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Preface

In these three years attending the Doctoral School in Telematics and Informa-

tion Society at University of Florence, I mainly focused my research activity on

the topic which gives the title to this Ph.D. thesis: study, design and validation

of signal processing techniques applied to automatic music transcription.

Automatic transcription of music (AToM) is a difficult problem, which

remains still unresolved in some of its application contexts (such as polyphonic

music and multi-instrumental transcription). This task refers to the analysis

of a digital acoustic or synthesized musical signal, in order to write down pitch,

onset time, duration, intensity and source of each sound that occurs in it.

In many other research areas such as computer vision and semantic web

indexing, efforts are made to automatize several types of human cognitive pro-

cesses. Computer vision, for example, deals with identifying techniques and

strategies for acquiring, processing and understanding images from the real

world, in order to produce symbolic/numeric information or decisions rules,

which is a daily trivial operation for most of the people. The distinctive as-

pect, which makes automatic transcription of music such a challenging task,

is that its outcome result is a hardly achievable goal not only for ordinary

people at large, but even for expert and well trained musicians. This fact can

be partially explained by the high degree of perceptual fusion characterizing

the human auditory system, according to which we perceive simultaneous and

multitimbral sounds as a single entity. Furthermore, the lack of knowledge on

human brain processes underlying this complex activity (though the function-

ing of inner ear transcoding mechanisms have been pervasively studied and

understood), justifies the large variety of methods and approaches proposed,

ranging from signal processing techniques to higher-level musicological models.

In fact, in addition to this predominant doctoral activity, I had the oppor-

tunity to cover other topics, and to undertake research in the following fields

viii



and projects:

• Study and modeling of educational and scientific archives management

solutions. In this research, a study of requirements and development

of a multi-press platform for e-journals publishing and peer-review sup-

port have been conducted. The related implementation and validation

has been performed by expanding the open source OJS (Open Jour-

nal System) as a multi-press and multi-journal platform. This process

involved a deep reengineering of the originally distributed OJS architec-

ture. PHP, PostgreSQL and Apache Server technologies have been used.

The proposed solution refers to Palamede project [BNP11] and that has

produced the experimental portal (http://palamede.fupress.com), and

which it has been validated by a test experimentation of three Italian

University Presses: the Firenze University Press (FUP), University of

Parma and the Forum Editrice Press of University of Udine.

• Development of an innovative system for detection of presence and num-

ber of people in an indoor secure access. The identification of the human

presence and/or counting of number of people are in the focus of many

applications in the field of security. Specifically, automation of security

systems has been a growing interest topic for controlling accesses in re-

stricted areas such as banks, airports, railway stations and governmental

accesses. The goal of this research has been the design and development

of an automated solution for detecting the presence of more than one per-

son in interlocked doors, adopted in many accesses. In most cases, the

interlocked doors are small areas in which other information and sensors

are placed, to detect the presence of guns, explosive, etc. The general

goals and the environmental conditions required, allowed to implement

a detection system at lower costs and complexity, with respect to other

existing techniques, retrieved in the state of the art of related works. The

system consists of a fixed array of microwave transceiver modules, whose

received signals have been processed to collect information related to

the volume occupied in the interlocked cabin door. A research has been

conducted to study and identify volume measurement and image recon-

struction techniques using microwave sensors. Statistical and predictive

models have been applied to collected data and measurements to build

stronger decision rules for detection. The solution proposed has been sta-

tistically validated against real experimental measures, and it has also

ix



been implemented to be used in real time.

• Collaborative and assisted SKOS generation and management. I started

to give my contribute to the Open Space Innovative Mind (OSIM) project

[BCN11], a solution for assisting expert users in collaborative develop-

ment and management of a SKOS knowledge. The SKOS production has

been accelerated by crawling and exploiting different kinds of sources (in

multiple languages and with several inconsistencies among them). The

OSIM web based platform (http://openmind.axmedis.org) and tools sup-

port the experts in defining relationships among the most recurrent con-

cepts, reducing the time of SKOS generation and allowing collaborative

production. The main goal of the OSIM project is creating a portal to

allow industries at posing semantic queries about potential competencies

in a large institution such as the University of Florence.

In this thesis, an original system for automatic music transcription is de-

scribed. The main goal of this research has been to investigate for novel tech-

niques and solutions with respect to the ones proposed in the current state of

the art, which has been carefully reviewed. The present document has been

organized in the following chapters:

• Chapter 1: after a general explanation of automatic music transcription

task and some basic concepts regarding audio signals and music notation,

requirements and application areas are described, and a first, functional

classification of the transcription techniques is presented.

• Chapter 2: the current state of the art of automatic music transcription

is deeply and carefully reviewed. A big effort has been made to compare

the features of all the most quoted transcription systems in literature,

since the first pioneering works in the late 70s up to the most recent

solutions.

• Chapter 3: In Section 3.1, a mathematical theory of higher-order spec-

tra is recalled, and definitions of bispectrum, main properties and com-

putational models are provided. In Sections 3.2 and 3.3, the Constant-Q

analysis and its application to bispectral signal representation for multi-

pitch detection are described. Finally, Sections 3.4 and 3.5 deal with a

detailed case study of bispectral nonlinearity implications in multi-pitch

x



detection procedure, which is consequently compared with traditional

spectrum based estimation techniques.

• Chapter 4: the general architecture of the proposed transcription sys-

tem is described first, followed by a detailed outline of the main modules

for pitch detection and note duration tracking.

• Chapter 5: some experimental results are reported. The proposed sys-

tem has been validated against some excerpts of the standard Real World

Computing (RWC) database. Results of the system performance at the

MIREX 2009 international contest are also reported, for further valida-

tion.

• Chapter 6: this final chapter is left for conclusions and discussion on

future work guidelines.

xi



Chapter 1

Automatic Music Transcription:
An Introduction

Music Information Retrieval (MIR) multidisciplinary research field has re-

vealed a great increment in academic interest in the last decades, although

yet barely comparable to the commercial involvement grown around speech

recognition. It must be noticed that music information is much more complex

than speech information, both from a physical (range of frequency analysis)

and a semantic (big number, high complexity and many abstraction levels of

the possible queries) point of view.

Automatic music transcription is a specific task within MIR: it is defined

as the process of converting a musical audio recording into a symbolic notation

(a musical score or sheet) or any equivalent representation, usually concerning

event information associated with pitch, note onset times, durations (or equiv-

alently, offset times) and intensity. This task can be accomplished by a well

ear-trained person, although it could be quite challenging for experienced mu-

sicians as well; besides, it is difficult to be realized in a completely automated

way. This is due to the fact that human knowledge of musicological models

and harmonic rules are useful to solve the problem, although such skills are

not easy to be coded and wrapped into an algorithmic procedure. Complete

automatic transcription of real world musical signals can be very hard or even

theoretically impossible in some cases; so the goal is usually redefined in an-

notating as many of the concurrent sounds as possible, or in transcribing only

some specific and well-defined parts, for example the melody or some promi-

nent melodic or rhythmical figures, like bass lines or drum sounds (in this case,

the process is intended as a partial transcription).
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CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

1.1 Representation of Sound

Sound is a physical phenomenon produced by the propagation of a sequence

of waves of pressure through compressible media, generated by the vibration

of an elastic body. Consequently, an audio signal is composed of a single or

a mixture of approximately periodic and locally stationary acoustic waves.

The present work is not intended to provide an exhaustive study of physics of

sound and acoustics. For this aim, the interested reader can refer to the large

documentation available (e.g., [Hal91], [BS04]).

According to the Fourier representation, any finite energy signal x(t) with

period T0 is represented as the sum of an infinite number of sinusoidal compo-

nents, weighted by appropriate amplitude coefficients:

x(t) =
a0
2

+
+∞∑
n=1

an sin(2πnf0t+ ϕn) (1.1)

where:

an = |An| , ϕn = ∠An

and:

An =
2

T0

∫ T0

0

x(t)e−j2πnf0tdt

An acoustic wave is a particular case in which, ideally, frequency values

of single harmonic components are integer multiples of the first one, called

fundamental frequency (which is the perceived pitch). Harmonic components

are called partials or simply harmonics. Since the fundamental frequency of

a sound, denoted as F0, is defined to be the greatest common divisor of its

own harmonic set (actually, in some real cases, the first spectral component

corresponding to F0 = 1/T0 can be missing), the task of music transcription,

that is, the tracking of the partials of all concurrent sounds, is practically re-

duced to a time periodicities search, which is equivalent to looking for energy

maxima in the frequency domain. Thus, every single note can be associated

with a fixed and distinct comb-pattern of local maxima in the amplitude spec-

trum, which appears like the one shown in Figure 1.1. The distances between

energy maxima are expressed as integer multiples of F0 (top) as well as in

semitones (bottom): the latter are an approximation of the natural harmonic

frequencies in the well-tempered system (see Section 1.3 for reference of some

basic elements of music notation).

2



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

 F0 2F0     3F0 4F0    5F0    6F0    7F0

 0           12    19 24     28     31     34

Figure 1.1: Fixed comb-pattern representing the harmonics set associated with
every single note. Seven partials (fundamental frequency included) with the
same amplitude have been considered. The distances are also expressed (bot-
tom) as semitones.

1.2 Monophonic and Polyphonic Music

A major distinctive cue in music transcoding is given by the number of voices a

music piece consists of: there can be only one voice playing at each time; these

cases are treated as a monophonic transcription task. On the contrary, if sev-

eral voices are played simultaneously, we deal with a polyphonic transcription

process.

The mixture of two or more sounds present a degree of consonance (and

equivalently, a degree of dissonance) which depends on harmonic relationship

between their pitches. In this regard, it is convenient to recall the following

proposition by Klapuri [Kla98]: let R ed S be two interfering sounds; if the

relationship between their fundamental frequencies, f0R e f0S is a rational

number, i.e.:
f0R
f0S

=
m

n
, con n,m ≥ 1, (1.2)

then each n-th partial of R overlaps to each m-th partial of S.

Low values of n e m imply a high degree of consonance between R e S. It

is worthy to be noticed that if m/n is an integer, the overlapping of the two

sounds’ partials is complete.

Automatic transcription of monophonic music is currently considered as

a resolved problem, while transcription of polyphonic music is still far from

being successfully settled, and additional difficulties arise in presence of multi-

instrumental contexts. Development of techniques for monophonic pitch detec-

tion has received a greater attention and deeper interest for speech analysis,

3



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

rather than for music, even in quite recent literature. In Figure 1.2, some

examples of the spectral content of typical audio signals are shown.

Figure 1.2: Amplitude spectrum representation of some typical audio signals.
Noteworthy is the increasing complexity of the spectral content, as the number
of concurrent playing voices increases.

Difficulties arise in polyphonic music transcription since two or more con-

current sounds may contain partials which share the same frequency values.

This is one of the main reasons why simple amplitude spectral analysis is con-

sidered inadequate, if not joined to other signal processing techniques or a

priori knowledge resources.

1.3 Music Notation

The purpose of illustrating the principles of theory of music is beyond this work;

however, it is convenient to present some theoretical preliminaries, which are

4



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

necessary to understand the topics presented in this thesis; actually, the intent

is to cover only those music notation aspects and issues which are necessary for

a complete comprehension of the following dissertation. For a more detailed

overview of music theory, please refer to [Sor95] or to one of the many manuals

related to this topic.

The seven notes (in addition to the usual staff sheet or score representa-

tion), can be named after the first seven alphabetical letters, from A to G. The

octave number is indicated as a subscript. In the following, the lowest piano

octave is associated with number 0; thus, middle C, at 261 Hz, is denoted

with C4, and A4 (which is commonly used as a reference tone for instruments

tuning) univocally identifies the note at 440 Hz.

The distance between two notes is defined interval : it can be measured in

frequency, fundamental frequencies ratio, or scale step (or degrees).

In western music, adopting the well-temperament as the standard tuning

system, a semitone is defined to be the smallest audible interval between two

generic notes. If f1 and f2 represent the pitches of two notes separated by one

semitone interval, then f2 = f1 ·21/12. An interval of one octave is characterized

by f2 = 2f1, and it is composed of 12 semitones. Other examples of intervals

between notes are the perfect fifth (f2 = 3/2 f1), the perfect fourth (f2 =

4/3 f1), and the major third (f2 = 5/4 f1). The following symbols, ♯ (sharp)

and ♭ (flat), known as accidentals, are used to raise or lower, respectively, a

note by a semitone. This implies that, in western music notation, notes with

different nomenclature have the same pitch (see Figure 1.3).

Figure 1.3: Music staff, notation and nomenclature. In this example, the seven
notes, and corresponding accidentals, of the diatonic scale on C in the 4-th
octave are represented.

Retaining the parallel between speech and music, music notation is mainly

a set of instruction for a musical performance, rather than a representation of

a musical signal [Kla04a]; in the same way, written text is to be considered

5



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

as the equivalent for speech. The main difference is that music information is

much more multi-faceted, since it includes many different levels of information

(note pitch, harmonic and rhythmic information, indications for expression,

dynamics).

1.4 Requirements and Application Areas

At the present time, many music transcription system have been developed,

both for academic research purpose and commercial distribution. This has

produced a large variety of different features and tasks to be accomplished.

Generic requirements for a music transcription system can be classified into

the following:

• Representation of the transcoded output: the input audio source

is usually converted into a MIDI file, a Piano-roll representation (like

the one depicted in Figure 1.4), or simply into a list of note information

(onset time, pitch or frequency, duration or offset time, loudness etc . . . ).

• General transcription features: an advanced music transcription sys-

tem, dealing with real world audio signals and recordings, should allow

the user to choose between monophonic or a polyphonic transcription,

as well as supporting single and multi-instrumental recognition.

• Level of automation: the very large assortment and combination of

musical instruments, genres, recording background conditions make the

task of music transcription very hard to be fulfilled in a completely auto-

mated way, for instance using a black box algorithm solution. Some user

defined parameters are often introduced (e.g.: energy threshold values,

a priori knowledge like the number of voices in a polyphonic mixture or

more complex instrumental models).

• Processing time: according to the computing performances, usually

two main categories are identified: real-time and offline transcription

systems. Real-time solution is generally achieved for a monophonic tran-

scription process, whereas it generally results out of reach for the com-

plexity of the polyphonic transcription task.

Automatic transcription of music can be a key task for many application

fields, for instance: educational music frameworks; interactive computer mu-

sic equipment for generating accompaniment for soloists; sound resynthesis

6



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

Figure 1.4: Piano-roll representation of music: in abscissa, the time (here ex-
pressed in subgroups of musical bars); in ordinate, the note pitch (represented
with the piano keys).

for preservation or restoration of old and historical recordings; musicological

analysis of improvised and ethnic music for which musical notations do not

exist etc. Regarding some applications in the educational environment, some

future desiderata are the achieving of a more robust score representation of the

transcription systems output, that can be helpful for monitoring the musician

execution as well as for real-time transcoding of any musical performance.

1.5 Classification of Music Transcription Sys-

tems

Many efforts have been made to realize exhaustive reviews and to provide

classification models for automatic transcription methods. Remarkable works

are the ones by Rabiner [Rab77] for monophonic transcription, and by Bello

[Bel03] Klapuri [Kla04b], [Kla04a], Brossier [Bro06] and Yeh [Yeh08] also for

polyphonic transcription. Citing a statement by Klapuri, “it is difficult to cat-

egorize multiple-F0 estimation methods (and music transcription methods in

general) according to any single taxonomy because the methods are complex

and typically combine several processing principles and procedures. As a con-

sequence, there is no single dimension which could function as an appropriate

7
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basis for categorization”[Kla04a].

This aspect suggests a decomposition of the problem as an efficient process-

ing approach. Quite recently, some specialized sub-areas of this research field

have been developed, dealing with more limited transcription tasks, such as the

extraction of melody or bass lines within a polyphonic mixture of sounds. Be-

sides, modularity is a similar aspect observed also in the human brain [Kla04b],

[PC03]. The human auditory system (the inner hear, together with the part of

the brain appointed to music cognition) results to be the most reliable acoustic

analysis tool [Kla04b]. Actually, an expert musician can accomplish the task of

music transcription, relying also on a set of knowledge sources (musicological

models, harmonic rules, experience). Such skills are difficult to be coded and

wrapped into an algorithmic procedure.

Human capability to achieve the comprehension of music transcription

problem is understood as the sum of two different attitudes: the bottom-up

and the top-down processing. This suggests a first boundary of classification,

given by the following approaches:

• The bottom-up processing, or data-driven model, starts from low level

elements (the raw audio samples) and it uses processing blocks to analyze

and cluster these elements in order to gather the required information.

• The top-down processing, or prediction-driven model, starts from in-

formation at a higher level (based on external knowledge) and it uses

such information to understand and explain elements at lower hierarchy

levels (physical stimuli).

We have considered this, reported by Bello [Bel03], as the most general

categorization criterion for the music transcription problem, since these two

approaches are non-mutual-exclusive, and contain ideally all the other fields of

codification we intend to review in the following. There are many reviews of

automatic music transcription methods in literature, and most of them present

their own criteria, upon which the different front ends, used to obtain a useful

mid-level representation of the audio input signal, are grouped together. One

of the most commonly used criterion (adopted by Gerhard [Ghe03], Brossier

[Bro06] and Yeh [Yeh08]) is based on a differentiation at signal analysis level:

• Time domain analysis: systems belonging to this category process

the audio waveform in order to obtain information about pitches (peri-
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odicities of the audio signal) or onset times. In general, this family of

methods is suitable for monophonic transcription.

• Frequency domain analysis: methods belonging to this class vary

from spectral analysis (FFT, cepstrum, multi-resolution filtering, Wavelet

transform and related variants) to auditory models developed in the first

90s within the Computational Auditory Scene Analysis (CASA) frame-

work [SL90], [Ell96], [MO97], as well as many spectral matching or spec-

tral features extraction techniques.

Another classification concept is reported by Yeh [Yeh08], for whom music

transcription methods can be catalogued into two different approaches:

• Iterative estimation: such principle refers to all the methods which

iteratively estimate predominant F0, and subsequently cancel the resid-

ual harmonic pattern of estimated notes from the observed spectrum,

processing the residual until a stop criterion is met; usually, a condi-

tion related to residual energy is adopted. The block diagram of this

architecture is shown in Figure 1.5.

Figure 1.5: Amplitude spectrum representation of some typical audio signals.
Noteworthy is the increasing complexity of the spectral content, as the number
of concurrent playing voices increases.

• Joint estimation: under this approach we find algorithms that jointly

evaluate many hypotheses on F0 estimation, without involving any can-

celation. These solutions include the use of salience functions or other

knowledge source, in order to facilitate spectral peak-picking, and other

9
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frameworks like Martin’s Blackboard architecture [Mar96a]. This name

comes from the metaphor of a group of researchers standing in front of a

blackboard, working to find out the solution to a problem. This frame-

work is a problem-solving model, which integrates knowledge from differ-

ent sources and allows the interaction of different parts of the model. An

expert musical knowledge, integrated with signal processing and other

physical, engineering or mathematical frameworks, is considered useful

to accomplish the task of automatic music transcription. Another sub-

group belonging to the Joint Estimation category is the spectral match-

ing by parametric/non parametric models, like Non-negative Matrix Ap-

proaches (NMA) including Non-negative Matrix Factorization (NMF),

frequently used in recent literature [Vir07], [VBB08].

Another categorization to be highlighted is often included in frequency

analysis or joint estimation classes in the above mentioned review works: sta-

tistical versus non statistical framework. The statistical-inference approach

generally aims at jointly performing F0 estimation and tracking of tempo-

ral parameters (onsets and durations) from a time-frequency representation of

the input signal. In these models, the quantities to be inferred are considered

as a set of hidden variables. The probabilistic model relates these variables

to the observation variable sequence (the input signal or a mid-level repre-

sentation) by using a set of properly defined parameters. Statistical frame-

works frequently used for automatic music transcription are Bayesian networks

[KNKT95], [CKB06] or Hidden Markov Models (HMM) [RK05], [YRR+08].

Finally, another pivotal aspect is the evaluation of the transcription systems

proposed so far. The absence of formalized paradigms to compare different

methods, the necessity of commonly accepted evaluation criteria, and finally

the difficulties to collect large enough databases (often due to intellectual prop-

erty rights restrictions, which is another important difference with the speech

recognition research area) led the IMIRSEL (International Music Information

Retrieval Systems Evaluation Laboratory) community to create, in 2005, the

MIREX (Music Information Retrieval Evaluation eXchange) evaluation frame-

work. In few editions, MIREX has already become a worldwide accepted,

standard reference for the evaluation of submitted methods and algorithms

aimed at resolving several MIR proposed tasks , including polyphonic pitch

estimation and note tracking [MIRb]. The tasks, the evaluation material and

conditions, as well as many other elements of the MIREX architecture are

10
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defined and discussed within the whole community, thus reflecting its own

interests and accomplishing the necessity of formality and repeatability.

11



Chapter 2

State of the Art

In literature, a large variety of methods for both monophonic and polyphonic

music transcription has been realized. Monophonic transcription solutions

were the first to be proposed, starting from the second half of the 60s, in

parallel with the initial development of the newly-born speech processing; in

fact, monophonic pitch detection was basically applied for speech recognition

purposes. Some of these methods were based on time-domain techniques like

Zero Crossing Rate (ZCR) [Mil75], or on autocorrelation function (ACF) in

the time-domain [RRM76], as well as parallel processing [GR77] or Linear

Predictive Coding (LPC) analysis [Mar72].

First attempts of performing polyphonic music transcription started in the

late 1970s, with the pioneering work of Moorer [Moo77] and Piszczalski and

Galler [PG77]. As time went by, the commonly-used frequency representa-

tion of audio signals as a front-end for transcription systems has been devel-

oped in many different ways, and several techniques have been proposed. Kla-

puri [Kla03], [Kla05] performed an iterative predominant F0 estimation and a

subsequent cancelation of each harmonic pattern from the spectrum; Nawab

[NAW01] used an iterative pattern matching algorithm upon a constant-Q

spectral representation. In the early 1990s, other approaches began to de-

velop, based on applied psycho-acoustic models and also known as Computa-

tional Auditory Scene Analysis (CASA), from the work by Bregman [Bre90],

started to be developed. This framework was focused on the idea of formulat-

ing a computational model of the human inner ear system, which is known to

work as a frequency-selective bank of passband filters; techniques based on this

model, formalized by Slaney and Lion [SL90], were proposed by Ellis [Ell96],

Meddis and O’Mard [MO97], Tolonen and Karjalainen [TK00] and Klapuri
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[Kla08]. Marolt [Mar01], [Mar04] used the output of adaptive oscillators as a

training set for a bank of neural networks to track partials of piano record-

ings. A systematic and collaborative organization of different approaches to

the music transcription problem is the mainstay of the idea expressed in the

Blackboard Architecture proposed by Martin [Mar96a]. More recently, phys-

ical [OBCQTG05] and musicological models, like average harmonic structure

(AHS) extraction in [DZZS08], as well as other a priori knowledge [KaNiSa07],

and possibly temporal information [BDS06] have been joined to the audio

signal analysis in the frequency-domain to improve transcription systems per-

formances. Other frameworks rely on statistical inference, like hidden Markov

models [Rap02], [RK05], [YRR+08], Bayesian networks [KNKT95], [CKB06]

or Bayesian models [GDI06], [DD07]. Others systems were proposed, aiming

at estimating the bass line [KR07], or the melody and bass lines in musical

audio signals [Got00] [Got04]. Currently, the approach based on non-negative

matrix approximation [ROS07] (in different versions like nonnegative matrix

factorization of spectral features [SB03], [Vir07], [VBB08]) has received much

attention within the MIR community. Recently, Higher Order Spectra Analy-

sis (HOSA) has been applied to multipitch estimation [Abe04] and automatic

music transcription [ANP11a].

2.1 Methods Overview and Comparison

In this section, a comparative review of some of the most important and cited

music transcription systems is describe, as proposed in [ANP11a]. This review

is not meant to be as an exhaustive and omni-comprehensive work, although it

covers large part of the literature, starting from the first pioneering methods,

realized at the end of the 70s, until nowadays. The aim is to illustrate the

evolution of the state of the art, which is supposed to run in parallel with the

development of technology in the fields of signal processing and computational

elaboration power. In Figure 2.1, a functional block diagram related to the

general architecture of an automatic music transcription system, is shown.

A Pre-Processing module is generally assigned to segment the input signal

into frames, and to compute the mid-level representation (spectral analysis,

auditory model based representation etc.). The retrieval of pitch information

and note temporal parameters is performed usually by dedicated modules,

referred to as Pitch Estimation and Time Information Estimation in Figure

2.1. To achieve better transcription accuracies, additional Knowledge Sources
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Figure 2.1: General architecture of an automatic music transcription system.

(harmonic/instrumental models, training databases) are often implemented in

transcription systems, for many different purposes. Finally, a Post-Processing

module groups all the detected note information and converts it into an ap-

propriate output format (MIDI file, piano-roll or note parameters list). In

the following, a multi-field classification is proposed through the use of a set

of parameters which can be helpful to highlight the main characteristics and

peculiarities of different algorithms, without forcing a strict categorization,

not even focusing on specific parts of the processing framework. For this rea-

son, the overview of each system includes information about all the different

elements of the architecture: signal processing, pitch estimation and rhythm

information extraction, I/O parameters and other computational aspects. The

comparison summary is reported in Table 2.1. A tabular view has been chosen

in order to maximize hint facilities, similarly to the one adopted by Klapuri

in [Kla04b]. Systems are sorted by rows, in a chronological sequence. The

columns report different fields describing the most interesting aspects of the

architecture for the reviewed algorithms. They are defined as follows:

• Reference: this field contains the reference to the authors of each sys-

tem. Where needed, the research group is specified. In the past years

of automatic music transcription research activity, longer-term projects

have been undertaken by Stanford university (in particular the Centre for
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Computer Research in Music and Acoustics, referred to as CCRMA in

Table 2.1), University of Michigan (U-M), University of Tokyo (UT), Na-

tional Institute of Advanced Industrial Science and Technology (AIST),

Massachusetts Institute of Technology (MIT), Queen Mary University of

London (QMUL), University of Cambridge (CAM), Tampere/Helsinki

University of Technology (TUT/HUT), and the Institut de Recherche

et Coordination Acoustique/Musique (IRCAM) of Paris, France. Other

names and abbreviations, not included in the above mentioned list, re-

fer either to the name of the research projects, or to the commercial

development of such systems (e.g., KANSEI, SONIC, YIN).

• Year: the year of publication of the referenced papers.

• System Input / Output: this field contains specifications, if they

exist, on the input audio file, and it reports also the output format

of the transcription process (e.g., MIDI file, list of pitches, onsets and

durations), whether described in the referenced papers.

• Pre-Processing and Mid-Level: a list of the signal processing tech-

niques, used to obtain a useful front end.

• Real time / Offline: this field specifies, if the system operates in real

time or not.

• Source Availability: this specifies if the source code is available, di-

rectly or web-linked.

• Mono / Poly: this field shows if the system is mainly dedicated to

monophonic or polyphonic transcription.

• Time / Frequency: indicates if the signal processing techniques used

by the algorithm (which are listed in the Pre-Processing and Mid-Level

categories described above) operates either in the time or in the frequency

domain. Where needed, it is otherwise specified if a method uses a

different transform domain (e.g., autocorrelation domain).

• Pitch Estimation Knowledge: a brief description about the approaches

and the knowledge used to extract pitch information.

• Rhythm Info Extraction: in this field the techniques used to retrieve

temporal information of estimated F0s (where this task is performed)
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are summarized. It is divided into two sub-fields: Onsets and Durations,

as they are often estimated with different strategies.

• Evaluation Material: this section shortly reports, where described, the

type of the dataset used for evaluation and the number of test files / sam-

ples. Evaluation results are omitted. Actually, since different systems

are tested against different databases and using different criteria, results

reported in literature give a misleading outlook of overall transcription

performances. For this reason, only MIREX results are reported, for

all those algorithms which participated in the past editions. As to this

topic, noteworthy is to highlight that a methodology for the evaluation

of music transcription systems has not been firmly established yet. The

transcription output (MIDI file or piano-roll usually) is compared with

a reference ground truth of the audio source data; evaluation databases

generally provide a reference MIDI file for each audio track or sample

contained. Further work has often to be done, in order to check the

correct alignment between the two representations. The procedure is

as follows: a graphical comparison is commonly made, by using a ded-

icated GUI or other devices, between the audio signal spectrogram and

the piano-roll of the reference MIDI; then a manual alignment is per-

formed for the corresponding note events. An example of this graphical

alignment is illustrated in Figure 2.2.

Apart from defining the ground truth reference, evaluation criteria and

parameters must be defined in order to design a comprehensive and well

organized evaluation method. The MIREX framework proposes a valida-

tion approach which is becoming a standard reference in recent literature.

For the evaluation of music transcription algorithms, two MIREX tasks

are defined [MIRb]:

1. Multiple F0 Estimation (MF0E) on a frame by frame basis. In

this task, submitted systems are requested to report detected active

pitches every 10 ms. A returned pitch is assumed to be correct (true

positive, TP) if it is within a half semitone (±3%) of a ground-truth

pitch for that frame. Otherwise, if a returned pitch is not present

in the ground truth data, it is classified as a false positive (FP);

finally, each not detected ground truth pitch is classified as a false

negative (FN) Only one ground-truth pitch can be associated with
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Figure 2.2: Example of graphical time alignment between input audio spec-
trogram and ground truth reference MIDI.

each returned pitch. Three performance measures are defined for

this task:

– Precision: it is the portion of correct retrieved pitches for all

the pitches retrieved for each frame:

Precision =
TP

TP + FP
;

– Recall : it is the ratio of correct pitches to all the ground truth

pitches for each frame:

Recall =
TP

TP + FN
;

– Accuracy : it is an overall measure of the transcription system

performance, given by:

Accuracy =
TP

TP + FP + FN
;

2. Note Tracking (NT) task. A ground truth note is assumed to

be correctly transcribed if the system returns a note that is within
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a half semitone ±3% of that note AND the returned note’s onset

is within a 100ms range (± 50ms) of the onset of the ground truth

note, and its offset is within 20% range of the ground truth note’s

offset. Again, one ground truth note can only be associated with

one transcribed note. NT evaluation is further divided into the

following subtasks:

a. Mixed Set Note Tracking;

b. Piano Only Note Tracking.

For this task, again Precision and Recall are reported. They are

used to define a measure which is considered to indicate more cor-

rectly the balance between false positives and false negatives, that

is:

F −Measure = 2
Precision ·Recall

Precision+Recall
;

• Additional Notes: under this entry, any further noteworthy informa-

tion, which can not be classified according to the defined categories, is

recalled.

When the value of a certain parameter is missing, or information about one

of the defined fields is not available in the referenced paper, the abbreviation

N.A. is used in Table 2.1. In Table 2.2, other acronyms used in Table 2.1 are

defined.

2.2 Review of Some Music Transcription Sys-

tems

Moorer - 1977

Moorer was one of the first, in literature, to propose a system which attempted

to separate simultaneous harmonic sounds in a polyphonic mixture [Moo77].

His system has been developed to track pitches of both synthesized and real

duets, although it presents several strong limitations: sounds are supposed

to be harmonic and characterized by constant amplitude (no vibrato or jitter

is therefore allowed). In addition, the two voices should not cross in pitch,

and the two fundamental frequencies should not be in an 1:N relationship,

which is equivalent to a complete overlapping of the partials of the concurrent

sounds. The frequency range of analysis is also limited. The mid-level spectral
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Table 2.1 - Comparison of Automatic Music Transcription Systems (5 of 5).
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Table 2.2 - Definition of acronyms used in Table 2.1.

representation is obtained by using a bank of band-pass filters, called optimum

comb filter. This has been demonstrated to be a robust but computationally

expensive algorithm; the pitch estimation strategy is to search for periodicities

in the input signal by minimizing the summed absolute value of its magnitude

difference. The system has revealed relatively good recognition performances

with synthesized strings and real guitar duets.

Piszczalski and Galler - 1977

The system by Piszczalski and Galler [PG77] operates in the Frequency do-

main, and the obtained spectrum is equalized with a 12 dB attenuation curve,

under 500 Hz and above 3000 Hz, to enhance significative sound partials. After

detecting partials with a simple peak-detection procedure, each couple of par-

tials is analyzed in order to find the smallest harmonic number, which would

correspond to a harmonic series including the two partials at issue. A weight-

ing coefficient, related to partials amplitude, is also assigned to each processed

frequency couple. This information is later used to formulate hypothesis about

the candidate fundamental frequencies. Such approach makes the whole sys-

tem quite robust in cases of missing fundamental frequency and inharmonic

partials, as qualitatively described in the evaluation discussion. The system

is evaluated against some synthetic (mainly sinusoidal) tones and real signals
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(carillon bells), although detailed results are not reported.

Slaney and Lyon - 1990

Human great capabilities of perceiving pitch, even in cases of missing funda-

mental frequencies and partials inharmonicity, led to an increasing interest in

the Auditory Scene Analysis (ASA) in the first half of 90s. One of the first

and most remarkable works belonging to this area was the ”Perceptual Pitch

Detector” by Slaney and Lyon [SL90], based on Licklider’s ”Duplex Theory”

of pitch perception. The system is divided into three stages:

1. A Cochlear model which approximates the behavior of the human in-

ner ear system, particularly the response of the auditory nerve. The

cochlear model consists of a multi-channel bank of second order filters

modeling the propagation of sound along the Basilar Membrane (BM);

an array of Half-Wave Rectifiers (HWRs), aimed at emulating the role of

the inner hair cells which respond to the BM movement in only one di-

rection; finally, a four stage Automatic Gain Control (AGC) compresses

the dynamic range of the processed signal.

2. The mid-level representation is obtained by computing the short-time

windowed autocorrelation of the output of each cochlear channel. Col-

lecting such information for each channel leads to the correlogram 2D

representation, which allows to find periodicities (related to the per-

ceived pitches) of the input signal (the latter are located at horizontal

positions corresponding to the correlation delay-times equal to the peri-

ods of repetition). An example of correlogram of an audio input signal

is depicted in Figure

3. The pitch detector block performs a peak enhancement in the correlo-

gram; then the value at each time-lag is summed across all the frequen-

cies, and the obtained array show peaks in correspondence of possible

periodicities in the correlogram. Each detected periodicity τ reveals the

presence of a pitched sound at frequency 1/τ .

Maher - 1990

Maher proposed a system for duet transcription [Mah90]. Several limitations

are imposed: input signals must contain only two monophonic and separate
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Figure 2.3: Correlogram of an upright piano E4 at 330 Hz. (τ ≈ 3ms).

voices; both voices must be nearly harmonic; the frequency ranges of the funda-

mental frequencies belonging to the two voices should not overlap each other.

The system uses the McAulay - Quatieri sinusoidal model as a front end,

which models the input signal as the sum of several time-variant sinusoidal

components (similar to the Short-Time Fourier Transform). Pitch estimation

task is performed by choosing the couple of frequencies which minimizes the

mismatch between the predicted harmonic series of the two frequencies and

the observed values. The system presents also a multi-strategy approach to

resolve colliding partials: some of these techniques are based on a physical

basis (analysis of beating components), other on acoustic knowledge applied

(use of spectral templates). The system is not intended to work in real-time;

actually the typical processing to real-time ratio exceeds 200.

Qualitative results are reported and they refer to some tests on both syn-

thesized and real signals (clarinet/bassoon and trumpet/tuba). The initial

duet assumption generally leads to the worst performance when only one voice

is present (for example in solo passages). Good results are achieved when the

two voices have a small number of coinciding partials; reverberation and other
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ambient effects which often appear in musical recordings, represent one of the

principal source of troubles.

Kashino et al. - 1995

The OPTIMA system (Organized Processing Toward Intelligent Music scene

Analysis) proposed by Kashino, Tanaka, Nakadai and Kinoshita [KNKT95]

anticipates, in some way, the introduction of the Blackboard system formalized

by Martin in 1996. Actually, knowledge sources are present in this system, and

they are used to find relationships among the different levels of the musical

signal analysis.

The system operates in the frequency domain by extracting the frequency

components of the input signal. Since simple amplitude thresholding is consid-

ered not sufficient to achieve a good estimation accuracy, the pitch detection

method uses two regression planes pinching each spectral peak, in order to

find temporal continuity of spectral local maxima. Rhythm information is ex-

tracted with Rosenthal’s rhythm recognition method and Desain’s quantization

method. Onset detection is performed by combining rhythm information with

beat probability, in order to determine the status (continuous or terminated)

of the candidate fundamental frequencies. All this information is integrated in

a Pearl’s Bayesian network. Frequency peaks are therefore clustered according

to calculated onset times, and these clusters are called processing scopes.

Six different types of external knowledge are used, in the main processing

block, for information integration: chord transition dictionary, chord-note rela-

tion, chord naming rules, tone memory, timbre models, perceptual rules. With

these classes of knowledge, the system aims at finding the best connectivity

patterns that can explain the music played in the input signal.

Evaluation tests are organized in different levels: frequency components,

notes, chords and song samples. The evaluation dataset is composed by syn-

thesized MIDI files. Different levels are provided: frequency component level,

note level, chord level, and song sample level. Detailed results are reported for

note level tests only. A recognition rate from 30% to 87% is reported for two or

three voices of polyphony, and an improvement is shown by using integration

of knowledge, especially tone memory.
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Martin - 1996

Martin proposes the Blackboard architecture for automatic music transcription

[Mar96b]. This name comes from the metaphor of a group of researchers

standing in front of a blackboard, working to find out the solution to a problem.

This framework is a problem-solving model, which integrates knowledge from

different sources and allows the interaction of different parts of the model. An

expert musical knowledge, integrated with signal processing and other physical,

engineering or mathematical frameworks, is considered useful to accomplish

the task of automatic transcription of music.

The front end of Martin’s system is an auditory model, similar to the one

by Slaney and Lyon: it is a variant of the correlogram, according to Ellis’

work. The filtering stage is composed by a 40 gammatone filter bank. The

input signal is later half-wave rectified, and a short-time autocorrelation is

made across each channel, obtaining a correlogram representation. Finally,

the autocorrelations are summed across each band, and the time-lag presenting

the largest peak is chosen as the pitch percept. A summary autocorrelation

(periodogram) is obtained by averaging each frequency cell output by the zero-

lag energy in the same frequency band, and then performing another average

across all the frequency channels. This representation is an improvement over

standard correlogram, since the periodogram presents a log-lag axis (lag, or

inverse pitch, in a logarithmic scale) in addition to usual frequency channels

and time axis.

The knowledge source (KS) is a set of five hypotheses (read correlogram

frames, summary autocorrelation peaks, propose periodicities, note support

and prune notes), which are organized into different levels of abstraction, and

added to the periodogram front end, in order to improve the recognition perfor-

mances. The system performs also a octave prediction test. The author reports

only some qualitative examples, as evaluation, of monophonic and polyphonic

transcription tests against excerpts from recorded performance of some pieces

by Bach.

Tolonen and Karjalainen - 2000

Tolonen and Karjalainen proposed a variant to the Unitary model of pitch

perception by Meddis and O’Mard [TK00]. Their system divides the input

signal into two frequency regions (channels), with a cross-over frequency of 1

kHz. Then, a generalized autocorrelation of the low-channel signal, and of the
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envelope of the high-channel signal, is performed. The autocorrelation func-

tions are summed, and the summary function obtained is used for observing

periodicities in the signal. Some results reported in a web page of the Helsinki

University of Technology, linked from the paper, show a comparison between

the two-channel system and the multi-channel algorithm by Meddis and He-

witt, thus providing similar performances. One of the main advantages of the

two-channel method is the capability of operating in real-time.

Goto - 2000, 2004

Goto was one of the first who proposed a transcription system (PreFEst, from

”Predominant F0 Estimation”) for real-world audio signals [Got00], [Got04],

characterized by complex polyphony, presence of drum or percussion, and

singing voice also. To achieve such a goal, the music scene description and

the signal analysis are carried out at a more specific level, focusing on the

transcription of the melody and the bass line in musical fragments. Further

limitations are imposed: the melody and the bass line should have the most

predominant harmonic structure in the middle-high and in the low frequency

regions, respectively.

The front end extracts instantaneous frequency components by using a

STFT multi-rate filter bank, thus limiting the frequency regions of the spec-

trum with two band-pass filters. A probability density function is then assigned

to each filtered frequency component; this function is a weighted combination

of different harmonic-structure tone models. An Expectation-Maximization

(EM) algorithm then estimates the model parameters. The frequency value

that maximizes the probability function is detected as a predominant F0.

Finally, a multi-agent architecture is used to sequentially track F0 peak tra-

jectories, and to select the most stable ones; this operation is carried out by a

salience detection and a dynamic thresholding procedures.

The system was evaluated against 10 excerpts from commercial classi-

cal/pop/jazz/ethnical recordings. The system reveals very good overall de-

tection rates (88.4% for melody, 79.9% for bass). The system was realized to

work in real-time.

Marolt - 2001

Marolt is the author of SONIC, a transcription system designed specifically for

piano music [Mar01]. The front-end is a combination of the auditory model
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and an adaptive oscillator network. The input signal is splitted into frequency

bands, by using an array of 200 IIR gammatone filters with center frequencies

logarithmically spaced between 70 and 6000 Hz. The output of this stage is

then processed according to the Meddis’ model of half-wave rectification and

compression of the dynamic range of the signal.

The output of each frequency channel is send to an adaptive oscillator (a

modified version of Large-Kolen oscillator), which synchronize with the input

signal (assumed to be periodic) by adjusting its frequency and phase to the one

of the driving signal. The observation of the synchronized frequency of each

oscillator gives information about the frequency components present in the

signal. The oscillators are grouped into networks, in order to track a group up

to 10 harmonic related frequency components that may belong to a single tone.

There are 88 oscillator networks, one for each piano key; the initial frequency

of the first oscillator in each network is set to the pitch of the corresponding

piano note. Finally, a set of neural networks is used to recognize single notes

from the output of the oscillator network.

The evaluation dataset is composed by 120 synthesized MIDI pieces. Marolt

reports an average number of correctly detected of about 90%. Octave errors

and repeated note errors are the most frequent cases.

Klapuri - 2003

This method proposed by Klapuri [Kla03] is an iterative technique, consist-

ing mainly in two procedures: a predominant F0 estimation, and harmonic

pattern cancelation from the mixture. First, a FFT-based spectral analysis is

performed, then the spectrum is processed in order to eliminate noise and to

enhance sound partials’ information. The obtained spectrum is divided into

18 overlapping frequency bands distributed between 50 and 6000 Hz, with a

50% overlap. In each band, a weighting factor is calculated over the frequency

index. The frequency value with the highest weight is detected as the most

predominant F0. Subsequently, its harmonic set is canceled from the mixture,

and the operation is repeated for the residual, until an energy-based stop cri-

terion is met. For evaluation, random mixed samples from McGill University,

Iowa University and IRCAM audio databases are used. Results are analyzed

in relation with a priori known polyphony of test data. Generally the error

rate is below 10% (for polyphonies between 1 and 5 notes) and about 10% for

6-note polyphony.
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Bruno and Nesi - 2005

The proposed system [BN05] processes the input audio signal through a Patterson-

Meddis auditory model. A partial tracking module extracts the harmonic con-

tent, which is analyzed to estimate active pitches. Onset detection is performed

by using a peak-picking algorithm on the signal envelope. Pitch tracking is

carried on, for each note the onset of which has been previously estimated by

a bank of neural networks. This network can be trained by a set of parameters

describing several instrument models (concerning partial amplitude weights,

frequency range etc.). A Training Mode is also available, which is needed to

create automatically features and patterns for new instruments configuration.

Ryynänen and Klapuri - 2005

This system [RK05] uses a probabilistic framework, a hidden Markov Model

(HMM), to track note events. The multiple F0 estimator front end is based on

auditory model: a 70-channel bandpass filter bank splits the audio input into

sub-band signals which are later compressed, half-wave rectified and low-pass

filtered with a frequency response close to 1/f . Short time Fourier Transform

is then performed across the channels, and the obtained magnitude spectra

are summed together into a summary spectrum. Predominant F0 estimation,

and cancelation from the spectrum of the harmonic set of detected F0 is per-

formed iteratively. Onset detection is also performed by observing positive

energy variation in the amplitude of detected F0 values. The output of F0 es-

timator is further processed by a set of three probabilistic models: a HMM note

event model tracks the likelihood for each single detected note; a silence model

detects temporal intervals where no notes are played; finally, a musicological

model controls the transitions between note event and silence models.

Evaluation is conducted by testing the system transcription performances

on 91 recordings of several musical genres (including popular, rock, classical,

jazz and world) extracted from RWC database. Notes for drums and per-

cussions are excluded from the set of MIDI reference events. Recall of 39%,

precision of 41% and mean overlap ratio of 40% are reported. The system

has been also evaluated in the MIREX framework (2007 and 2008 editions),

achieving an overall accuracy of 61% in the first task (MF0E - Multiple F0

Estimation frame by frame) and a F-measure of 34% in the second task (NT

- Note Tracking).
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Cemgil, Kappen and Barber - 2006

The system proposed by Cemgil and Kappen [CKB06] is based on a genera-

tive approach and a dynamical Bayesian network: note parameters to be esti-

mated (including pitches, onsets and durations) are considered as a collection

of hidden variables, while the acoustic recorded audio samples are the observed

variables into a Bayesian inference problem. The modelling task must, there-

fore, infer the appropriate generative model which is able to reproduce better

the given audio sequence. The starting model for the input signal is a space-

state variant of the sinusoidal/noisy model, which is more suitable to obtain

a piano-roll representation including all the unknown note parameters. The

piano-roll is considered as a set of single pitch binary generators (switching

Kalman filters) that can assume two possible states across time: sound and

mute. Onsets are detected when the state of a generator switch from mute

to sound. In this case, the actual status vector is forgotten and a new state

vector is created. This aspect simplifies the high computational costs due to

the nature of the problem and the use of Kalman filters. The final task of the

system is to estimate the Maximum A Posteriori (MAP) configuration of the

piano-roll which represents better the observed audio data. Main advantage of

Bayesian inference is that the model can be trained, taking into account dif-

ferent combinations for note parameters. In addition, such approach allows to

eliminate the frame by frame assumption, often used for audio signal analysis,

particularly in the field of music transcription task. In this way the input mu-

sical signals can be analyzed in real time and with sample precision. For this

reason this system can be considered as operating in the time-domain; actually

any Fourier based (or related methods) spectral analysis is performed. The

system has been evaluated against some recordings of 2, 3 voices of polyphony,

reporting only qualitative results.

Kameoka, Nishimoto and Sagayama - 2007

The authors have proposed a multipitch analyzer based on harmonic temporal

structured clustering (HTC) method [KNS07]. This technique aims at decom-

posing the energy patterns of observed power spectrum into distinct clusters,

originated by separate sources. The time frequency representation of the input

signal is considered as an unknown fuzzy mixture of energy components be-

longing to a certain number of single sources. The clustering of energy patterns

is performed by introducing a spectral masking function which decomposes the

32



CHAPTER 2. STATE OF THE ART

spectrum into active areas, to be associated to single sources. The decomposed

spectrum is then modeled by HTC source models. The spectral masking func-

tion and the HTC model parameters are the unknown variables which have

to be estimated. This is made through an Expectation-Maximization (EM)

algorithm, which is composed mainly of two steps: in the first, the masking

function is estimated with fixed model parameters; in the second step, the

masking function is fixed and the model parameters are estimated. These

operations are repeated until the unknown variables converge to a stationary

value.

The system is evaluated against some excerpts of Real World Computing

(RWC) database. This dataset provide PCM audio signals and correspond-

ing reference MIDI which, however, need a careful alignment with the audio

spectrogram, in order to act as a faithful ground truth reference on a frame

by frame based evaluation. Accuracy rates, reported separately for eight au-

dio tracks, vary from 61.2% to 81.2%. The system has been also evaluated in

the MIREX 2007 framework, reporting an accuracy of 33.6% for the frame by

frame multiple F0 estimation task and F-measure of 9% in the mixed set note

tracking task. An improved version was submitted to MIREX 2009, achieving

good results in both tasks: a frame by frame F0 estimation accuracy of 49%

(task 1) and a F-measure of 31.9% for note tracking (task 2, 1st ranked).

Vincent, Bertin and Badeau - 2008

Vincent, Bertin and Badeau have proposed a system based on Non-negative

Matrix Factorization (NMF) [VBB08]. By using this technique, the observed

signal spectrogram (Y ) is decomposed into a weighted sum of basis spectra

(contained in H) scaled by a matrix of weighting coefficients (W ):

Y = WH.

Since the elements of Y are non-negative by nature, the NMF method approx-

imates it as a product of two non-negative matrixes, W and H.

The system at issue uses a family of constrained NMF models, where each

basis spectrum is a sum of narrow-band spectrum (scaled by a model function

of the spectral envelope) containing partials at harmonic or inharmonic fre-

quencies. This assures that the estimated basis spectra are pitched at known

fundamental frequencies; such condition is not always guaranteed if standard

NMF models are applied without any of these constraints.
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The input signal is first pre-processed to obtain a representation similar to

the Short-time Fourier Transform, by performing an ERB-scale representation.

Then, the parameters of the models are adapted by minimizing the residual

loudness after applying the NMF model: the linear parameters (amplitude

sequence, envelope coefficients) are multiplicatively updated, while the other

nonlinear parameters (tuning and inharmonicity factors) are updated via a

Newton-based optimizer. Pitches, onsets and offsets of detected notes are

transcribed by simply thresholding the amplitude sequence.

Evaluation was conducted on a dataset of 43 Yamaha Disklavier piano

excerpts. Standard NMF method is compared with the proposed constrained

model. The former reaches an overall F-measure of about 74%, the latter

reaches a maximum F-measure of 87% (harmonic-fixed method). The system

has been also evaluated in the MIREX 2007 framework: the two submitted

versions reached average accuracies of 46.6% and 54.3% in the task 1 (multi-F0

estimation over 10 ms frames) and an average F-measure of 45.3% and 52.7%

in the task 2 (note tracking).

Chang, Yeh, Roebel et al. - 2008

In this method [YRR+08], instantaneous spectra are obtained by FFT analysis.

A noise level estimation algorithm is applied to enhance the peaks generated

by sinusoidal components (produced by an unknown number of audio sources)

with respect to noise peaks. Subsequently, a matching between a set of hy-

pothetical sources and the observed spectral peaks is made, by using a score

function based on the following three assumptions: spectral match with low in-

harmonicity, spectral smoothness and synchronous amplitude evolution. These

features are based on physical characteristics generally showed by the partials

generated by a single source.

Musical notes tracking is carried out by applying a high order hidden

Markov model (HMM) having two states: attack and sustain. This is a prob-

abilistic framework aimed at describing notes evolution as a sequence of states

evolving on a frame by frame basis. The goal is to estimate optimal note

paths and the length of each note trajectory. The connection weights among

the different states are calculated in the forward tracking stage; candidate best

trajectories are estimated iteratively in the backward stage, by extracting most

likely paths between recorded roots and leaves. Finally, the source streams are

obtained by pruning the candidate trajectories, in order to maximize the like-
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lihood of the observed polyphony.

The system has been evaluated within the MIREX 2007 framework, and

improved versions were submitted to MIREX 2008 and MIREX 2009 contests.

Best multiple F0 estimation accuracy of 69% has been achieved in 2009 running

(1st ranked in task 1): this is currently the highest accuracy reached in all the

MIREX editions for the first task. Best performance in the note tracking task

was reached in 2008 edition, with an F-measure of 35.5% (1st ranked).

Pertusa and Iñesta - 2008

The algorithm proposed by the authors performs a multi F0 estimation, key

and tempo detection on a frame by frame basis [PIn08]. Short time Fourier

Transform is applied to the input signal. F0 candidates are extracted from

each frame spectrum by amplitude thresholding. Then all the possible com-

binations of candidates are considered, and a salience factor is associated to

each combination. The salience is computed by considering the loudness of the

harmonic pattern of each F0 candidate, and the smoothness of the harmonics

amplitude; to calculate the smoothness factor, each harmonic patter is low-

pass filtered using a truncated normalized Gaussian window. The combination

with the best salience (calculated as the product of loudness and smoothness,

summed for each candidate) is considered the winner chord in the actual frame.

The dataset for evaluation is generated with random mixtures of different

music samples, for a total of 4000 chords, and polyphony of 1, 2, 4 and 6 voices.

Test results yield an overall accuracy (which corresponds, in the paper, to the

standard F-measure) of 56.2%. The system was also evaluated in MIREX

2008 (and a previous version participated also in 2007 edition), reporting a

maximum accuracy of 61.8% in the 2008 first task (MF0E) and a maximum

F-measure of 27.7% in the 2007 second task (NT).

Yeh, Roebel and Rodet - 2010

Yeh and Roebel combined the F0 trajectories tracking method, described in

[YRR+08], with the candidate F0 extraction algorithm proposed in [YRR10].

The system takes into account the sinusoids plus noise model of the musical

polyphonic signal. A Rayleigh distribution is used to model the noise spectral

content, and to separate from signal content before multi-pitch estimation

process. The multi-F0 estimation is carried on by posing a set of F0 hypotheses

on the basis of spectral and perceptual features. Candidate F0s are classified
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into two groups: harmonically related F0s (HRF0s) if they are multiple of

other candidate frequency values, non- harmonically related F0s (NHRF0s)

otherwise. NHRF0s are the candidates for predominant pitch extraction and

harmonic content extraction. HRF0s undergo a partial overlap treated, and

also a polyphonic inference is added to estimate the number of concurrent

voices. Finally, a score function merges all these combinations of hypotheses,

features and estimates to extract the detected notes.

2.3 General Review and Discussion

From this review some general aspects concerning music transcription systems

can be gathered. Automatic transcription of polyphonic music is to be consid-

ered as a conjunction of several tasks, which can be accomplished jointly or by

using dedicated procedures. From this point of view, a modular architecture

seems to be the most robust approach for a problem solution. Such construct

perfectly matches with Martin’s idea of a blackboard architecture [Mar96a].

Many researchers still believe that signal processing strategies are a funda-

mental basis, although such strategies, as widely demonstrated, can provide

better results if they work jointly with other a priori knowledge sources. This

statement recalls the parallel between perceptual and brain abstraction levels

in human cognition process.

While human perceptual approach to music has been successfully stud-

ied and implemented through the Computational Auditory Scene Analysis

(CASA), knowledge at higher levels of abstraction is more difficult to be coded

into an computational framework, since it must be consistent with experience,

and it often needs training to avoid misleading or ambiguous decisions. Such

knowledge is commonly represented by all those models which aim at repro-

ducing human capabilities in features extraction and grouping (e.g., harmony

related models, musical key finding etc.). The experience of a well-trained

musician can be understood as a greatly flexible and deep network of state-

machine like hints, as well as complex matching procedures.

Review of music transcription systems in literature suggest that time-

frequency representation (usually performed through short-time Fourier trans-

form) of the signal is the most used front end, upon which pitch estimation and

onset/offset detection strategies can be applied. Multi resolution spectrogram

representation (obtained by using constant-Q or wavelet transform) seems to

be, in our opinion, the most suitable, since it fits properly the exponential

36



CHAPTER 2. STATE OF THE ART

spacing of note frequencies, and it also reduces computational load to achieve

the desired time/frequency resolution. Auditory model based front ends have

been largely studied and applied in the 90s; however, the interest toward this

approach has decreased. Time domain techniques are becoming more and

more infrequent, since they have provided poor performances in polyphonic

contexts. Temporal information, however, is a relevant feature which has been

used, joined with frequency analysis, to retrieve information about partials

tracking [BDS06].

About pitch estimation strategies, the largely adopted class of spectral

content peak-picking based algorithms has revealed to be not sufficient to

achieve satisfactory transcription accuracies. Actually, amplitude threshold-

ing in the spectrum domain, as well as simple harmonic pattern matching,

leads to frequent false positive detection, if no other knowledge is applied.

For this reasons, alternative thresholding methods have been investigated, for

instance with variable, frequency-dependent amplitude thresholds [ES06]. A

large variety of models has been proposed for spectral analysis, and it is not

easy to find out if which is the best approach among the others. The most

used techniques in recent literature are: Nonnegative Matrix Factorization

[SB03], [Vir07], [VBB08], Hidden Markov Models [Rap02], [RK05], [YRR+08],

Bayesian models [KNKT95], [GD02], [GDI06], [DD07], generative harmonic

models [CKB06], and the use of jointed frequency and time information.

Onset detection is often devolved upon detecting rapid spectral energy over

time. Techniques such as the phase-vocoder based functions, applied to audio

spectrogram, seem to be more robust with respect to peak-picking algorithms

performed upon the signal envelope. Offset detection is still considered as of

less perceptual importance. Statistical frameworks offer an interesting perspec-

tive in solving discontinuities in joint time-pitch information, typically yielded

by lower processing levels techniques. On the contrary, other devices that usu-

ally reach a deep level of specialization, like neural networks, are more suitable

for particular areas or subsets of automatic transcription; actually this kind

of tools is often trained at recognizing specific notes or at inferring particular

instrumental models [Mar01].

In conclusion, as a key point for future work, we can assert that model based

integration seems to be an area definitely more amenable to new solutions, with

respect to signal processing field. We expect that the increasing progress and

improvements in computational processing will allow to build more refined

systems, with a higher parallelism degree and a joint involvement of a greater
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number of techniques.
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Chapter 3

Constant-Q Bispectral Analysis

The bispectrum belongs to the class of Higher-Order Spectra (HOS, or polyspec-

tra), used to represent the frequency content of a signal. An overview of the

theory on HOS can be found in [Bri65], [NM93] and [NR87]. The bispectrum

is defined as the third-order spectrum, being the amplitude spectrum and the

power spectral density the first and second-order ones, respectively.

Previous studies on bispectral representation of audio signal have been pro-

posed: Dubnov and associates made use of the bispectrum in order to extend

the research on musical timbre, sound textures [Dub96], and instrument clas-

sification and clustering [DT95] [DTC95]. In these works it is shown that the

content of bispectral analysis of a musical signal is strongly related to the har-

monicity measure of concurrent sounds: all natural sustained vibration sounds

contain small bandwidth random fluctuations (jitter) in the frequencies of their

components. These fluctuations are random but coherent for all partials of a

single sound. This aspect seems to be at the basis of the psycho-acoustic pro-

cess according to which the human inner ear system is able to perceive separate

sounds in a polyphonic mixture. Abeysekera has proposed a method for poly-

phonic pitch extraction based on the frequency-lag distribution, derived from

the bispectral analysis [Abe04].

3.1 The Bispectrum

Let x(k), k = 0, 1, . . . , K − 1, be a digital audio signal, modeled as a real,

discrete and locally stationary process. The nth order moment, mx
n, is defined

[NM93] as:

mx
n(τ1, . . . , τn−1) = E{x(k)x(k + τ1) . . . x(k + τn−1)},
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where E{·} is the statistical mean. The nth order cumulant, cxn, is defined

[NM93] as:

cxn(τ1, . . . , τn−1) = mx
n(τ1, . . . , τn−1)−mG

n (τ1, . . . , τn−1),

where mG
n (τ1, . . . , τn−1) are the nth-order moments of an equivalent Gaussian

sequence having the same mean and autocorrelation sequence as x(k). Un-

der the hypothesis of a zero mean sequence x(k), the relationships between

cumulants and statistical moments up to the third order are:

cx1 = E{x(k)} = 0,

cx2(τ1) = mx
2(τ1) = E

{
x(k)x(k + τ1)

}
,

cx3(τ1, τ2) = mx
3(τ1, τ2) = E

{
x(k)x(k + τ1)x(k + τ2)

}
. (3.1)

The nth-order polyspectrum, denoted as Sx
n(f1, f2, . . . , fn−1), is defined as

the (n−1)-dimensional Fourier transform of the corresponding order cumulant,

that is:

Sx
n(f1, f2, . . . , fn−1) =

+∞∑
τ1=−∞

· · ·
+∞∑

τn−1=−∞

cxn(τ1, τ2, . . . , τn−1)

exp
(
− j2π(f1τ1 + f2τ2 + . . .+ fn−1τn−1)

)
.

The polyspectrum for n = 3 is also called bispectrum. It is also denoted as:

Bx(f1, f2) = Sx
3 (f1, f2) =

+∞∑
τ1=−∞

+∞∑
τ2=−∞

cx3(τ1, τ2)e
−j2πf1τ1e−j2πf2τ2 . (3.2)

3.1.1 Relevant properties of the bispectrum

The bispectrum is a bivariate function representing some kind of signal-energy

related information, as more deeply analyzed in the next section. In Figure 3.1,

a contour-plot of the bispectrum of an audio signal is shown. The bispectrum

presents twelve mirror symmetry regions:

Bx(f1, f2) = Bx(f2, f1) = B∗
x(−f2,−f1) = Bx(−f1 − f2, f2) =

= Bx(f1,−f1 − f2) = Bx(−f1 − f2, f1) = Bx(f2,−f1 − f2).
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Hence, the analysis can take into consideration only a single non redundant

bispectral region [CE94]. Hereafter, Bx(f1, f2) will denote the bispectrum in

the triangular region T with vertices (0,0), (fs/2,0) and (fs/3,fs/3), i.e., T ={
(f1, f2) : 0 ≤ f2 ≤ f1 ≤ fs

2
, f2 ≤ −2f1 + fs

}
, which is depicted in Figure 3.1,

where fs is the sampling frequency.

Figure 3.1: Contour plot of the magnitude bispectrum, according to Equation
(3.3), of the trichord F♯3(185 Hz), D4(293 Hz), B4(493 Hz) played on an
acoustic upright piano and sampled at fs = 4 kHz. The twelve symmetry
regions are in evidence (clockwise enumerated), and the one chosen for analysis
is highlighted.

It can be shown [NM93] that the bispectrum of a finite-energy signal can

be expressed as:

Bx(f1, f2) = X(f1)X(f2)X
∗(f1 + f2), (3.3)

where X(f) is the Fourier Transform of x(k), and X∗(f) is the complex con-

jugate of X(f).
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As in the case of power spectrum estimation, the estimations of the bis-

pectrum of a finite random process are not consistent, i.e., their variance does

not decrease with the observation length. Consistent estimations are obtained

by averaging either in the time or in the frequency domain. Two approaches

are usually considered, as described in [NM93].

The indirect method consists of: 1) the estimation of the third-order mo-

ments sequence, computed as temporal average on disjoint or partially overlap-

ping segments of the signal; 2) estimation of the cumulants, computed as the

average of the third-order moments over the segments; 3) computation of the

estimated bispectrum as the bidimensional Fourier transform of the windowed

cumulants sequence.

The direct method consists of: 1) computation of the Fourier transform over

disjoint or partially overlapping segments of the signal; 2) estimation of the

bispectrum in each segment according to (3.3) (eventually, frequency averaging

can be applied); 3) computation of the estimated bispectrum as the average

of the bispectrum estimates in each segment.

Finally, an interesting property involving higher spectra and gaussian pro-

cesses. Consider a generic signal y(k):

y(k) = x(k) + w(k) with k ∈ N

composed by the sum of two independent processes: a non-gaussian contribute,

x(k), which can be considered more specifically as a deterministic signal, and

a gaussian contribute w(k). Under these assumptions:

cwn = 0 ∀n > 2,

that is, all cumulant spectra of order greater than two are identically zero

for gaussian additive processes. Therefore, a signal transform in the bispec-

trum domain suppress additive colored Gaussian noise of unknown power spec-

trum. For these reasons, cumulant spectra can become high signal-to-noise

ratio (SNR) domains in which one may perform detection, parameters estima-

tion, features extraction or even signal reconstruction [NM93].

3.2 Constant-Q Analysis

The estimation of the bispectrum according to (3.3), involves computing the

spectrum X(f) on each segment of the signal. In each octave, twelve semitones
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need to be discriminated: since the octave spacing doubles with the octave

number, the requested frequency resolution decreases when the frequency in-

creases. For this reason, a spectral analysis with a variable frequency resolution

is suitable for audio applications.

The constant-Q analysis [Bro91], [DKBN06] is a spectral representation

that properly fits the exponential spacing of note frequencies. In the constant-

Q analysis, the spectral content of an audio signal is analyzed in several bands.

Let N be the number of bands and let

Spectrum

Analyzer

Filter &

Decimate

Spectrum

Analyzer

Filter &

Decimate

Spectrum

Analyzer

Filter &

Decimate

(a)

Hann 

Window

Fourier
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Filter 2

Spectrum Analyzer

Filter & Decimate
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Figure 3.2: Octave Filter Bank: (a) building block of the tree, composed
by a spectrum analyzer and by a filtering/downsampling block; (b) blocks
combination to obtain a multi-octave analysis.
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Qi =
fi
Bi

,

where fi is a representative frequency, e.g., the highest or the center frequency,

of the ith band and Bi is its bandwidth. In a constant-Q analysis, we have

Qi = Q, i = 1, 2, . . . , N , where Q is a constant.

A scheme that implements a constant-Q analysis is illustrated in Figure 3.2.

It consists of a tree structure, shown in Figure 3.2(a), whose building block,

shown in Figure 3.2(b), is composed of a spectrum analyzer block and by a

filtering/downsampling block (low-pass filtering and downsampling by a factor

two). The spectrum analyzer consists in windowing the input signal (Hann

window with length NH samples for each band has been used) followed by a

Fourier transform that computes the spectral content at specified frequencies

of interest. The low-pass filter is a zero-phase filter, implemented as a linear-

phase filter followed by a temporal shift. Using zero-phase filters allows us

to extract segments from each band that are aligned in time. The nominal

filter cutoff frequency is at π/2. Due to the downsampling, the NH-samples

long analysis window spans a duration that doubles at each stage. Therefore,

at low frequencies (i.e., at deeper stages of the decomposition tree), a higher

resolution in frequency is obtained at the price of a poorer resolution in time.

3.3 Constant-Q Bispectral Analysis for Poly-

phonic Pitch Detection

In order to better explain the interaction of harmonics generated by a mixture

of sounds, we first focus on the application of the bispectral analysis to exam-

ples of monophonic signals, and then some examples of polyphonic signals are

considered.

3.3.1 Monophonic signal

Let x(n) be a signal composed by a set H of four harmonics, namely H =

{f1, f2, f3, f4}, fk = k · f1, k = 2, 3, 4, i.e.,

x(n) =
4∑

k=1

2 cos(2πfkn/fs),

X(f) =
4∑

k=1

δ(f ± fk),
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where constant amplitude partials have been assumed. According to (3.3), the

bispectrum of x(n) is given by

Bx(η1, η2) = X(η1)X(η2)X
∗(η1 + η2) =

=

( 4∑
k=1

δ(η1 ± fk)

)( 4∑
l=1

δ(η2 ± fl)

)( 4∑
m=1

δ(η1 + η2 ± fm)

)
.

When the products are developed, the only terms different from zero that

appear are the pulses located at (fk, fl), with fk, fl such that fk + fl ∈ H.

Hence, we have:

Bx(η1, η2) = δ(η1 ± f1)δ(η2 ± f1)δ(η1 + η2 ± f2)

+ δ(η1 ± f1)δ(η2 ± f2)δ(η1 + η2 ± f3)

+ δ(η1 ± f1)δ(η2 ± f3)δ(η1 + η2 ± f4)

+ δ(η1 ± f2)δ(η2 ± f1)δ(η1 + η2 ± f3)

+ δ(η1 ± f2)δ(η2 ± f2)δ(η1 + η2 ± f4)

+ δ(η1 ± f3)δ(η2 ± f1)δ(η1 + η2 ± f4).

Note that peaks arise along the first and third quadrant bisector thanks to the

fact that f2 = 2f1 and f4 = 2f2. By considering the non-redundant triangular

region T defined in Section 3.1, the above expression can be simplified into:

Bx(η1, η2) = δ(η1 − f1)δ(η2 − f1)δ(η1 + η2 − f2)

+ δ(η1 − f2)δ(η2 − f1)δ(η1 + η2 − f3)

+ δ(η1 − f3)δ(η2 − f1)δ(η1 + η2 − f4)

+ δ(η1 − f2)δ(η2 − f2)δ(η1 + η2 − f4).

(3.4)

Equation (3.4) can be generalized to an arbitrary number T of harmonics as

follows:

Bx(η1, η2) =

⌊T/2⌋∑
p=1

δ(η2 − fp)

T−p∑
q=p

δ(η1 − fq)δ(η1 + η2 − fp+q). (3.5)

This formula shows that every monophonic signal generates a bidimensional

bispectral pattern characterized by peaks positions

{(fi, fi), (fi+1, fi), . . . , (fT−i, fi)} , i = 1, 2, . . . , ⌊T
2
⌋. (3.6)

Such a pattern is depicted in Figure 3.3 for a synthetic note at a fundamental

frequency f1 = 131 Hz, with T = 7 and T = 8. The energy distribution in
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Bispectrum estimated via the direct method
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Figure 3.3: Bispectrum of monophonic signals (note C3) synthesized with (a)
T = 7 and (b) T = 8 harmonics.
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the bispectrum domain is validated by the analysis of real world monophonic

sounds. Figure 3.4 shows the bispectrum of a C4 note played by an acoustic

piano and a G3 note played by a violin, both sampled at fs = 44100 Hz. Even if

the number of significant harmonics is not exactly known, the positions of the

peaks in the bispectrum domain confirm the theoretical behavior previously

shown.
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Figure 3.4: Bispectrum of (a) a C4 (261 Hz) played on a upright piano, and of
(b) a G3 (196 Hz) played on a violin (bowed). Both sounds have been sampled
at 44100 Hz.

3.3.2 Polyphonic signal

Consider the simplest case of a polyphonic signal: a bichord. Accordingly with

the linearity of the Fourier Transform, the spectrum of a bichord is the sum

of the spectra of the component sounds. From Equation (3.3), it is clear that

the bispectrum has a non-additivity nature. This means that, the bispectrum

of a bichord is not equal to the sum of the bispectra of component sounds, as

described in next section. In order to be more specific, two examples, in which

the two notes are spaced by either a major third or a perfect fifth interval, are

considered; such intervals are characterized by a significant number of overlap-

ping harmonics. Figures 3.5-(a) and 3.5-(b) show the bispectrum of synthetic

signals representing the intervals C3 −E3 and C3 −G3, respectively. For each

note, ten constant-amplitude harmonics were synthesized. The top row plots in
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Figures 3.5-(a) and 3.5-(b) demonstrate the spectrum of the synthesized audio

segments, from which the harmonics of the two notes are apparent. Overlap-

ping harmonics, e.g., the frequencies 5i · F0C3
= 4i · F0E3

for the major third

interval, with i an integer, can not be resolved. In Figure 3.6, the bispectrum

of a real bichord produced by two bowed violins, playing the notes A3 (220

Hz) and D4 (293 Hz), is shown. The interval is a perfect fourth (characterized

by a fundamental frequencies ratio equal to 4:3, corresponding to a distance

of 5 semitones in the well-tempered scale), so that each third harmonic of D4

overlaps with each fourth harmonic of A3. Both in the synthetic and in the

real sound examples, the patterns relative to each note are distinguishable,

apart from a single peak on the quadrant bisector. In the next section, the

bispectrum of polyphonic sound is theoretically treated, together with some

examples. In particular, the cases regarding polyphonic signals with two or

more sounds have been considered. In the case of bichords, one of the most in-

teresting cases, being a perfect fifth interval, since it presents a strong partials

overlap ratio. In this case, the analysis of residual coming from the difference

of the real bispectrum of the bichord signal with respect to the linear compo-

sition of the single bispectra of concurrent sounds, has been performed. The

formal analysis has demonstrated that the contributions of this residual are

null or negligible for proposed multi-F0 estimation procedure. This theoretical

analysis has been also confirmed by the experimental results, as shown with

some examples. Moreover, the case of trichord with strong partial overlapping

and a high number of harmonics per sound has confirmed the same results.

3.4 A Polyphonic Pitch Detection Case Study

In this section, the bispectrum of a bichord is theoretically treated, together

with some examples. In particular, the cases regarding polyphonic signals

with two or more sounds have been considered. In the case of bichords, one

of the most interesting cases, being a perfect fifth interval, since it presents

a strong partials overlap ratio. In this case, the analysis of residual coming

from the difference of the real bispectrum of the bichord signal and the linear

composition of the single bispectra of concurrent sounds, have been performed.

The formal analysis has demonstrated that the contribution of this residual are

null or neglectable for multi-F0 estimation procedure. This theoretical analysis

has been also confirmed by some experimental results. Moreover, the case of

trichord with strong partial overlapping and a high number of harmonics has
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Figure 3.5: Spectrum and bispectrum generated by (a) a major third C3 −E3

and (b) a perfect fifth interval C3 −G3. Ten harmonics have been synthesized
for each note. The regions into dotted lines in the bispectrum domain highlight
that local maxima of both single monophonic sounds are clearly separated,
while they overlap in the spectral representation.
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Figure 3.6: Detail (top figure) of the bispectrum of a bichord (A3 at 220 Hz
and D4 at 293 Hz), played by two violins (bowed), sampled at 44100 Hz. The
arrow highlights the frequency at 880 Hz, where the partials of the two notes
overlap in the spectrum domain.
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confirmed the same results.

3.4.1 Bispectrum of a polyphonic signal: a bichord

The behavior of the bispectrum for a polyphonic signal is now analyzed. Let

us to recall the spectrum (positive frequencies only) of a generic monophonic

sound with fundamental frequency f0:

X(f) =
∑

k=1,...,P

δ(f − kf0), kf0 ∈ H,

where H is the set of harmonics of the sound, consisting of P partials, f0
included: H = {f0, 2f0, 3f0, . . . , (P − 1)f0, Pf0}.

Consider now, as an example and without loss of generality, two syn-

thesized sounds, S1 and S2, each one composed by five partials, so that:

H1 = {f01, 2f01, 3f01, 4f01, 5f01} and H2 = {f02, 2f02, 3f02, 4f02, 5f02}. The

generated spectra are denoted as X1(f) and X2(f), respectively. Accordingly

with the linearity of the Fourier Transform, let X(f) = X1(f) +X2(f) be the

spectrum of the polyphonic signal S, composed by the mixture of S1 and S2.

Under these assumptions, the bispectrum of the polyphonic signal, computed

with the direct method (defined by Equation 3.3) can be expressed as follows:

B1,2(f1, f2) = X(f1)X(f2)X
∗(f1 + f2) =(

X1(f1) +X2(f1)
)(

X2(f1) +X2(f2)
)(

X1(f1 + f2) +X2(f1 + f2)
)∗

=

X1(f1)X1(f2)X
∗
1 (f1 + f2) +X1(f1)X2(f2)X

∗
1 (f1 + f2)+

X2(f1)X1(f2)X
∗
1 (f1 + f2) +X2(f1)X2(f2)X

∗
1 (f1 + f2)+

X1(f1)X1(f2)X
∗
2 (f1 + f2) +X1(f1)X2(f2)X

∗
2 (f1 + f2)+

X2(f1)X1(f2)X
∗
2 (f1 + f2) +X2(f1)X2(f2)X

∗
2 (f1 + f2).

(3.7)

3.4.2 Analysis of Bispectrum nonlinearity

The first and the last terms of the sum in Equation 3.7 are equal to B1(f1, f2)

and B2(f1, f2), which denote the bispectra associated to signals S1 and S2,

respectively. The bispectrum is not linear, actually:

B1,2(f1, f2) ̸= B1(f1, f2) +B2(f1, f2).
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Let Bdiff (f1, f2) be the difference of the three terms B1,2(f1, f2), B1(f1, f2) and

B2(f1, f2):

Bdiff (f1, f2) =B1,2(f1, f2)−B1(f1, f2)−B2(f1, f2) =

X1(f1)X2(f2)X
∗
1 (f1 + f2) +X2(f1)X1(f2)X

∗
1 (f1 + f2)+

X2(f1)X2(f2)X
∗
1 (f1 + f2) +X1(f1)X1(f2)X

∗
2 (f1 + f2)+

X1(f1)X2(f2)X
∗
2 (f1 + f2) +X2(f1)X1(f2)X

∗
2 (f1 + f2).

(3.8)

Let us analyze each term of the sum in Equation 3.8, in order to better

understand the behavior of Bdiff (f1, f2). The first term yields:

X1(f1)X2(f2)X
∗
1 (f1 + f2) =

∑
k=1,...,5

δ(f1 − kf01)
∑

l=1,...,5

δ(f2 − lf02)∑
m=1,...,5

δ(f1 + f2 −mf01) =
∏

{1,2,1}

,
(3.9)

kf01 ∈ H1, lf02 ∈ H2,mf01 ∈ H1.

The product
∏

{1,2,1} is not null only if each term of the product itself is

not null. Concerning the first two terms, this happens when f1 = kf01 (that is,

when f1 takes the value of any of the partials belonging to H1) and, similarly,

when f2 = lf02. This involves that, considering the third term, the entire

product is non-zero only when it exists at least an integer value m such that

mf01 = kf01 + lf02 (where k, l = 1, . . . , 5 and mf01 ∈ H1). To satisfy this

condition, it is necessary (but not sufficient, depending on the length of H1

and H2) that the sounds present overlapping partials; a sufficient condition is

that the two harmonic series, H1 and H2, share at least one frequency value.

As an example: consider two sounds, with harmonic sets H1 and H2, gener-

ate a perfect fifth interval (which presents a very strong partials overlap ratio);

this implies that 2f02 = 3f01. Under these conditions, the contribute of
∏

{1,2,1}
would be non-zero only for the following couples:

(f01, 2f02); (2f01, 2f02),

with f01+2f02 = f01+3f01 = 4f01 ∈ H1 and, similarly, 2f01+2f02 = 5f01 ∈ H1.

It is worthy to notice that these two couples are located in the upper triangular

region of the plane (f1, f2), above the first quadrant bisector, and so they

are outside the non-redundant region considered in the computation of the

bispectrum (see Section 3.1 and Figure 3.1). For this reason, the contribute of
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∏
{1,2,1} to Bdiff (f1, f2) is zero in this context. This analysis can be generalized

for all the terms of the sum in Equation 3.8, as reported in the following.

Considering the second term of the sum in Equation 3.8:

X2(f1)X1(f2)X
∗
1 (f1 + f2) =

∑
k=1,...,5

δ(f1 − kf02)
∑

l=1,...,5

δ(f2 − lf01)∑
m=1,...,5

δ(f1 + f2 −mf01) =
∏

{2,1,1}

,
(3.10)

kf02 ∈ H2, lf01 ∈ H1,mf01 ∈ H1.

The term
∏

{2,1,1} is non-zero only if exist at least an integer values m such

that mf01 = kf02 + lf01 (where k, l = 1, . . . , 5 and mf01 ∈ H1). Following

the example of the two sounds generating a perfect fifth interval, this happens

only for the couples of frequencies:

(2f02, f01); (2f02, 2f01).

As it can be noticed, this is the symmetric case of
∏

{1,2,1}, with respect to the

first quadrant bisector, and in this circumstance these points are inside the non-

redundant region considered for bispectrum computation. Therefore,
∏

{2,1,1}
is not null in this domain; however, B1(f1, f2) also generates nonnull values in

correspondence of these two couples, in the equivalent form of (3f01, f01) and

(3f01, 2f01) (see Equation 3.5). For this reason,
∏

{2,1,1} does not generate any

additional peaks in the (f1, f2) plane; the only effect is to add an amplitude

contribute to bispectral peaks generated by B1(f1, f2) at the same positions in

the (f1, f2) plane. At the end of these considerations we will show that these

contributes can be considered not relevant in the computation of normalized

2-D cross-correlation, within the multi-F0 estimation procedure.

Consider now the third term in equation 3.8:

X2(f1)X2(f2)X
∗
1 (f1 + f2) =

∑
k=1,...,5

δ(f1 − kf02)
∑

l=1,...,5

δ(f2 − lf02)∑
m=1,...,5

δ(f1 + f2 −mf01) =
∏

{2,2,1}

,
(3.11)

kf02 ∈ H2, lf02 ∈ H2,mf01 ∈ H1.∏
{2,2,1} is non-zero only if exist at least an integer value m such that mf01 =

kf02 + lf02 (where k, l = 1, . . . , 5 and mf01 ∈ H1). In our example, such a case

occurs for the couple (f02, f02), actually:

f02 + f02 = 3f01 ∈ H1.
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This shows that
∏

{2,2,1} only adds an amplitude contribute to a bispectral

peak originated by B1(f1, f2) at the same position in the (f1, f2) plane, without

generating any additional peaks.

Consider the fourth term in equation 3.8:

X1(f1)X1(f2)X
∗
2 (f1 + f2) =

∑
k=1,...,5

δ(f1 − kf01)
∑

l=1,...,5

δ(f2 − lf01)∑
m=1,...,5

δ(f1 + f2 −mf02) =
∏

{1,1,2}

,
(3.12)

kf01 ∈ H1, lf01 ∈ H1,mf02 ∈ H2.∏
{1,1,2} is non-zero only if exist at least an integer value m such that mf02 =

kf01+lf01 (where k, l = 1, . . . , 5 andmf02 ∈ H2). In our example, this happens

for the following couples of frequencies:

• (f01, 2f01), actually f01 + 2f01 = 2f02 ∈ H2.

• (f01, 5f01), actually f01 + 5f01 = 4f02 ∈ H2.

• (2f01, 4f01), actually 2f01 + 4f01 = 4f02 ∈ H2.

These three couples are outside the non-redundant region considered for

bispectrum computation;
∏

{1,1,2} is not null only in correspondence of the

following couples, which are the symmetric ones of the three ones listed above

(with respect to the first quadrant bisector):

• (2f01, f01); this adds an amplitude contribute to the bispectral peak gen-

erated by B1(f1, f2) at the same position in the (f1, f2) plane;

• (5f01, f01) and (4f01, 2f01); in correspondence of these two couples,
∏

{1,1,2}
gives origin (in this particular case) to two additional peaks in the bispec-

trum: they represent an extension to the five harmonics 2-D monophonic

pattern of the sound at pitch f01 (according to equation 3.5). The rea-

son why B1(f1, f2) does not generate peaks in correspondence of these

two couples is that the considered harmonic set H1 is composed by five

partials.

Consider the fifth term in equation 3.8:

X1(f1)X2(f2)X
∗
2 (f1 + f2) =

∑
k=1,...,5

δ(f1 − kf01)
∑

l=1,...,5

δ(f2 − lf02)∑
m=1,...,5

δ(f1 + f2 −mf02) =
∏

{1,2,2}

,
(3.13)
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kf01 ∈ H1, lf02 ∈ H2,mf02 ∈ H2.∏
{1,2,2} is non-zero only if exist at least an integer value m such that mf02 =

kf01+lf02 (where k, l = 1, . . . , 5 andmf02 ∈ H2). In our example, this happens

for the following couples of frequencies:

• (3f01, f02) and (3f01, 2f02), in correspondence of which
∏

{1,2,2} adds an

amplitude contribute to the bispectral peaks generated by B2(f1, f2) in

(2f02, f02) and (2f02, 2f02);

• (3f01, 3f02), which is outside the non-redundant region considered in the

computation of the bispectrum.

Consider, finally, the sixth term in equation 3.8:

X2(f1)X1(f2)X
∗
2 (f1 + f2) =

∑
k=1,...,5

δ(f1 − kf02)
∑

l=1,...,5

δ(f2 − lf01)∑
m=1,...,5

δ(f1 + f2 −mf02) =
∏

{2,1,2}

,
(3.14)

kf02 ∈ H2, lf01 ∈ H1,mf02 ∈ H2.

As it can be noticed, this is the symmetric case of the previous
∏

{1,2,2}, with

respect to the first quadrant bisector. Therefore,
∏

{2,1,2} is non-zero only

when exist at least an integer value m such that mf02 = kf02 + lf01 (where

k, l = 1, . . . , 5 and mf02 ∈ H2). In our example, this happens for the following

couples of frequencies:

• (f02, 3f01), which is outside the boundaries of non-redundant region con-

sidered in the computation of the bispectrum;

• (2f02, 3f01) and (3f02, 3f01), in correspondence of which
∏

{2,1,2} adds an

amplitude contribute to the bispectral peaks generated by B2(f1, f2) in

(2f02, 2f02) and (3f02, 2f02).

Eventually, let us to remember that we have illustrated an example in which

the two interfering sounds present a strong partials overlap ratio. For a generic

synthesized bichord, the contribute of Bdiff (f1, f2) gains more relevance with

the increasing number of partials in the harmonic sets of the sounds, and with

the increasing partials overlap ratio. In the other cases, when the two sounds

don’t share the value of any of their partials within their harmonic sets, the

value of Bdiff (f1, f2) is zero.
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3.4.3 An empirical example: a synthesized bichord

A graphical example could be useful to illustrate in a clearer way this argu-

mentation. In Figure 3.7, the contour plot of the bispectrum of a synthesized

5 harmonics bichord: C4 − G4 (C4 : f01 = 261.63 Hz, G4 : f02 = 392 Hz),

which forms a perfect fifth interval; then in Figure 3.8 the contour plot of the

sum of the bispectra of C4 and G4 is shown. In Figure 3.7, the monophonic

2-D patterns of the two sounds are distinguishable, and also the two additional

peaks generated by the contribute of the product
∏

{1,1,2}, located at (5f01, f01)

and (4f01, 2f01), which appear to have a smaller amplitude.

Figure 3.7: Contour plot of the bispectrum of synthesized bichord C4 −G4.

Dealing with real sounds, it is impossible to quantify the amplitude con-

tribute given by each single term present in Bdiff (f1, f2), if the number of

partials and their amplitude model is not known in advance for each concur-

rent sound. For this reason, it is difficult to perform a general qualitative

analysis. On the other hand, it is possible to evaluate the normalized 2-D

cross-correlations between both B1,2(f1, f2) and B1(f1, f2) + B2(f1, f2) with a

2-D pattern, equivalent to the one used in the multi-F0 estimation procedure

which is the core of the system described in this PhD. Thesis. The results of

the two normalized 2-D cross-correlation (denoted as ρB1,2 and ρB1+B2) and
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Figure 3.8: Contour plot of the bispectrum of synthesized bichord C4 −G4.

the array obtained by subtracting ρB1,2 and ρB1+B2 , are shown in Figure 3.9.

It can be noted that there are no relevant differences between the two

cases (in Figure 3.9, bottom part reporting the difference, the y-axis scale

has been enlarged to make difference array more readable). Moreover, the

same normalized 2-D cross-correlation for other two synthesized sounds has

been calculated with the same pitch by using 10 harmonics instead of 5. This

operation was made in order to show that the contribute of Bdiff (f1, f2) would

not affect significantly the values of 2-D correlation (and, therefore, the results

of multi-F0 Estimation procedure) with increasing number of partials. The

results are shown in Figure 3.10.

3.5 Comparison of multi-F0 estimation proce-

dures

In this section, an example of multi-F0 Estimation procedure step-by-step,

carried out by the transcription system presented in this work. The results

are compared with those obtained by a transcription method performing an

iterative 1-D pattern matching in the spectrum domain, and subsequent direct
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Figure 3.9: Comparison of normalized 2-D cross-correlation for 5-harmonics
synthesized bichord C4-G4, and the difference of them (with a different scale).
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Figure 3.10: Comparison of normalized 2-D cross-correlation for 10-harmonics
synthesized bichord C4-G4, and the difference of them (with a different scale).
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cancelation of the harmonic pattern of estimated notes. The audio input source

is a real signal taken from the RWC database, analyzed in a single frame for

the purpose of the example. In the processed frame, notes G2, D4 and B4 are

playing, corresponding to MIDI notes 43, 62 and 71, respectively. These notes

present a significant partials overlapping. Actually, denoting the fundamental

frequencies as f01, f02 and f03, respectively, they stay in the following ratios

each other:

f02 = 3f01; f03 = 5f01; f03 =
5

3
f02.

These ratios are approximated, in the frequency-log scale adopted in our sys-

tem (following the well-tempered scale) with distances of 19, 28 and 9 semi-

tones.

In Figure 3.11, the amplitude spectrum and bispectrum before the F0

estimation process are presented.

Figure 3.11: Amplitude spectrum and bispectrum of audio signal before Multi-
F0 estimation.

In next Figures (Figure 3.12 and B.3) a direct comparison between both

the multi-F0 estimation procedures is depicted, by plotting the normalized

1-D and 2-D cross-correlations for each step.
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It should be noted that, the 2-D bispectral correlation is much clearer

than the 1-D spectral correlation. As stated in the following (see section 4.3

in next chapter regarding the system architecture), denoting the normalized

2-D cross-correlation as ρ(f1, f2), if a monophonic sound has a fundamental

frequency corresponding to index q in the discrete log-frequency array, then

the maximum of ρ(f1, f2) is expected to be found at (q, q). For this reason,

the cross-correlation is computed only for f1 = f2 = q, that is only upon the

points belonging to the first quadrant bisector.

Moreover, comparing Figure 3.12 and 3.13, it can be observed that af-

ter Step 1 (in which the lowest note G2 is correctly identified by both the

algorithms), the 2-D pattern matching method (in the bispectrum domain)

succeeds in correctly estimating all the other reference pitches. On the other

hand, the direct cancelation of spectral G2 pattern (in the 1-D F0 estimation

method) deletes some coinciding partials of the two higher sounds, including

the fundamental frequencies of both D4 and G4, as shown in Figure 3.14.

In general, the bispectral representation cannot help to resolve the underly-

ing components of interfering partials; while it is the mechanism of extraction

of the 2-D monophonic pattern of G2 in the proposed bispectrum-based al-

gorithm which allows keeping critical information about the peak positions of

the other sounds harmonic 2-D patterns, which are:

(f02, 2f02), (2f02, 2f02), (f03, 2f03).

In conclusion, the system performing the iterative 2-D pattern matching

and pattern extraction in the bispectrum domain successfully identifies all

the three notes played in the audio source file. The system performing the

iterative 1-D pattern matching and direct cancelation of the pattern in the

spectrum domain identifies only the lowest note, G2, and commits two false

positive errors, due to the removal of partials of the higher sounds in the direct

cancelation procedure.
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Figure 3.12: Step by step multi-F0 estimation procedure with iterative spectral
1-D pattern matching and direct cancelation technique. The dots identify the
notes played in the audio source signal.).
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Figure 3.13: Step by step multi-F0 estimation procedure with iterative bispec-
tral 2-D pattern matching and pattern extraction technique. The dots identify
the notes played in the audio source signal.
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Figure 3.14: Graphical comparison between direct cancelation of 1-D pattern
from the spectrum (above) and extraction of 2-D pattern from the bispectrum
(below).
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Chapter 4

System Architecture

In this section, a detailed description of the proposed method for music tran-

scription, presented in [ANP11b] is given. First a general overview is given,

then the main modules are discussed in detail.

4.1 General Architecture

A general view of the system architecture is presented in Figure 4.1. In the

diagram, the main modules are depicted (with dashed line) as well as the

blocks composing each module.

The transcriptor accepts as input a PCM Wave audio file (mono or stereo)

as well as user-defined parameters related to the different procedures. The

Pre-Processing module carries out the implementation of the constant-Q

analysis by means of the Octave Filter Bank block. Then, the processed signal

enters both the Pitch Estimation and Time Events Estimation mod-

ules. The Pitch Estimation module computes the bispectrum of its input,

perform the 2-D correlation between the bispectrum and a harmonic-related

pattern, and estimate candidate pitch values. The Time Events Estima-

tion module is devoted to the estimation of onsets and durations of notes.

The Post-Processing module discriminates notes from very short-duration

events, seen as disturbances, and produces the output files: a SMF0 MIDI file

(which is the transcription of the audio source) and a list of pitches, onset

times and durations of all detected notes.
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Figure 4.1: Music transcription system block architecture. The functional
modules, inner blocks, input parameters and output variables and functions
are illustrated.
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4.2 The Pre-Processing module

The input PCM signal x(k) enters the Pre-Processing module, where it is

converted into a numerical array and segmented into fixed length frames by

the Signal Gather block. The length of the time-domain analysis window Ws,

in number of samples, is specified by the user. The Signal Gather block also

calculates the energy of each frame as follows:

Em =

√√√√Ws−1∑
i=0

x2
(
mWs + i

)
, m ∈ [0, . . . ,M − 1],

where m = 0, 1, . . . ,M−1, is the index over frames and M is the total number

of frames in which the audio file is divided, given by M = ⌈Ttot/(Ws/fs)⌉,
denoting with Ttot the total time length of the audio file expressed in seconds.

In order to discriminate notes from silence or ground noise, Em is compared

against an energy threshold, which is set to the first frame energy, where

absence of a signal is assumed. Only frames with energy higher than the

threshold are passed to the Octave Filter Bank block.

The Octave Filter Bank (OFB) block performs the constant-Q analysis

over a set of octaves whose number Noct is provided by the user. The block

produces the spectrum samples - computed by using the Fourier transform -

relative to the nominal frequencies of the notes to be detected in each octave. In

order to minimize detection errors due to partial inharmonicity or instrument

intonation inaccuracies, two additional frequencies aside each nominal value

have been considered as well. The distance between the additional and the

fundamental frequencies is ±2% of each nominal pitch value, which is less

than half a semitone spacing (assumed as approximately ±3%); the maximum

amplitude among the three spectral lines is associated with the nominal pitch

frequency value. Hence, the number of spectrum samples that is passed to

the successive blocks for further processing is Np = 12 Noct, where 12 is the

number of pitches per octave.

As an example, consider that the OFB accepts an input signal sampled at

fs=44100 Hz and consider that ideal filters, with null transition bandwidth,

are used. The outputs of the first three stages of the OFB tree cover the ranges

(0, 22050)Hz, (0, 11025)Hz, and (0, 5512.5)Hz. The spectrum analysis works

only on the higher-half frequency interval of each band, whereas the lower-half

frequency interval is to be analyzed in the subsequent stages. Hence, with the

given sampling frequency, in the first three stages the octaves from F9 to E10,
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from F8 to E9, and from F7 to E8, in that order, are analyzed. In general,

in the ith stage, the interval from FNoct+1−i to ENoct+2−i, i = 1, 2, . . . , Noct, is

analyzed.

In the case of non-ideal filters, the presence of a non-null transition band

must be taken into account. Consider the branches of the building block of the

OFB tree, shown in Figure 3.2-(b), the first leading to the spectral analysis

sub-block, the second to filtering and downsampling sub-block. Notes, whose

nominal frequency falls into the transition band of the filter, can not be resolved

after downsampling and must be analyzed in the first (undecimated) branch.

Useful low-pass filters are designed by choosing, in normalized frequencies, the

interval (0, γ π) as the passband, the interval (γ π, π/2) as the transition band,

and the interval (π/2, π) as the stopband; the parameter γ (γ < 0.5) controls

the transition bandwidth.

Hence, the frequency interval that must be considered into the spectrum

analysis step at the first stage is (γfs/2, fs/2). In the second stage, the an-

alyzed interval is (γfs/4, γfs/2), and, in general, if we define f
(i)
s = fs/2

(i−1)

as the sampling frequency of the input of the ith stage, the frequency inter-

val considered by the spectrum analyzer block is (apart from the first stage)

(γf
(i)
s /2, γf

(i)
s ). The filter mask H(ω) and the analyzed regions are depicted

in Figure 4.2.

Table 4.1 summarizes the system parameters we used to implement the

OFB. With the chosen transition band, the interval from E9 to E10 is analyzed

in the first stage, and the interval from ENoct+1−i to D♯Noct+2−i, i = 2, . . . , Noct,

is analyzed in the ith stage. At the end of the whole process, a spectral

representation from E1 (at 41.203 Hz) to E10 (at 21.096 kHz), sufficient to

cover the extension of almost every musical instrument, is obtained.

4.3 Pitch Estimation Module

The Pitch Estimation module receives as input the spectral information pro-

duced by the Octave Filter Bank block. This module includes the Constant-Q

Bispectral Analysis, the Iterative 2-D Pattern Matching, the Iterative Pitch

Estimation and the Pitch & Intensity Data Collector blocks. The first block

computes the bispectrum of the input signal at the frequencies of interest.

The Iterative 2-D Pattern Matching block is in charge of computing the 2-D

correlation between the bispectral array and a fixed, bi-dimensional harmonic

pattern. The objective of the Iterative Pitch Estimation block is detecting the
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Figure 4.2: Filter mask and the analyzed regions.

Table 4.1: OFB specifications

Sampling frequency (fs) 44.1 kHz
Number of octaves (Noct) 9

Frequency range [40 Hz , 20 kHz]
Hann’s window length (NH) 256 samples

FIR passband (0, 0.46 π)
FIR stopband (π/2, π)

FIR ripples (δ1 = δ2) 10−3

Filter length 187 samples
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presence of the pitches, and subsequently extracting the 2-D harmonic pat-

tern of detected notes from the bispectrum of the actual signal frame. Finally,

the Pitch & Intensity Data Collector block associates energy information to

corresponding pitch values in order to collect the intensity information.

4.3.1 Harmonic pattern correlation

Consider a 2-D harmonic pattern as dictated by the distribution of the bis-

pectral local maxima of a monophonic musical signal expressed in semitone

intervals. The chosen pattern, shown in Figure 4.3, has been validated and re-

fined by studying the actual bispectrum computed on several real monophonic

audio signals. The pattern is a sparse matrix with all non-zero values (denoted

as dark dots) set to one. The Iterative 2-D Pattern Matching block computes

0 12 19 24 28 31

12

19

Distance in 

semitones

Distance in 

semitones

Figure 4.3: Fixed 2-D harmonic pattern used in the validation tests of the
proposed music transcriptor. It represents the theoretical set of bispectral
local maxima for a monophonic 7-partials sound all weights are set equal to
unity.

the similarity between the actual bispectrum (produced by the Constant-Q

Bispectral Analysis by using the spectrum samples given by the Octave Fil-

ter Bank block) of the analyzed signal and the chosen 2-D harmonic pattern.

Since only 12Noct spectrum samples (at the fundamental frequencies of each

note) are of interest, the bispectrum results to be a 12Noct×12Noct array. The
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cross-correlation between the bispectrum and the pattern is given by:

ρ(k1, k2) =

CP−1∑
m1=0

RP−1∑
m2=0

P (m1,m2) |Bx(k1 +m1, k2 +m2)| , (4.1)

where 1 ≤ k1, k2 ≤ 12Noct are the frequency indexes (spaced by semitone

intervals), and P denotes the sparse RP × CP 2-D harmonic pattern array.

The ρ coefficient is assumed to take a maximum value when the template

array P exactly matches the distribution of the peaks of the played notes. If

a monophonic sound has a fundamental frequency corresponding to index q,

then the maximum of ρ(k1, k2) is expected to be positioned at (q, q), upon

the first quadrant bisector. For this reason, ρ(k1, k2) is computed only for

k1 = k2 = q and denoted in the following as ρ(q). The 2-D cross-correlation

computed in this way is far less noisy than the 1-D cross-correlation calculated

on the spectrum (as illustrated in the example in Appendix B). Finally, the ρ

array is normalized to the maximum value over each temporal frame.

The Iterative 2-D Pattern Matching block output is used by the Iterative

Pitch Estimation block, whose task is ascertaining the presence of multiple

pitches in an audio signal.

4.3.2 Pitch Detection

(4a) - Recall on Spectrum Domain. Several methods based on pattern match-

ing in the spectrum domain were proposed for multiple-pitch estimation [Kla03,

Kla05, NAW01, BLW07]. In these methods, an iterative approach is used.

First, a single F0 is estimated by using different criteria (e.g., maximum am-

plitude, or lowest peak-frequency); then, the set of harmonics related to the

estimated pitch is directly canceled from the spectrum and the residual is fur-

ther analyzed until its energy is less than a given threshold. In order not to

excessively degrade the original information, a partial cancelation (subtraction)

can be performed based on perceptual criteria, spectral smoothness, etc. The

performance of direct/partial cancelation techniques, on the spectrum domain,

significantly degrades when the number of simultaneous voices increases.

(4b) - Proposed Method. The method proposed in the present work and de-

scribed also in [ANP11b]uses an iterative procedure for multiple F0 estimation

based on successive 2-D pattern extraction in the bispectrum domain. Consider

two concurrent sounds, with fundamental frequencies Fl and Fh (Fl < Fh),

such that Fh : Fl = m : n. Let Fov = nFh = mFl be the frequency value of
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the first overlapping partial. Consider now the bispectrum generated by the

mixture of the two notes (as an example, see Figure 3.5). A set of peaks is

located at the same abscissa Fov, that is at the co-ordinates (Fov, klFl) and

(Fov, khFh), where kl = 1, 2, . . . ,m− 1, kh = 1, 2, . . . , n− 1. Hence, the peaks

have the same abscissa but are separated along the y-axis. If, for example,

Fl is detected as the first F0 candidate, extracting its 2-D pattern from the

bispectrum does not completely eliminate the information carried by the har-

monic Fov related to Fh, that is the peaks at (Fov, khFh) are not removed. On

the contrary, if Fh is detected as the first F0 candidate, in a similar way the

peaks at (Fov, klFl) are not removed. This is strongly different than in methods

based on direct harmonic cancelation in the spectrum, where the cancelation

of the 1-D harmonic pattern, after the detection of a note, implies a complete

loss of information about the overlapping harmonics of concurrent notes.

The proposed procedure can be summarized as follows:

1. Compute the 2-D correlation ρ(q) between the bispectrum and the chosen

template, only upon the first quadrant bisector:

ρ(q) =

CP−1∑
m1=0

RP−1∑
m2=0

P (m1,m2) |Bx(q +m1, q +m2)| , (4.2)

derived directly from Equation (4.1);

2. Select the frequency value q0 yielding the highest peak of ρ(q) as the

index of a candidate F0;

3. Cancel the entries of the bispectrum array that correspond to the har-

monic pattern having q0 as fundamental frequency;

4. Repeat steps 1-3 until the energy of the residual bispectrum is higher

than θEEB, where θE, 0 < θE < 1 is a given threshold and EB is the

initial bispectrum energy.

Once multiple F0 candidates have been detected, the corresponding energy

values in the signal spectrum are taken by the Pitch & Intensity Data Collector

block, in order to collect also the intensity information. The output of this

block is the array π(t, q), computed over the whole musical signal, where q

is the pitch index and t is the discrete time variable over the frames: π(t, q)

contains either zero values (denoting the absence of a note) or the energy of the

detected note. This array is used later in the Time Events Estimation module

72



CHAPTER 4. SYSTEM ARCHITECTURE

to estimate note durations, as explained in the next section. In Appendix

B, an example of multiple F0 estimation procedure, carried out by using the

proposed method is illustrated step by step. Results are compared with those

obtained by a transcription method performing a 1-D direct cancelation of the

harmonic pattern in the spectrum domain. The test file is a real audio signal,

taken from RWC music database [GHNO02], analyzed in a single frame.

In conclusion, the component of the spectrum at the frequency Fov is due to

the combination of two harmonics related to the notes Fl and Fh. According to

eq. (3.3), the spectrum amplitude at Fov affects all the peaks in the bispectrum

located at (Fov, klFl) and (Fov, khFh). Interference of the two notes occurring

at these peaks is not resolved; nevertheless, we deem that the geometry of the

bispectral local maxima is a relevant information that is an added value of

the bispectral analysis with respect to the spectral analysis, as experimental

results confirm.

4.3.3 Time Events Estimation

The aim of this module is the estimation of the temporal parameters of a

note, i.e., onset and duration times. The module is composed of three blocks,

namely the Time-Frequency Representation block, the Onset Times Detector

block, and the Notes Duration Detector block.

The Time-Frequency Representation block collects the spectral information

X(f) of each frame, used also to compute the bispectrum, in order to represent

the signal in the time-frequency domain. The output of this block is the array

X(t, q), where t is the index over the frames, and q is the index over pitches,

1 ≤ q ≤ 12Noct.

The Onset Times Detector block uses the variable X(t, q) to detect the

onset time of the estimated notes, which is related to the attack stage of a

sound. Mechanical instruments produce sounds with rapid volume variations

over time. Four different phases have been defined to describe the envelope of

a sound, that is Attack, Decay, Sustain and Release (ADSR envelope model).

The ADSR envelope can be extracted in the time domain - without using spec-

tral information - for monophonic audio signals, whereas this approach results

less efficient in a polyphonic context. Several techniques [BN05], [Moo78],

[Dol01] have been proposed for onset detection in the time-frequency domain.

The methods based on the phase-vocoder functions [Moo78], [Dol01] try to de-

tect rapid spectral-energy variations over time: this goal can be achieved either
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by simply calculating the amplitude difference between consecutive frames of

the signal spectrogram or by applying more sophisticated functions. The pro-

posed solution uses the Modified Kullback-Liebler Divergence function, which

achieved the best performance in [Bro06]. This function aims at evaluating the

distance between two consecutive spectral vectors, highlighting large positive

energy variations and inhibiting small ones. The modified Kullback-Liebler

divergence DKL(t) is defined by:

DKL(t) =
12Noct∑
q=1

log

(
1 +

|X(t, q)|
|X(t− 1, q)|+ ε

)
,

where t ∈ [2, . . . ,M ], with M the total number of frames of the signal; ε

is a constant, typically ε ∈ [10−6, 10−3], which is introduced to avoid large

variations when very low energy levels are encountered, thus preventingDKL(t)

to diverge in proximity of the release stage of sounds. DKL(t) is an (M − 1)-

element array, whose local maxima are associated with the detected onset

times. Some example plots of DKL(t) are shown in Figure 4.4.

The Notes Duration Detector block carries out the estimation of notes du-

ration. The beginning of a note relies on the DKL(t) onset locations. The end

of a note is assumed to coincide with the release phase of the ADSR model and

is based on the time-frequency representation. A combination of the informa-

tion coming from both the functions X(t, q) and π(t, q) (the latter computed

in the Pitch Estimation module, see 4.3.2) is used, as described below. The

rationale for using this approach stems from the observation of the experimen-

tal results: π(t, q) supplies a robust but time-discontinuous representation of

the detected notes, whereas X(t, q) contains more robust information about

notes duration. The algorithm is the following:

For each q̄ such that ∃π(t, q̄) ̸= 0 for some t, do:

1. Execute a smoothing (simple averaging) of array X(t, q̄) along the t-axis;

2. Identify the local maxima (peaks) and minima (valley) of the smoothed

X(t, q̄);

3. Select from consecutive peak-valley points the couples whose amplitude

difference exceed a given threshold θpv;

4. Let (V1, P1) and (P2, V2) be two consecutive valley-peak and peak-valley

couples that satisfy the previous criterion: the extremals (V1, V2) identify

a “possible note” event;
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Figure 4.4: Example of onset detection procedure: (a) 7 seconds extracted
from Mozart’s String Quartet n. 19, K465 ; (b) first 30 seconds of Mozart’s
Sonata for piano K331. 75
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5. For each “possible note” event, do:

(a) Estimate (V̄1, V̄2) ⊂ (V1, V2) such that (V̄1, V̄2) contains a given per-

centage of the energy in (V1, V2);

(b) Set the onset time ONT of the note equal to the maximum of the

DKL(t) array nearest to V̄1;

(c) Set the offset time OFFT of the note equal to V̄2;

(d) If π(t, q̄), with t ∈ (ONT ,OFFT ) contains non-zero entries, then

a note at the pitch value q̄, beginning at ONT and with duration

OFFT - ONT is detected.

4.4 System Output Data

The Post-Processing module tasks are the following. First, a cleaning op-

eration in the time-domain is made in order to delete events having a duration

shorter than a user defined time tolerance parameter TTOL. Then, all the in-

formation concerning the estimated note is tabulated into an output list file.

These data are eventually sent to a MIDI Encoder (taken from the Matlabr
MIDI Toolbox in [ET04]), which generates the output MIDI SMF0 file, pro-

vided that the user defines a tempo value TBPM , expressed in beats per minute.
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Experimental Results and
Validation

In this section, the experimental tests that have been set up to assess the

performances of the proposed method are described. First, the evaluation

parameters are defined. Then, some results obtained by using excerpts from

the standard RWC-C database are shown, in order to highlight the advantages

of the bispectrum approach with respect to spectrum methods based on direct

pattern cancelation. Finally, the results of the comparison of the proposed

method with others participating at the MIREX 2009 contest are presented.

5.1 Evaluation parameters

In order to assess the performances of the proposed method, the evaluation

criteria that have been proposed in MIREX 2009, specifically those related to

the multiple F0 estimation (frame level and F0 tracking), were chosen.

The evaluation parameters are the following [PE07]:

• Precision: the ratio of correctly transcribed pitches to all transcribed

pitches for each frame, i.e.,

Prec =
TP

TP + FP
,

where TP is the number of the true positives (correctly transcribed

voiced frames) and FP is the number of false positives (unvoiced note-

frames transcribed as voiced).
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• Recall : the ratio of correctly transcribed pitches to all ground truth

reference pitches for each frame, i.e.,

Rec =
TP

TP + FN
,

where FN is the number of false negatives (voiced note-frames tran-

scribed as unvoiced).

• Accuracy : an overall measure of the transcription system performance,

given by

Acc =
TP

TP + FN + FP
.

• F-measure: a measure yielding information about the balance between

FP and FN , that is

F-measure = 2× Prec× Rec

Prec + Rec
.

5.2 Validation of the proposed method

5.2.1 Experimental data set: RWC database

The performances of the proposed transcription system have been evaluated by

testing it on some audio fragments taken from the standard RWC - Classical

Music database. The sample frequency is 44.1 kHz and a frame length of 256

samples (which is approximately 5.8 ms) have been chosen.

For each audio file, segments containing one or more complete musical

phrases have been taken, so that the excerpts have different time lengths. In

Table 5.1, the main features of the used test audio files are reported. The set

includes about 100000 one-frame-long voiced events.

The musical pieces were selected with the aim of creating an heterogeneous

dataset: the list includes piano solo, piano plus soloist, strings quartet and

strings plus soloist recordings. Several metronomic tempo values were chosen.

The proposed transcription system has been realized and tested in Matlabr
environment installed on a dual core 64-bit processor 2.6 GHz with 3 GB of

RAM. With this equipment, the system performs the transcription in a period

which is approximately fifteen times the input audio file duration.
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# Author Title Catalog Number Instruments
Data RWC-MDB

(1) J.S. Bach Ricercare a 6, BWV 1079 C-2001 n. 12 2 Vns, Vc
(2) W. A. Mozart String Quartet n. 19, K 465 C-2001 n. 13 Vn, Vla, Vc, Cb
(3) J. Brahms Clarinet Quintet, op. 115 C-2001 n. 17 Cl, Vla, Vc
(4) M. Ravel Ma Mère l’Oye, Petit Poucet C-2001 n. 23B Piano
(5) W. A. Mozart Sonata K 331, 1st mov. C-2001 n. 26 Piano
(6) C. Saint - Saëns Le Cygne C-2001- n. 42 Piano and Violin
(7) G. Fauré Sicilienne, op. 78 C-2001 n. 43 Piano and Flute

Table 5.1: Test data set from RWC - Classical database. Vn(s): Violin(s);
Vla: Viola; Vc: Cello; Cb: Contrabass; Cl: Clarinet

5.2.2 Comparison of bispectrum and spectrum based
approaches

In this section, the performances of bispectrum and spectrum based methods

for multiple F0 estimation are compared. The comparison is made on a frame-

by-frame basis, that is every frame of the transcribed output is matched with

every corresponding frame of the ground truth reference of each audio sample,

and the mismatches are counted.

The proposed bispectrum based algorithm, referred to as BISP in the fol-

lowing, has been described in Section 4.3. A spectrum-based method, referred

to as SP1 in the following, is obtained in a way similar to the proposed method

by making the following changes: 1) the bispectrum front-end is substituted

by a spectrum front-end; 2) the 2-D correlation in the bispectrum domain,

using the 2-D pattern in Figure 4.3, is substituted by a 1-D correlation in

the spectrum domain, using the 1-D pattern in Figure 1.1. Both bispectrum

and spectrum based algorithms are iterative and perform subsequent 2-D har-

monic pattern extraction and 1-D direct pattern cancelation, after an F0 has

been detected. The same pre-processing (constant-Q analysis), onset and du-

ration, and post-processing modules have been used for both algorithms. A

second spectrum-based method, referred to as SP2 in the following, in which

F0 estimation is performed by simply thresholding the 1-D correlation output

without direct cancelation, has been also considered.

The frame-by-frame evaluation method requires a careful alignment be-

tween the ground truth reference and the input audio. The ground truth

reference data have been obtained from the MIDI files associated to each au-

dio sample. The RWC-C database reference MIDI files, even though quite
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faithful, do not supply an exact time correspondence with the real audio exe-

cutions. Hence, time alignment between MIDI files and the signal spectrogram

has been carefully checked. An example of the results of the MIDI-spectrogram

alignment process is illustrated in Figure 5.1.

The performances of algorithms BISP, SP1 and SP2 applied to the audio

data set described in section 5.2.1 are shown in Tables 5.2, 5.3 and 5.4. The

Tables show the overall accuracy and the F-measure evaluation metrics, as

well as the TP, FP and FN for each audio sample. A comparison of the results

is presented in Figure 5.2, and a graphical comparison between the output of

BISP and SP1 is shown in Figure 5.4. In Figure 5.3, a graphical view of the

matching between the ground truth reference and the system piano-roll output

representations is illustrated. The results show that the proposed BISP algo-

rithm outperforms spectrum based methods. BISP shows an overall accuracy

of 57.6%, and an F-measure of 72.1%. Since pitch detection is performed in the

same way, such results highlight the advantages of the bispectrum represen-

tation with respect to spectrum one. The results are encouraging considering

also the complex polyphony and the multi-instrumental environment of the

test audio fragments.

The comparison with other automatic transcription methods is described

in the next section, where the results of the MIREX 2009 evaluation framework

are reported.

# Data Reference events TP FP FN Accuracy% F-measure%

(1) 16063 11025 2482 5038 59.4 74.6
(2) 6584 4401 2158 2223 50.1 66.8
(3) 12652 8865 2079 3787 60.2 75.1
(4) 12424 10663 2655 1761 70.8 82.8
(5) 6054 4120 1294 1934 56.1 71.8
(6) 20032 15122 6746 4910 56.5 72.2
(7) 21653 16563 9933 5090 52.4 68.8

TOTAL 95412 70759 27347 24743 57.6% 72.1%

Table 5.2: BISP: transcription results obtained with the test data set listed in
Table 5.1.

5.2.3 Results from MIREX 2009

The Music Information Retrieval Evaluation eXchange (MIREX) is the community-

based framework for the formal evaluation of Music Information Retrieval
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Figure 5.1: Graphical view of the alignment between reference MIDI file data
(represented as rectangular objects) and the spectrogram of the corresponding
PCM Wave audio file (b). The detail shown here is taken from a fragment of
Bach’s Ricercare a 6, The Musical Offering, BWV 1079 (a), which belongs to
the test data set. 81
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# Data Reference events TP FP FN Accuracy% F-measure%

(1) 16063 10348 6327 5715 46.4 63.2
(2) 6584 3216 2021 3318 38.0 54.6
(3) 12652 6026 8187 6626 29.0 44.9
(4) 12424 10363 3920 2061 63.8 77.6
(5) 6054 4412 4542 1642 42.0 58.8
(6) 20032 9952 7558 10080 36.2 53.0
(7) 21653 11727 9813 9926 37.4 54.3

TOTAL 95412 56044 42368 39368 40.7% 57.8%

Table 5.3: SP1: transcription results obtained with the test data set listed in
Table 5.1.

# Data Reference events TP FP FN Accuracy% F-measure%

(1) 16063 10234 7857 5829 42.8 59.9
(2) 6584 2765 2243 3769 31.5 47.9
(3) 12652 6206 9590 6446 27.9 43.6
(4) 12424 9471 3469 2953 59.6 74.7
(5) 6054 3642 3844 2412 36.8 53.8
(6) 20032 7769 6692 12263 29.1 45.0
(7) 21653 10399 8023 11254 35.0 51.9

TOTAL 95412 50486 41718 44926 36.8% 53.8%

Table 5.4: SP2: transcription results obtained with the test data set listed in
Table 5.1.
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Figure 5.2: Results of comparison between bispectrum based (BISP) and spec-
trum based (SP1 and SP2) multi-F0 estimation methods. SP1 performs itera-
tive pitch estimation and harmonic pattern subtraction; SP2 performs simple
thresholding of cross-correlation measure.

(MIR) systems and algorithms [Dow08]. In 2009, MIREX has reached its

fifth running. The proposed BISP method has been submitted for an eval-

uation and a comparison with the other participants in the field of Multiple

Fundamental Frequency Estimation & Tracking, which is divided into the fol-

lowing tasks: 1) Multiple Fundamental Frequency Estimation (MF0E); 2A)

Mixed Set Note Tracking (NT); and 2B) Piano Only Note Tracking. Task 1

is a frame level evaluation (similar to that described in section 5.2.2) of the

submitted methods. Task 2 considers as events to be detected notes charac-

terized by pitches, onset and offset times. For a specific definition of tasks and

evaluation criteria, the reader should refer to [MIRb]. Two different versions

of the proposed system have been submitted to MIREX: they are referred to as

NPA1 and NPA2 as team-ID. The differences between the two versions regard

mainly the use of the Time Events Estimation module: NPA1 simply performs

a multiple-F0 estimation without onset and duration times detection, whereas

NPA2 uses the procedures described in Section 4.3.3. As a result, NPA2 has

reported better results than NPA1 in all the three tasks considered. A detailed

overview of the overall performance results is available at [MIRa], see section
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Figure 5.3: Graphical (piano-roll) view of event matching between the ground
truth reference and transcribed MIDI (b), related to Ravel’s Ma Mère l’Oye -
Petit Poucet (a), present in the test data set.
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Multiple Fundamental Frequency Estimation and Tracking Results.

For Task 1 (MF0E), accuracy has been chosen as a key performance in-

dicator. The proposed system NPA2 is mid-level ranked, with an accuracy

of 48%; anyway, it presents the second highest recall rate (76%); this demon-

strates that the proposed system has a good capability in detecting ground

truth reference notes, showing a tendency in detecting more false positives

than false negatives. For Task 2A (Mixed Set NT) and Task 2B (Piano Only

NT), F-measure has been chosen as the overall performance indicator. In Task

2A, the proposed system NPA2 has achieved the third highest F-measure rate

and the second highest recall rate; again the precision rate show a quite high

false positive detection rate. In Task 2B, the proposed system NPA2 is top-

ranked, outperforming all the other competitors’ systems.

Results of MIREX 2009 are summarized in Figure 5.5.
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Figure 5.5: Results of MIREX 2009 evaluation framework. The system pro-
posed in this work has been submitted in two different versions, referred to as
NPA1 and NPA2, from the name of the authors; (a) task 1: multi-F0 estima-
tion; (b) task 2A: Mixed-set note tracking (NT); (c) task 2B: Piano-only note
tracking (NT).
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Chapter 6

Conclusions and Future Work

The automatic music transcription system described in this Thesis implements

a novel front-end, presented in [ANP11b], obtained by a constant-Q bispectral

analysis of the input audio signal, which offers advantages with respect to lower

dimensional spectral analysis in polyphonic pitch estimation. In every frame,

pitch estimation is performed by means of a 2-D correlation between signal

bispectrum and a fixed bi-dimensional harmonic pattern, while information

about intensity of detected pitches is taken directly from the magnitude spec-

trum. Onset times are detected by a procedure that highlights large energy

variations between consecutive frames of the time-frequency signal representa-

tion. Such a representation is also the basis for note durations estimation: a

pitch against time representation of detected notes is compared with the audio

spectrogram; the duration of each detected note event in the former is adjusted

to the duration of corresponding event in the latter. All these data concerning

pitches, onset times, durations and volumes are tabulated and output as a

numerical list and a standard MIDI file is produced.

The capabilities and the performance of the proposed transcription system

have been compared with a spectrum based transcription system. The evalua-

tion data set has been extracted from the standard RWC - Classical database;

for this purpose the whole architecture has been left the most general as pos-

sible, without introducing any a priori knowledge. Standard parameters have

been used for validation. Our system successfully identified over 57% of voiced

events, with an overall F-measure of 72.1%. Finally, a comparison with other

methods have been made within the MIREX 2009 evaluation framework, in

which the proposed system has achieved good rankings: in particular, it has

been top ranked in the piano-only tracking task. The MIREX results show

88



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

a very good overall recall rate in all the three tasks the proposed system was

submitted to.

The weakest aspect seems to be a still quite high false positive rate, which

affects the precision rate. This could be further improved with the introduction

of physical / musicological / statistical models, or any other knowledge that

may be useful to solve the challenging task of music transcription. The added

values of the proposed solution, with respect to the methods based on multi-F0

estimation via direct cancelation on the spectrum domain, are the less leakage

of information in presence of partial overlapping, and the computation of a

clearer 2-D cross-correlation which leads to stronger decision capabilities.

6.1 Guidelines for Future Work

The solution adopted and described in the present work is mainly based on

a signal representation technique which is quite novel for music transcription

systems, while it has been already applied for sound source separation, instru-

ment timbre modelling, classification and clustering. The Constant-Q bispec-

tral front end has revealed to be a robust front end for multi-pitch estimation,

outperforming traditional spectrum-based techniques.

In Section 3.4.2, an analysis of bispectrum nonlinearity behavior, with re-

spect to harmonic interactions retrieval, has been conducted. We believe that

further investigation in this direction could reveal the real advantages and ad-

ditional information hidden in the bispectral signal representation: additional

bispectral peaks, generated by nonlinear harmonic interactions, could be used

to map a richer tone patterns and instrumental models, maybe weighted by op-

portune coefficients or statistically treated in a modified model, at the expense

of a higher computational cost.

Sound source separation is an interesting field of research, which could be

used jointly with traditional pitch estimation and note tracking techniques.

Some experiments have been conducted [Oli09] on the music transcription

system described in this work. Results of this experimentation have shown

good performance, for multi-F0 estimation, of the constant-Q bispectral anal-

ysis jointly applied to a source separation algorithm; with higher degrees of

polyphony (4 voices or more), this method even improve estimation accuracy.

However, the source separation is not blind: the user has to specify the num-

ber of known sound sources, and this affects the black-box condition of the

proposed system. For the future, agnostic source separation techniques should
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be implemented to evaluate performance improvement.
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2004. (Cited on pp. 76.)

[FCCQ98] P. Fernández-Cid and F. J. Casajús-Quirós, Multi-pitch estima-
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