OBJECT CLASSIFICATION AND IMAGE INTERPRETATION WITH AN OBJECT-ORIENTED SYSTEM

R. Cecchini, A. Del Bimbo, P. Nesi

University of Florence, Italy

INTRODUCTION

Scene analysis is concerned with processing
of single or multiple images. One of the
final goals of the analysis is to get
information about the objects represented in
the scene: a synthesis by reasoning process
captures the significance of the picture in
the first case, and collects the information
from the sequence of pictures as a whole in
the second case, tracking the moving objects
in the frames.

A large amount of work with proposals for
algorithms is actually available, Young and
Fu (1).

Traditional approach is generally devoted to
algorithmic aspects; a lot of work is avail-
able in Image Preprocessing, Image
Segmentation, and Pattern Recognition both in
2D and in 3D. Object models features are
stored into a file system. This file system
is often supposed to be reduced in size,
leading to very specific Image Processing
systems; larger systems typically suffer ow-
ing to performance reasons.

Although these small dedicated system have
had and still have good applications, the
need of large databases for storing image
related informations is growing in order to
build extensive and multiple application
Image Processing systems.

In Artificial Intelligence, first order pre-
dicate calculus,(relational programming),
which is completely declarative, exhibits
good formal properties as consistency and
completeness. A suitable reasoning component,
the inference engine, can perform deductive
analysis. All inferences in classical logic
can be seen as set membership. Anyway no
information about structural relations is
foreseen.

This approach does not seem adequate to treat
with some practical applications such as
those which require persistent objects or
sophisticated Abstract Data Types: per-
formance problems on traditional machines,
limitations to database extension limit their
usage in real applications.

Owing to the large database requirements, the
relational data model has been proposed for
capturing spatial information in many
systems, especially in geographic data bases,
as for example in Berman and Stonebraker (2).

Although this kind of model is easy to im-
plement, it leads to a representation of the
spatial information which is '"flat', in the
sense it does not capture the relationships
among the elements or objects in the frame.
In particular it has not the necessary
flexibility in order to represent
hierarchical structures as those pertaining

to part-subpart relationships into a frame or
to composite objects in the frame, and in
general is unable to specify semantic
information related to the relationships
between the objects.

In fact, if we look inside a typical first
generation Image Processing system, we can
generally recognize that:

1. Programs in Pattern Recognition work by
abstractions. They search for parts and sub-
parts according to visual inclusion criteria,
individuate relative positions of parts,
detect moving objects in multiple scenes; by
reasoning they can individuate the parts
names or the class abstractions to which the
detected instances belong, guess scene
significance, and/or analyze motion.

2. Data models are flat representations
(records) of the objects through their
features. No semantic information is added.

In general we can say that no correspondence
exists between the abstractions and the ab-
straction hierarchies interpretated inside
the application program, and the flat
representation made of the features record
into the file system or relational database.

We believe that in order to make an Image
Processing system more flexible and hopefully
faster, the data structure should be Object-
Oriented and the knowledge about data
structures and relationships should be
captured as much as possible.

In the present paper we propose and discuss
an innovative integrated architecture of an
environment for a multi-user Image Processing
System, based on the extensive usage of the
Object-Oriented paradigm concepts, applied
both in image processing programs and object
representation in the database. This will
result in a tighter correspondence between
the abstraction mechanism present in the
program and the permanent storage and
organization of abstractions intoc the data-
base, enhancing both performance and safety.

In addition the adoption of an Object-Orient-
ed DBMS will allow for reusability of data
models and model sharing for different
applications; concurrence of different tasks
which is a key point in large and multi-user
Image Processing Systems is allowed.

OBJECT-ORIENTED PARADIGM AND IMAGE PROCESSING

Very recently, Object-Oriented Programming
paradigm is receiving a lot of interest in
several areas, like software production and
language development Cox (4), (5), Meyer (6).

The main advantages of this approach can be
individuated in software reusability and ex-
tensibility and code sharing.



The Object-Oriented Programming paradigm is
the result of the convergence of concepts
from many areas of computer science, such as
programming languages, Stroustroup (7), Data
Bases, Andrews and Harris (8), Operating
Systems and Artificial Intelligence, Wegner
(3), and is centered around the concepts of
abstract data type, Shaw (9), and information
hiding and inheritance, Meyer (10).

Object-Oriented Programming mainly differs
from relational programming in that relations
are captured through predicates in the latter
while relations among types are captured and
in type hierarchies in the former.

In the Object-Oriented Programming paradigm,
the "object" entity encapsulates both status
and behaviour, through respectively,
attribute variables and procedures or
methods. The object is the only proprietor of
its attributes and the only one authorized to
manipulate them through its methods. Message
passing is usually the way in which object
procedures can be activated by external
objects.

The Object-Oriented paradigm provides a
framework in which conceptual modeling of
external entities can be made inside a
computer system and a close correspondence
between real world and the computer can be
built, Felsinger (11). Objects are seen as
instances of abstract entities, the classes,
which capture the data description and
behaviour modeling.

Classes are related each other through
standard abstraction techniques:
specialization (class-subclass relation) and
aggregation (class-class_component relation).

Some programming languages are actually
available implementing Object Oriented

Programming concepts as Smalltalk, C++,
Eiffel, etc..

About database systems,
only few examples, e. g. Andrews (8). On the
other hand, actually available database
system models, like the relational model,
lack the power and expressibility of Object-
Oriented Languages and have no structuring
facility. The information about combining
different relations can only be extracted
through processing by the user.

there are actually

As compared with the relational approach the
Object-Oriented model provides a very power-
ful paradigm for knowledge representation.

Pattern Recognition and Object Classification
can greatly advance by using Object-Oriented
concepts both in programming languages and
database. Any spatial entity as we can
extract from some frame can be represented as
an individual object belonging to some
specific class.

The entire image frame can also be stored
taking into account both the spatial
relationships among its entities and the con-
ceptual relationships.

Communalities of properties can be included
through the IS-A (class-subclass) relation
and spatial inclusion is instantiated by IS-
PART-OF (class-class_component) relation.

An Image Processing system has to work on the
main significant classes identified: they
will have to be defined in order to take con-

453

sideration of the main entities involved into
the entire process of Image Processing and in
particular to allow modeling of pictorial
information at different levels of
abstraction.

Model objects, which are instances of model
classes, will be stored into the system data-
base. They can be build having both
attributes, defined in terms of constraints
to which the identified object has to cope
with in order to match, and methods which
resume the standard model behaviour. This
will allow object simulation and behaviour
matching in addition to shape matching.

SYSTEM MAIN CLASSES

Image Classes

As can be seen from Figure 1, the main class-
es of the system are related to the main
entities which we can recognize in the Image
Processing and Pattern Recognition job. They
are:

- classes related to the image:
and "Processed_Image'.

- classes related to the Data Base:
"Model_Entity" and '""Real_ Entity".

"Raw_Image"

Raw Image

To this class belong images or sequences of
images taken by the recording device (TV
camera). Segmentation algorithms, which are
fundamental for the Pattern Recognition
process are stored as Raw_Image methods.

These and other preprocessing functions are
activated through message sending, during the
recognition process by the model classes of
the Data Base.

Processed Image

The objects belonging to this class are
produced by the application of some pre-
processing function to some Raw Image. They
are mainly subparts of the original image.

These objects can be related to each other
through aggregation relations according to
different level of resolutions at which the
image is analyzed (see Figure 2).

The methods are mainly algorithms for the
extraction of structural and behavioral
features.

Also these methods are selected during the
recognition process by the model classes of
the database.

Database Classes

The Object-Oriented database allows a direct
representation of information by adding
semantic information like generalization-
specialization and part-subpart
relationships. It provides the best framework
for pictorial information storage, which is
most naturally organized at different levels
of abstraction. In fact though if the image
data can be stored as a set of independent
objects, more information is gained through
storing these objects with their semantic
links and in an object based representation.

As can be seen from Figure 1,
our Database are instances of
classes of two basic classes:
and "Real_Entity". The former

the obiects of
some sub-
"Model_Entity"
contain all the



454

knowledge (at various abstraction levels)
needed for pattern recognition and behavior
simulation, the latter correspond to already
identified or partially identified real world
objects.

The hierarchical structures of the two parts
in which the Database is conceptually sub-
divided are not necessarily the same, as
there could be the necessity - for pattern
recognition purposes - to define model
objects without corresponding real world
ones. For example, in the "model" part of a
data base devoted to vehicle recognition
there could be classes like "Two_Wheels" and
"Four_Wheels',that could be unnecessary in
the "real" part, where all the objects belong
to more specific classes, like "Scooter",
"Car", etc. In other words, usually the
hierarchical structure of the ''real" part of
the Database is more simple than the one of
the "model" part.

Model Entity Classes. The hierarchical
structure of the "model" part of the database
reflects the knowledge required for a
successful pattern recognition process.

In the model Database is contained all the
available information about the problem
domain, hierarchically organized and dis-
tributed between the various levels of ab-
straction. The higher classes (e.g.
"Vehicle") embody a more general knowledge
than the lower ones (e.g. "Car").

The model tree is structured according to
from most general to most specific classes
rule. The model tree has to take into account
in addition to the generalization links (IS-
A) also the aggregation links (IS-PART-OF).

The attributes of each class are the model
features specific to its abstraction level
and which allow to differentiate it from the
other ones at the same level.

The methods belong to four fundamental
categories:

1. Preprocessing Selectors: they select
between the preprocessing methods of the

Raw_Image class the more suitable one for the
subsequent elaborations. For some models they
could be absent, as the preprocessing done at
an earlier level could be sufficient.

2. Extractor Selectors: they select between
the methods of the Processed_Image class the
more convenient one for the extraction of the
features to be matched with that of the
model.

3. Matchers: they compare the features ex-
tracted from the Processed_Image with the
ones of the model to determine if the real
world object is an instance of the class of
the model (or to one of its subclasses).

4. Behavior Simulators: these methods allow
to simulate the behavior of the real world
object, and can be used as a help in the
identification process or to predict the
future behaviour of the object.

Real Entity Classes. The structure of the
classes of this part of the Database is of
course strongly dependent on the scope to
which the system is dedicated and the type of
queries that must be answered.

A Real_Entity instance is created by the

system at the end or at some intermediate
step of the patter recognition process.

PRINCIPLES OF OPERATION OF THE SYSTEM

Processing and recognition can be performed
by traveling over the Database. At each node
the underlying classes features determine the
branching decision and eventually the
additional processing needed in order to per-
form branching. Matching will ultimately be
performed by comparison of features and
eventually behaviour of the._detected object
with Database leaves.(See figure 3).

Process can start at each level of the model
tree according to the actual knowledge about
the reality under examination. In absence of
information it starts with the class at the
top of the tree.

As the process reach a node of the tree, it
compares the knowledge it has at disposal at
that step with the constraints in the node
itself and in the immediately underlying
nodes: in order to select the right branch to
the next node it schedules the opportune
methods in the Raw_Image and/or
Processed_Image classes.

The structure of the model tree must have a
general vision of the structure of the Image
Processing and Pattern Recognition system
and has to be congruent with the facilities
available in the sense that it has to know
which methods to use from Raw_Image and
Processed_Image classes.

The system works according to the Object-
Oriented Paradigm by sending messages to
external classes in order to schedule
methods.

The process, progressing in the recognition
task , sends messages to the Raw_Image and
Processed_Image to execute their specific
methods in order to have an image clean and
segmented into its subparts.

Following the first segmentation step, the
process tries to find the right branch in the
model tree order to match some model node.

This tree structure is suitable to be im-
plemented together a "pyramid" structure for
processing refinement, Fairhurst (12),
Nevatia (13). Its lowest level is the raw
image (the highest resolution), the next
higher levels correspond to lower resolution
images got by averaging neighbor pixels, with
a two or three reduction factor for each
step.

The process can select the proper level of
pyramid. It will work with the pyramid
highest level (low resolution) at the tree
root and may require further processing on
the lower levels of the pyramid in order to
check for the right branch. This approach
permits the reduction of computation times by
processing the image hierarchically.

A nice property of the Object-Oriented
approach in structuring the System is the
possibility of implementation on parallel
architectures. There is opportunity for
parallelism when more than one path is
candidate for branching. In that case
multiple processes can be created to follow
the different branches.

Classified objects are created as instances




455

of the recognized class in the real element
subtree.

In case of model matching, simulation can be
started by scheduling some method which re-
sume the standard model behaviour. Simulation
can be executed in parallel with recognition,
for example in processing a sequence of
frames recognition, in order to allow also
behaviour matching.

CONC ONS

In this paper we have presented a proposal
for an innovative and advanced Image
Processing and Pattern Recognition system
which fully implements the Object-Oriented
paradigm.

The Object-Oriented Database is the central
element of the System: it collects
Model_Entities and instances of

Real Entities; Model_Entities constraints
drive the recognition process by scheduling
the appropriate methods in the Raw_Image and
Processed_Image instances in order to perform
matching.

This architecture is expected to exhibit
flexibility and versatility ; it can be
implemented on parallel architectures.
Shape and behaviour matching can be
performed.

A prototype in Smalltalk has been
implemented.

BIBLIOGRAPHY

1. Young R. and King-Sun Fu ,1988, "Handbook
of Pattern Recognition and Image Process-
ing", Young and Fu Ed., Academic Press,
Orlando, USA.

2. Berman R. and Stonebraker M., 1977, "Geo-
Quel: a System for the Manipulation and
Display of Geographic Data", Proc. Conf.
on Very Large Databases, 186

3. Wegner P., 1987, "The Object-Oriented
Classification Paradigm", in "Research
Directions in Object-Oriented Programm-
ing", Shriver and Wegner Ed., MIT Press,
Cambridge, USA, 479-560

4. Cox B., 1984, IEEE Software, 1, 1
5. Cox B., 1986, "Object Oriented
Programming: an Evolutionary Approach",

Addison Wesley, Reading, USA

6. Meyer B., 1988,
Construction",
Usa

"Object Oriented Software
Prentice Hall, New York,

7. Stroustroup B., 1986, "The C++ Programming
Language", Addison Wesley, Reading, USA

8. Andrews T. and Harris C., 1987, "Combining
Language and Database Advances in an
Object-Oriented Development Environment",
Proceedings OOPSLA 87

9. Shaw M., 1984, 1EEE Software, 1, 10

10. Mayer B., 1987, IEEE Software, 50

11. Felsinger R., 1988, "Object Oriented
Design'", SAL, London, England

12. Fairhust M., 1988, "Computer Vision for
Robotic Systems', Prentice Hall, New York,
UsA

13. Nevatia R., 1988, "Handbook of Pattern
Recognition and Image Processing"
Young and Fu Ed., Academic Press, Orlando,
USA.

Figure 1. Class Tree for the main system
classes.

Dotted lines explicit IS_PART_OF links,
otherwise IS_A links.

ABSTRACTION LEV. O

ABSTRACTION LEV. 1

ABSTRACTION LEV. 2

/
@ @@ ABSTRACTION LEV. 3

Figure 2. Instances of the Processed_Image
class can be hierarchically related in order
to specify different resolution levels of
processing.



Figure 3.

v

RAW_IMACE

Prepr S

PROCESSED_IMACE

456

Operator

!

l

MODEL_ENTITY

REAL_ENTITY

Extractors

Preprocessor_Selector

Extractor_Selector

Flow Diagram of the System.

Matcher

Behaviour_Simulotor




