName and Password
is the same provided through the
registration process.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

103

12 AXCS Manager User Interface (DSI)

Module/Tool Profile
AXCS Manager User Interface

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Application

Single Thread or Multithread Multithread
Language of Development
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent) absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

104

Protocol Used Shared with Protocol name or reference to a
section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

12.1 General Description of the Module
This module has been provided to perform some administrative task needed by AXCS manager. Using this
module an AXCS manager can execute many jobs related to database mantainance and check.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

105

12.2 Module Design in terms of Classes

AXCS Accounting
Database

AXCS Database
Interface

AXCS Registration and
Certification Database

AXCS Objects ID
Database

Top Package::Supervisor

AXCS Manager User
Interface

The AXCS Manager User Interface is a module implementing a web interface intented to provide AXCS
manager a simple but powerful interface to perform his administrative tasks. This module has to provide the
following functions:

- databases maintenance functions such as insertion, editing, deletion and selection of database fields
- tool, objects, users blocking/unblocking
- log viewing in order to detect forcing system attempts

ManUI-
FrontManager

ManUI-
LogicManager

AXCS Manager
User Interface

SuperAXCS
Database Interface

In order to perform its own task it can be found the following logical decomposition:
ManUI-FrontManager: it is the web pages manager. It generates all the web pages needful to data
collection and data presentation.
ManUI-LogicManager: it realizes the whole application logic and uses AXCS Database Interface (and the
related AXDB-API) to access database.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

106

ManUI-FrontManager

ManUI-
LogicManager

<<uses>>

AXCS Database Interface

AXCS Manager
User Interface

<<uses>>

Web pages should be organizes so as giving the possibility to user to perform the functions above. Data
access views should be organized also by function and by database, in order to aggregate all tables belonging
to the same database and to evidence the possible operation that could be performed on.

12.3 User interface description
Not yet available

12.4 Technical and Installation information
Not yet available

12.5 Draft User Manual
Not yet available

12.6 Examples of usage
Not yet available

12.7 Integration and compilation issues
None

12.8 Configuration Parameters
Config

parameter
Possible values

None None

12.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

107

None None

12.10 Formal description of algorithm
Not yet available

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

108

13 AXCSs/PMSs: Data Request and Diffusion (DSI)

Module/Tool Profile
AXCSs/PMSs: Data Request and Diffusion

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved None
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

109

Protocol Used Shared with Protocol name or reference to a
section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

13.1 General Description of the Module
As stated above in the present document, AXCS and PMS are not unique entities in the system but there can
be found many AXCSs and many PMSs organized as a logical network. Each of them is put in charge of
manage at best their pertinent data. Moreover it is needed the system to be fault tolerant, and any data
managed by any AXCS or PMS has to be available even if the owner entity is off-line or not reachable for
any reason. Thus a mechanism for data migration among AXCSs and PMSs have to be planned and
implemented. It has to be noticed that data has to be transferred fron an AXCS to another and from a PMS
to another and not from AXCS to PMS. This transfer mechanism has to be able to manage all the problem
related to data replication including data sinchronzation and data gathering (collection).
The couple AXCS Synchronizer and AXCS Collector has been defined in order to supply an efficient way
to transfer data among AXCSs and PMSs. Moreover a specialization of AXCS, called SuperAXCS has been
theorized, in order to excecute coordination and supervising tasks over AXCSs activity.
Several architectures can be thinked:

1. Hierarchical Network. In this architecture SuperAXCS is located at an higher level than AXCSs. Here

has to be present a client part and a server part. SuperAXCS Collector could be the client part that
periodically requests to AXCSs Synchronizer all the data needed and store it in its database. This is the
simplest way but probably it isn’t the most efficient. A simple variant could be the “on-line”
synchronization where AXCSs Synchronizer tries to transfer data at the same time they perform their
tasks. Here are reported two simple cases to better explain these concepts.

On-line synchronization
1 End user uses an AXMEDIS tool to operate on AXMEDIS Protected Objects that are on different

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

110

distribution channels
2 Protection Manager Support allows only authorized operations on the objects
3 Objects are accessed on different channels and each AXCS stores its Action-Logs

4 Via AXCS synchronizer general information on Objects or information that allow Super AXCS to
recover Action-Logs from the different AXCSs are transferred to Super AXCS Collector

4a
If connection between AXCS and Super AXCS is not active, AXCS synchronizer stores the
information to be transferred in a queue called AXCS Synchronizer Queue. Information stored in that
queue are transferred to SuperAXCS Collector when the connection returns active.

5 Super AXCS collects and sores the received information

Off-line synchronization

1 Super AXCS Collector retrieve the list of all the AXCS registered in the system (performing a query to
Active AXCS List Database)

2 Super AXCS Collector slides every entry in that list and, for each AXCS, sends a Queue Pull Request,
i.e. a request for data present in the AXCS Synchronizer Queue.

3 The contacted AXCS Synchronizer respond providing the requested data (if present) and empty the
AXCS Synchronizer Queue.

2. Peer Network. In this architecture SuperAXCS is only a coordinator element. It stores only the list of

registered AXCSs and other few information. Every AXCS manage its own data. When information
stored in a specific AXCS is needed, SuperAXCS sent it to some AXCS that probably retains the
needed data (chosen with some criteria). Every AXCS is a peer and queries are propagated over the
network in order to retrieve the needed information. Every AXCS stores its own data and some other
data coming from the adjacent AXCSs to be able to propagate the query in a tricky way. In this
architecture the couple Synchronizer/Collector is not necessary. It can be supposed also a mix of Peer
and Hierarchical network, a kind of a network structured on two or more levels, where the highest level
peers have major functions respect to lower level peers.

3. Blend Network. In this architecture SuperAXCS is more than a coordinator element. It stores only data

needful to retrieve information about which is the correct AXCS to query (the AXCS that really stores
the needed data). In this architecture data transferred by Synchronizer to Collector is not so excessive.
The synchronization methods could be the same as the Hierarchical Network.

This different network architectures could be implemented and tested in a second time, in order to test them
and be able to make the better choice.

13.2 Module Design in terms of Classes

13.2.1 AXCS Synchronizer
AXCS Synchronizer is an AXCS module used to synchronize AXCSs databases. Every AXCS database
entry has to be retrievable by other AXCSs in order to be able to provide to requestors all the information
contained in each AXCS database.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

111

AXCS Accounting
Database

AXCS Registration and
Certification DatabaseAXCS Synchronizer

AXCS Objects ID
Database

Super AXCS::AXCS Collector

AXCS

SuperAXCS

synchronization

Synchronizer should be composed by some modules performing the following tasks:
- gather the AXCS database data that has to be transferred to SuperAXCS Collector
- transfer it to SuperAXCS Collector

Sync
Transfer
Manager

Sync
Gatherer
Manager

DBMS DB

SuperAXCS::
Collector

AXMEDIS Synchronizer

To perform these tasks can be considered two different modules:

SyncGathererManager: it gathers all data that has to be transfer to Collector and elaborates it before is
treated by SyncTransferManager. The database management is performed using the related API (AXDB-
API). To support synchronization a new structure has been introduced: the AXCS Synchronizer Queue.
When the connection betrwwen Sychronizer (in AXCS) and Collector (in SuperAXCS) is not active, AXCS
synchronizer stores the information to be transferred in the AXCS Synchronizer Queue. Information stored
in that queue are transferred to SuperAXCS Collector when the connection returns active.

SyncTransferManager: it manages the connection and deals with SuperAXCS Collector in order to transfer
the pertinent data. The communication channel connecting SuperAXCS Collector and AXCS Synchronizer is
protected using a secure protocol (for instance SSL). The communication can happen with Synchronizer as
client or server (and the Collector as a respective counterpart). To perform both paradigms have been
considered a public method both in Synchronizer and in Collector.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

112

Synch-
TransferManager

Synch-
GathererManager

<<uses>>

Super AXCS::
Collector

AXCS::AXCS Accounting
Database

AXMEDIS
Synchronizer

AXCS::AXCS Registration
and Certification Database

AXCS::AXCS Object ID
Database

13.2.2 AXCS Collector
AXCS Collector is th counterpart of AXCS synchronizer. The interaction and collaboration between these
two components is very important. To better unserstand the AXCS Collector role and logic, please take a
look to the AXCS Synchronizer section.

AXMEDIS Certifier and
Supervisor::AXCS Accounting

Database

AXMEDIS Certifier and
Supervisor::AXCS Registration

and Certification Database

AXMEDIS Certifier and
Supervisor::AXCS Synchronizer

AXCS Collector

Active AXCS List/
Database

AXMEDIS Certifier and
Supervisor::AXCS Object ID

Database

SUPER AXMEDIS
Certifier and Supervisor

AXMEDIS Certifier and Supervisor

The SuperAXCS Collector has to perform the following tasks:
- receive data from AXCSs Synchronizer (requesting it or registering their posts)
- insert the received (or requested data) into database

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

113

Collector
Transfer
Manager

Collector
Data

Manager
DBMS DB

AXCS::
Synchronizer

Super AXCS Collector

In order to perform its own task AXCS Collector can be decomposed in the following modules:

CollectorTransferManager: it manages the connection and deals with AXCS Synchronizer in order to
receive the pertinent data. The communication channel connecting SuperAXCS Collector and AXCS
Synchronizer is protected using a secure protocol (for instance SSL). The communication can happen with
Synchronizer as client or server (and the Collector as a respective counterpart). To perform both paradigms
have been considered a public method both in Synchronizer and in Collector.

CollectorDataManager: it collects all data received from AXCS Synchronizer and inserts it in database. It
could be thought as a composition of AXCS components that perform single tasks in order to maximize the
ideas and code reuse. For instance we can think to reuse the AXMEDIS Registration WEB Service to collect
data about AXMEDIS Users, AXCS OID Generator to collect data about AXMEDIS Objects, and so on.

Collector-
TransferManager

Collector-
DataManager

<<uses>>

AXCS::
Synchronizer

SuperAXCS:: Accounting
Database

SuperAXCS
Collector

SuperAXCS::Registration
and Certification Database

SuperAXCS::Object ID
Database

13.2.3 Axmedis Registration of AXCSs
All AXMEDIS AXCS must be registered by other AXCSs or SuperAXCS. The AXMEDIS Registration
Web Services is the AXCS module that receives data about AXCS and store it in the AXCS Registration
and Certification Database. Once the AXCS is registered in the system and the related data is stored in the
pertinent database, other modules can access this database to retrieve some information needful to perform
their work.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

114

AXMEDIS Registration of
AXCSs WEB Service

SuperAXCS
Registration and

Certification Database

AXCS

Registration data

Web service

Insert registration info

AXCSs registration application scenario

The AXMEDIS Registration of AXCS Web Service is a web application running on a web server,
implemented as a set of web scripts. We can identify the following logical decomposition:
− AXCSReg-RequestManager: this component receives registration requests from AXCS, and prepares

them to be processed by the AXCSReg-DataManager. The communication channel connecting AXCS
and AXCSReg-RequestManager is protected using a secure protocol (for instance SSL). It implements
the interface with requestors and manages the whole application.

− AXCSReg-DataManager: this component receives data from AXCSReg-RequestManager and inserts it
in the SuperAXCS Registration and Certification Database. If necessary elaborates and fits data before
insert it in the database. The database management is performed using the related API (AXDB-API).

AXCSReg-
RequestManager

AXCSReg-
DataManager DBMS DB

AXCS

Registration of AXCS Web Service

AXMEDIS Registration of AXCSs Web Service architecture.

The AXCSReg-RequestManager should be composed by some modules implementing the following
functions:
− Accepting authentication data, needful to verify reuqestor credentials and make it access the system
− Accepting AXCS registration data and preparing it to be transferred to AXCSReg-DataManager
− Reply to requestor with the most appropriate message (on the basis of AXCSReg-DataManager

responses)

The AXCSReg-DataManager should be composed by some modules implementing the following functions:
− Receiving verification requests and data from the AXCSReg-RequestManager
− Accessing the database (using the AXDB-API) to verify requestors credential information
− Accessing the database to store received AXCSs registration data
− Reply to AXCSReg-RequestManager according to the performed actions

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

115

AXCSReg-
RequestManager

AXCSReg-
DataManager

<<uses>>

AXCS

SuperAXCS Registration
and Certification Database

Registration of AXCSs
Web Service

13.3 User interface description
Not yet available

13.4 Technical and Installation information
Not yet available

13.5 Draft User Manual
Not yet available

13.6 Examples of usage
Not yet available

13.7 Integration and compilation issues
None

13.8 Configuration Parameters
Config

parameter
Possible values

None None

13.9 Errors reported and that may occur
Error code Description and rationales

None None

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

116

13.10 Formal description of algorithm
The following table describes methods thought to be used in AXCS Synchronizer.

Method name and parameters Output Description

scope: public
SyncTransferManager::Synchronize(string
NickName, string Password, string
TimeStampQuery)

String ResultStatus
syncDataType Response

It is the only public method of this
module. It collects Super AXCS
credentials needful to access the
system and uses the VerifyLogin()
(a GathererManager method) to
verify requestor credentials.
This method uses private methods
described below to perform its own
tasks and to answer to requestor.
The TimeStampQuery contains the
time (in timestamp form) after
which the collector needs to be
updated; this field is optional and
depends on the type of
architecture/synchronization mode
will be chosen. The ResultStatus
output parameter is set to 0 if the
task is successful and is set to 1
otherwise. This method returns
also the data to be transferred to
the requestor using the Response
field (typed syncDataType).

scope: private
SyncTransferManager::EncryptComm
(string ClearData, string asimKey)

String EncodedData Encrypt ClearData with provided
asymmetric key (asymKey)

SyncTransferManager::DecryptComm
(string String EncodedData, string asimKey)

String ClearData Decrypt EncodedData with
provided asymmetric key
(asymKey)

SyncGathererManager::DataGatherer()
(the needful input data can be stored in the
class attributes or received as method
parameters)

String QueryResult It gathers the needed data from
database. In order to support its
own task it uses the AXCS
Synchronizer Queue (see above)
.Query results are stored in the
QueryResult field

SyncGathererManager::VerifyLogin (string
NickName, string Password)

boolean IsTrusted

It accesses AXCS Registration and
Certification Database to verify if
the couple NickName and
Password is the same provided
through the registration process
Note: the password is encrypted
both the one received as input from
the method and the one stored in
DB. The equality check is made
between encrypted strings.

Note that it has been introduced two encrypting/decrypting methods (DecryptComm, EncryptComm) to
enforce the encrypting robustness. In fact we can suppose to use an encrypted protocol (like SSL), but we
can enforce encryption robustness (and therefore security) encrypting our self data too using a Public/Private
key paradigm. You have to remember that public keys are stored in AXCS Registration and Certification
Database.

The following table describes methods thought to be used in Super AXCS Collector.
Method name and parameters Output Description

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

117

scope: public
CollectorTransferManager::Synchronize(string
NickName, string Password, syncDataType
TransferData)

String
ResultStatus

It is the only public method of this module. It
collects AXCSs credentials needful to access
the system and uses the VerifyLogin() (a
CollectorDataManager method) to verify
requestor credentials.
This method uses private methods described
below to perform its own tasks and to answer
to requestor.
The ResultStatus output parameter is set to 0
if the task is successful and is set to 1
otherwise. This method receives (as input
parameter) also data to be transferred from
the requestor in the TransferData field (typed
syncDataType).

scope: private
CollectorTransferManager::EncryptComm (string
ClearData, string asimKey)

String
EncodedData

Encrypt ClearData with provided asymmetric
key (asymKey)

CollectorTransferManager::DecryptComm (string
String EncodedData, string asimKey)

String ClearData Decrypt EncodedData with provided
asymmetric key (asymKey)

CollectorDataManager::DataCollect(syncDataType
TransferData)
(the needful input data can otherwise be stored in the
class attributes or received as method parameters)

String
ResultStauts

It collects the received data (using the
TranferData field) and inserts it in database.
The ResultStatus output parameter is set to 0
if the task is successful and is set to 1
otherwise.

CollectorDataManager::VerifyLogin (string
NickName, string Password)

boolean
IsTrusted

It accesses SuperAXCS Registration and
Certification Database to verify if the couple
NickName and Password is the same
provided through the registration process
Note: the password is encrypted both the one
received as input from the method and the
one stored in DB. The equality check is made
between encrypted strings.

The following table describes methods thought to be used in AXMEDIS Registration Web Service.

Method name and parameters Output Description

scope: public
AXCSReg-
RequestManager::Registration(string
NickName, string Password,
AXCSDatatype regdata)

string result
string definitive-AXCSID

It is the only public method of this
web service. It collects requestor
credentials needful to access the
system and uses the VerifyLogin()
(an AXCSReg-DataManager
method) to verify requestor
credentials. It collects also
registration data (regdata) provided
by the requestor and uses the other
methods (described below) to
insert them in database and to
provide the result to the requestor.
The result output parameter is set
to 0 if the registration is successful
otherwise is set to 1. This method
returns also the definitive AXCSID
in definitive-AXCSID

scope: private
AXCSReg-RequestManager::DataPrepare() All user registration fields. See

below for details.

It prepares the AXCS registration
data received by the web service to
be stored in DB. Is also uses

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

118

IDGenerator() to get the definitive
AXCSID to be inserted in the
database and to be sent to requestor

AXCSReg-AXCSReg-
RequestManager::IDGenerator(string
TempUID)

String DefinitiveAXCSID It provides the definitive AXCSID.

AXCSReg-
RequestManager::EncryptComm(string
ClearData, string asimKey)

String EncodedData Encrypt ClearData with provided
asymmetric key (asymKey)

AXCSReg-
RequestManager::DecryptComm(string
String EncodedData, string asimKey)

String ClearData Decrypt EncodedData with
provided asymmetric key
(asymKey)

AXCSReg-
DataManager::VerifyLogin(string
NickName, string Password)

boolean IsTrusted
string PublicKey

It accesses Registration and
Certification Database to verify if
the couple NickName and
Password is the same provided
through the registration process. It
also retrieves the requestor public
key stored in the DB.
Note: the password is encrypted
both the one received as input from
the method and the one stored in
DB. The equality check is made
between encrypted strings.

AXCSReg-DataManager::StoreData()
(the needful input data can be stored in the
class attributes or sent as method
parameters)

 Store received data in the
Registration and Certification
Database

Note that it has been introduced two encrypting/decrypting methods (DecryptComm, EncryptComm) to
enforce the encrypting robustness. In fact we can suppose to use an encrypted protocol (like SSL), but we
can enforce encryption robustness (and therefore security) encrypting our self data too using a Public/Private
key paradigm. You have to remember that public keys are stored in Registration and Certification Database.

13.10.1 AXMEDIS Registration of AXCSs WEB Service interface formalization
In the present paragraph is explained the Registration of AXCS Web Service interface using the WSDL
formalism.

WSDL <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:rm="http://new.webservice.namespace"
targetNamespace="http://new.webservice.namespace">
 <types>
 <xs:schema targetNamespace="http://new.webservice.namespace" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="usrDatatype">
 <sequence>
 <!-- …… data according to database structure … -->
 </sequence>
 </complexType>
 </xs:schema>
 </types>
 <message name="RegistrationRequest">
 <part name="NickName" type="xs:string"/>
 <part name="Password" type="xs:string"/>
 <part name="Regdata" type="rm:usrDatatype"/>
 </message>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

119

 <message name="RegistrationResponse">
 <part name="Result" type="xs:string"/>
 <part name="definitive-AXCSUID" element="" type="xs:string"/>
 </message>
 <portType name="Registration_PortType">
 <operation name="Registration">
 <input message="rm:RegistrationRequest"/>
 <output message="rm:RegistrationResponse"/>
 </operation>
 </portType>
 <binding name="Registration" type="rm:Registration_PortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Registration">
 <soap:operation soapAction="urn:#Registration"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <soap:operation soapAction="urn:#Registration"/>
 </operation>
 </binding>
 <service name="RegistrationWebService">
 <port name="Registration" binding="rm:Registration">
 <soap:address location="No Target Adress"/>
 </port>
 </service>
</definitions>

Request
Sample
Message

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <m:Registration xmlns:m="http://new.webservice.namespace">
 <NickName>…distributor user…</NickName>
 <Password>…password…</Password>
 <Regdata>
 <!-- …… data according to database structure … -->
 </Regdata>
 </m:Registration>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response
Sample
Message

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <m:Registration xmlns:m="http://new.webservice.namespace">
 <Result>0</Result>
 <definitive-AXCSID>0A2Z4X678B0124C56X89W123452CV478</definitive-AXCSID>
 </m:Registration>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

120

14 AXMEDIS User Registration Portal (DSI)

Module/Tool Profile
AXMEDIS User Registration Portal

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation In refinement
Executable or Library/module
(Support)

Web site

Single Thread or Multithread Multithred
Language of Development PHP
Platforms supported Anyone on which can be installed a web server capable of PHP

processing. It has been tested using Apache v.2
Reference to the AXFW
location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

http://flauto.dsi.unifi.it/general_registration/registration1.php

Test cases (present/absent) Absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved None
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

 AXCSUserRegistration Web
Service

http, smtp

 Smtp service

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

121

Protocol Used Shared with Protocol name or reference to a

section
AXCS User Registration AXCSUserRegistration (see section

36)

Used Database name
User Registration database for
user registration portal

 General_registration (see section
20)

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Web interface (HTML) PHP, HTML

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

14.1 General Description of the Module
The AXMEDIS User Registration portal is a web site to let users register in AXMEDIS system.
It is provided in order to support distributors who do not want to manage user registrations in AXMEDIS, to
not acquire the needed interface toward the AXCS in order to minimize the impact of the AXMEDIS system
in their business structures. Therefore, this web site provide the users with the necessary data (an AXUID
and a user certificate) needed in successive transactions with distributors. Once a user has registered him/her-
self, the certificate obtained can be used to establish secure (SSL) connections to distributor web sites.

14.2 Module Design in terms of Classes
This module has been developed using PHP and HTML, therefore no object oriented approach was used.
Rather, the module has the typical structure of web sites, i.e. single pages presenting to the user a graphic
interface useful to collect needed data.

14.3 User interface description
The registration process goes through three successive phases:

• Phase 1: the user provides his/her data (such as name, affiliation, address, email, etc.) and the portal
sends an email to the user.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

122

• Phase 2: the user registration willing has to be confirmed by the user him/her-self. To this end, the

email sent to the user contains the address of a confirmation page. So, all that is needed is the user
opening the correspondent web page in a browser and clicking the confirmation button..

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

123

• Phase 3: At this time the portal uses the AXCS User Registration Web Service to register the user in

the AXMEDIS system. In this way an AXUID is assigned to the user and a pertinent certificate is
produced and sent to the user

14.4 Technical and Installation information
Since the User Registration Portal is a web site, it has to be hosted on a web server capable of PHP
processing on the chosen platform (e.g. Apache, MS IIS, iPlanet, etc.)

References to other major
components needed

User Registration database for User Registration Portal, AXCS
UserRegistration Web service endpoint

Problems not solved None
Configuration and execution
context

Platform used in development: Apache 2.0, PHP 4.1

14.5 Draft User Manual
The usage of the User Registration Portal is very easy and intuitive. For a step-by-step procedure see “User
interface description” section

14.6 Examples of usage
See “User interface description” section

14.7 Integration and compilation issues
Since the User Registration Portal is developed in PHP and HTML, it should work on every web server
capable of PHP processing. It has been developed and tested on Apache 2.0 with PHP 4.1 module

14.8 Configuration Parameters
Config

parameter
Possible values

None None

14.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

124

None None

14.10 Formal description of algorithm Self User Registration
The registration process goes through three successive phases:

• Phase 1: the user provides his/her data (such as name, affiliation, address, email, etc.) and the portal
inserts him/her in its User Registration database (different from the AXCS User Registration
database) marking the record as "to be confirmed". In the meanwhile an email is sent to the user.

• Phase 2: the user registration willing has to be confirmed by the user him/her-self (in order to
protect the system from automatic registration processes). To this end, the email sent to the user
contains the address of a confirmation page specific for the user (identified by means of an
appropriate code assigned by the portal). So, all that is needed is the user opening the correspondent
web page in a browser and click the confirmation button. In this way the pertinent record in the
database is marked as “confirmed” and the process advances to phase 3.

• Phase 3: At this time the portal uses the AXCS User Registration Web Service to register the user in
the AXMEDIS system. In this way an AXUID is assigned to the user and a pertinent certificate is
produced and returned to the portal. The record in the portal database is marked as “accepted” and
the certificate is sent to the user

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

125

15 AXCS Global Object List Web Service (DSI)

Module/Tool Profile
AXCS Global Object List Web Service

Responsible Name Chellini, Martini
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Web service

Single Thread or Multithread Multithread
Language of Development Java
Platforms supported Anyone on which can be installed a servlet container and a JRE 1.5.0

(5.0). It has been tested using Tomcat 5.5, Axis 1.3, JRE 1.5.0_06
Reference to the AXFW
location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent) Absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

SuperAXCS:Database interface Protected (SSL)
Any authorized requestor
(Distributors, Integrators,
Creators and so on)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

126

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

15.1 General Description of the Module
The Global Object List web service has been introduced with the aim of providing information about all the
objects present in the AXMEDIS system. It can be queried by Distributors, Creators, Integrators, and so on
(in general B2B Users). This web service could be also used as background logic for web applications
implementing searching and browsing services of AXMEDIS Objects (such as searching engines about
AXMEDIS Objects).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

127

AXMEDIS Certifier and
Supervisor::AXCS Database

Interface

AXMEDIS Certifier and
Supervisor::AXCS Accounting

Database

AXMEDIS Certifier and
Supervisor::AXCS Registration

and Certification Database

AXMEDIS Certifier and
Supervisor::A

Global Object List WEB Service

The Global Object List Web Service is a web application running on a web server implemented as a set of
scripts. It has to provide to the system the possibility of retrieving information about all the objects present in
the system. Given some data (tipically a set of metadata) a requestor has to be able to recover all references
about objects that are compliant with the given data.

GOL-
ConnectionManager

GOL-
LogicManager

Global Object List
Web Service

SuperAXCS
Database Interface

Requestor

It can be identified the following logical decomposition:

GOL-ConnectionManager: this component manages the requests received by web service, collects data
requests and response to requestors providing information compliant with requests.
GOL-LogicManager: this component realizes the whole application logic and uses AXCS Database
Interface (and the related AXDB-API) to access database.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

128

15.2 Module Design in terms of Classes
The logic at the base of the Global Object List Web Service mechanism has been subdivided in some classes
in order to separate concerns and to make it easier to reuse some functionalities in other modules. The
following figure shows the class diagram of the AXCS Tool Off line Registration :

GOL-
ConnectionManager

GOL-
LogicManager

<<uses>>

SuperAXCS
Database Interface

Global Object List
Web Service

<<uses>>

15.3 User interface description
Not yet available

15.4 Technical and Installation information
Not yet available

15.5 Draft User Manual
Not yet available

15.6 Examples of usage
Not yet available

15.7 Integration and compilation issues
None

15.8 Configuration Parameters
Config

parameter
Possible values

None None

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

129

15.9 Errors reported and that may occur
Error code Description and rationales

None None

15.10 Formal description of algorithm Global Object List
The following table describes methods thought to be used in Global Object List Web Service:

Method name and parameters Output Description

scope: public
GOL-ConnectionManager::AcceptRequest
(string NickName, string Password, string
RequestQuery)

String ResultStatus
String ResponseData

It is a public method. It collects
requestor credentials needful to
access the system and uses the
VerifyLogin() (a GOL-
LogicManager method) to verify
requestor credentials. It also collects
queries data (in a field called
RequestQuery) .
This method uses private methods
described below to perform its own
tasks. The ResultStatus output
parameter is set to 0 if the task is
successful and is set to 1 otherwise.
It returns query results (compliant
with data request) in a field called
ResponseData. String data has been
chosen to have more flexibility in
input and output parameters.

scope: private
GOL-ConnectionManager::EncryptComm
(string ClearData, string asimKey)

String EncodedData Encrypt ClearData with provided
asymmetric key (asymKey)

GOL-ConnectionManager::DecryptComm
(string String EncodedData, string asimKey)

String ClearData Decrypt EncodedData with provided
asymmetric key (asymKey)

GOL-LogicManager::Data-Retriever(string
Query)
(the needful input data can be stored in the
class attributes or sent as method parameters)

String ResultQuery This method retrieves data from
database (using SuperAXCS
Database Interface API) according
to its input values. The ResultQuery
field returns query response data.

GOL-LogicManager::VerifyLogin (string
NickName, string Password)

boolean IsTrusted

It accesses Registration and
Certification Database to verify if
the couple NickName and Password
is the same provided through the
registration process.

WSDL <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:rm="http://new.webservice.namespace"
targetNamespace="http://new.webservice.namespace">
 <types>
 <xs:schema targetNamespace="http://new.webservice.namespace" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 </xs:schema>
 </types>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

130

 <message name="GOL-Request">
 <part name="NickName" type="xs:string"/>
 <part name="Password" type="xs:string"/>
 <part name="RequestQuery" type="xs:string"/>
 </message>
 <message name="GOL-Response">
 <part name="ResultStatus" type="xs:string"/>
 <part name="ResponseData" type="xs:string"/>
 </message>
 <portType name="GOL-PortType">
 <operation name="GOL">
 <input message="rm:GOL-Request"/>
 <output message="rm:GOL-Response"/>
 </operation>
 </portType>
 <binding name="GOList" type="rm:GOL-PortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GOL">
 <soap:operation soapAction="urn:# GOL"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <soap:operation soapAction="urn:# GOL"/>
 </operation>
 </binding>
 <service name="GOLWebService">
 <port name="GOL-port" binding="rm:GOList">
 <soap:address location="No Target Adress"/>
 </port>
 </service>
</definitions>

Request
Sample
Message

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <m:GOL xmlns:m="http://new.webservice.namespace">
 <NickName>… user name …</NickName>
 <Password>… relatd password …</Password>
 <RequestQuery>DCCCreatorsMetadata.CreatorValue="Mozart" and DublinCore.Language=IT
</RequestQuery>
 </m:GOL>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response
Sample
Message

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <m:GOL xmlns:m="http://new.webservice.namespace">
 <ResultStatus>0</ ResultStatus >
 <ResponseData>… response string …</ ResponseData >
 </m:GOL>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

131

16 Provided API named ”AXCS-DB-Interface” (DSI)
Section 10 described the structure of the AXCS-DB-Interface module, illustrating how it is composed of two
layers: a logical layer on top of a physical layer.
This section describes more in deep the logical layer and the methods at disposal of other AXCS modules.

The logical layer provides access to the AXCS databases in terms of object oriented representation regardless
of the underlying DBMS used. Therefore, it provides abstract representations for:

• a database manager, by means of an interfacecalled AxcsdbManager
• objects representing database tables, by means of an interface called DataTable
• common complex operations on database data, grouping all the needed sub-operations together and

providing high-level methods via a unique “access point”, called AxcsdbInterface
• logically related data grouping them in single classes, such as data needed for user (UserDataType)

or object (ObjectDataType) registrations and user identifying data (UserLoginData)

Modules using this API simply use either the AxcsdbInterface methods to perform their own tasks or use
directly objects representing tables to realize specific complex operations. Since the most common complex
operations are directly provided by AxcsdbInterface, tipically other modules use those methods, having to
deal with the other entities only in order to properly initialize the AxcsdbInterface object (e.g. instantiating a
suitable database manager implementing the AxcsdbManager interface) or to get/send data from/to
requestors. So, generally, these modules do not directly manipulate objects representing tables, since this is
done by the high-level methods of AxcsdbInterface.

AxcsdbInterface
Method setUsrData
Description Used to update user data or insert data about new users
Input
parameters

boolean isReplace – indicates if the operation requested is an insertion or an update
UserDataType userData – an object containing data to be inserted/updated. Only the
information corresponding to the fields not set to null are used for the operation.

Note: the AXUID field can not be updated and in case of updates it must be an existing
AXUID; for insertions it is treated as a temporary ID, so it can be any string

Output
parameters

boolean – true if the operation succeeds, false otherwise

Request
Sample
Message

setUsrData(false, new UserDataType(null, "USR_36351030-8315-6070-8280-
380689855558", "546f8c8312323da", " user@fakedomain.it", "italian", "nickname",
"password", "30818902818100f749ec9ad8a22482f9", “2005-01-01”, “2009-31-12”, “U”));

Response
Sample
Message

True

AxcsdbInterface

Method getUsrData
Description Tries to find user data according to the input parameter
Input
parameters

string axuid – The identifier of the user (AXUID) for whom data are to be retrieved

Output
parameters

UserDataType – an object containing all related data about the user in case of success, null
otherwise

Request
Sample
Message

getUsrData(“USR_36351030-8315-6070-8280-380689855558”);

Response
Sample
Message

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

132

AxcsdbInterface
Method delUsrData
Description Used to delete a user according to the input parameters
Input
parameters

string axuid – The identifier of the user (AXUID) for whom data are to be deleted

Output
parameters

boolean – true if the operation was successful, false otherwise

Request
Sample
Message

delUsrData(“USR_36351030-8315-6070-8280-380689855558”);

Response
Sample
Message

True

AxcsdbInterface

Method login
Description Tries to perform a login to the system using the couple username and password
Input
parameters

string name – it is the login user name (nickname)
string passwd – it is the login password

Output
parameters

UserLoginData – an object containing data related to the user (AXUID and public key), or null
if the login was unsuccessful

Request
Sample
Message

login(“nickname”, “password”);

Response
Sample
Message

Methods defined in DataTable interface (therefore available in each class mapping database tables) have
been already described in subsection 10.10 (where they are named as “Generica class methods”), therefore
they are not reported here.
Methods defined in AxcsdbManager (therefore available in each class representing a specific dabase
manager, e.g. MysqlAxcsdbManager) are those implemented in the physical layer of the AXCS Database
Interface module and have been already described in section 10.10 (where they are named as “Physical layer
interface methods”). Therefore, they are not reported here.

A detailed description of each method is provided in the Javadoc documentation available at
https://cvs.axmedis.org/repos/Framework/doc/code/axcs.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

133

17 Table description for AXCS Registration and certification database
(DSI)

17.1 Entity-Relationship description
In order to define the AXCS Registration and Certification Database schema, first we have to identify the
entities and related relations.
Since some different categories of users have to be represented, an ISA hierarchy have been conceived to
appropriately reflect all the different kinds of users. This hierarchy is reported below:

Please note that this hierarchy is intended in terms of ISA relations among database tables, therefore it is
enforced through referential integrity constraints.
Here is reported the list of the identified entities and the related meanings.

1. GenericUsers: this entity contains a part of data about AXMEDIS users common to all the specific
kinds of users (see below) and requested by AXCS to perform its work.

2. FinalUsers: this entity represents end users of the AXMEDIS objects and is a specialization of the
GenericUsers entity. It contains more details on the status and the registration date of an end user.

3. B2BUsers: this entity contains general data about B2B users like Creators, Distributors, Collecting
Society, Tool Producers and so on. It does not contains information on the registration date and the
status of a B2BUser because these data are related to the specific kind of user (Creator, Distributor,
etc.).

4. Domains: this entity contains information about AXMEDIS Domains. A Domain can be referred to
a FinalUser (if the PMS is for private use at home) or to a B2BUser (if the PMS is located in an
organization like a company or a school). It is linked to the parent entity FinalUser or B2BUsers
according to the prefix of the AXUID field which identifies if the AXUID is relative to a FinalUser
or a to a B2BUser.

5. Creators: this entity contains specific data about Object Creators, Integrators and Producers. It is
linked to the parent entity B2BUsers.

6. Distributors: this entity contains specific data about Object Distributors. It is linked to the parent
entity B2BUsers.

7. CollectSoc: this entity contains data about Collecting Societies. It is linked to the parent entity
B2BUsers.

8. ToolProducers: this entity contains data about Tool Producers. It is linked to the parent entity
B2BUsers.

9. RegTools: this entity contains data about Registered Tools. The “registration” term refers to Tool
Off-line Registration scenario. A registered tool is a software product. An instance of a Registered
Tool running on a terminal becomes a Certified Tool. A registered tool is identified by an ID called
AXRTID.

10. TypeOfTool: this entity contains all the types of tool that can be used in the AXMEDIS system. A
set of possible tool types is:

Composition Engine

GenericUsers

FinalUsers B2BUsers

Creators Distrtibutors ToolProducers CollectingSociety

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

134

Formatting Engine
Editor PC/MAC
Viewer PC/MAC
Viewer/player: PDA
Viewer/player: mobile
Protection Tool Editor
AXEPTool
Programme & Publication Engine
Publication Tool
Generator from CMS
AXCS
Super AXCS
AXMEDIS OID Generator
AXMEDIS PMS Client
AXMEDIS PMS Home
AXMEDIS PMS Server
PLUGIN xxxxx
PLUGIN yyyyy

11. CerTools: this entity contains data about Certified Tools. The “certification” term refers to

Certification of a Tool/User scenario. A certified tool is an instance of a tool running on a terminal.
A certified tool is identified by an ID called AXTID field. It is linked to the parent entity User or
B2BUsers according to the value of TypeOdID which identifies if the relative AXID is a AXUID or
a B2BUserID.

Every entity is assigned an identifier, which is named accordingly to the name of the related entity.
For the GenericUsers entity this identifier is called AXUID; this is because the GenericUsers entity
represents the concept of user without deeper distinctions. In this table B2BUsers can be distinguished from
FinalUsers on the basis of the prefix of the AXUID field: for the former its value is “BUS”, for the latter its
value is “USR”.
The B2BUsers groups all the data common to the different business users. For this reason the identifier used
in this entity is also called AXUID and it takes the same value of the corresponding record in the
GenericUsers table. The specification of the role of this business user is then stored in the related entity
(Creators, Distributors, CollectingSociety or ToolProducers), which reports also the same identifier used in
the B2BUser table. A B2BUser can have more than one role in AXMEDIS: for example, he can be either a
Creator, a Distributor and a ToolProducer
To have an example, consider a B2BUser who is either a Creator and a Distributor of objects. In this case, in
the GenericUsers, B2BUsers, Creators and Distribitors tables we would have the following identifier:

AXUID = BUS_1b4e28ba-2fa1-11d2-883f-b9a761bde3fb

In the case of a final users, instead, in the GenericUsers and FinalUsers tables we would have the following
identifier:

AXUID = USR_1b4e28ba-2fa1-11d2-883f-b9a761bde3fb

Please note that a user cannot be at the same time a Final User and a B2BUser. In this way it is not possible
to have a USR prefixed AXUID and a BUS prefixed AXUID with the same UUID. For example the
following situation will be not allowed:
USR_1b5e28ba-2fa1-11d2-883f-b9a761bde3fb
BUS_1b5e28ba-2fa1-11d2-883f-b9a761bde3fb

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

135

17.2 Relational database schema extended description
Here is reported the list of identified tables came from entities and relations previously stated.

GenericUsers

Columns idx Data type Allow NULLs Value/Range
AXUID PK I VARCHAR(58) Not allowed
AXDOM FK I VARCHAR(58) Allowed
Email I VARCHAR(255) Not allowed
NickName I VARCHAR(255) Not allowed
Password VARCHAR(255) Not allowed
Nationality I VARCHAR(255) Not allowed
PubKey LONGTEXT Not allowed
CertificateSerialNumber I VARCHAR(255) Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXDOM AXDOM Domains.AXDOM

Column details
1. AXUID (PK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the user

2. AXDOM (FK)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

136

Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: AXMEDIS Current Domain of the user (if any)

3. Email
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: email of the user

4. NickName
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: NickName of the user

5. Password
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: MD5 or other encryption of user password

6. Nationality
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Nationality of the user

7. PubKey
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: public key of the user

8. CertificateSerialNumber
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: user certificate serial number

9. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of the user: B/U (Blocked/Unblocked)

Concerning the status of B2BUsers it is necessary to make a distinction. On one side it has to be considered
the right to use AXMEDIS services (e.g. object registration, user registration, reporting, etc.). On the other
side it has to be considered the right to perform actions over objects. In this case, if an improper behaviour is
detected, the user has to be blocked regardless of the role he's currently playing. Therefore a higher level of
user blocking has been introduced by means of the "status" field in the genericusers table which is
independent from the specific business role status fields. In this way, if an user is blocked at this higher level,
he is not allowed to perform any action over objects. Anyway, he can continue to use AXMEDIS services
(e.g. reporting or statistics) if he is not blocked as a specific business user role (such as Creator, Distributor,
Collecting Society and Tool Producer). To block a B2BUser as a specific role a status field in every specific
role tables has been introduced.
In the same way, if an user is blocked as a specific business role, he can continue to perform actions over
objects but he is not allowed anymore to exploit some AXMEDIS services.

FinalUsers

Columns idx Data type Allow NULLs Value/Range
AXUID PK, FK I VARCHAR(58) Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed

Foreign keys Child Parent
AXUID AXUID GenericUsers.AXUID

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

137

Column details
1. AXUID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related final user

2. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of user registration, referred to GMT+0

3. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of user registration end, referred to GMT+0

B2BUsers

Columns idx Data type Allow NULLs Value/Range
AXUID PK, FK I VARCHAR(58) Not allowed
TypeOfUser I VARCHAR(4) Not allowed
Website LONGTEXT Allowed
RefName I VARCHAR(255) Allowed
Phone VARCHAR(255) Allowed
Company I VARCHAR(255) Not allowed
CmpAddress VARCHAR(255) Allowed
CmpPhone1 VARCHAR(255) Allowed
CmpPhone2 VARCHAR(255) Allowed
CmpFax VARCHAR(255) Allowed
Location VARCHAR(255) Allowed

Foreign keys Child Parent
AXUID AXUID GenericUsers.AXUID
AXUID ToolProducers. AXUID AXUID
AXUID Creators. AXUID AXUID
AXUID Distributors. AXUID AXUID

Column details
1. AXUID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related B2B user

2. TypeOfUser
Physical data type: VARCHAR(4)
Allow NULLs: Not allowed
Notes: Encode of the specific type of B2B User. It is a positional encode, composed by four

chars each representing a specific specialization. For example, xxx1 means the user is a
creator and xxx0 means the user isn’t a creator. Please note the user can have more than
one specialization, so the code can have more than one character set to ‘1’. The meaning
of the positions is below.

3. Website
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Web site of the B2B user

4. RefName
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Reference name in the B2B company

5. Phone
Physical data type: VARCHAR(255)
Allow NULLs: Allowed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

138

Notes: Reference telephone number in the B2B company

6. Company
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Name of the B2B company

7. CmpAddress
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: Address of the B2B company

8. CmpPhone1
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: Phone number of the B2B company

9. CmpPhone2
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: Phone number of the B2B company

10. CmpFax
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: Fax number of the B2B company

11. Location
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: Location of the B2B user

Here is the encoding of the possible B2B user specializations:

TypeOfUser Encode
Creator xxx1
Distributor xx1x
Collecting Society x1xx
Tool Producer 1xxx

Examples: 0011 means the user is a Creator and a Distributor. 1001 means the user is a Creator and a Tool Producer.

Domains

Columns idx Data type Allow NULLs Value/Range
AXDOM PK I VARCHAR(58) Not allowed
AXUID FK I VARCHAR(58) Not allowed

Foreign keys Child Parent
AXUID AXUID GenericUsers.AXUID
AXDOM CerTools.AXDOM AXDOM
AXDOM Users.AXDOM AXDOM

Column details
1. AXDOM (PK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the AXMEDIS Domain

2. AXUID (FK)
Physical data type: VARCHAR(58)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

139

Allow NULLs: Not allowed
Notes: It’s the Domain Manager ID: it can be an ID of a B2BUser or an End User according to

the value of TypeOfID

Creators

Columns idx Data type Allow NULLs Value/Range
AXUID PK, FK I VARCHAR(58) Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXUID AXUID B2BUsers.AXUID

Column details
1. AXUID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related B2B user

2. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of creator registration, referred to GMT+0

3. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of creator registration end, referred to GMT+0

4. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of the creator: B/U (Blocked/Unblocked)

Distributors

Columns idx Data type Allow NULLs Value/Range
AXUID PK, FK I VARCHAR(58) Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXUID AXUID B2BUsers.AXUID

Column details
1. AXUID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related B2B user

2. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of distributor registration, referred to GMT+0

3. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

140

Notes: Timestamp of distributor registration end, referred to GMT+0

4. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of the distributor: B/U (Blocked/Unblocked)

CollectSoc

Columns idx Data type Allow NULLs Value/Range
AXUID PK, FK I VARCHAR(58) Not allowed
NationDomain I VARCHAR(255) Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXUID AXUID B2BUsers.AXUID

Column details
1. AXUID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related B2B user

2. NationDomain
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Nation related to the collecting society.

3. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of collecting society registration, referred to GMT+0

4. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of collecting society registration end, referred to GMT+0

5. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of the collecting society: B/U (Blocked/Unblocked)

ToolProducers

Columns idx Data type Allow NULLs Value/Range
AXUID PK, FK I VARCHAR(58) Not Allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXUID AXUID B2BUsers.AXUID
AXTPID RegTools.AXTPID AXTPID

Column details
1. AXUID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

141

Notes: ID of the related B2B user

2. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of tool producer registration, referred to GMT+0

3. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of tool producer registration end, referred to GMT+0

5. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of tool producer: B/U (Blocked/Unblocked)

RegTools
(This table refers to Tool Off-line Registration)

Columns idx Data type Allow NULLs Value/Range
AXRTID (PK) PK I VARCHAR(58) Not allowed
AXTTID (FK) FK I VARCHAR(58) Not allowed
AXTPID (FK) FK I VARCHAR(58) Not allowed
Version VARCHAR(20) Not allowed
Year VARCHAR(4) Not allowed
Language I VARCHAR(255) Not allowed
OS I VARCHAR(255) Not allowed
SWFingerprint LONGTEXT Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXTTID AXTTID TypeOfTool.AXTTID
AXTPID AXTPID ToolProducers.AXTPID
AXRTID CerTools.AXRTID AXRTID

Column details
1. AXRTID (PK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the registered tool (ID of the the class of registered tool given by SuperAXCS)

2. AXTTID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the type of tool

3. AXTPID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the tool producer

4. Version
Physical data type: VARCHAR(20)
Allow NULLs: Not allowed
Notes: version of the registered tool

5. Year
Physical data type: VARCHAR(4)
Allow NULLs: Not allowed
Notes: year of the registered tool

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

142

6. Language
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: language of the registered tool

7. OS
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Operative System of the registered tool

8. SWFingerprint
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Software fingerprint of the registered tool

9. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of registered tool registration, referred to GMT+0

10. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of registered tool registration end, referred to GMT+0

11. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of tool producer: B/U (Blocked/Unblocked)

TypeOfTool

Columns idx Data type Allow NULLs Value/Range
AXTTID (PK) PK I VARCHAR(58) Not allowed
Description I VARCHAR(255) Not allowed
Notes LONGTEXT Allowed

Column details
1. AXTTID (PK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the type of tool

2. Description
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Description of the type of tool.

3. Notes
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: additional information about the type of tool

CerTools
(This table refers to the “Certification of a Tool” scenario)

Columns idx Data type Allow NULLs Value/Range
AXTID PK I VARCHAR(58) Not allowed
AXRTID FK I VARCHAR(58) Not allowed
AXUID FK I VARCHAR(58) Not allowed
AXDOM FK I VARCHAR(58) Allowed
HWFingerprint LONGTEXT Not allowed
HWFingerprintDigest LONGTEXT Not allowed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

143

EnablingCode LONGTEXT Not allowed
LastFPPA LONGTEXT Not allowed
PubKey LONGTEXT Not allowed
CertificateSerialNumber VARCHAR(255) Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Foreign keys Child Parent
AXRTID AXRTID RegTools.AXRTID
AXDOM AXDOM Domains.AXDOM
AXUID AXUID GenericUsers.AXUID

Column details
1. AXTID (PK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the certified tool (the single instance of the installed tool)

2. AXRTID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related registered tool (ID of the the class of registered tool given by

SuperAXCS)
3. AXUID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: related user ID: it can be an ID of a B2BUser or an End User according to the value of

TypeOfID
4. AXDOM (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: AXMEDIS Domain of certified tool (if any)

5. HWFingerprint
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: HW fingerprint of the related terminal (PC or anything else) the software is running on

6. HWFingerprintDigest
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Digest of HW fingerprint of the related terminal (PC or anything else) the software is

running on

7. EnablingCode
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: An activation code provided by AXCS to Certified Tool during the initialization phase.

8. LastFPPA
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: LastFPPA: Last Fingerprint of Performed Actions

9. PubKey
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: public key of the certified tool

10. CertificateSerialNumber
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: tool certificate serial number

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

144

11. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of certified tool registration, referred to GMT+0

12. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of certified tool registration end, referred to GMT+0

13. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of certified tool: B/U (Blocked/Unblocked)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

145

18 Table description for AXCS ObjectsID database (DSI)

18.1 Entity-Relationship description
In order to define the AXCS ObjectsID database schema, first we have to identify the entities and related
relations. Here is reported the list of the identified entities and the related meaning.

Objects: this entity contains a part of data about objects. It is linked to Creators entity (located in the AXCS
Registration and Certification Database) with an 1-N relation and to the Distributors entity (also located in
the AXCS Registration and Certification Database) with an M-N relation implemented as a table called
DistributedBy. It means that an Object can be distributed by more than one Distributor. It is also linked to
itself with an N-M relation implemented as a table called ComposedBy to state that an Object can be a
Complex Object composed by other Objects.

GeneratedIDs. This entity contains the AXOIDs generated by the GernerateAxoid method included in
Object Registration Web Service. It is needed to be sure that the AXOID it is going to be delivered to a
requestor has not been already generated.

DublinCore: this entity contains Dublin Core metadata related to an Object. Every raw in the pertinent
relational schema table is a Dublin Core set of metadata description related to an Object expressed in a
specific language.

DCCreatorsMetadata: this entity contains data about Authors, pertinent to a specified set of Dublin Core
metadata related to a language. It has been introduced to take into account the more than one Author
multiplicity. It is linked to the DublinCore entity with an 1-N relation.

ExtendedMetadata: this entity contains optional metadata about Object not included in Dublin Core. Every
row in the pertinent relational schema table is a single metadata value. This is a way to have a variable
number of metadata fields related to every object.

18.2 Relational database schema extended description
Here is reported the list of identified tables came from entities and relations previously stated.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

146

Please note that in ObjectsID database, the axmedis identifiers assigned to users are called with various
names to distinguish the role played by an user in this case. These names are: AXCID (AXmedis Creator
ID), AXDID (AXmedis Distributors ID), AXCSID (AXmedis Collecting Society ID).

Objects

Columns idx Data type Allow NULLs Value/Range
AXOID PK I VARCHAR(58) Not allowed
ObjectVersion I VARCHAR(20) Allowed
ProtectionStamp I VARCHAR(255) Allowed
ObjectNewAxoid FK I VARCHAR(58) Allowed
ObjectStatus VARCHAR(1) Not allowed B/U (Blocked/ Unblocked)
AXWID FK I VARCHAR(58) Not allowed
AXCID FK I VARCHAR(58) Not allowed
FingerprintInfo I VARCHAR(255) Not allowed
ProtectionInfo LONGTEXT Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Allowed

Foreign keys Child Parent
AXOID AXOID GeneratedIDs.AXOID
ObjectNewAxoid ObjectNewAxoid AXOID
AXOID Dublincore.AXOID AXOID
AXOID DistributedBy.AXOID AXOID
AXOID ExtendedMetadata.AXOID AXOID

Column details
1. AXOID (PK, FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the Object

2. ObjectVersion
Physical data type: VARCHAR(20)
Allow NULLs: Allowed
Notes: Current version of the object

3. ProtectionStamp
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: Indicates the way to protect the related object.

4 ObjectNewAXOID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: Eventually new version of the object (if any)

5. ObjectStatus
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of object: B/V (Blocked/Valid)

6. AXWID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the Work (the intellectual work) requested by Object Creator

7. AXCID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the Object Creator

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

147

8. FingerprintInfo
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Fingerprint information related to the object

9. ProtectionInfo
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Protection information related to the object

10. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of the object registration (insertion in the AXMEDIS system), referred to

GMT+0

11. RegDeadline
Physical data type: DATETIME
Allow NULLs: Allowed
Notes: Timestamp of the object lifecycle end (if any), referred to GMT+0

Here it has to be specified how the ObjectStatus works and how it can be used in conjunction with the ObjectNewAXOID field.
When an object is submitted for the distribution in the AXMEDIS system the object is “Active”. This means that the object is ready
to be used by all the users who got the right to use it. An object can be set to “Blocked” when the system manager or the object
owner discovery some problems about it and decide to block the object usage. This block can be temporary or definitive. . An object
can also become obsolete if a new version of that specific object is issued. It has to be underlined that new version of an object are
shipped with a new AXOID and are considered as a different object. In this case the object become “obsolete”, the
ObjectNewAXOID field related to the old object is filled with the AXOID of the new object released. When an object become
“obsolete” can be blocked or not, depending on the will of object owner and user license. An user can automatically have the rights
to use the new version of the object or must acquire a new right, depending on the license he owns. The system has to flag to the user
the availability of a new version of the object. In term of database field values, the status of the object can be summarized by the
following table where is showed the status of the object depending on the database field values.

 Active Obsolete Usable Obsolete Unusable Blocked
ObjectStatus U U B B
ObjectNewAXOID NULL any value not null any value not null any value

ObjectStatus state diagram

GeneratedIDs

Columns idx Data type Allow NULLs Value/Range
AXOID PK I VARCHAR(58) Not allowed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

148

Column details
1. AXOID (PK)
Physical data type: VARCHAR(40)
Allow NULLs: Not allowed
Notes: ID of the Object

ComposedBy

Columns idx Data type Allow NULLs Value/Range
CompID PK I BIGINT(20) Not allowed unsigned
MainObjAXOID FK I VARCHAR(58) Not allowed
IncludedObjAXOID FK I VARCHAR(58) Not allowed

Foreign keys Child Parent
MainObjAXOID MainObjAXOID Objects.AXOID
IncludedObjAXOID IncludedObjAXOID Objects.AXOID

Column details
1. CompID (PK)
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: Table primary key. Unsigned.

2. MainObjAXOID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Main Object ID (ID of the complex Object)

3. IncludedObjAXOID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the Object included in the related Main Object ID (MainAXOID)

DistributedBy

Columns idx Data type Allow NULLs Value/Range
DistID PK I BIGINT(20) Not allowed unsigned
AXOID FK I VARCHAR(58) Not allowed
AXDID FK I VARCHAR(58) Not allowed

Foreign keys Child Parent
AXOID AXOID Objects.AXOID

Column details
1. DistID (PK)
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: ID of the row. It can be an auto-incremental ID and is used only by DB Manager and

API DB. Unsigned

2. AXOID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the Object

3. AXDID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the Distributor.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

149

DublinCore

Columns idx Data type Allow NULLs Value/Range
DubliCoreID PK I BIGINT(20) Not allowed unsigned
AXOID FK I VARCHAR(58) Not allowed
Contributor LONGTEXT Allowed
Coverage LONGTEXT Allowed
Date DATETIME Allowed
Description LONGTEXT Allowed
Format LONGTEXT Allowed
Identifier LONGTEXT Allowed
Language VARCHAR(3) Allowed See ISO 639-2 standard
Publisher LONGTEXT Allowed
Relation LONGTEXT Allowed
Rights LONGTEXT Allowed
Source LONGTEXT Allowed
Subject LONGTEXT Allowed
Title LONGTEXT Allowed
Type LONGTEXT Allowed
XMLRefFile LONGTEXT Allowed

Foreign keys Child Parent
AXOID AXOID Objects.AXOID
DublinCoreID DCCreatorsMetadata.DublinCoreID DublincoreID

Column details
1. DublinCoreID
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: Dublin Core metadata ID. Table primary-key.Unsigned.

2. AXOID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related Object

3. Contributor
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

4. Coverage
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

5. Date
Physical data type: DATETIME
Allow NULLs: Allowed
Notes: Dublin Core metadata field, referred to GMT+0

6. Description
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

7. Format
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

8. Identifier
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

150

9. Language
Physical data type: VARCHAR(3)
Allow NULLs: Allowed
Notes: Dublin Core metadata field. Its value is a language code according to ISO 639-2

standard.

10. Publisher
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

11. Relation
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

12. Rights
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

13. Source
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

14. Subject
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

15. Title
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

16. Type
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Dublin Core metadata field

17. XMLRefFile
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Link to an XML File containing Dublin Core Metadata

DCCreatorsMetadata

Columns idx Data type Allow NULLs Value/Range
CreatorMetadataID PK I BIGINT(20) Not allowed Unsigned
DublinCoreID FK I BIGINT(20) Not allowed unsinged
CreatorValue LONGTEXT Not allowed

Foreign keys Child Parent
DublinCoreID DublinCoreID DublinCore.DublinCoreID

Column details
1. CreatorMetadataID
Physical data type: BIGINT(20)
Allow NULLs: Not Allowed
Notes: CreatorMetadata ID. Table primary-key. Unsigned.

2. DublinCoreID
Physical data type: BIGINT(20)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

151

Allow NULLs: Not allowed
Notes: Related Dublin Core metadata ID. Unsigned.

3 CreatorValue
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Creator metadata field value

ExtendedMetadata

Columns idx Data type Allow NULLs Value/Range
MetadataID PK I BIGINT(20) Not allowed unsigned
AXOID FK I VARCHAR(58) Not allowed
MetadataFieldName LONGTEXT Not allowed
MetadataFieldValue LONGTEXT Not allowed
MetadataLang VARCHAR(3) Not allowed See ISO 639-2 standard

Foreign keys Child Parent
AXOID AXOID Objects.AXOID

Column details
1. MetadataID (FK)
Physical data type: BIGINT(20)
Allow NULLs: Not Allowed
Notes: Metadata ID. Table primary-key. Unsigned

2. AXOID (FK)
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the related Object

3. MetadataFieldName
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Metadata field name

4. MetadataFieldValue
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Metadata field value

5. MetadataLang
Physical data type: VARCHAR(3)
Allow NULLs: Allowed
Notes: Metadata field language code according to ISO 639-2 standard.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

152

19 Table description for AXCS Accounting database (DSI, FUPF)

19.1 Entity-Relationship description
The Accounting database is structured to take care of Action-Logs and once it will be standardized will have
to implement all the necessary parts of MPEG21 Event Reporting. In order to define the AXCS Accounting
Database schema, first we have to identify the entities and related relations. Here is reported the list of the
identified entities and the related meaning.

ActionLog: this entity stores the Action-Log as it is with some fixed information such as the AXOID on
which the operation is performed, the AXUID of the user that performed the operation, the registration
timestamp and execution timestamp (that can be different because of off-line operations performed on the
objects). This entity is linked to the OperationDetails entity described below.

SupervisorInputData: The SupervisorInputData entity contains the same elements of an ActionLog entity
plus a new element called AdditionalData. The role of this field is the storing of internal actions or actions
between modules. It is used to check that some internal operations, like license requests, key requests, etc.
have been done. A SupervisorInputData is generated in some situations when an Action Log is not, and that
enable to track different issues, as for example:

• AXCV stores a SupervisorInputData when a user is blocked during certification or verification to
explain the reasons why. In this way, it is possible to track why the user was blocked.

• PMS Server stores a SupervisorInputData:
o 1) when an AXMEDIS user requests a license to consume an AXMEDIS object (on-line or

off-line), which enables to track license requests
o 2) when an end user requests permission to perform an action on an AXMEDIS Object and

PMS Server does not positively authorize the user, which enables to track attempts of
incorrect usage of contents

Both ActionLog and SupervisorInputData report details about operations performed by users. These
operations are based on the RDD terms of MPEG-21 standard, which have the concept of operations
associated to an Event Report (Action Log for us). We have based our proposal of structure on this. We
consider only operations made over an AXMEDIS Object. These operations generate an Action Log.
An example of these operations is:

- Modify : To edit an object in order to change it, or to protect it adding rules or metadata.
- Aggregate : To obtain an AXMEDIS Object as a composition of AXMEDIS Objects
- Render : To use or view an Object
- Play : Render as Performance
- Print : Render as Fixation
- Originate : To create a new AXMEDIS Object
- Enlarge : To Add something to an AXMEDIS Object already created
- Reduce : To modify an AXMEDIS Object by taking away from it
- Diminish : To create a new AXMEDIS Object from another one. The Object created is smaller than the
source.
- Adapt : To Copy. To edit an AXMEDIS Object creating a new one which has the changes.
- Embed : To put an element or AXMEDIS Object into another AXMEDIS Object
- Delete : To destroy an AXMEDIS Object
- Identify : To nominate an AXMEDIS Object uniquely

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

153

Please note that in Action Logs and Supervisor Input Data the axmedis identifiers assigned to users are called
with various names to distinguish the role played by an user in this case. These names are: AXCID
(AXmedis Creator ID), AXDID (AXmedis Distributors ID), AXCSID (AXmedis Collecting Society ID).

19.2 Relational database schema extended description
Here is reported the list of identified tables came from entities and relations previously stated.

ActionLog

Columns Idx Data type Allow NULLs Value/Range
LogID PK I BIGINT(20) Not allowed unsigned
AXOID I VARCHAR(58) Not allowed
ObjectVersion I VARCHAR(20) Not allowed
ProtectionStamp I VARCHAR(255) Not allowed
AXWID I VARCHAR(58) Allowed
AXDOM I VARCHAR(58) Allowed
AXUID I VARCHAR(58) Not allowed
AXDID I VARCHAR(58) Not allowed
AXCID I VARCHAR(58) Not allowed
OwnerName LONGTEXT Allowed
AXTID I VARCHAR(58) Not allowed
AXLID I VARCHAR(58) Not allowed
AXCSID I VARCHAR(58) NotAllowed
Location LONGTEXT Allowed
OperationDetails I LONGTEXT Allowed
Operation I VARCHAR(255) Not allowed
RegistrationTimestamp DATETIME Not allowed
ExecutionTimestamp I DATETIME Not allowed
InstantLastFPPA LONGTEXT Not allowed
EstimatedHwFingerprint LONGTEXT Not allowed

Column details
1. LogID
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: Current registration ID in Action-Log Registry. Unsigned.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

154

2. AXOID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Object ID. Foreign Key of an AXMEDIS Object Table.

3. ObjectVersion
Physical data type: VARCHAR(20)
Allow NULLs: Not allowed
Notes: Pertinent Object version. Foreign Key of an AXMEDIS Object Table.

4. ProtectionStamp
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Indicates the way to protect the related object.

5. AXWID
Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: Pertinent Work Identification

6. AXDOM
Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: Pertinent User AXMEDIS Current Domain (if any)

7. AXUID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent User ID. The Event Report was prompted by a user with a certain AXUID

(User ID).

8. AXDID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Object Distributor ID

9. AXCID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Object Creator ID

10. OwnerName
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Pertinent Object Owner

11. AXTID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the certified tool (the single instance of the installed tool). The Event Report was

prompted from a peer (a tool) with a certain ID (AXTID).

12. AXLID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Licence ID

13. AXCSID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Collecting Society

14. Location
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Nation related to the pertinent collecting society.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

155

15. OperationDetails
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Details about the operation performed

16. Operation
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Operation performed

17. RegistrationTimestamp
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: timestamp of the registration in the AXCS, referred to GMT+0

18. ExecutionTimestamp
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: timestamp of operation execution, referred to GMT+0

19. InstantLastFPPA
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: User related LastFPPA: Last Fingerprint of Performed Actions

20. EstimatedHWFingerprint
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Estimated HW fingerprint of the related terminal (PC or anything else) the software is

running on at the specific action execution time

SupervisorInputData

Columns Idx Data type Allow NULLs Value/Range
LogID PK I BIGINT(20) Not allowed unsigned
AXOID I VARCHAR(58) Not allowed
ObjectVersion I VARCHAR(20) Not allowed
ProtectionStamp I VARCHAR(255) Not allowed
AXWID I VARCHAR(58) Allowed
AXDOM I VARCHAR(58) Allowed
AXUID I VARCHAR(58) Not allowed
AXDID I VARCHAR(58) Not allowed
AXCID I VARCHAR(58) Not allowed
OwnerName LONGTEXT Allowed
AXTID I VARCHAR(58) Not allowed
AXLID I VARCHAR(58) Not allowed
AXCSID I VARCHAR(58) Not allowed
Location LONGTEXT Allowed
OperationDetails I LONGTEXT Allowed
Operation I VARCHAR(255) Not allowed
RegistrationTimestamp DATETIME Not allowed
ExecutionTimestamp I DATETIME Not allowed
InstantLastFPPA LONGTEXT Not allowed
EstimatedHwFingerprint LONGTEXT Not allowed
AdditionalData LONGTEXT NotAllowed

Column details
1. LogID
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: Current registration ID in Action-Log Registry. Unsigned.

2. AXOID

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

156

Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Object ID. Foreign Key of an AXMEDIS Object Table.

3. ObjectVersion
Physical data type: VARCHAR(20)
Allow NULLs: Not allowed
Notes: Pertinent Object version. Foreign Key of an AXMEDIS Object Table.

4. ProtectionStamp
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Indicates the way to protect the related object.

5. AXWID
Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: Pertinent Work Identification

6. AXDOM
Physical data type: VARCHAR(58)
Allow NULLs: Allowed
Notes: Pertinent User AXMEDIS Current Domain (if any)

7. AXUID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent User ID. The Event Report was prompted by a user with a certain AXUID

(User ID).

8. AXDID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Object Distributor ID

9. AXCID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Object Creator ID

10. OwnerName
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Pertinent Object Owner

11. AXTID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: ID of the certified tool (the single instance of the installed tool). The Event Report was

prompted from a peer (a tool) with a certain ID (AXTID).

12. AXLID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Licence ID

13. AXCSID
Physical data type: VARCHAR(58)
Allow NULLs: Not allowed
Notes: Pertinent Collecting Society

14. Location
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Nation related to the pertinent collecting society.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

157

15. OperationDetails
Physical data type: LONGTEXT
Allow NULLs: Allowed
Notes: Details about the operation performed

16. Operation
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Operation performed

17. RegistrationTimestamp
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: timestamp of the registration in the AXCS, referred to GMT+0

18. ExecutionTimestamp
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: timestamp of operation execution, referred to GMT+0

19. InstantLastFPPA
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: User related LastFPPA: Last Fingerprint of Performed Actions

20. EstimatedHWFingerprint
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Estimated HW fingerprint of the related terminal (PC or anything else) the software is

running on at the specific action execution time
21. AdditionalData
Physical data type: LONGTEXT
Allow NULLs: Not allowed
Notes: Additional Data added to control and check that any action is being done correctly.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

158

20 Table description for User Registration database for user
registration portal (DSI)

20.1 Entity-Relationship description
The User Registration database for User Registration Portal has to support the portal in order to play the role
of an entity entitled to register users in AXMEDIS. Therefore, it has to retain user personal information and
the associations between these data and the AXUIDs assigned by the system. In order to define the database
schema, first we have to identify the entities and related relations. Here is reported the list of the identified
entities and the related meaning.

registrations: this entity stores data about the registration, both data about the process itself, such as the
status of the process (i.e. “confirm”, “confirmed” or “accepted”), and the association between the user data
and the assigned AXUID

users: this entity represents the subject of the registration process, i.e. the user. Therefore it stores all the user
personal data such as name, address, city, state, telephone number, etc.

20.2 Relational database schema extended description
Here is reported the list of identified tables came from entities and relations previously stated.

registrations

Columns Idx Data type Allow NULLs Value/Range
registration_id PK I BIGINT(20) Not allowed Unsigned
user BIGINT(20) Not allowed Unsigned
phase VARCHAR(255) Not allowed
AXUID VARCHAR(255) Not allowed

Column details
1. registratio_id
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: Current registration ID in the table. Unsigned

2. user
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: ID identifying the record in the utenti table storing the personal data of the user to

whom the current records refers to. Unsigned

3. phase
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Current phase of the registration process

4. AXUID
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: AXMEDIS Uinique ID assigned to the user at the end of the registration proceess

users

Columns Idx Data type Allow NULLs Value/Range
user_id PK I BIGINT(20) Not allowed unsigned
nickname VARCHAR(255) Not allowed
password VARCHAR(255) Not allowed
code VARCHAR(255) Not allowed

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

159

name VARCHAR(255) Not allowed
surname VARCHAR(255) Not allowed
address VARCHAR(255) Not allowed
city VARCHAR(255) Not allowed
cap VARCHAR(255) Not allowed
state VARCHAR(255) Not allowed
telephone VARCHAR(255) Not allowed
fax VARCHAR(255) Allowed
cellular VARCHAR(255) Allowed
email VARCHAR(255) Not allowed
title VARCAHR(255) Allowed
birth_date DATE Not allowed
registration_date DATE Not allowed

Column details
1. user_id
Physical data type: BIGINT(20)
Allow NULLs: Not allowed
Notes: Current user ID in the table. Unsigned

2. nickname
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: NickName of the user

3. password
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: MD5 or other encryption of user password

4. code
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Temporary ID assigned to the user while his/her registration in AXMEDIS is pending

5. name
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User name

6. surname
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User family name

7. address
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User address

8. city
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: City where the user lives

9. cap
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: ZIP code of the sity where the user lives

10. state
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: State where the user lives

11. telephone

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

160

Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User telephone number

12. fax
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: User fax number

13. cellular
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: User cellphone number

14. email
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User email address

15. birth_date
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User birth date

16. title
Physical data type: VARCHAR(255)
Allow NULLs: Allowed
Notes: User qualification

17. registration_date
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: User registration date, referred to GMT+0

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

161

21 Table description for Active AXCSs List Database (DSI)

21.1 Entity-Relationship description
The Active AXCSs List Database has been conceived to contain data about all the AXCSs spread over the
world. Its location depends on the AXCSs network architecture adopted, as follows:

1. Fully peer network architecture. In this case the Active AXCSs List Database has to be replicated
on every AXCS in order to let each AXCS to know about the other peers. Information has to be
propagated over the network.

2. Two (or more) level peer network. In this case the peer network is composed by peers located in
the highest level; only these AXCSs have to host the Active AXCSs List Database. Information has
to be propagated and replicated over the network, among these high level AXCSs.

3. Network with an AXCS master (SuperAXCS). In this case the SuperAXCS plays the role of
coordinator and has some major functions with respect to other AXCSs. The ActiveAXCSs List
Database can be located only in SuperAXCS.

Here is reported the list of the identified entities and the related meaning.

axcslist: this entity stores data about the AXCSs in the AXMEDIS system. An AXCS can play its onw role
and is active only after the registration phase that consists in recording AXCS data in the axcslist table.

21.2 Relational database schema extended description
Here is reported the list of identified tables came from entities and relations previously stated.

AXCSLIST

Columns idx Data type Allow NULLs Value/Range
AXCERSID PK I VARCHAR(40) Not allowed
AXDOM FK I VARCHAR(40) Allowed
Email VARCHAR(255) Not allowed
NickName VARCHAR(255) Not allowed
Password VARCHAR(255) Not allowed
Description VARCHAR(255) Not allowed
Location VARCHAR(255) Not allowed
Nationality I VARCHAR(255) Not allowed
PubKey LONGTEXT Not allowed
RegDate DATETIME Not allowed
RegDeadline DATETIME Not allowed
Status VARCHAR(1) Not allowed B/U (Blocked/Unblocked)

Column details
1. AXCERSID (PK)
Physical data type: VARCHAR(40)
Allow NULLs: Not allowed
Notes: ID of the AXCS

2. AXDOM (FK)
Physical data type: VARCHAR(40)
Allow NULLs: Allowed
Notes: AXMEDIS Current Domain of the AXCS (if any)

3. Email
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: email of the related AXCS manager

4. NickName
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: NickName of the AXCS manager

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

162

5. Password
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: MD5 or other encription of AXCS manager password

6. Description
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Description of the AXCS

7. Location
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Location of the AXCS

8. Nationality
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: Nationality of the AXCS

9. PubKey
Physical data type: VARCHAR(255)
Allow NULLs: Not allowed
Notes: public key of the AXCS

10. RegDate
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of AXCS registration

11. RegDeadline
Physical data type: DATETIME
Allow NULLs: Not allowed
Notes: Timestamp of AXCS registration end

12. Status
Physical data type: VARCHAR(1)
Allow NULLs: Not Allowed
Notes: Status of the AXCS: B/U (Blocked/Unblocked)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

163

22 Formal description of AXMEIDS prefixes format (DSI)
AXMEDIS prefixes are used to charcaterise identifiers, in order to let tools undertand the meaning of an
identifier simply parsing the prefix.
Each AXMEDIS prefix is a simple string consisting of an urn containing (among other parts) a three
characters code, chosen appropriately among the following:

Identifier AXMEDIS Prefix
AXDOM DOM
AXLID LIC
AXOID OBJ

AXRTID RTO
AXTID ITO

AXTOID TOB
AXTTID TOT

Prefix for Final Users USR AXUID Prefix for B2B Users BUS
AXWID WRK

For the meaning of each identifier please see section 23.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

164

23 Formal description of AXMEDIS ID format (DSI)
An AXMEDIS identifier is an URN (see http://www.ietf.org/rfc/rfc2141.txt for further details on URNs
syntax) with the following syntax:

<AXMEDIS_ID> ::= “urn:” <AXMEDIS_NID> “:” <AXCS_ID> “:” <AXMEDIS_PREFIX> “:” <UUID>

where:

<AXMEDIS_NID> ::= “axmedis”
<AXCS_ID> ::= <hexDigit><hexDigit><hexDigit><hexDigit><hexDigit>
<AXMEDIS_PREFIX> ::= “DOM” | “LIC” | “OBJ” | “RTO” | “ITO” | “TOB” | “TOT”

Please note that the identifier “00000” will never be assigned to any AXCS, so temporary IDs can be used in
the same format of AXMEDIS ID but only with the “00000” AXCS ID.

A UUID is an identifier that is unique across both space and time, with respect to the space of all UUIDs.
The formal definition of the UUID string representation is provided by the following extended BNF (please
see http://www.opengroup.org/onlinepubs/9629399/apdxa.htm for more details):

UUID = <time_low> <hyphen> <time_mid> <hyphen>
 <time_high_and_version> <hyphen>
 <clock_seq_and_reserved>
 <clock_seq_low> <hyphen> <node>
time_low = <hexOctet> <hexOctet> <hexOctet> <hexOctet>
time_mid = <hexOctet> <hexOctet>
time_high_and_version = <hexOctet> <hexOctet>
clock_seq_and_reserved = <hexOctet>
clock_seq_low = <hexOctet>
node = <hexOctet><hexOctet><hexOctet>
 <hexOctet><hexOctet><hexOctet>

where:

hexOctet = <hexDigit> <hexDigit>
hexDigit = <digit> | <a> | | <c> | <d> | <e> | <f>
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
 "8" | "9"
hyphen = "-"
a = "a" | "A"
b = "b" | "B"
c = "c" | "C"
d = "d" | "D"
e = "e" | "E"
f = "f" | "F"

So, an UUID consists of a string of 36 characters split in 5 groups as follows:

xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

where “x” is an hexadecimal character. For instance:

06ebd820-91a2-11da-a1bf-0002a5d5c51b.

Therefore, an AXMEDIS identifier is in the form:

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

165

urn:axmedis:yyyy:PPP:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

where “y” and “x” are hexadecimal characters, “y” has always a value different from “0” and “PPP” is a
three character code correspondent to an AXMEDIS prefix (see section 22).
Depending on the prefix used an AXMEDIS identifier is called in different ways:

Acronym Description ID Prefix

AXDOM AXMEDIS Domain (associated with the PMS Home or Factory
managing the Domain) DOM

AXLID Unique AXMEDIS License ID LIC
AXOID Unique AXMEDIS Object ID OBJ

AXRTID AXMEDIS Registered Tool ID. It is the identifier of the class of tool,
eg. the editor of producer X RTO

AXTID
AXMEDIS Tool ID, a specific instance of an AXRTID, e.g. the
instance of the editor of producer X installed on the machine of the user
A

ITO

AXTOID
AXMEDIS Temporary Object ID, produced directly from the numbers
available for the AXMEDIS Creator. It can be produced as
AXCID+AXTID+AXUID+an progressive ID of the Tool

TOB

AXTTID

AXMEDIS Tool Type ID Different tools are Editor, Composition
Engine, Formatting Engine, Protection Tool Engine, etc. This is
contained into the Profile, several other aspects and details for each tool
have to be registered. Some other details depends on the specific
instance, this the reason to provide and exploit a Tool Profile.

TOT

Prefix for Final Users USR AXUID Unique AXMEDIS User ID Prefix for B2B Users BUS

AXWID
Work Identification. For each Work you may have several different
versions of AXOB, for example differing for resolution, market, format
of the digital resources, etc.

WRK

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

166

24 AXMEDIS Action Log Format (DSI, FUPF)
Action Logs are used to trace every action performed (being previously authorized by the system) on objects
at both business and final user level. Section 19 describes the format of an Action Log in terms of contained
data. These data are provided by different AXMEDIS modules during the normal system functioning.
Here is a table describing which component is in charge of filling the pertinent data:

 FILLED BY

ACTIONLOG FIELD

AXOM PMS
Server AXCS

AXCID X
AXCSID X
AXDID X

AXDOM X
AXLID X
AXOID X
AXTID X
AXUID X
AXWID X

EstimatedHWFingerprint X
ExecutionTimestamp X

historyVerificationSuccess X
location X

log id X
objectVersion X

operation detail X
operation X

ownername X
protectionTimeStamp X

registrationTimeStamp X

As it is shown from this table, three components are in charge of filling the needed data for an Action Log:
the AXOM, the PMS Server and the AXCS. Of course the AXCS stores most of the needed data, but they are
not exploited because Action Logs are used to trace what happens and who is performing the action.
Therefore, a different source for these data is needed, particularly a source on the “client” side from the
system (i.e. AXCS and PMS Server) point of view. So, most of these data are filled by AXOM, which
resides inside the tool performing the operation.

Most of these data are recovered directly by the AXOM on the basis of information included in the
AXMEDIS object (AXCID, AXDID, AXOID, AXWID, objectVersion, ownername, protectionTimeStamp) or
on the basis of the identities of the user and of the tool (AXUID, AXTID, EstimatedHWFingerprint,
ExecutionTimeStamp, operationdetail, operation)

AXLID, AXDOM, location and AXCSID will be included in the license related to the AXOID contained in the
Action Log. Therefore, the PMS Server will be able to retrieve them and put them into the corresponding
Action Log.

There is an Action Log History Digest, called instantLastFPPA, for each certified tool (that is, the
instantLastFPPA may involve more than one user).

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

167

AXCS from one side and PMS Client from the other side are responsible to calculate a new
instantLastFPPA: it is calculated in the client side and recalculated in the server side to be verified. The
instantLastFPPA in the client side is derived from the previous instantLastFPPA stored in the local cache and
the data in the “current” ActionLog, then it is updated in the local cache. AXCS-AXCV verifies the
instantLastFPPA consistency by recalculating it and, once verified, stores it in AXCSRegCert database.

instantLastFPPA will not be filled in the Action Log structure in the client side to avoid that a malicious user
can find the hash evolution for each action in the same place where the hash is stored (in the local cache).
instantLastFPPA will not be placed in the Action Log in the server side because once verified it is not
necessary to store it.
Therefore, this value is neither inserted in the Action Log nor stored in the AXCSAccounting database.

In order to calculate the instantLastFPPA, a subset of the fields contained in the Action Log is used. In
particular, the following fields are involved: AXOID, AXTID, AXUID, ExecutionTimestamp, objectVersion,
operationID, protectionTimeStamp, estimatedHWFingerprint, AXLID and AXDOM.
We have two different approaches to tackle the LastFPPA calculation:

1) To have a different LastFPPA for each user+tool.
2) To have a single LastFPPA common for all users in the same certified tool.

Advantages for approach 1):

• If AXCS detects that the lastFPPA is not consistent, it can block not only the tool but also the user
whose history failed.

Disadvantages for approach 1):

• One solution consists on retrieving the LastFPPA for each user+tool from the corresponding last
ActionLog for those user+tool in the Accounting database. This solution is dangerous as Action
Logs can be removed from the Accounting database after a period (for instance, after billing is
performed). Another solution would be to redesign AXCS database and PMS Client secure cache in
order to allow the storage of LastFPPA for each user+tool (RegCert database)

• If a user altered a tool and the next user that performed an action on that tool was a different user,
AXCS would determine that the history is not consistent (because AXCS would search the previous
action log for that user (AXUID) and device (EstimatedHWFingerprint) and it would not get any, as
device fingerprint would have changed) and an innocent user would be blocked.

Advantages for approach 2):

• AXCS RegCert database is designed for this case, so it can be kept as it is now. LastFPPA is
retrieved for each tool from CerTools table in AXCS database. Secure cache is also designed for this
case currently.

Disadvantages for approach 2):

• If AXCS detects that the lastFPPA is not consistent, it can block the tool but it does not know which
user is responsible of the failure (e.g. if the check fails when verifying LastFPPA with an action log
coming from user 1, it could be because user 2 had erased some action logs involved in the history).
Thus, it can act in two ways:

o a) block all users that have some action logs stored in the tool: some innocent users might be
blocked, and perhaps not the malicious user if he has succeded to erase all his action logs.

o b) do not block any user: the malicious user will not be blocked in AXMEDIS
In both cases a) and b) the tool would be blocked

The second solution seems to be the most feasible and it is the one that will be adopted.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

168

25 AXCS/PMS Data Diffusion Format (DSI)
As explined in section 13, AXMEDIS architecture is composed of various AXCSs and PMSs. Therefore,
there is the need for a format to let omogeneus entities (i.e. AXCSs among themselves and PMSs among
themselves) exchange data.

As for PMSs, they have to exchange licenses to replicate data in order to increase the system fault tolerance.
So, they simply transfer data blocks spanning through out all the license database. Please note, this does not
mean that a PMS has to transfer all its data to all others PMSs replicating data of the current one; the transfer
can involve a subset of those data as regards the cardinality of the records. However, the transfer musts
involve consistent data, thus data exchanged will span across all the tables of the license database, in order to
correctly recreate relations among records in different tables.
Therefore, if, for instance, the license database of a PMS (let say A) is replicated on other two PMSs (let say
B and C) and it contains 100000 records in each of its 5 tables (for sake of simplicity let suppose all the
tables have the same number of records, for a total of 500000 records), then A could transfer 250000 records
to B and the other 250000 to C, but to both B and C would be transferred 50000 records for each table
related each other.

As for AXCSs, they have to exchange data about users, tools, action logs, objects, etc. This can happen for
two reasons: to replicate data in order to increase the system fault tolerance or to migrate data in order to
permit users to use object also among different distribution channel. It has to be reminded that an AXCS
operate only on a single distribution channel.

Network of AXCSs and PMSs

25.1 Different kind of data
Both AXCSs and PMSs retain an huge amount of data. As stated in the above paragraph not all data can be
replicated over all the subjects in the network: only a part of information has to be migrated to other subjects.
About data management, two different kind of data has to be depicted:

1. Pertinent owned data
2. Cached derived data

The former refers to data acquired and collected directly by the interested subject (AXCS or PMS). For
example, this kind of information refers to data related to user registered through a specific AXCS or a
license produced by a specific PMS; for that AXCS or that PMS these information is “Pertinent owned data”.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

169

The latter refers to data received by an AXCS coming from other AXCSs through the network of AXCSs, or
to data received by an PMS coming from other PMSs through the network of PMSs.

Pertinent owned data vs Cached derived data:

Cached derived data are Pertinent owned data coming from other network nodes

It has to be remarked that cached derived data (data transferred from an AXCS to other AXCSs or from a
PMS to other PMSs through related networks), can’t violate the consistency of the database: all data
logically related has to be transferred. For example, if metadata related to an object has to be transferred
(migrated) from an AXCS to another, also all related data such as creator, distributor, and so on has to be
transferred.
In the figure below, each node of the network (AXCS or PMS) is represented as a square. Each square
contains both Pertinent owned data and Cached derived data. Intersections among squares represent data
shared among different nodes and are Pertinent owned data for a single square and Cached derived data for
the others.

Data distribution among network nodes

The way to decide which portion of data has to be transferred among AXCSs or among PMSs through the
related networks will be defined by a special kind of intelligent agents called “Crossmovers”. In this way
the knowledge retained by AXCSs and PMSs moves through the related network and reaches “adjacent”
network node. The adjacency is not related with physical neighbourhood, but refers to logical relationship
between nodes.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

170

26 Formal description of AXS axs.properties file format (FUPF)

axs.properties is a Java properties file that contains the information necessary for the initialisation of the
AXS module.

Refer to http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream) for more
information about the syntax.

Example:

#AXCS Accounting database DSN. This parameter will be only used if the
axcsdb.ini file from DSI database is not found in the system.
AccountingDSN=jdbc\:mysql\://193.145.45.173/axcsaccounting

#AXCS Objects ID database DSN. This parameter will be only used if the
axcsdb.ini file from DSI database is not found in the system.
ObjectsIdDSN=jdbc\:mysql\://193.145.45.173/axcsobjectsid

#Database User. This parameter will be only used if the axcsdb.ini file from DSI
database is not found in the system.
AxcsDbUser=axmedis

#Database Password. This parameter will be only used if the axcsdb.ini file from
DSI database is not found in the system.
AxcsDbPassword=axmedis

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

171

27 Formal description of AXCV nextSerial.txt file format (FUPF)

nextSerial.txt is a text file which contains the value of the next serial number to be used. The specified value
will be interpreted as a java.lang.Long. As the serial number cannot be less than “0”its range will be the
following: [0 to 263].

Example of nextSerial.txt file contents:

1000000068

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

172

28 Formal description of AXCV AxcsCAPkcs12.p12 and
axcvToolCertStore.p12 file format (FUPF)

AxcsCAPkcs12.p12 keystore contains the AXCS certificate and private key with which tool certificates are
signed.

axcvToolCertStore.p12 keystore contains the generated tool certificates (tool private key is not stored)

These files are PKCS12 keystores follow the syntax specified in "PKCS #12 v1.0: Personal Information
Exchange Syntax Standard", RSA Laboratories, June 24, 1999, which can be found at
http://www.rsasecurity.com/

They will only work with the keytool if the password is provided on the command line, as the entire keystore
is encrypted with a PBE based on SHA1 and Twofish (PBEWithSHAAndTwofish-CBC). This makes the
entire keystore resistant to tampering and inspection, and forces verification. The Sun JDK provided keytool
would attempt to load a keystore even if no password is given, which is impossible for this version of
keystore.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

173

29 Formal description of AXCV axcv.properties file format (FUPF)

axcv.properties is a Java properties file that contains the information necessary for the initialisation of the
AXCV module. It can be customised to change the names and passwords of the corresponding files and key
stores that the AXCV needs to access.

Refer to http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream) for more
information about the syntax.

Example:

#PKCS12 store where AXCV certificate and private key are stored
axcsCertStore=AxcsCAPkcs12.p12

#Password for PKCS12 store where AXCV certificate and private key are stored
axcsCertStorePasswd=AXCSpwd

#PKCS12 store where the generated tool certificates are stored (private key not
stored)
axcvToolCertStore=axcvToolCertStore.p12

#Password for PKCS12 store where the generated tool certificates are stored
axcvToolCertStorePasswd=AXCSpwd

#File name where serial number for next tool Certificate is stored
nextSerial=nextSerial.txt

#AXCS Registration and Certification database DSN. This parameter will be only
used if the axcsdb.ini file from DSI database is not found in the system.
RegCertDSN=jdbc\:mysql\://193.145.44.41/axcsregcert

#Database User. This parameter will be only used if the axcsdb.ini file from DSI
database is not found in the system.
AxcsDbUser=axmedis

#Database Password. This parameter will be only used if the axcsdb.ini file from
DSI database is not found in the system.
AxcsDbPassword=axmedis

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

174

30 Formal description of AXCV toolBase64PKCS12 output parameter
format (FUPF)
PKCS12 stream bytes encoded in Base 64. The PKCS12 format used is the same as that explained for
AxcsCAPkcs12.p12 and axcvToolCertStore.p12 files.

See RFC 1521, RFC 2045 and RFC 3548 for further information about Base64 encoding.

toolBase64PKCS12 includes the tool certificate signed by the AXCS CA Root Certificate and tool private
key together and protected with a password.

The tool certificate will have the format explained in document AXMEDIS-DE3-1-2-2-3-Spec-of-AXOM-
and-ProtProc-upB-v1-5.doc.

The certificate will include as an extension the certified tool activation code (or enabling code). The
extension will be identified with the Object Identifier 1.3.6.1.4.1.25576.1.1, where 1.3.6.1.4.1.25576 is the
Private Enterprise Number assigned by IANA to AXMEDIS Organisation, as described in next section.
If the Unrestricted policy files for Sun JCE were available at the server (default configuration), the password
used will be the full AXMEDIS AXID. Otherwise, the password will be the first 8 characters of the
AXMEDIS AXID. It proves that an AXMEDIS tool has been certified and can be used in the AXMEDIS
framework.
The steps followed to obtain toolBase64PKCS12 from a PKCS12 object can be summarized as follows:

1. PKCS12 object
2. get PKCS12 byte stream
3. encode in Base64

The steps you can follow to obtain a the PKCS12 object from the toolBase64PKCS12 output parameter can
be summarized as follows:

1. Decode toolBase64PKCS12 in Base 64

2. Get the PKCS12 KeyStore object from the bytes using the already mentioned password

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

175

31 Formal description of the distribution of the OIDs tree assigned by
IANA to AXMEDIS

The IANA has assigned 1.3.6.1.4.1.7547 Private Enterprise Number to AXMEDIS Organisation, which can
be found at http://www.iana.org/assignments/enterprise-numbers.

Upper references:

1.3.6.1.4.1 - IANA-registered Private Enterprises.
1.3.6.1.4 - Internet Private.
1.3.6.1 - OID assignments from 1.3.6.1 - Internet.
1.3.6 - US Department of Defense.
1.3 - ISO Identified Organization.
1 - ISO assigned OIDs.

The distribution of the AXMEDIS tree corresponding to the 1.3.6.1.4.1.7547 branch will be the following:

1.3.6.1.4.1.7547.0: reserved
1.3.6.1.4.1.7547.1: AXMEDIS PKI-X.509 related objects

1.3.6.1.4.1.7547.1.1: AXMEDIS Tool certificate extensions
1.3.6.1.4.1.7547.1.1.1: AXMEDIS Tool activation code (or enabling code)

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

176

32 Formal description of toolFingerprint input parameter format in
AXCV certify method (FUPF)

toolFingerprint is an XML file serialized as a string, which corresponds to the SoftwareFingerprint part of
ToolFingerprint XML Schema defined in the Protection Processor section of Framework and Tools
Specifications document.

AXCV toolFingerprint parameter is used in certify method to ensure that the installed tool corresponds to the
original one registered in AXCS database.

AXCV will extract the information in the Category, FullFileName, Signature, CreationDate and
LastModificatioDate tags, if present, and compare it to the information stored in AXCS RegCert database.
PhysicalPosition information will be omitted because it refers to the installation of the tool, and thus is
installation dependent.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

177

33 Formal description of toolFingerprint input parameter format in
AXCV reverify method (FUPF)

toolFingerprint is an XML file serialized as a string, which corresponds to the full ToolFingerprint XML
Schema defined in the Protection Processor section of Framework and Tools Specifications document.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

178

34 Formal description of toolFingerprintDigest input parameter format
in AXCV verify method (FUPF)

toolFingerprint is the SHA1 hash bytes encoded in Base64 corresponding to the relevant data (tags not
included) in the XML file used to describe the AXMEDIS Tool Fingerprint, which corresponds to the full
ToolFingerprint XML Schema mentioned in previous section.
The steps to obtain toolFingerprintDigest from toolFingerprint XML file can be summarized as follows:

1. Get XML file
2. Get relevant data (exclude XML tags)
3. Concatenate the different fields obtained in previous steps without spaces and create a string

4. Calculate the SHA1 Digest of the previous string
5. Encode in Base64

Refer to RFC 3714 for more information about the SHA1 Message-Digest Algorithm.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

179

35 Formal description of regDeadline input parameter format in AXCV
certify method (FUPF)

RegDeadline input parameter is a string which denotes the date when the tool will stop working and is
expressed in the following format:

"yyyy-MM-ddThh:mm:ss".

Where,

yyyy: year
MM: month
dd: day
T is the character used as separator between the date and the time
hh: hour
mm: minute
ss: seconds

Example: "2020-01-31 23:59:59"

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

180

36 Formal description of communication protocol
AXCSUserRegistration (DSI)

AXCSUserRegistration web service
Method registration
Description It is the only public method of the user registration web service. It collects Distributor

credentials needful to access the system and uses the verifyLogin() (a DataManager method)
to verify requestor credentials. It collects also registration data (regInfo) provided by the
requesting distributor and uses the other methods to insert them in the database and to provide
the result to the requesting distributor.

Input
parameters

UserRegistrationInfo regInfo – a data structure containing the nickname and password of the
requesting distributor and a nested data structure containing the data to be inserted/updated

Output
parameters

RegistrationResult – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “definitiveUID”: this field returns the definitive AXUID in case of success, a null

value otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise
Request
Sample
Message

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <regInfo xsi:type="ns1:UserRegistrationInfo"
xmlns="org:axmedis:axcs:services:userregistrator"
xmlns:ns1="org:axmedis:axcs:services:userregistrator">
 <ns1:nickName xsi:type="xsd:string">mario</ns1:nickName>
 <ns1:password xsi:type="xsd:string">xxxxx</ns1:password>
 <ns1:regData xsi:type="ns1:UserDataType">
 <ns1:axdom xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:axuid xsi:type="xsd:string">urn:axmedis:00000:BUS:d0719d28-e695-4db7-
841c-f078ae7fdfb6</ns1:axuid>
 <ns1:cmpAddress xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:cmpFax xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:cmpPhone1 xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:cmpPhone2 xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:collectSocRegDeadline xsi:type="xsd:dateTime" xsi:nil="true"/>
 <ns1:collectSocStatus xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:company xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:creatorRegDeadline xsi:type="xsd:dateTime" xsi:nil="true"/>
 <ns1:creatorStatus xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:distributorRegDeadline xsi:type="xsd:dateTime" xsi:nil="true"/>
 <ns1:distributorStatus xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:email xsi:type="xsd:string">myaddress@email.com</ns1:email>
 <ns1:final xsi:type="xsd:boolean">true</ns1:final>
 <ns1:finalRegDeadline xsi:type="xsd:dateTime">2006-12-
31T23:59:59</ns1:finalRegDeadline>
 <ns1:finalStatus xsi:type="xsd:string">U</ns1:finalStatus>
 <ns1:location xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:nationDomain xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:nationality xsi:type="xsd:string">nationality</ns1:nationality>
 <ns1:nickName xsi:type="xsd:string">nick</ns1:nickName>
 <ns1:password xsi:type="xsd:string">passw</ns1:password>
 <ns1:phone xsi:type="xsd:string" xsi:nil="true"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

181

 <ns1:pubKey xsi:type="xsd:string">pubkey</ns1:pubKey>
 <ns1:refName xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:toolProdRegDeadline xsi:type="xsd:dateTime" xsi:nil="true"/>
 <ns1:toolProdStatus xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:typeOfUser xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:webSite xsi:type="xsd:string" xsi:nil="true"/>
 </ns1:regData>
 <ns1:replace xsi:type="xsd:boolean">false</ns1:replace>
 </regInfo>
 </soapenv:Body>
 </soapenv:Envelope>

Response
Sample
Message

<?xml version="1.0" encoding="utf-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <registrationReturn xmlns="org:axmedis:axcs:services:userregistrator">
 <definitiveUID>urn:axmedis:34f5a:USR:812e6edc-7061-351f-b1ee-
209bd940b513</definitiveUID>
 <resultStatus>0</resultStatus>
 <errorMessage/>
 </registrationReturn>
 </soapenv:Body>
 </soapenv:Envelope>

AXCSUserRegistration web service WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="org:axmedis:axcs:services:userregistrator"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="org:axmedis:axcs:services:userregistrator"
xmlns:intf="org:axmedis:axcs:services:userregistrator" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="org:axmedis:axcs:services:userregistrator"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="UserDataType">
 <sequence>
 <element name="axdom" nillable="true" type="xsd:string"/>
 <element name="axuid" type="xsd:string"/>
 <element name="cmpAddress" nillable="true" type="xsd:string"/>
 <element name="cmpFax" nillable="true" type="xsd:string"/>
 <element name="cmpPhone1" nillable="true" type="xsd:string"/>
 <element name="cmpPhone2" nillable="true" type="xsd:string"/>
 <element name="collectSocRegDeadline" nillable="true" type="xsd:dateTime"/>
 <element name="collectSocStatus" nillable="true" type="xsd:string"/>
 <element name="company" nillable="true" type="xsd:string"/>
 <element name="creatorRegDeadline" nillable="true" type="xsd:dateTime"/>
 <element name="creatorStatus" nillable="true" type="xsd:string"/>
 <element name="distributorRegDeadline" nillable="true" type="xsd:dateTime"/>
 <element name="distributorStatus" nillable="true" type="xsd:string"/>
 <element name="email" nillable="true" type="xsd:string"/>
 <element name="final" type="xsd:boolean"/>
 <element name="finalRegDeadline" nillable="true" type="xsd:dateTime"/>
 <element name="finalStatus" nillable="true" type="xsd:string"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

182

 <element name="location" nillable="true" type="xsd:string"/>
 <element name="nationDomain" nillable="true" type="xsd:string"/>
 <element name="nationality" nillable="true" type="xsd:string"/>
 <element name="nickName" nillable="true" type="xsd:string"/>
 <element name="password" nillable="true" type="xsd:string"/>
 <element name="phone" nillable="true" type="xsd:string"/>
 <element name="pubKey" nillable="true" type="xsd:string"/>
 <element name="refName" nillable="true" type="xsd:string"/>
 <element name="toolProdRegDate" nillable="true" type="xsd:dateTime"/>
 <element name="toolProdStatus" nillable="true" type="xsd:string"/>
 <element name="typeOfUser" nillable="true" type="xsd:string"/>
 <element name="webSite" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="UserRegistrationInfo">
 <sequence>
 <element name="nickName" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="regData" type="impl:UserDataType"/>
 <element name="replace" type="xsd:boolean"/>
 </sequence>
 </complexType>
 <element name="regInfo" type="impl:UserRegistrationInfo"/>
 <complexType name="RegistrationResult">
 <sequence>
 <element name="definitiveUID" nillable="true" type="xsd:string"/>
 <element name="resultStatus" type="xsd:int"/>
 <element name="errorMessage" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="registrationReturn" type="impl:RegistrationResult"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="registrationResponse">
 <wsdl:part element="impl:registrationReturn" name="registrationReturn"/>
 </wsdl:message>
 <wsdl:message name="registrationRequest">
 <wsdl:part element="impl:regInfo" name="regInfo"/>
 </wsdl:message>
 <wsdl:portType name="RequestManager">
 <wsdl:operation name="registration" parameterOrder="regInfo">
 <wsdl:input message="impl:registrationRequest" name="registrationRequest"/>
 <wsdl:output message="impl:registrationResponse" name="registrationResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AXCSUserRegistratorSoapBinding" type="impl:RequestManager">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="registration">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="registrationRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="registrationResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

183

 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AXCSUserRegistrator">
 <wsdl:port binding="impl:AXCSUserRegistratorSoapBinding" name="AXCSUserRegistrator">
 <wsdlsoap:address location="http://flauto.dsi.unifi.it:8080/axis/services/AXCSUserRegistrator"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

184

37 Formal description of communication protocol
AXCSObjectRegistration (DSI)

AXCSObjectRegistration web service
Method generateAxoid
Description generates a definitive AXOID to be used in the registration process
Input
parameters

GenerationInfo genInfo – a data structure containing the nickname and password of the
requesting creator and a temporary identifier (which must have the 00000 AXCS ID)

Output
parameters

GenOutputType - The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “axoid”: this field returns the definitive AXOID in case of success, a null value

otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise
Request
Sample
Message

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <genInfo xsi:type="ns1:GenerationInfo"
xmlns="org:axmedis:axcs:services:objectregistrator"
xmlns:ns1="org:axmedis:axcs:services:objectregistrator">
 <ns1:nick xsi:type="xsd:string">mario</ns1:nick>
 <ns1:passw xsi:type="xsd:string">xxxxx</ns1:passw>
 <ns1:tmpID xsi:type="xsd:string">urn:axmedis:00000:OBJ:3fbc293a-42fa-e7c4-15e4-
a2b2f36016af</ns1:tmpID>
 </genInfo>
 </soapenv:Body>
 </soapenv:Envelope>

Response
Sample
Message

<?xml version="1.0" encoding="utf-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <generateAxoidReturn xmlns="org:axmedis:axcs:services:objectregistrator">
 <axoid>urn:axmedis:2b5a3:OBJ:66a56714-22d9-306b-9ebf-3439ac354e8c</axoid>
 <result>0</result>
 <errorMessage/>
 </generateAxoidReturn>
 </soapenv:Body>
 </soapenv:Envelope>

AXCSObjectRegistration web service

Method registration
Description It collects requestor credentials needful to access the system and uses the verifyLogin() (a

DataManager method) to verify requestor credentials. It also collects object metadata (regInfo)
provided by the requestor and uses the AXCS-DB-INTERFACE API methods provided by
AXCS Database Interface to insert received information into database. Finally, it signs the
object’s hash and return it to the requestor.

Input
parameters

RegistrationInfo regInfo – a data structure containing the nickname and password of the
requesting creator and a nested data structure containing the data to be inserted/updated

Output
parameters

RegOutputType – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

185

• “signature”: this field returns the hash of the object signed by the AXCS in case of
success, a null value otherwise

• “errorMessage”: this filed returns the error message in case of failure, a null value
otherwise

Request
Sample
Message

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <regInfo xsi:type="ns1:RegistrationInfo"
xmlns="org:axmedis:axcs:services:objectregistrator"
xmlns:ns1="org:axmedis:axcs:services:objectregistrator">
 <ns1:nick xsi:type="xsd:string">mario</ns1:nick>
 <ns1:objData xsi:type="ns1:ObjectDataType">
 <ns1:axcid xsi:type="xsd:string">urn:axmedis:a4bfe:CRE:4f184a98-062b-3608-
9189-680500ece26d</ns1:axcid>
 <ns1:axdid>
 <item xsi:type="xsd:string" xmlns="">urn:axmedis:cd2a5:DIS:4f184a98-062b-
3608-9189-680500ece26d</item>
 </ns1:axdid>
 <ns1:axoid xsi:type="xsd:string">urn:axmedis:2b5a3:OBJ:66a56714-22d9-306b-
9ebf-3439ac354e8c</ns1:axoid>
 <ns1:axwid xsi:type="xsd:string">urn:axmedis:00000:WRK:578afe41-3a9d-0af5-
439a-af4b563fcda1</ns1:axwid>
 <ns1:dc>
 <item xsi:type="ns1:DublinCoreData" xmlns="">
 <contributor xsi:type="xsd:string">contributor</contributor>
 <coverage xsi:type="xsd:string">coverage</coverage>
 <creatorValues>
 <item xsi:type="xsd:string">Mario</item>
 <item xsi:type="xsd:string">Luigi</item>
 </creatorValues>
 <date xsi:type="xsd:dateTime">2005-10-10T12:00:00</date>
 <description xsi:type="xsd:string">descript</description>
 <format xsi:type="xsd:string">format</format>
 <identifier xsi:type="xsd:string">id</identifier>
 <language xsi:type="xsd:string">ITA</language>
 <publisher xsi:type="xsd:string">publisher</publisher>
 <relation xsi:type="xsd:string">relattion</relation>
 <rights xsi:type="xsd:string">rights</rights>
 <source xsi:type="xsd:string">source</source>
 <subject xsi:type="xsd:string">subject</subject>
 <title xsi:type="xsd:string">title</title>
 <type xsi:type="xsd:string">type</type>
 <xmlRefFile xsi:type="xsd:string">file1.xml</xmlRefFile>
 </item>
 </ns1:dc>
 <ns1:extendedMetadata>
 <item xsi:type="ns1:ExtendedMetadataData" xmlns="">
 <axoid xsi:type="xsd:string">urn:axmedis:2b5a3:OBJ:66a56714-22d9-306b-
9ebf-3439ac354e8c</axoid>
 <metadataFieldName xsi:type="xsd:string">Casa
Discografica</metadataFieldName>
 <metadataFieldValue xsi:type="xsd:string">BMG</metadataFieldValue>
 <metadataLang xsi:type="xsd:string">ITA</metadataLang>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

186

 </item>
 <item xsi:type="ns1:ExtendedMetadataData" xmlns="">
 <axoid xsi:type="xsd:string">urn:axmedis:2b5a3:OBJ:66a56714-22d9-306b-
9ebf-3439ac354e8c</axoid>
 <metadataFieldName xsi:type="xsd:string">Dicographic
Editor</metadataFieldName>
 <metadataFieldValue xsi:type="xsd:string">SONY</metadataFieldValue>
 <metadataLang xsi:type="xsd:string">ENG</metadataLang>
 </item>
 </ns1:extendedMetadata>
 <ns1:fingerprintInfo xsi:type="xsd:string">fingerprintInfo</ns1:fingerprintInfo>
 <ns1:hash
xsi:type="xsd:hexBinary">75465daf546d3764f3a54fa73376543546ad3f56a3f546a3fa5f35af3
5af354a3f5af3546af356a3f</ns1:hash>
 <ns1:includedObjAxoid xsi:type="soapenc:Array" xsi:nil="true"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <ns1:includedObjProtectionStamp xsi:type="soapenc:Array" xsi:nil="true"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <ns1:includedObjVersion xsi:type="soapenc:Array" xsi:nil="true"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <ns1:objectNewVersion xsi:type="xsd:string" xsi:nil="true"/>
 <ns1:objectStatus xsi:type="xsd:string">U</ns1:objectStatus>
 <ns1:objectVersion xsi:type="xsd:string">1.0</ns1:objectVersion>
 <ns1:protectionInfo xsi:type="xsd:string">rot13</ns1:protectionInfo>
 <ns1:protectionStamp xsi:type="xsd:string">LOF</ns1:protectionStamp>
 <ns1:regDeadline xsi:type="xsd:dateTime">2008-12-
01T17:10:00</ns1:regDeadline>
 </ns1:objData>
 <ns1:passw xsi:type="xsd:string">xxxxx</ns1:passw>
 </regInfo>
 </soapenv:Body>
 </soapenv:Envelope>

Response
Sample
Message

<?xml version="1.0" encoding="utf-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <registrationReturn xmlns="org:axmedis:axcs:services:objectregistrator">

<signature>98b9ea56bcd74132ad43f2afa0f9f0656df33d11463dfd678d55a332</signature>
 <result>0</result>
 <errorMessage/>
 </registrationReturn>
 </soapenv:Body>
 </soapenv:Envelope>

AXCSObjectRegistration web service WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="org:axmedis:axcs:services:objectregistrator"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="org:axmedis:axcs:services:objectregistrator"
xmlns:intf="org:axmedis:axcs:services:objectregistrator" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

187

 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="org:axmedis:axcs:services:objectregistrator"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="ArrayOf_xsd_string">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="DublinCoreData">
 <sequence>
 <element name="contributor" nillable="true" type="xsd:string"/>
 <element name="coverage" nillable="true" type="xsd:string"/>
 <element name="creatorValues" nillable="true" type="impl:ArrayOf_xsd_string"/>
 <element name="date" nillable="true" type="xsd:string"/>
 <element name="description" nillable="true" type="xsd:string"/>
 <element name="format" nillable="true" type="xsd:string"/>
 <element name="identifier" nillable="true" type="xsd:string"/>
 <element name="language" nillable="true" type="xsd:string"/>
 <element name="publisher" nillable="true" type="xsd:string"/>
 <element name="relation" nillable="true" type="xsd:string"/>
 <element name="rights" nillable="true" type="xsd:string"/>
 <element name="source" nillable="true" type="xsd:string"/>
 <element name="subject" nillable="true" type="xsd:string"/>
 <element name="title" nillable="true" type="xsd:string"/>
 <element name="type" nillable="true" type="xsd:string"/>
 <element name="xmlRefFile" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfDublinCoreData">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="impl:DublinCoreData"/>
 </sequence>
 </complexType>
 <complexType name="ExtendedMetadataData">
 <sequence>
 <element name="axoid" type="xsd:string"/>
 <element name="metadataFieldName" type="xsd:string"/>
 <element name="metadataFieldValue" nillable="true" type="xsd:string"/>
 <element name="metadataLang" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfExtendedMetadataData">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="impl:ExtendedMetadataData"/>
 </sequence>
 </complexType>
 <complexType name="ObjectDataType">
 <sequence>
 <element name="axcid" type="xsd:string"/>
 <element name="axdid" nillable="true" type="impl:ArrayOf_xsd_string"/>
 <element name="axoid" type="xsd:string"/>
 <element name="axwid" nillable="true" type="xsd:string"/>
 <element name="dc" type="impl:ArrayOfDublinCoreData"/>
 <element name="extendedMetadata" nillable="true" type="impl:ArrayOfExtendedMetadataData"/>
 <element name="fingerprintInfo" nillable="true" type="xsd:string"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

188

 <element name="hash" type="xsd:hexBinary"/>
 <element name="includedObjAxoid" nillable="true" type="impl:ArrayOf_xsd_string"/>
 <element name="objectNewAXOID" nillable="true" type="xsd:string"/>
 <element name="objectStatus" type="xsd:string"/>
 <element name="objectVersion" nillable="true" type="xsd:string"/>
 <element name="protectionInfo" nillable="true" type="xsd:string"/>
 <element name="protectionStamp" nillable="true" type="xsd:string"/>
 <element name="regDeadline" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="RegistrationInfo">
 <sequence>
 <element name="nick" type="xsd:string"/>
 <element name="objData" type="impl:ObjectDataType"/>
 <element name="passw" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="regInfo" type="impl:RegistrationInfo"/>
 <complexType name="RegOutputType">
 <sequence>
 <element name="signature" nillable="true" type="xsd:hexBinary"/>
 <element name="result" type="xsd:int"/>
 <element name="errorMessage" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="registrationReturn" type="impl:RegOutputType"/>
 <complexType name="GenerationInfo">
 <sequence>
 <element name="nick" type="xsd:string"/>
 <element name="passw" type="xsd:string"/>
 <element name="tmpID" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="genInfo" type="impl:GenerationInfo"/>
 <complexType name="GenOutputType">
 <sequence>
 <element name="axoid" nillable="true" type="xsd:string"/>
 <element name="result" type="xsd:int"/>
 <element name="errorMessage" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="generateAxoidReturn" type="impl:GenOutputType"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="generateAxoidResponse">
 <wsdl:part element="impl:generateAxoidReturn" name="generateAxoidReturn"/>
 </wsdl:message>
 <wsdl:message name="registrationResponse">
 <wsdl:part element="impl:registrationReturn" name="registrationReturn"/>
 </wsdl:message>
 <wsdl:message name="registrationRequest">
 <wsdl:part element="impl:regInfo" name="regInfo"/>
 </wsdl:message>
 <wsdl:message name="generateAxoidRequest">
 <wsdl:part element="impl:genInfo" name="genInfo"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

189

 </wsdl:message>
 <wsdl:portType name="OIDGen_dealManager">
 <wsdl:operation name="registration" parameterOrder="regInfo">
 <wsdl:input message="impl:registrationRequest" name="registrationRequest"/>
 <wsdl:output message="impl:registrationResponse" name="registrationResponse"/>
 </wsdl:operation>
 <wsdl:operation name="generateAxoid" parameterOrder="genInfo">
 <wsdl:input message="impl:generateAxoidRequest" name="generateAxoidRequest"/>
 <wsdl:output message="impl:generateAxoidResponse" name="generateAxoidResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AXCSObjectRegistratorSoapBinding" type="impl:OIDGen_dealManager">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="registration">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="registrationRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="registrationResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="generateAxoid">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="generateAxoidRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="generateAxoidResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AXCSObjectRegistrator">
 <wsdl:port binding="impl:AXCSObjectRegistratorSoapBinding" name="AXCSObjectRegistrator">
 <wsdlsoap:address location="http://flauto.dsi.unifi.it:8080/axis/services/AXCSObjectRegistrator"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

190

38 Formal description of communication protocol AXCSReporting (DSI)

Call name
Method acceptRequest
Description It is the only public method of this web service. It collects CAMART credentials needful to

access the system and uses the “verifyLogin” (a DataManager method) to verify requestor
credentials. It also collects the CAMART query (in a field called CAMARTQuery).
CAMARTQuery contains criteria to be used to filter data returned. They are to be expressed in
standard SQL syntax as a where clause (without the WHERE keyword) using only the
following operators:

equal (=), not equal (<>), logical and (AND), logical or (OR)

to filter with respect to these fields: any identifier (AXUID, AXDID, AXOID, ecc.), Location,
Operation, RegistrationTimeStamp, ExecutionTimeStamp
In case that a filtering with respect to dates is needed (i.e. with respect to
RegistrationTimeStamp and/or ExecutionTimeStamp), the following additional operators are
allowed:

greater than (>), greater than or equal (>=), less than (<), less than or equal (<=).
Eventually, an empty caluse can be used if no filtering is desired.

Input
parameters

ReportingInfo repInfo – a data structure containing the nickname and password of the
requesting distributor and a CAMARTQuery

Output
parameters

ReportingResponse – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “logDataTypes”: this field returns the requested information as a set of structured data

in case of success, a null value otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise
Request
Sample
Message

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <repInfo xsi:type="ns1:ReportingInfo" xmlns="org:axmedis:axcs:services:reporting"
xmlns:ns1="org:axmedis:axcs:services:reporting">
 <ns1:CAMARTQuery xsi:type="xsd:string">RegistrationTimestamp >= 2005-02-
12T03:04:45</ns1:CAMARTQuery>
 <ns1:nickName xsi:type="xsd:string">mario</ns1:nickName>
 <ns1:password xsi:type="xsd:string">xxxxx</ns1:password>
 </repInfo>
 </soapenv:Body>
 </soapenv:Envelope>

Response
Sample
Message

<?xml version="1.0" encoding="utf-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <acceptRequestReturn xmlns="org:axmedis:axcs:services:reporting">
 <logDataTypes>
 <item>
 <axcid>urn:axmedis:345af:BUS:4f184a98-062b-3608-9189-
680500ece26d</axcid>
 <axcsid>urn:axmedis:575a6:BUS:a4fecd47-f315-6fc6-427b-

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

191

af0b31498ca</axcsid>
 <axdid>urn:axmedis:af6bcd:BUS:578afe41-3a9d-0af5-439a-
af4b563fcda1</axdid>
 <axdom>urn:axmedis:745af:DOM:a46a5a42-5a3b-387d-93ff-
4ad26524bd34</axdom>
 <axlid>urn:axmedis:ac20b:LIC:4f184a98-062b-3608-9189-680500ece26d</axlid>
 <axoid>urn:axmedis:ac20b:OBJ:66a56714-22d9-306b-9ebf-
3439ac354e8c</axoid>
 <axtid>urn:axmedis:ac20b:ITO:9834657a-bfda-3426-46ec-6756848effdd</axtid>
 <axuid>urn:axmedis:ac20b:USR:1b4e28ba-2fa1-11d2-883f-
b9a761bde3fb</axuid>
 <axwid/>
 <estimatedHwFingerprint>EstimatedFingeprint</estimatedHwFingerprint>
 <executionTimestamp>2005-02-12T03:05:45</executionTimestamp>
 <histVerSuccess>1</histVerSuccess>
 <location>Italy</location>
 <logID>1</logID>
 <objectVersion>1.0</objectVersion>
 <operationDetails/>
 <operation>play</operation>
 <ownerName>owner</ownerName>
 <protectionStamp>protectioStamp</protectionStamp>
 <registrationTimestamp>2005-06-16T13:50:15.0</registrationTimestamp>
 </item>
 </logDataTypes>
 <resultStatus>0</resultStatus>
 <errorMesage/>
 </acceptRequestReturn>
 </soapenv:Body>
 </soapenv:Envelope>

AXCSReporting web service WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="org:axmedis:axcs:services:reporting"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="org:axmedis:axcs:services:reporting"
xmlns:intf="org:axmedis:axcs:services:reporting" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="org:axmedis:axcs:services:reporting"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="ReportingInfo">
 <sequence>
 <element name="CAMARTQuery" nillable="true" type="xsd:string"/>
 <element name="nickName" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="repInfo" type="impl:ReportingInfo"/>
 <complexType name="ReportingLogDataType">
 <sequence>
 <element name="axcid" type="xsd:string"/>
 <element name="axcsid" type="xsd:string"/>
 <element name="axdid" type="xsd:string"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

192

 <element name="axdom" nillable="true" type="xsd:string"/>
 <element name="axlid" type="xsd:string"/>
 <element name="axoid" type="xsd:string"/>
 <element name="axtid" type="xsd:string"/>
 <element name="axuid" type="xsd:string"/>
 <element name="axwid" nillable="true" type="xsd:string"/>
 <element name="estimatedHwFingerprint" type="xsd:string"/>
 <element name="executionTimestamp" type="xsd:dateTime"/>
 <element name="histVerSuccess" type="xsd:string"/>
 <element name="location" type="xsd:string"/>
 <element name="objectVersion" nillable="true" type="xsd:string"/>
 <element name="operationDetails" nillable="true" type="xsd:string"/>
 <element name="operation" type="xsd:string"/>
 <element name="ownerName" type="xsd:string"/>
 <element name="protectionStamp" nillable="true" type="xsd:string"/>
 <element name="registrationTimestamp" type="xsd:dateTime"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfReportingLogDataType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="impl:ReportingLogDataType"/>
 </sequence>
 </complexType>
 <complexType name="ReportingResponse">
 <sequence>
 <element name="logDataTypes" nillable="true" type="impl:ArrayOfReportingLogDataType"/>
 <element name="resultStatus" type="xsd:string"/>
 <element name="errorMessage" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="acceptRequestReturn" type="impl:ReportingResponse"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="acceptRequestRequest">
 <wsdl:part element="impl:repInfo" name="repInfo"/>
 </wsdl:message>
 <wsdl:message name="acceptRequestResponse">
 <wsdl:part element="impl:acceptRequestReturn" name="acceptRequestReturn"/>
 </wsdl:message>
 <wsdl:portType name="RequestManager">
 <wsdl:operation name="acceptRequest" parameterOrder="repInfo">
 <wsdl:input message="impl:acceptRequestRequest" name="acceptRequestRequest"/>
 <wsdl:output message="impl:acceptRequestResponse" name="acceptRequestResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AXCSReportingSoapBinding" type="impl:RequestManager">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="acceptRequest">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="acceptRequestRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="acceptRequestResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

193

 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AXCSReporting">
 <wsdl:port binding="impl:AXCSReportingSoapBinding" name="AXCSReporting">
 <wsdlsoap:address location="http://flauto.dsi.unifi.it:8080/axis/services/AXCSReporting"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

194

39 Formal description of communication protocol AXCSStatistics (DSI)

Call name
Method acceptRequest
Description It is the only public method of this web service. It collects CAMART credentials needful to

access the system and uses the “verifyLogin” (a DataManager method) to verify requestor
credentials. It also collects the CAMART query (in a field called CAMARTQuery).
CAMARTQuery contains criteria to be used to filter data returned. They are to be expressed in
standard SQL syntax as a where clause (without the WHERE keyword) using only the
following operators:

equal (=), not equal (<>), logical and (AND), logical or (OR)

to filter with respect to these fields: any identifier (AXUID, AXDID, AXOID, ecc.), Location,
Operation, RegistrationTimeStamp, ExecutionTimeStamp
In case that a filtering with respect to dates is needed (i.e. with respect to
RegistrationTimeStamp and/or ExecutionTimeStamp), the following additional operators are
allowed:

greater than (>), greater than or equal (>=), less than (<), less than or equal (<=).
Eventually, an empty caluse can be used if no filtering is desired.

Input
parameters

StatisticsInfo statInfo - a data structure containing the nickname and password of the
requesting distributor and a CAMARTQuery

Output
parameters

StatisticsResponse – The result output parameter is a data structure containing three fields:
• “resultStatus”: it is set to 0 if the registration is successful otherwise is set to 1.
• “logDataTypes”: this field returns the requested information as a set of structured data

in case of success, a null value otherwise
• “errorMessage”: this filed returns the error message in case of failure, a null value

otherwise
Request
Sample
Message

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 < statInfo xsi:type="ns1:StatisticsInfo" xmlns="org:axmedis:axcs:services:statistics"
xmlns:ns1="org:axmedis:axcs:services:statistics">
 < ns1:CAMARTQuery xsi:type="xsd:string">RegistrationTimestamp <= 2008-02-
12T03:05:45</ns1:CAMARTQuery>
 < ns1:nickName xsi:type="xsd:string">mario</ns1:nickName>
 < ns1:password xsi:type="xsd:string">xxxxx</ns1:password>
 </statInfo>
 </soapenv:Body>
 </soapenv:Envelope>

Response
Sample
Message

<?xml version="1.0" encoding="utf-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <acceptRequestReturn xmlns="org:axmedis:axcs:services:statistics">
 <logDataTypes>
 <item>
 <axcid>urn:axmedis:67a4c:BUS:4f184a98-062b-3608-9189-
680500ece26d</axcid>
 <axcsid>urn:axmedis:3453b:BUS:a4fecd47-f315-6fc6-427b-

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

195

af0b31498ca</axcsid>
 <axdid>urn:axmedis:adf08:BUS:578afe41-3a9d-0af5-439a-af4b563fcda1</axdid>
 <axdom>urn:axmedis:745af:DOM:a46a5a42-5a3b-387d-93ff-
4ad26524bd34</axdom>
 <axoid>urn:axmedis:675da:OBJ:66a56714-22d9-306b-9ebf-
3439ac354e8c</axoid>
 <axwid/>
 <executionTimestamp>2005-06-09T14:43:42.0</executionTimestamp>
 <location>Italy</location>
 <objectVersion>1.0</objectVersion>
 <operationDetails/>
 <operation>play</operation>
 <ownerName>owner</ownerName>
 <protectionStamp/>
 <registrationTimestamp>2005-06-16T13:50:15.0</registrationTimestamp>
 </item>
 </logDataTypes>
 <resultStatus>0</resultStatus>
 <errorMesage/>
 </acceptRequestReturn>
 </soapenv:Body>
 </soapenv:Envelope>

AXCSStatistics web service WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="org:axmedis:axcs:services:statistics"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="org:axmedis:axcs:services:statistics"
xmlns:intf="org:axmedis:axcs:services:statistics" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="org:axmedis:axcs:services:statistics"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="StatisticsInfo">
 <sequence>
 <element name="CAMARTQuery" nillable="true" type="xsd:string"/>
 <element name="nickName" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="statInfo" type="impl:StatisticsInfo"/>
 <complexType name="StatisticsLogDataType">
 <sequence>
 <element name="axcid" type="xsd:string"/>
 <element name="axcsid" type="xsd:string"/>
 <element name="axdid" type="xsd:string"/>
 <element name="axdom" nillable="true" type="xsd:string"/>
 <element name="axoid" type="xsd:string"/>
 <element name="axwid" nillable="true" type="xsd:string"/>
 <element name="executionTimestamp" type="xsd:dateTime"/>
 <element name="location" type="xsd:string"/>
 <element name="objectVersion" nillable="true" type="xsd:string"/>
 <element name="operationDetails" nillable="true" type="xsd:string"/>
 <element name="operation" type="xsd:string"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

196

 <element name="ownerName" type="xsd:string"/>
 <element name="protectionStamp" nillable="true" type="xsd:string"/>
 <element name="registrationTimestamp" type="xsd:dateTime"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfStatisticsLogDataType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="impl:StatisticsLogDataType"/>
 </sequence>
 </complexType>
 <complexType name="StatisticsResponse">
 <sequence>
 <element name="logDataTypes" nillable="true" type="impl:ArrayOfStatisticsLogDataType"/>
 <element name="resultStatus" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="acceptRequestReturn" type="impl:StatisticsResponse"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="acceptRequestResponse">
 <wsdl:part element="impl:acceptRequestReturn" name="acceptRequestReturn"/>
 </wsdl:message>
 <wsdl:message name="acceptRequestRequest">
 <wsdl:part element="impl:statInfo" name="statInfo"/>
 </wsdl:message>
 <wsdl:portType name="RequestManager">
 <wsdl:operation name="acceptRequest" parameterOrder="statInfo">
 <wsdl:input message="impl:acceptRequestRequest" name="acceptRequestRequest"/>
 <wsdl:output message="impl:acceptRequestResponse" name="acceptRequestResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AXCSStatisticsSoapBinding" type="impl:RequestManager">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="acceptRequest">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="acceptRequestRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="acceptRequestResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="AXCSStatistics">
 <wsdl:port binding="impl:AXCSStatisticsSoapBinding" name="AXCSStatistics">
 <wsdlsoap:address location="http://flauto.dsi.unifi.it:8080/axis/services/AXCSStatistics"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

197

40 Formal description of communication protocol for AXS Web
Services (FUPF)

Refer to section 5, “AXMEDIS Supervisor, AXS” to find a formal description of the methods provided by
AXS library (storeSID, storeListActionLog, storePMSActionLog, getProtectionInfo, updateProtectionInfo)
and AXS Web Service (storeSID, getProtectionInfo, updateProtectionInfo). The sequence diagram for AXS
Web Service methods diagrams are provided next.

storeSID protocol

AuthoriserPMSServer

storeSID(SupervisorInputData)

AXCS

Authorise

Not authorised

getProtectionInfo protocol

AuthoriserPMSServer

GetProtectionInformation(Object, Version, ProtStamp)

ProtInfo

AXCS-AXS

Authorise

updateProtectionInfo protocol

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

198

PMSServer

UpdateProtectionInformation(id, version, protectionStamp, protectionInfo, update)

OK/NOK

AXCS-AXS

AXS Web Services WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:AXS" xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="urn:AXS"
xmlns:intf="urn:AXS" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!--WSDL created by Apache Axis version: 1.2.1
Built on Jun 14, 2005 (09:15:57 EDT)-->
 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="urn:AXS" xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="storeSID">
 <complexType>
 <sequence>
 <element name="mySid" type="impl:SupervisorInputData"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="ActionLog">
 <sequence>
 <element name="AXCID" nillable="true" type="xsd:string"/>
 <element name="AXCSID" nillable="true" type="xsd:string"/>
 <element name="AXDID" nillable="true" type="xsd:string"/>
 <element name="AXDOM" nillable="true" type="xsd:string"/>
 <element name="AXLID" nillable="true" type="xsd:string"/>
 <element name="AXOID" nillable="true" type="xsd:string"/>
 <element name="AXTID" nillable="true" type="xsd:string"/>
 <element name="AXUID" nillable="true" type="xsd:string"/>
 <element name="AXWID" nillable="true" type="xsd:string"/>
 <element name="estimatedHwFingerprint" nillable="true" type="xsd:string"/>
 <element name="executionTimestamp" nillable="true" type="xsd:string"/>
 <element name="histVerSuccess" nillable="true" type="xsd:string"/>
 <element name="instantLastFPPA" nillable="true" type="xsd:string"/>
 <element name="location" nillable="true" type="xsd:string"/>
 <element name="logID" nillable="true" type="xsd:string"/>
 <element name="objectVersion" nillable="true" type="xsd:string"/>
 <element name="operationDetailsID" nillable="true" type="xsd:string"/>
 <element name="operationID" nillable="true" type="xsd:string"/>
 <element name="ownerName" nillable="true" type="xsd:string"/>
 <element name="protectionStamp" nillable="true" type="xsd:string"/>
 <element name="registrationTimestamp" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="SupervisorInputData">
 <complexContent>
 <extension base="impl:ActionLog">
 <sequence>
 <element name="additionalData" nillable="true" type="xsd:string"/>
 </sequence>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

199

 </extension>
 </complexContent>
 </complexType>
 <element name="storeSIDResponse">
 <complexType>
 <sequence>
 <element name="storeSIDReturn" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="getProtectionInfo">
 <complexType>
 <sequence>
 <element name="object" type="xsd:string"/>
 <element name="version" type="xsd:string"/>
 <element name="protectionStamp" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getProtectionInfoResponse">
 <complexType>
 <sequence>
 <element name="getProtectionInfoReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="updateProtectionInfo">
 <complexType>
 <sequence>
 <element name="id" type="xsd:string"/>
 <element name="version" type="xsd:string"/>
 <element name="protectionStamp" type="xsd:string"/>
 <element name="protectionInfo" type="xsd:string"/>
 <element name="update" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="updateProtectionInfoResponse">
 <complexType>
 <sequence>
 <element name="updateProtectionInfoReturn" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <wsdl:message name="updateProtectionInfoRequest">
 <wsdl:part element="impl:updateProtectionInfo" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="updateProtectionInfoResponse">
 <wsdl:part element="impl:updateProtectionInfoResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="storeSIDRequest">
 <wsdl:part element="impl:storeSID" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="storeSIDResponse">
 <wsdl:part element="impl:storeSIDResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getProtectionInfoRequest">
 <wsdl:part element="impl:getProtectionInfo" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getProtectionInfoResponse">
 <wsdl:part element="impl:getProtectionInfoResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="Supervisor">
 <wsdl:operation name="storeSID">
 <wsdl:input message="impl:storeSIDRequest" name="storeSIDRequest"/>
 <wsdl:output message="impl:storeSIDResponse" name="storeSIDResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getProtectionInfo">
 <wsdl:input message="impl:getProtectionInfoRequest" name="getProtectionInfoRequest"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

200

 <wsdl:output message="impl:getProtectionInfoResponse" name="getProtectionInfoResponse"/>
 </wsdl:operation>
 <wsdl:operation name="updateProtectionInfo">
 <wsdl:input message="impl:updateProtectionInfoRequest" name="updateProtectionInfoRequest"/>
 <wsdl:output message="impl:updateProtectionInfoResponse" name="updateProtectionInfoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AXSSoapBinding" type="impl:Supervisor">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="storeSID">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="storeSIDRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="storeSIDResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getProtectionInfo">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getProtectionInfoRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getProtectionInfoResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="updateProtectionInfo">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="updateProtectionInfoRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="updateProtectionInfoResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="SupervisorService">
 <wsdl:port binding="impl:AXSSoapBinding" name="AXS">
 <wsdlsoap:address location="<endpoint>/AXS"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

201

41 Formal description of communication protocol for AXCV Web
Services (FUPF)

Refer to section 4, “AXMEDIS Certification and Certification, AXCV” to find a formal description of the
methods provided by AXCV library and Web Service (verifyUser, certify, verify, reverify,
verifyPmsActionLog and ping). Next, the AXCV Web Service methods diagrams are provided.

VerifyUser protocol

PMS Server AXCS-AXCV RegCertDB

userData

checkData

verify(AXID, AXDOM)

getUserData(AXID)

verification result

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

202

certify protocol

PMS Server AXCS-AXCV RegCertDB

certify(AXID, AXRTID, AXDOM, toolFingerprint, regDeadline)

check AXRTID status

searchAXRTID(AXRTID)

AXRTID data

check deadline

check fingerprint

computeAXTID

searchIfCertified(AXID, AXRTID, toolFingerprint)

data

computeEnablingCode

createPKCS12

createNewCertoolEntry()

OK

result, AXTID, Enabling Code (AC), PKCS12: Tool Certificate with AC + Private Key

error

error

error

error

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

203

verify and reverify protocol

PMS Server AXCS-AXCV RegCertDB

getToolFingerprintDigest

toolFingerprintDigest

compareFPDigest

error code

getToolFingerprint

toolFingerprint

a:false

error code

verify(AXID, AXTID, AXDOM, toolFingerprintDigest, lastFPPA, listOfActionLog)

AXCS-AXS

storeListActionLog

reverify(AXID, AXTID, AXDOM, toolFingerprint, lastFPPA, listOfActionLog)

error code

AccountingDB

storeActionLog

fillHistVerSuccess

getLastFPPA

LastFPPA

compareHistory

other checks

other checks

fingerprintCompare

For each
received
action log

computeNewHistory

saveNewHistory()

store result

verification result

VerifyPmsActionLog protocol

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

204

AuthoriserPMSServer

GetProtectionInformation(Object, Version, ProtStamp)

ProtInfo

VerifyPMSActionLog(ActionLog)

AXCS

Authorise

Authorised

AXCV Web Services WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:AXCV" xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="urn:AXCV" xmlns:intf="urn:AXCV" xmlns:tns2="http://axs.axmedis.dmag.fupf.es"
xmlns:tns3="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!--WSDL created by Apache Axis version: 1.2.1
Built on Jun 14, 2005 (09:15:57 EDT)-->
 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="urn:AXCV"
xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://axs.axmedis.dmag.fupf.es"/>
 <element name="ping">
 <complexType>
 <sequence>
 <element name="input" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="pingResponse">
 <complexType>
 <sequence>
 <element name="pingReturn" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="verifyUser">
 <complexType>
 <sequence>
 <element name="axid" type="xsd:string"/>
 <element name="axdom" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="verifyUserResponse">
 <complexType>
 <sequence>
 <element name="verifyUserReturn" type="impl:VerificationResult"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="VerificationResult">
 <sequence>
 <element name="storeListActionLogResult" type="xsd:int"/>
 <element name="verificationResult" type="xsd:int"/>
 </sequence>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

205

 </complexType>
 <element name="certify">
 <complexType>
 <sequence>
 <element name="axid" type="xsd:string"/>
 <element name="axrtid" type="xsd:string"/>
 <element name="axdom" type="xsd:string"/>
 <element name="toolFingerprint" type="xsd:string"/>
 <element name="regDeadline" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="certifyResponse">
 <complexType>
 <sequence>
 <element name="certifyReturn" type="impl:CertificationResult"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="CertificationResult">
 <sequence>
 <element name="axtid" nillable="true" type="xsd:string"/>
 <element name="certificationResult" type="xsd:int"/>
 <element name="enablingCode" nillable="true" type="xsd:string"/>
 <element name="toolBase64PKCS12" nillable="true" type="xsd:base64Binary"/>
 </sequence>
 </complexType>
 <element name="reverify">
 <complexType>
 <sequence>
 <element name="axid" type="xsd:string"/>
 <element name="axtid" type="xsd:string"/>
 <element name="axdom" type="xsd:string"/>
 <element name="toolFingerprint" type="xsd:string"/>
 <element name="lastFPPA" type="xsd:base64Binary"/>
 <element maxOccurs="unbounded" name="listOfPA" type="tns2:ActionLog"/>
 </sequence>
 </complexType>
 </element>
 <element name="reverifyResponse">
 <complexType>
 <sequence>
 <element name="reverifyReturn" type="impl:VerificationResult"/>
 </sequence>
 </complexType>
 </element>
 <element name="verifyPmsActionLog">
 <complexType>
 <sequence>
 <element name="pmsActionLog" type="tns2:ActionLog"/>
 </sequence>
 </complexType>
 </element>
 <element name="verifyPmsActionLogResponse">
 <complexType>
 <sequence>
 <element name="verifyPmsActionLogReturn" type="impl:VerificationResult"/>
 </sequence>
 </complexType>
 </element>
 <element name="verify">
 <complexType>
 <sequence>
 <element name="axid" type="xsd:string"/>
 <element name="axtid" type="xsd:string"/>
 <element name="axdom" type="xsd:string"/>
 <element name="toolFingerprintDigest" type="xsd:base64Binary"/>
 <element name="lastFPPA" type="xsd:base64Binary"/>
 <element maxOccurs="unbounded" name="listOfPA" type="tns2:ActionLog"/>
 </sequence>
 </complexType>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

206

 </element>
 <element name="verifyResponse">
 <complexType>
 <sequence>
 <element name="verifyReturn" type="impl:VerificationResult"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 <schema elementFormDefault="qualified" targetNamespace="http://axs.axmedis.dmag.fupf.es"
xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="urn:AXCV"/>
 <complexType name="ActionLog">
 <sequence>
 <element name="AXCID" nillable="true" type="tns3:string"/>
 <element name="AXCSID" nillable="true" type="tns3:string"/>
 <element name="AXDID" nillable="true" type="tns3:string"/>
 <element name="AXDOM" nillable="true" type="tns3:string"/>
 <element name="AXLID" nillable="true" type="tns3:string"/>
 <element name="AXOID" nillable="true" type="tns3:string"/>
 <element name="AXTID" nillable="true" type="tns3:string"/>
 <element name="AXUID" nillable="true" type="tns3:string"/>
 <element name="AXWID" nillable="true" type="tns3:string"/>
 <element name="estimatedHwFingerprint" nillable="true" type="tns3:string"/>
 <element name="executionTimestamp" nillable="true" type="tns3:string"/>
 <element name="histVerSuccess" nillable="true" type="tns3:string"/>
 <element name="instantLastFPPA" nillable="true" type="tns3:string"/>
 <element name="location" nillable="true" type="tns3:string"/>
 <element name="logID" nillable="true" type="tns3:string"/>
 <element name="objectVersion" nillable="true" type="tns3:string"/>
 <element name="operationDetailsID" nillable="true" type="tns3:string"/>
 <element name="operationID" nillable="true" type="tns3:string"/>
 <element name="ownerName" nillable="true" type="tns3:string"/>
 <element name="protectionStamp" nillable="true" type="tns3:string"/>
 <element name="registrationTimestamp" nillable="true" type="tns3:string"/>
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="verifyUserRequest">
 <wsdl:part element="impl:verifyUser" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="verifyRequest">
 <wsdl:part element="impl:verify" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="verifyPmsActionLogRequest">
 <wsdl:part element="impl:verifyPmsActionLog" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="verifyUserResponse">
 <wsdl:part element="impl:verifyUserResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="pingRequest">
 <wsdl:part element="impl:ping" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="reverifyResponse">
 <wsdl:part element="impl:reverifyResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="pingResponse">
 <wsdl:part element="impl:pingResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="verifyResponse">
 <wsdl:part element="impl:verifyResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="certifyResponse">
 <wsdl:part element="impl:certifyResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="reverifyRequest">
 <wsdl:part element="impl:reverify" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="certifyRequest">
 <wsdl:part element="impl:certify" name="parameters"/>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

207

 </wsdl:message>
 <wsdl:message name="verifyPmsActionLogResponse">
 <wsdl:part element="impl:verifyPmsActionLogResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="CertificationAndVerification">
 <wsdl:operation name="ping">
 <wsdl:input message="impl:pingRequest" name="pingRequest"/>
 <wsdl:output message="impl:pingResponse" name="pingResponse"/>
 </wsdl:operation>
 <wsdl:operation name="verifyUser">
 <wsdl:input message="impl:verifyUserRequest" name="verifyUserRequest"/>
 <wsdl:output message="impl:verifyUserResponse" name="verifyUserResponse"/>
 </wsdl:operation>
 <wsdl:operation name="certify">
 <wsdl:input message="impl:certifyRequest" name="certifyRequest"/>
 <wsdl:output message="impl:certifyResponse" name="certifyResponse"/>
 </wsdl:operation>
 <wsdl:operation name="reverify">
 <wsdl:input message="impl:reverifyRequest" name="reverifyRequest"/>
 <wsdl:output message="impl:reverifyResponse" name="reverifyResponse"/>
 </wsdl:operation>
 <wsdl:operation name="verifyPmsActionLog">
 <wsdl:input message="impl:verifyPmsActionLogRequest" name="verifyPmsActionLogRequest"/>
 <wsdl:output message="impl:verifyPmsActionLogResponse" name="verifyPmsActionLogResponse"/>
 </wsdl:operation>
 <wsdl:operation name="verify">
 <wsdl:input message="impl:verifyRequest" name="verifyRequest"/>
 <wsdl:output message="impl:verifyResponse" name="verifyResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="AXCVSoapBinding" type="impl:CertificationAndVerification">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="ping">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="pingRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="pingResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="verifyUser">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="verifyUserRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="verifyUserResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="certify">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="certifyRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="certifyResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="reverify">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="reverifyRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="reverifyResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="verifyPmsActionLog">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="verifyPmsActionLogRequest">

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

208

 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="verifyPmsActionLogResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="verify">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="verifyRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="verifyResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="CertificationAndVerificationService">
 <wsdl:port binding="impl:AXCVSoapBinding" name="AXCV">
 <wsdlsoap:address location="<endpoint>/AXCV"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

209

42 Asynchronous Tool Verification (Authentication, no action log only
verify) (FUPF)

Here is reported the diagram for “Asynchronous tool verification”, which is a particular case for the verify
and reverify protocol described in previous section, where the input Action Log list is empty, but represented
in more detail.

PMS Server AXCS-AXCV RegCertDB

compareToolFpDigest()

error code

getToolFingerprint()

toolFingerprint

error code

verify(AXID, AXTID, AXDOM, toolFingerprintDigest, lastFPPA, listOfActionLog)

reverify(AXID, AXTID, AXDOM, toolFingerprint, lastFPPA, listOfActionLog)

check user status and domain

repeat previous checks

fingerprintCompare

verification result

check if tool is certified

check certified tool status

check certified tool deadline

check registered tool status

getUserData()

User Data

getCertifiedToolData()

Certified Tool Data

getRegisteredToolData()

Registered Tool Data

error code

error code

error code

error code

error code

DE3.1.2.2.13 – Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS Project

210

43 Bibliography (mandatory)
UUID information: http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

Javadoc of AXCS-DB-Interface library: https://cvs.axmedis.org/repos/Framework/doc/code/axcs.

44 Glossary (mandatory)
See sections 22 and 23 for the meanings of the various prefixes and IDs.

