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Preface

In these three years attending the Doctoral School in Telematics and Informa-
tion Society at University of Florence, I mainly focused my research activity on
the topic which gives the title to this Ph.D. thesis: study, design and validation
of signal processing techniques applied to automatic music transcription.

Automatic transcription of music (AToM) is a difficult problem, which
remains still unresolved in some of its application contexts (such as polyphonic
music and multi-instrumental transcription). This task refers to the analysis
of a digital acoustic or synthesized musical signal, in order to write down pitch,
onset time, duration, intensity and source of each sound that occurs in it.

In many other research areas such as computer vision and semantic web
indexing, efforts are made to automatize several types of human cognitive pro-
cesses. Computer vision, for example, deals with identifying techniques and
strategies for acquiring, processing and understanding images from the real
world, in order to produce symbolic/numeric information or decisions rules,
which is a daily trivial operation for most of the people. The distinctive as-
pect, which makes automatic transcription of music such a challenging task,
is that its outcome result is a hardly achievable goal not only for ordinary
people at large, but even for expert and well trained musicians. This fact can
be partially explained by the high degree of perceptual fusion characterizing
the human auditory system, according to which we perceive simultaneous and
multitimbral sounds as a single entity. Furthermore, the lack of knowledge on
human brain processes underlying this complex activity (though the function-
ing of inner ear transcoding mechanisms have been pervasively studied and
understood), justifies the large variety of methods and approaches proposed,
ranging from signal processing techniques to higher-level musicological models.

In fact, in addition to this predominant doctoral activity, I had the oppor-
tunity to cover other topics, and to undertake research in the following fields

viil



and projects:

e Study and modeling of educational and scientific archives management
solutions. In this research, a study of requirements and development
of a multi-press platform for e-journals publishing and peer-review sup-
port have been conducted. The related implementation and validation
has been performed by expanding the open source OJS (Open Jour-
nal System) as a multi-press and multi-journal platform. This process
involved a deep reengineering of the originally distributed OJS architec-
ture. PHP, PostgreSQL and Apache Server technologies have been used.
The proposed solution refers to Palamede project [BNPTI| and that has
produced the experimental portal (http://palamede.fupress.com), and
which it has been validated by a test experimentation of three Italian
University Presses: the Firenze University Press (FUP), University of
Parma and the Forum FEditrice Press of University of Udine.

e Development of an innovative system for detection of presence and num-
ber of people in an indoor secure access. The identification of the human
presence and/or counting of number of people are in the focus of many
applications in the field of security. Specifically, automation of security
systems has been a growing interest topic for controlling accesses in re-
stricted areas such as banks, airports, railway stations and governmental
accesses. The goal of this research has been the design and development
of an automated solution for detecting the presence of more than one per-
son in interlocked doors, adopted in many accesses. In most cases, the
interlocked doors are small areas in which other information and sensors
are placed, to detect the presence of guns, explosive, etc. The general
goals and the environmental conditions required, allowed to implement
a detection system at lower costs and complexity, with respect to other
existing techniques, retrieved in the state of the art of related works. The
system consists of a fixed array of microwave transceiver modules, whose
received signals have been processed to collect information related to
the volume occupied in the interlocked cabin door. A research has been
conducted to study and identify volume measurement and image recon-
struction techniques using microwave sensors. Statistical and predictive
models have been applied to collected data and measurements to build
stronger decision rules for detection. The solution proposed has been sta-
tistically validated against real experimental measures, and it has also
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been implemented to be used in real time.

e (Collaborative and assisted SKOS generation and management. 1 started
to give my contribute to the Open Space Innovative Mind (OSIM) project
[BCNTT], a solution for assisting expert users in collaborative develop-
ment and management of a SKOS knowledge. The SKOS production has
been accelerated by crawling and exploiting different kinds of sources (in
multiple languages and with several inconsistencies among them). The
OSIM web based platform (http://openmind.axmedis.org) and tools sup-
port the experts in defining relationships among the most recurrent con-
cepts, reducing the time of SKOS generation and allowing collaborative
production. The main goal of the OSIM project is creating a portal to
allow industries at posing semantic queries about potential competencies
in a large institution such as the University of Florence.

In this thesis, an original system for automatic music transcription is de-
scribed. The main goal of this research has been to investigate for novel tech-
niques and solutions with respect to the ones proposed in the current state of
the art, which has been carefully reviewed. The present document has been
organized in the following chapters:

e Chapter 1: after a general explanation of automatic music transcription
task and some basic concepts regarding audio signals and music notation,
requirements and application areas are described, and a first, functional
classification of the transcription techniques is presented.

e Chapter 2: the current state of the art of automatic music transcription
is deeply and carefully reviewed. A big effort has been made to compare
the features of all the most quoted transcription systems in literature,
since the first pioneering works in the late 70s up to the most recent
solutions.

e Chapter 3: In Section B, a mathematical theory of higher-order spec-
tra is recalled, and definitions of bispectrum, main properties and com-
putational models are provided. In Sections B2 and B33, the Constant-Q
analysis and its application to bispectral signal representation for multi-
pitch detection are described. Finally, Sections B4 and B3 deal with a
detailed case study of bispectral nonlinearity implications in multi-pitch



detection procedure, which is consequently compared with traditional
spectrum based estimation techniques.

Chapter 4: the general architecture of the proposed transcription sys-
tem is described first, followed by a detailed outline of the main modules
for pitch detection and note duration tracking.

Chapter 5: some experimental results are reported. The proposed sys-
tem has been validated against some excerpts of the standard Real World
Computing (RWC) database. Results of the system performance at the
MIREX 2009 international contest are also reported, for further valida-
tion.

Chapter 6: this final chapter is left for conclusions and discussion on
future work guidelines.
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Chapter 1

Automatic Music Transcription:
An Introduction

Music Information Retrieval (MIR) multidisciplinary research field has re-
vealed a great increment in academic interest in the last decades, although
yet barely comparable to the commercial involvement grown around speech
recognition. It must be noticed that music information is much more complex
than speech information, both from a physical (range of frequency analysis)
and a semantic (big number, high complexity and many abstraction levels of
the possible queries) point of view.

Automatic music transcription is a specific task within MIR: it is defined
as the process of converting a musical audio recording into a symbolic notation
(a musical score or sheet) or any equivalent representation, usually concerning
event information associated with pitch, note onset times, durations (or equiv-
alently, offset times) and intensity. This task can be accomplished by a well
ear-trained person, although it could be quite challenging for experienced mu-
sicians as well; besides, it is difficult to be realized in a completely automated
way. This is due to the fact that human knowledge of musicological models
and harmonic rules are useful to solve the problem, although such skills are
not easy to be coded and wrapped into an algorithmic procedure. Complete
automatic transcription of real world musical signals can be very hard or even
theoretically impossible in some cases; so the goal is usually redefined in an-
notating as many of the concurrent sounds as possible, or in transcribing only
some specific and well-defined parts, for example the melody or some promi-
nent melodic or rhythmical figures, like bass lines or drum sounds (in this case,
the process is intended as a partial transcription).
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1.1 Representation of Sound

Sound is a physical phenomenon produced by the propagation of a sequence
of waves of pressure through compressible media, generated by the vibration
of an elastic body. Consequently, an audio signal is composed of a single or
a mixture of approximately periodic and locally stationary acoustic waves.
The present work is not intended to provide an exhaustive study of physics of
sound and acoustics. For this aim, the interested reader can refer to the large
documentation available (e.g., [Hal91]}, [BS04]).

According to the Fourier representation, any finite energy signal z(¢) with
period Tj, is represented as the sum of an infinite number of sinusoidal compo-
nents, weighted by appropriate amplitude coefficients:

+oo
x(t) = % + ; a, sin(2mn fot + ¢y,) (1.1)
where:
an = |An| ) Pn = LA,
and:
2 7o —j2mnfot
A, (t)e 7dt

1o Jo

An acoustic wave is a particular case in which, ideally, frequency values
of single harmonic components are integer multiples of the first one, called
fundamental frequency (which is the perceived pitch). Harmonic components
are called partials or simply harmonics. Since the fundamental frequency of
a sound, denoted as F0, is defined to be the greatest common divisor of its
own harmonic set (actually, in some real cases, the first spectral component
corresponding to F'0 = 1/T, can be missing), the task of music transcription,
that is, the tracking of the partials of all concurrent sounds, is practically re-
duced to a time periodicities search, which is equivalent to looking for energy
maxima in the frequency domain. Thus, every single note can be associated
with a fixed and distinct comb-pattern of local maxima in the amplitude spec-
trum, which appears like the one shown in Figure 1. The distances between
energy maxima are expressed as integer multiples of F0 (top) as well as in
semitones (bottom): the latter are an approximation of the natural harmonic
frequencies in the well-tempered system (see Section =3 for reference of some
basic elements of music notation).
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Fo 2F0 3F0 4F0 5F0 6F0 7F0

0 12 19 24 28 31 34

Figure 1.1: Fixed comb-pattern representing the harmonics set associated with
every single note. Seven partials (fundamental frequency included) with the
same amplitude have been considered. The distances are also expressed (bot-
tom) as semitones.

1.2 Monophonic and Polyphonic Music

A major distinctive cue in music transcoding is given by the number of voices a
music piece consists of: there can be only one voice playing at each time; these
cases are treated as a monophonic transcription task. On the contrary, if sev-
eral voices are played simultaneously, we deal with a polyphonic transcription
process.

The mixture of two or more sounds present a degree of consonance (and
equivalently, a degree of dissonance) which depends on harmonic relationship
between their pitches. In this regard, it is convenient to recall the following
proposition by Klapuri [KIa98]: let R ed S be two interfering sounds; if the
relationship between their fundamental frequencies, for e fos is a rational
number, i.e.:

Jor _m : con n,m > 1, (1.2)
Jos n
then each n-th partial of R overlaps to each m-th partial of S.

Low values of n e m imply a high degree of consonance between R e S. It
is worthy to be noticed that if m/n is an integer, the overlapping of the two
sounds’ partials is complete.

Automatic transcription of monophonic music is currently considered as
a resolved problem, while transcription of polyphonic music is still far from
being successfully settled, and additional difficulties arise in presence of multi-
instrumental contexts. Development of techniques for monophonic pitch detec-
tion has received a greater attention and deeper interest for speech analysis,



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

rather than for music, even in quite recent literature. In Figure I, some
examples of the spectral content of typical audio signals are shown.

Amplitude Spectrum: synthesized Amplitude Spectrum: real monophonic
G-harmonics A, tone (FO = 440 Hz) piano C, sample (F0 = 261 Hz)
] S T S B 1] S HE i — SR S —
g | | | . | g | : : | |
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Figure 1.2: Amplitude spectrum representation of some typical audio signals.
Noteworthy is the increasing complexity of the spectral content, as the number
of concurrent playing voices increases.

Difficulties arise in polyphonic music transcription since two or more con-
current sounds may contain partials which share the same frequency values.
This is one of the main reasons why simple amplitude spectral analysis is con-
sidered inadequate, if not joined to other signal processing techniques or a
priori knowledge resources.

1.3 Music Notation

The purpose of illustrating the principles of theory of music is beyond this work;
however, it is convenient to present some theoretical preliminaries, which are

4



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

necessary to understand the topics presented in this thesis; actually, the intent
is to cover only those music notation aspects and issues which are necessary for
a complete comprehension of the following dissertation. For a more detailed
overview of music theory, please refer to [Sor95] or to one of the many manuals
related to this topic.

The seven notes (in addition to the usual staff sheet or score representa-
tion), can be named after the first seven alphabetical letters, from A to G. The
octave number is indicated as a subscript. In the following, the lowest piano
octave is associated with number 0; thus, middle C, at 261 Hz, is denoted
with Cy, and Ay (which is commonly used as a reference tone for instruments
tuning) univocally identifies the note at 440 Hz.

The distance between two notes is defined interval: it can be measured in
frequency, fundamental frequencies ratio, or scale step (or degrees).

In western music, adopting the well-temperament as the standard tuning
system, a semitone is defined to be the smallest audible interval between two
generic notes. If f; and f; represent the pitches of two notes separated by one
semitone interval, then f, = f1-2'/12. An interval of one octave is characterized
by fo = 2fi, and it is composed of 12 semitones. Other examples of intervals
between notes are the perfect fifth (fo = 3/2 f1), the perfect fourth (f; =
4/3 f1), and the major third (fo = 5/4 f1). The following symbols, § (sharp)
and b (flat), known as accidentals, are used to raise or lower, respectively, a
note by a semitone. This implies that, in western music notation, notes with
different nomenclature have the same pitch (see Figure [=3).

C# or DI’ D# or EL' F# or GI’ G# or AI’ A# or BI’

Figure 1.3: Music staff, notation and nomenclature. In this example, the seven
notes, and corresponding accidentals, of the diatonic scale on C' in the 4-th
octave are represented.

Retaining the parallel between speech and music, music notation is mainly
a set of instruction for a musical performance, rather than a representation of
a musical signal [KIa04a]; in the same way, written text is to be considered
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as the equivalent for speech. The main difference is that music information is
much more multi-faceted, since it includes many different levels of information
(note pitch, harmonic and rhythmic information, indications for expression,
dynamics).

1.4 Requirements and Application Areas

At the present time, many music transcription system have been developed,
both for academic research purpose and commercial distribution. This has
produced a large variety of different features and tasks to be accomplished.
Generic requirements for a music transcription system can be classified into
the following;:

e Representation of the transcoded output: the input audio source
is usually converted into a MIDI file, a Piano-roll representation (like
the one depicted in Figure [4), or simply into a list of note information
(onset time, pitch or frequency, duration or offset time, loudness etc . . .).

e General transcription features: an advanced music transcription sys-
tem, dealing with real world audio signals and recordings, should allow
the user to choose between monophonic or a polyphonic transcription,
as well as supporting single and multi-instrumental recognition.

e Level of automation: the very large assortment and combination of
musical instruments, genres, recording background conditions make the
task of music transcription very hard to be fulfilled in a completely auto-
mated way, for instance using a black box algorithm solution. Some user
defined parameters are often introduced (e.g.: energy threshold values,
a priori knowledge like the number of voices in a polyphonic mixture or
more complex instrumental models).

e Processing time: according to the computing performances, usually
two main categories are identified: real-time and offline transcription
systems. Real-time solution is generally achieved for a monophonic tran-
scription process, whereas it generally results out of reach for the com-
plexity of the polyphonic transcription task.

Automatic transcription of music can be a key task for many application
fields, for instance: educational music frameworks; interactive computer mu-
sic equipment for generating accompaniment for soloists; sound resynthesis

6
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Figure 1.4: Piano-roll representation of music: in abscissa, the time (here ex-
pressed in subgroups of musical bars); in ordinate, the note pitch (represented
with the piano keys).

for preservation or restoration of old and historical recordings; musicological
analysis of improvised and ethnic music for which musical notations do not
exist etc. Regarding some applications in the educational environment, some
future desiderata are the achieving of a more robust score representation of the
transcription systems output, that can be helpful for monitoring the musician
execution as well as for real-time transcoding of any musical performance.

1.5 Classification of Music Transcription Sys-
tems

Many efforts have been made to realize exhaustive reviews and to provide
classification models for automatic transcription methods. Remarkable works
are the ones by Rabiner [Rab77] for monophonic transcription, and by Bello
[Bel03] Klapuri [KIa04h], [KIa04a)], Brossier [Brolf] and Yeh [YehOR] also for
polyphonic transcription. Citing a statement by Klapuri, “it is difficult to cat-
egorize multiple-F0 estimation methods (and music transcription methods in
general) according to any single taxonomy because the methods are complex
and typically combine several processing principles and procedures. As a con-
sequence, there is no single dimension which could function as an appropriate



CHAPTER 1. AUTOMATIC MUSIC TRANSCRIPTION: AN INTRODUCTION

basis for categorization” [KIa04al].

This aspect suggests a decomposition of the problem as an efficient process-
ing approach. Quite recently, some specialized sub-areas of this research field
have been developed, dealing with more limited transcription tasks, such as the
extraction of melody or bass lines within a polyphonic mixture of sounds. Be-
sides, modularity is a similar aspect observed also in the human brain [KIa04h],
[PCO3]. The human auditory system (the inner hear, together with the part of
the brain appointed to music cognition) results to be the most reliable acoustic
analysis tool [KIaD4h]. Actually, an expert musician can accomplish the task of
music transcription, relying also on a set of knowledge sources (musicological
models, harmonic rules, experience). Such skills are difficult to be coded and
wrapped into an algorithmic procedure.

Human capability to achieve the comprehension of music transcription
problem is understood as the sum of two different attitudes: the bottom-up
and the top-down processing. This suggests a first boundary of classification,
given by the following approaches:

e The bottom-up processing, or data-driven model, starts from low level
elements (the raw audio samples) and it uses processing blocks to analyze
and cluster these elements in order to gather the required information.

e The top-down processing, or prediction-driven model, starts from in-
formation at a higher level (based on external knowledge) and it uses
such information to understand and explain elements at lower hierarchy
levels (physical stimuli).

We have considered this, reported by Bello [Bel03], as the most general
categorization criterion for the music transcription problem, since these two
approaches are non-mutual-exclusive, and contain ideally all the other fields of
codification we intend to review in the following. There are many reviews of
automatic music transcription methods in literature, and most of them present
their own criteria, upon which the different front ends, used to obtain a useful
mid-level representation of the audio input signal, are grouped together. One
of the most commonly used criterion (adopted by Gerhard [Ghe(03], Brossier
[Bro06] and Yeh [YehOR]) is based on a differentiation at signal analysis level:

e Time domain analysis: systems belonging to this category process
the audio waveform in order to obtain information about pitches (peri-
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odicities of the audio signal) or onset times. In general, this family of
methods is suitable for monophonic transcription.

e Frequency domain analysis: methods belonging to this class vary
from spectral analysis (FFT, cepstrum, multi-resolution filtering, Wavelet
transform and related variants) to auditory models developed in the first
90s within the Computational Auditory Scene Analysis (CASA) frame-

tral features extraction techniques.

Another classification concept is reported by Yeh [Yeh(8], for whom music
transcription methods can be catalogued into two different approaches:

e Iterative estimation: such principle refers to all the methods which
iteratively estimate predominant F'0, and subsequently cancel the resid-
ual harmonic pattern of estimated notes from the observed spectrum,
processing the residual until a stop criterion is met; usually, a condi-
tion related to residual energy is adopted. The block diagram of this
architecture is shown in Figure 3.

Acoustic Mixture Signal Estimate Number of Concurrent
Sounds and Iterate

Remove Detected
Sound from the
Mixture

Spectral
Smoothing for
Detected Sound

Predominant FO
Estimation

Noise
Suppression

Store FO

Figure 1.5: Amplitude spectrum representation of some typical audio signals.
Noteworthy is the increasing complexity of the spectral content, as the number
of concurrent playing voices increases.

e Joint estimation: under this approach we find algorithms that jointly
evaluate many hypotheses on F'0 estimation, without involving any can-
celation. These solutions include the use of salience functions or other
knowledge source, in order to facilitate spectral peak-picking, and other

9
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frameworks like Martin’s Blackboard architecture [Mar96a]. This name
comes from the metaphor of a group of researchers standing in front of a
blackboard, working to find out the solution to a problem. This frame-
work is a problem-solving model, which integrates knowledge from differ-
ent sources and allows the interaction of different parts of the model. An
expert musical knowledge, integrated with signal processing and other
physical, engineering or mathematical frameworks, is considered useful
to accomplish the task of automatic music transcription. Another sub-
group belonging to the Joint Estimation category is the spectral match-
ing by parametric/non parametric models, like Non-negative Matrix Ap-
proaches (NMA) including Non-negative Matrix Factorization (NMF),
frequently used in recent literature [Vir(7], [VBBOS].

Another categorization to be highlighted is often included in frequency
analysis or joint estimation classes in the above mentioned review works: sta-
tistical versus non statistical framework. The statistical-inference approach
generally aims at jointly performing F'0 estimation and tracking of tempo-
ral parameters (onsets and durations) from a time-frequency representation of
the input signal. In these models, the quantities to be inferred are considered
as a set of hidden variables. The probabilistic model relates these variables
to the observation variable sequence (the input signal or a mid-level repre-
sentation) by using a set of properly defined parameters. Statistical frame-
works frequently used for automatic music transcription are Bayesian networks

Finally, another pivotal aspect is the evaluation of the transcription systems
proposed so far. The absence of formalized paradigms to compare different
methods, the necessity of commonly accepted evaluation criteria, and finally
the difficulties to collect large enough databases (often due to intellectual prop-
erty rights restrictions, which is another important difference with the speech
recognition research area) led the IMIRSEL (International Music Information
Retrieval Systems Evaluation Laboratory) community to create, in 2005, the
MIREX (Music Information Retrieval Evaluation eXchange) evaluation frame-
work. In few editions, MIREX has already become a worldwide accepted,
standard reference for the evaluation of submitted methods and algorithms
aimed at resolving several MIR proposed tasks , including polyphonic pitch
estimation and note tracking [MIRE]. The tasks, the evaluation material and
conditions, as well as many other elements of the MIREX architecture are

10
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defined and discussed within the whole community, thus reflecting its own
interests and accomplishing the necessity of formality and repeatability.

11



Chapter 2

State of the Art

In literature, a large variety of methods for both monophonic and polyphonic
music transcription has been realized. Monophonic transcription solutions
were the first to be proposed, starting from the second half of the 60s, in
parallel with the initial development of the newly-born speech processing; in
fact, monophonic pitch detection was basically applied for speech recognition
purposes. Some of these methods were based on time-domain techniques like
Zero Crossing Rate (ZCR) [Mil75], or on autocorrelation function (ACF) in
the time-domain [RRM76], as well as parallel processing [GR77] or Linear
Predictive Coding (LPC) analysis [Mar72].

First attempts of performing polyphonic music transcription started in the
late 1970s, with the pioneering work of Moorer [Moa77] and Piszczalski and
Galler [PG77]. As time went by, the commonly-used frequency representa-
tion of audio signals as a front-end for transcription systems has been devel-
oped in many different ways, and several techniques have been proposed. Kla-
puri [KIa03], [KTa05] performed an iterative predominant F'0 estimation and a
subsequent cancelation of each harmonic pattern from the spectrum; Nawab
[NAWOT] used an iterative pattern matching algorithm upon a constant-Q
spectral representation. In the early 1990s, other approaches began to de-
velop, based on applied psycho-acoustic models and also known as Computa-
tional Auditory Scene Analysis (CASA), from the work by Bregman [Bre90],
started to be developed. This framework was focused on the idea of formulat-
ing a computational model of the human inner ear system, which is known to
work as a frequency-selective bank of passband filters; techniques based on this
model, formalized by Slaney and Lion [SLI0], were proposed by Ellis [EI96],
Meddis and O’Mard [MO97], Tolonen and Karjalainen [TK00] and Klapuri

12
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[KTa08]. Marolt [Mar(T], [Mar04] used the output of adaptive oscillators as a
training set for a bank of neural networks to track partials of piano record-
ings. A systematic and collaborative organization of different approaches to
the music transcription problem is the mainstay of the idea expressed in the
Blackboard Architecture proposed by Martin [Mar96a]. More recently, phys-
ical [OBCQTGO3] and musicological models, like average harmonic structure
(AHS) extraction in [DZZS08], as well as other a priori knowledge [KaNiSa07],

signal analysis in the frequency-domain to improve transcription systems per-
formances. Other frameworks rely on statistical inference, like hidden Markov
models [Rap02], [RK05], [YRRT0]], Bayesian networks [KNKTY5], [CKBOE]
or Bayesian models [GDIOG], [DDO7]. Others systems were proposed, aiming
at estimating the bass line [KRO7|, or the melody and bass lines in musical
audio signals [Gof00] [Gof04]. Currently, the approach based on non-negative

factorization of spectral features [SBO3], [Vir(7], [VBBO]]) has received much
attention within the MIR community. Recently, Higher Order Spectra Analy-
sis (HOSA) has been applied to multipitch estimation [Abhe0d] and automatic
music transcription [ANPTTa)].

2.1 Methods Overview and Comparison

In this section, a comparative review of some of the most important and cited
music transcription systems is describe, as proposed in [ANPTTa]. This review
is not meant to be as an exhaustive and omni-comprehensive work, although it
covers large part of the literature, starting from the first pioneering methods,
realized at the end of the 70s, until nowadays. The aim is to illustrate the
evolution of the state of the art, which is supposed to run in parallel with the
development of technology in the fields of signal processing and computational
elaboration power. In Figure P, a functional block diagram related to the
general architecture of an automatic music transcription system, is shown.

A Pre-Processing module is generally assigned to segment the input signal
into frames, and to compute the mid-level representation (spectral analysis,
auditory model based representation etc.). The retrieval of pitch information
and note temporal parameters is performed usually by dedicated modules,
referred to as Pitch Estimation and Time Information Estimation in Figure
1. To achieve better transcription accuracies, additional Knowledge Sources

13
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Automatic Music Transcription System Architecture

~

Time
Information
Estimation i X
( Onsets, offsets, Piano — roll representation
durations) b

User Defined or
Additional
Parameters

Post
Processing

( Pruning, MIDI
encoding etc...)

Pre

“ _ Processing
' ( Segmenting,

Knowledge
Sources

( High level models,

training databases

etc... )

filtering etc... )

Audio Input Signal

4 Pitch, Onset & Duration List

Pitch
Estimation
( Mono / Poly )

00 01
5230 01
1

Figure 2.1: General architecture of an automatic music transcription system.

(harmonic/instrumental models, training databases) are often implemented in
transcription systems, for many different purposes. Finally, a Post-Processing
module groups all the detected note information and converts it into an ap-
propriate output format (MIDI file, piano-roll or note parameters list). In
the following, a multi-field classification is proposed through the use of a set
of parameters which can be helpful to highlight the main characteristics and
peculiarities of different algorithms, without forcing a strict categorization,
not even focusing on specific parts of the processing framework. For this rea-
son, the overview of each system includes information about all the different
elements of the architecture: signal processing, pitch estimation and rhythm
information extraction, I/O parameters and other computational aspects. The
comparison summary is reported in Table 2.1. A tabular view has been chosen
in order to maximize hint facilities, similarly to the one adopted by Klapuri
in [KIa04K]. Systems are sorted by rows, in a chronological sequence. The
columns report different fields describing the most interesting aspects of the
architecture for the reviewed algorithms. They are defined as follows:

e Reference: this field contains the reference to the authors of each sys-
tem. Where needed, the research group is specified. In the past years
of automatic music transcription research activity, longer-term projects
have been undertaken by Stanford university (in particular the Centre for

14
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Computer Research in Music and Acoustics, referred to as CCRMA in
Table 2.1), University of Michigan (U-M), University of Tokyo (UT), Na-
tional Institute of Advanced Industrial Science and Technology (AIST),
Massachusetts Institute of Technology (MIT), Queen Mary University of
London (QMUL), University of Cambridge (CAM), Tampere/Helsinki
University of Technology (TUT/HUT), and the Institut de Recherche
et Coordination Acoustique/Musique (IRCAM) of Paris, France. Other
names and abbreviations, not included in the above mentioned list, re-
fer either to the name of the research projects, or to the commercial
development of such systems (e.g., KANSEI, SONIC, YIN).

Year: the year of publication of the referenced papers.

System Input / Output: this field contains specifications, if they
exist, on the input audio file, and it reports also the output format
of the transcription process (e.g., MIDI file, list of pitches, onsets and
durations), whether described in the referenced papers.

Pre-Processing and Mid-Level: a list of the signal processing tech-
niques, used to obtain a useful front end.

Real time / Offline: this field specifies, if the system operates in real
time or not.

Source Availability: this specifies if the source code is available, di-
rectly or web-linked.

Mono / Poly: this field shows if the system is mainly dedicated to
monophonic or polyphonic transcription.

Time / Frequency: indicates if the signal processing techniques used
by the algorithm (which are listed in the Pre-Processing and Mid-Level
categories described above) operates either in the time or in the frequency
domain. Where needed, it is otherwise specified if a method uses a
different transform domain (e.g., autocorrelation domain).

Pitch Estimation Knowledge: a brief description about the approaches
and the knowledge used to extract pitch information.

Rhythm Info Extraction: in this field the techniques used to retrieve
temporal information of estimated FOs (where this task is performed)

15
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are summarized. It is divided into two sub-fields: Onsets and Durations,
as they are often estimated with different strategies.

Evaluation Material: this section shortly reports, where described, the
type of the dataset used for evaluation and the number of test files / sam-
ples. Evaluation results are omitted. Actually, since different systems
are tested against different databases and using different criteria, results
reported in literature give a misleading outlook of overall transcription
performances. For this reason, only MIREX results are reported, for
all those algorithms which participated in the past editions. As to this
topic, noteworthy is to highlight that a methodology for the evaluation
of music transcription systems has not been firmly established yet. The
transcription output (MIDI file or piano-roll usually) is compared with
a reference ground truth of the audio source data; evaluation databases
generally provide a reference MIDI file for each audio track or sample
contained. Further work has often to be done, in order to check the
correct alignment between the two representations. The procedure is
as follows: a graphical comparison is commonly made, by using a ded-
icated GUI or other devices, between the audio signal spectrogram and
the piano-roll of the reference MIDI; then a manual alignment is per-
formed for the corresponding note events. An example of this graphical
alignment is illustrated in Figure 2.

Apart from defining the ground truth reference, evaluation criteria and
parameters must be defined in order to design a comprehensive and well
organized evaluation method. The MIREX framework proposes a valida-
tion approach which is becoming a standard reference in recent literature.
For the evaluation of music transcription algorithms, two MIREX tasks
are defined [MIRH]:

1. Multiple F0 Estimation (MFOE) on a frame by frame basis. In
this task, submitted systems are requested to report detected active
pitches every 10 ms. A returned pitch is assumed to be correct (true
positive, TP) if it is within a half semitone (£3%) of a ground-truth
pitch for that frame. Otherwise, if a returned pitch is not present
in the ground truth data, it is classified as a false positive (FP);
finally, each not detected ground truth pitch is classified as a false
negative (FN) Only one ground-truth pitch can be associated with
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Time Alignment - Reference MIDI and Audio Spectrogram
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Figure 2.2: Example of graphical time alignment between input audio spec-
trogram and ground truth reference MIDI.

each returned pitch. Three performance measures are defined for
this task:

— Precision: it is the portion of correct retrieved pitches for all
the pitches retrieved for each frame:

TP
TP+ FP’

— Recall: it is the ratio of correct pitches to all the ground truth
pitches for each frame:

Precision =

TP
TP+ FN’

— Accuracy: it is an overall measure of the transcription system

Recall =

performance, given by:
TP .
TP+ FP+FN’

2. Note Tracking (NT) task. A ground truth note is assumed to
be correctly transcribed if the system returns a note that is within

Accuracy =

17
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a half semitone £3% of that note AND the returned note’s onset
is within a 100ms range (£ 50ms) of the onset of the ground truth
note, and its offset is within 20% range of the ground truth note’s
offset. Again, one ground truth note can only be associated with
one transcribed note. NT evaluation is further divided into the
following subtasks:

a. Mixed Set Note Tracking;
b. Piano Only Note Tracking.

For this task, again Precision and Recall are reported. They are
used to define a measure which is considered to indicate more cor-
rectly the balance between false positives and false negatives, that

1S:

F— Measure — 9 Precision - Recall '

Precision + Recall’

e Additional Notes: under this entry, any further noteworthy informa-
tion, which can not be classified according to the defined categories, is
recalled.

When the value of a certain parameter is missing, or information about one
of the defined fields is not available in the referenced paper, the abbreviation
N.A. is used in Table 2.1. In Table 2.2, other acronyms used in Table 2.1 are
defined.

2.2 Review of Some Music Transcription Sys-
tems

Moorer - 1977

Moorer was one of the first, in literature, to propose a system which attempted
to separate simultaneous harmonic sounds in a polyphonic mixture [Moo77].
His system has been developed to track pitches of both synthesized and real
duets, although it presents several strong limitations: sounds are supposed
to be harmonic and characterized by constant amplitude (no vibrato or jitter
is therefore allowed). In addition, the two voices should not cross in pitch,
and the two fundamental frequencies should not be in an 1:N relationship,
which is equivalent to a complete overlapping of the partials of the concurrent
sounds. The frequency range of analysis is also limited. The mid-level spectral
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ACF Autocorrelation Function IHC Inner Hair Cell

AHS Average Harmonic Structure IR Infinite Impulse Response filter
DFT Discrete Fourier Transform MCMC | Markov Chain Monte Carlo

FO Fundamental Frequency MFOE Multiple FO Estimation MIREX task
FFT Fast Fourier Transform NN Neural Network

FIR Finite Impulse Response filter ||NT Note Tracking MIREX task

fs Sampling Frequency PCM Pulse Code Modulation

HMM Hidden Markov Models RWC Real World Computing database
HTC Harmonic Temporal Clustering ||STFT Short Time Fourier Transform
HWR Half Wave Rectification SVM Support Vector Machine

Table 2.2 - Definition of acronyms used in TABLE 2.1.

representation is obtained by using a bank of band-pass filters, called optimum
comb filter. This has been demonstrated to be a robust but computationally
expensive algorithm; the pitch estimation strategy is to search for periodicities
in the input signal by minimizing the summed absolute value of its magnitude
difference. The system has revealed relatively good recognition performances
with synthesized strings and real guitar duets.

Piszczalski and Galler - 1977

The system by Piszczalski and Galler [PG77] operates in the Frequency do-
main, and the obtained spectrum is equalized with a 12 dB attenuation curve,
under 500 Hz and above 3000 Hz, to enhance significative sound partials. After
detecting partials with a simple peak-detection procedure, each couple of par-
tials is analyzed in order to find the smallest harmonic number, which would
correspond to a harmonic series including the two partials at issue. A weight-
ing coefficient, related to partials amplitude, is also assigned to each processed
frequency couple. This information is later used to formulate hypothesis about
the candidate fundamental frequencies. Such approach makes the whole sys-
tem quite robust in cases of missing fundamental frequency and inharmonic
partials, as qualitatively described in the evaluation discussion. The system
is evaluated against some synthetic (mainly sinusoidal) tones and real signals
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(carillon bells), although detailed results are not reported.

Slaney and Lyon - 1990

Human great capabilities of perceiving pitch, even in cases of missing funda-
mental frequencies and partials inharmonicity, led to an increasing interest in
the Auditory Scene Analysis (ASA) in the first half of 90s. One of the first
and most remarkable works belonging to this area was the ”Perceptual Pitch
Detector” by Slaney and Lyon [SLY0], based on Licklider’s ”Duplex Theory”
of pitch perception. The system is divided into three stages:

1. A Cochlear model which approximates the behavior of the human in-
ner ear system, particularly the response of the auditory nerve. The
cochlear model consists of a multi-channel bank of second order filters
modeling the propagation of sound along the Basilar Membrane (BM);
an array of Half-Wave Rectifiers (HWRs), aimed at emulating the role of
the inner hair cells which respond to the BM movement in only one di-
rection; finally, a four stage Automatic Gain Control (AGC) compresses
the dynamic range of the processed signal.

2. The mid-level representation is obtained by computing the short-time
windowed autocorrelation of the output of each cochlear channel. Col-
lecting such information for each channel leads to the correlogram 2D
representation, which allows to find periodicities (related to the per-
ceived pitches) of the input signal (the latter are located at horizontal
positions corresponding to the correlation delay-times equal to the peri-
ods of repetition). An example of correlogram of an audio input signal
is depicted in Figure

3. The pitch detector block performs a peak enhancement in the correlo-
gram; then the value at each time-lag is summed across all the frequen-
cies, and the obtained array show peaks in correspondence of possible
periodicities in the correlogram. Each detected periodicity 7 reveals the
presence of a pitched sound at frequency 1/7.

Maher - 1990

Maher proposed a system for duet transcription [Mah9(]. Several limitations
are imposed: input signals must contain only two monophonic and separate
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Figure 2.3: Correlogram of an upright piano E4 at 330 Hz. (7 ~ 3ms).

voices; both voices must be nearly harmonic; the frequency ranges of the funda-
mental frequencies belonging to the two voices should not overlap each other.

The system uses the McAulay - Quatieri sinusoidal model as a front end,
which models the input signal as the sum of several time-variant sinusoidal
components (similar to the Short-Time Fourier Transform). Pitch estimation
task is performed by choosing the couple of frequencies which minimizes the
mismatch between the predicted harmonic series of the two frequencies and
the observed values. The system presents also a multi-strategy approach to
resolve colliding partials: some of these techniques are based on a physical
basis (analysis of beating components), other on acoustic knowledge applied
(use of spectral templates). The system is not intended to work in real-time;
actually the typical processing to real-time ratio exceeds 200.

Qualitative results are reported and they refer to some tests on both syn-
thesized and real signals (clarinet/bassoon and trumpet/tuba). The initial
duet assumption generally leads to the worst performance when only one voice
is present (for example in solo passages). Good results are achieved when the
two voices have a small number of coinciding partials; reverberation and other
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ambient effects which often appear in musical recordings, represent one of the
principal source of troubles.

Kashino et al. - 1995

The OPTIMA system (Organized Processing Toward Intelligent Music scene
Analysis) proposed by Kashino, Tanaka, Nakadai and Kinoshita [KNKTY5]
anticipates, in some way, the introduction of the Blackboard system formalized
by Martin in 1996. Actually, knowledge sources are present in this system, and
they are used to find relationships among the different levels of the musical
signal analysis.

The system operates in the frequency domain by extracting the frequency
components of the input signal. Since simple amplitude thresholding is consid-
ered not sufficient to achieve a good estimation accuracy, the pitch detection
method uses two regression planes pinching each spectral peak, in order to
find temporal continuity of spectral local maxima. Rhythm information is ex-
tracted with Rosenthal’s rhythm recognition method and Desain’s quantization
method. Onset detection is performed by combining rhythm information with
beat probability, in order to determine the status (continuous or terminated)
of the candidate fundamental frequencies. All this information is integrated in
a Pearl’s Bayesian network. Frequency peaks are therefore clustered according
to calculated onset times, and these clusters are called processing scopes.

Six different types of external knowledge are used, in the main processing
block, for information integration: chord transition dictionary, chord-note rela-
tion, chord naming rules, tone memory, timbre models, perceptual rules. With
these classes of knowledge, the system aims at finding the best connectivity
patterns that can explain the music played in the input signal.

Evaluation tests are organized in different levels: frequency components,
notes, chords and song samples. The evaluation dataset is composed by syn-
thesized MIDI files. Different levels are provided: frequency component level,
note level, chord level, and song sample level. Detailed results are reported for
note level tests only. A recognition rate from 30% to 87% is reported for two or
three voices of polyphony, and an improvement is shown by using integration
of knowledge, especially tone memory.
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Martin - 1996

Martin proposes the Blackboard architecture for automatic music transcription
[Mar96h]. This name comes from the metaphor of a group of researchers
standing in front of a blackboard, working to find out the solution to a problem.
This framework is a problem-solving model, which integrates knowledge from
different sources and allows the interaction of different parts of the model. An
expert musical knowledge, integrated with signal processing and other physical,
engineering or mathematical frameworks, is considered useful to accomplish
the task of automatic transcription of music.

The front end of Martin’s system is an auditory model, similar to the one
by Slaney and Lyon: it is a variant of the correlogram, according to Ellis’
work. The filtering stage is composed by a 40 gammatone filter bank. The
input signal is later half-wave rectified, and a short-time autocorrelation is
made across each channel, obtaining a correlogram representation. Finally,
the autocorrelations are summed across each band, and the time-lag presenting
the largest peak is chosen as the pitch percept. A summary autocorrelation
(periodogram) is obtained by averaging each frequency cell output by the zero-
lag energy in the same frequency band, and then performing another average
across all the frequency channels. This representation is an improvement over
standard correlogram, since the periodogram presents a log-lag axis (lag, or
inverse pitch, in a logarithmic scale) in addition to usual frequency channels
and time axis.

The knowledge source (KS) is a set of five hypotheses (read correlogram
frames, summary autocorrelation peaks, propose periodicities, note support
and prune notes), which are organized into different levels of abstraction, and
added to the periodogram front end, in order to improve the recognition perfor-
mances. The system performs also a octave prediction test. The author reports
only some qualitative examples, as evaluation, of monophonic and polyphonic
transcription tests against excerpts from recorded performance of some pieces
by Bach.

Tolonen and Karjalainen - 2000

Tolonen and Karjalainen proposed a variant to the Unitary model of pitch
perception by Meddis and O’Mard [TK00]. Their system divides the input
signal into two frequency regions (channels), with a cross-over frequency of 1
kHz. Then, a generalized autocorrelation of the low-channel signal, and of the
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envelope of the high-channel signal, is performed. The autocorrelation func-
tions are summed, and the summary function obtained is used for observing
periodicities in the signal. Some results reported in a web page of the Helsinki
University of Technology, linked from the paper, show a comparison between
the two-channel system and the multi-channel algorithm by Meddis and He-
witt, thus providing similar performances. One of the main advantages of the
two-channel method is the capability of operating in real-time.

Goto - 2000, 2004

Goto was one of the first who proposed a transcription system (PreFEst, from
”Predominant F0 Estimation”) for real-world audio signals [Got00], [Got04],
characterized by complex polyphony, presence of drum or percussion, and
singing voice also. To achieve such a goal, the music scene description and
the signal analysis are carried out at a more specific level, focusing on the
transcription of the melody and the bass line in musical fragments. Further
limitations are imposed: the melody and the bass line should have the most
predominant harmonic structure in the middle-high and in the low frequency
regions, respectively.

The front end extracts instantaneous frequency components by using a
STFT multi-rate filter bank, thus limiting the frequency regions of the spec-
trum with two band-pass filters. A probability density function is then assigned
to each filtered frequency component; this function is a weighted combination
of different harmonic-structure tone models. An Expectation-Maximization
(EM) algorithm then estimates the model parameters. The frequency value
that maximizes the probability function is detected as a predominant FO.
Finally, a multi-agent architecture is used to sequentially track F0 peak tra-
jectories, and to select the most stable ones; this operation is carried out by a
salience detection and a dynamic thresholding procedures.

The system was evaluated against 10 excerpts from commercial classi-
cal/pop/jazz/ethnical recordings. The system reveals very good overall de-
tection rates (88.4% for melody, 79.9% for bass). The system was realized to
work in real-time.

Marolt - 2001

Marolt is the author of SONIC, a transcription system designed specifically for
piano music [Mar(l]. The front-end is a combination of the auditory model

29



CHAPTER 2. STATE OF THE ART

and an adaptive oscillator network. The input signal is splitted into frequency
bands, by using an array of 200 IIR gammatone filters with center frequencies
logarithmically spaced between 70 and 6000 Hz. The output of this stage is
then processed according to the Meddis’ model of half-wave rectification and
compression of the dynamic range of the signal.

The output of each frequency channel is send to an adaptive oscillator (a
modified version of Large-Kolen oscillator), which synchronize with the input
signal (assumed to be periodic) by adjusting its frequency and phase to the one
of the driving signal. The observation of the synchronized frequency of each
oscillator gives information about the frequency components present in the
signal. The oscillators are grouped into networks, in order to track a group up
to 10 harmonic related frequency components that may belong to a single tone.
There are 88 oscillator networks, one for each piano key; the initial frequency
of the first oscillator in each network is set to the pitch of the corresponding
piano note. Finally, a set of neural networks is used to recognize single notes
from the output of the oscillator network.

The evaluation dataset is composed by 120 synthesized MIDI pieces. Marolt
reports an average number of correctly detected of about 90%. Octave errors
and repeated note errors are the most frequent cases.

Klapuri - 2003

This method proposed by Klapuri [KIa03] is an iterative technique, consist-
ing mainly in two procedures: a predominant F0 estimation, and harmonic
pattern cancelation from the mixture. First, a FFT-based spectral analysis is
performed, then the spectrum is processed in order to eliminate noise and to
enhance sound partials’ information. The obtained spectrum is divided into
18 overlapping frequency bands distributed between 50 and 6000 Hz, with a
50% overlap. In each band, a weighting factor is calculated over the frequency
index. The frequency value with the highest weight is detected as the most
predominant F'0. Subsequently, its harmonic set is canceled from the mixture,
and the operation is repeated for the residual, until an energy-based stop cri-
terion is met. For evaluation, random mixed samples from McGill University,
Iowa University and IRCAM audio databases are used. Results are analyzed
in relation with a priori known polyphony of test data. Generally the error
rate is below 10% (for polyphonies between 1 and 5 notes) and about 10% for
6-note polyphony.
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Bruno and Nesi - 2005

The proposed system [BNOH] processes the input audio signal through a Patterson-
Meddis auditory model. A partial tracking module extracts the harmonic con-
tent, which is analyzed to estimate active pitches. Onset detection is performed
by using a peak-picking algorithm on the signal envelope. Pitch tracking is
carried on, for each note the onset of which has been previously estimated by
a bank of neural networks. This network can be trained by a set of parameters
describing several instrument models (concerning partial amplitude weights,
frequency range etc.). A Training Mode is also available, which is needed to
create automatically features and patterns for new instruments configuration.

Ryynanen and Klapuri - 2005

This system [RKOA] uses a probabilistic framework, a hidden Markov Model
(HMM), to track note events. The multiple F'0 estimator front end is based on
auditory model: a 70-channel bandpass filter bank splits the audio input into
sub-band signals which are later compressed, half-wave rectified and low-pass
filtered with a frequency response close to 1/f. Short time Fourier Transform
is then performed across the channels, and the obtained magnitude spectra
are summed together into a summary spectrum. Predominant F'0 estimation,
and cancelation from the spectrum of the harmonic set of detected FO is per-
formed iteratively. Omnset detection is also performed by observing positive
energy variation in the amplitude of detected F'0 values. The output of F0 es-
timator is further processed by a set of three probabilistic models: a HMM note
event model tracks the likelihood for each single detected note; a silence model
detects temporal intervals where no notes are played; finally, a musicological
model controls the transitions between note event and silence models.

Evaluation is conducted by testing the system transcription performances
on 91 recordings of several musical genres (including popular, rock, classical,
jazz and world) extracted from RWC database. Notes for drums and per-
cussions are excluded from the set of MIDI reference events. Recall of 39%,
precision of 41% and mean overlap ratio of 40% are reported. The system
has been also evaluated in the MIREX framework (2007 and 2008 editions),
achieving an overall accuracy of 61% in the first task (MFOE - Multiple F0
Estimation frame by frame) and a F-measure of 34% in the second task (NT
- Note Tracking).
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Cemgil, Kappen and Barber - 2006

The system proposed by Cemgil and Kappen [CKBOG| is based on a genera-
tive approach and a dynamical Bayesian network: note parameters to be esti-
mated (including pitches, onsets and durations) are considered as a collection
of hidden variables, while the acoustic recorded audio samples are the observed
variables into a Bayesian inference problem. The modelling task must, there-
fore, infer the appropriate generative model which is able to reproduce better
the given audio sequence. The starting model for the input signal is a space-
state variant of the sinusoidal/noisy model, which is more suitable to obtain
a piano-roll representation including all the unknown note parameters. The
piano-roll is considered as a set of single pitch binary generators (switching
Kalman filters) that can assume two possible states across time: sound and
mute. Onsets are detected when the state of a generator switch from mute
to sound. In this case, the actual status vector is forgotten and a new state
vector is created. This aspect simplifies the high computational costs due to
the nature of the problem and the use of Kalman filters. The final task of the
system is to estimate the Mazimum A Posteriori (MAP) configuration of the
piano-roll which represents better the observed audio data. Main advantage of
Bayesian inference is that the model can be trained, taking into account dif-
ferent combinations for note parameters. In addition, such approach allows to
eliminate the frame by frame assumption, often used for audio signal analysis,
particularly in the field of music transcription task. In this way the input mu-
sical signals can be analyzed in real time and with sample precision. For this
reason this system can be considered as operating in the time-domain; actually
any Fourier based (or related methods) spectral analysis is performed. The
system has been evaluated against some recordings of 2, 3 voices of polyphony,
reporting only qualitative results.

Kameoka, Nishimoto and Sagayama - 2007

The authors have proposed a multipitch analyzer based on harmonic temporal
structured clustering (HTC) method [KNSO7]. This technique aims at decom-
posing the energy patterns of observed power spectrum into distinct clusters,
originated by separate sources. The time frequency representation of the input
signal is considered as an unknown fuzzy mixture of energy components be-
longing to a certain number of single sources. The clustering of energy patterns
is performed by introducing a spectral masking function which decomposes the
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spectrum into active areas, to be associated to single sources. The decomposed
spectrum is then modeled by HT'C source models. The spectral masking func-
tion and the HTC model parameters are the unknown variables which have
to be estimated. This is made through an Expectation-Maximization (EM)
algorithm, which is composed mainly of two steps: in the first, the masking
function is estimated with fixed model parameters; in the second step, the
masking function is fixed and the model parameters are estimated. These
operations are repeated until the unknown variables converge to a stationary
value.

The system is evaluated against some excerpts of Real World Computing
(RWC) database. This dataset provide PCM audio signals and correspond-
ing reference MIDI which, however, need a careful alignment with the audio
spectrogram, in order to act as a faithful ground truth reference on a frame
by frame based evaluation. Accuracy rates, reported separately for eight au-
dio tracks, vary from 61.2% to 81.2%. The system has been also evaluated in
the MIREX 2007 framework, reporting an accuracy of 33.6% for the frame by
frame multiple F'0 estimation task and F-measure of 9% in the mixed set note
tracking task. An improved version was submitted to MIREX 2009, achieving
good results in both tasks: a frame by frame F0 estimation accuracy of 49%
(task 1) and a F-measure of 31.9% for note tracking (task 2, 1% ranked).

Vincent, Bertin and Badeau - 2008

Vincent, Bertin and Badeau have proposed a system based on Non-negative
Matrix Factorization (NMF) [VBBOR]. By using this technique, the observed
signal spectrogram (V') is decomposed into a weighted sum of basis spectra
(contained in H) scaled by a matrix of weighting coefficients (IW):

Y =WH.

Since the elements of Y are non-negative by nature, the NMF method approx-
imates it as a product of two non-negative matrixes, W and H.

The system at issue uses a family of constrained NMF models, where each
basis spectrum is a sum of narrow-band spectrum (scaled by a model function
of the spectral envelope) containing partials at harmonic or inharmonic fre-
quencies. This assures that the estimated basis spectra are pitched at known
fundamental frequencies; such condition is not always guaranteed if standard
NMF models are applied without any of these constraints.
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The input signal is first pre-processed to obtain a representation similar to
the Short-time Fourier Transform, by performing an ERB-scale representation.
Then, the parameters of the models are adapted by minimizing the residual
loudness after applying the NMF model: the linear parameters (amplitude
sequence, envelope coefficients) are multiplicatively updated, while the other
nonlinear parameters (tuning and inharmonicity factors) are updated via a
Newton-based optimizer. Pitches, onsets and offsets of detected notes are
transcribed by simply thresholding the amplitude sequence.

Evaluation was conducted on a dataset of 43 Yamaha Disklavier piano
excerpts. Standard NMF method is compared with the proposed constrained
model. The former reaches an overall F-measure of about 74%, the latter
reaches a maximum F-measure of 87% (harmonic-fixed method). The system
has been also evaluated in the MIREX 2007 framework: the two submitted
versions reached average accuracies of 46.6% and 54.3% in the task 1 (multi-F0
estimation over 10 ms frames) and an average F-measure of 45.3% and 52.7%
in the task 2 (note tracking).

Chang, Yeh, Roebel et al. - 2008

In this method [YRRT08], instantaneous spectra are obtained by FFT analysis.
A noise level estimation algorithm is applied to enhance the peaks generated
by sinusoidal components (produced by an unknown number of audio sources)
with respect to noise peaks. Subsequently, a matching between a set of hy-
pothetical sources and the observed spectral peaks is made, by using a score
function based on the following three assumptions: spectral match with low in-
harmonicity, spectral smoothness and synchronous amplitude evolution. These
features are based on physical characteristics generally showed by the partials
generated by a single source.

Musical notes tracking is carried out by applying a high order hidden
Markov model (HMM) having two states: attack and sustain. This is a prob-
abilistic framework aimed at describing notes evolution as a sequence of states
evolving on a frame by frame basis. The goal is to estimate optimal note
paths and the length of each note trajectory. The connection weights among
the different states are calculated in the forward tracking stage; candidate best
trajectories are estimated iteratively in the backward stage, by extracting most
likely paths between recorded roots and leaves. Finally, the source streams are
obtained by pruning the candidate trajectories, in order to maximize the like-
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lihood of the observed polyphony.

The system has been evaluated within the MIREX 2007 framework, and
improved versions were submitted to MIREX 2008 and MIREX 2009 contests.
Best multiple F0 estimation accuracy of 69% has been achieved in 2009 running
(1% ranked in task 1): this is currently the highest accuracy reached in all the
MIREX editions for the first task. Best performance in the note tracking task
was reached in 2008 edition, with an F-measure of 35.5% (1 ranked).

Pertusa and Inesta - 2008

The algorithm proposed by the authors performs a multi F'0 estimation, key
and tempo detection on a frame by frame basis [PIn08]. Short time Fourier
Transform is applied to the input signal. F0 candidates are extracted from
each frame spectrum by amplitude thresholding. Then all the possible com-
binations of candidates are considered, and a salience factor is associated to
each combination. The salience is computed by considering the loudness of the
harmonic pattern of each F'0 candidate, and the smoothness of the harmonics
amplitude; to calculate the smoothness factor, each harmonic patter is low-
pass filtered using a truncated normalized Gaussian window. The combination
with the best salience (calculated as the product of loudness and smoothness,
summed for each candidate) is considered the winner chord in the actual frame.

The dataset for evaluation is generated with random mixtures of different
music samples, for a total of 4000 chords, and polyphony of 1, 2, 4 and 6 voices.
Test results yield an overall accuracy (which corresponds, in the paper, to the
standard F-measure) of 56.2%. The system was also evaluated in MIREX
2008 (and a previous version participated also in 2007 edition), reporting a
maximum accuracy of 61.8% in the 2008 first task (MFOE) and a maximum
F-measure of 27.7% in the 2007 second task (NT).

Yeh, Roebel and Rodet - 2010

Yeh and Roebel combined the F'0 trajectories tracking method, described in
[YRRT08], with the candidate FO extraction algorithm proposed in [YRRT0].
The system takes into account the sinusoids plus noise model of the musical
polyphonic signal. A Rayleigh distribution is used to model the noise spectral
content, and to separate from signal content before multi-pitch estimation
process. The multi- F'0 estimation is carried on by posing a set of F'0 hypotheses
on the basis of spectral and perceptual features. Candidate F'Os are classified
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into two groups: harmonically related FOs (HRFOs) if they are multiple of
other candidate frequency values, non- harmonically related FOs (NHRFOs)
otherwise. NHRFOs are the candidates for predominant pitch extraction and
harmonic content extraction. HRFO0Os undergo a partial overlap treated, and
also a polyphonic inference is added to estimate the number of concurrent
voices. Finally, a score function merges all these combinations of hypotheses,
features and estimates to extract the detected notes.

2.3 General Review and Discussion

From this review some general aspects concerning music transcription systems
can be gathered. Automatic transcription of polyphonic music is to be consid-
ered as a conjunction of several tasks, which can be accomplished jointly or by
using dedicated procedures. From this point of view, a modular architecture
seems to be the most robust approach for a problem solution. Such construct
perfectly matches with Martin’s idea of a blackboard architecture [Mar96al.
Many researchers still believe that signal processing strategies are a funda-
mental basis, although such strategies, as widely demonstrated, can provide
better results if they work jointly with other a priori knowledge sources. This
statement recalls the parallel between perceptual and brain abstraction levels
in human cognition process.

While human perceptual approach to music has been successfully stud-
ied and implemented through the Computational Auditory Scene Analysis
(CASA), knowledge at higher levels of abstraction is more difficult to be coded
into an computational framework, since it must be consistent with experience,
and it often needs training to avoid misleading or ambiguous decisions. Such
knowledge is commonly represented by all those models which aim at repro-
ducing human capabilities in features extraction and grouping (e.g., harmony
related models, musical key finding etc.). The experience of a well-trained
musician can be understood as a greatly flexible and deep network of state-
machine like hints, as well as complex matching procedures.

Review of music transcription systems in literature suggest that time-
frequency representation (usually performed through short-time Fourier trans-
form) of the signal is the most used front end, upon which pitch estimation and
onset /offset detection strategies can be applied. Multi resolution spectrogram
representation (obtained by using constant-Q or wavelet transform) seems to
be, in our opinion, the most suitable, since it fits properly the exponential
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spacing of note frequencies, and it also reduces computational load to achieve
the desired time/frequency resolution. Auditory model based front ends have
been largely studied and applied in the 90s; however, the interest toward this
approach has decreased. Time domain techniques are becoming more and
more infrequent, since they have provided poor performances in polyphonic
contexts. Temporal information, however, is a relevant feature which has been
used, joined with frequency analysis, to retrieve information about partials
tracking [BDS06].

About pitch estimation strategies, the largely adopted class of spectral
content peak-picking based algorithms has revealed to be not sufficient to
achieve satisfactory transcription accuracies. Actually, amplitude threshold-
ing in the spectrum domain, as well as simple harmonic pattern matching,
leads to frequent false positive detection, if no other knowledge is applied.
For this reasons, alternative thresholding methods have been investigated, for
instance with variable, frequency-dependent amplitude thresholds [ESO6]. A
large variety of models has been proposed for spectral analysis, and it is not
easy to find out if which is the best approach among the others. The most
used techniques in recent literature are: Nonnegative Matrix Factorization
[SBO3], [Vir07], [VBBOR|, Hidden Markov Models [Rap02], [RK05], [YRRTOR],
Bayesian models [KNKTY5], [GD02], [GDI0G], [DDO7], generative harmonic
models [CKBOG], and the use of jointed frequency and time information.

Onset detection is often devolved upon detecting rapid spectral energy over
time. Techniques such as the phase-vocoder based functions, applied to audio
spectrogram, seem to be more robust with respect to peak-picking algorithms
performed upon the signal envelope. Offset detection is still considered as of
less perceptual importance. Statistical frameworks offer an interesting perspec-
tive in solving discontinuities in joint time-pitch information, typically yielded
by lower processing levels techniques. On the contrary, other devices that usu-
ally reach a deep level of specialization, like neural networks, are more suitable
for particular areas or subsets of automatic transcription; actually this kind
of tools is often trained at recognizing specific notes or at inferring particular
instrumental models [Mar(1].

In conclusion, as a key point for future work, we can assert that model based
integration seems to be an area definitely more amenable to new solutions, with
respect to signal processing field. We expect that the increasing progress and
improvements in computational processing will allow to build more refined
systems, with a higher parallelism degree and a joint involvement of a greater
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number of techniques.
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Chapter 3

Constant-() Bispectral Analysis

The bispectrum belongs to the class of Higher-Order Spectra (HOS, or polyspec-
tra), used to represent the frequency content of a signal. An overview of the
theory on HOS can be found in [Bri65], [NM93] and [NR87]. The bispectrum
is defined as the third-order spectrum, being the amplitude spectrum and the
power spectral density the first and second-order ones, respectively.

Previous studies on bispectral representation of audio signal have been pro-
posed: Dubnov and associates made use of the bispectrum in order to extend
the research on musical timbre, sound textures [Dnh396], and instrument clas-
sification and clustering [[DT95] [DTCY5]. In these works it is shown that the
content of bispectral analysis of a musical signal is strongly related to the har-
monicity measure of concurrent sounds: all natural sustained vibration sounds
contain small bandwidth random fluctuations (jitter) in the frequencies of their
components. These fluctuations are random but coherent for all partials of a
single sound. This aspect seems to be at the basis of the psycho-acoustic pro-
cess according to which the human inner ear system is able to perceive separate
sounds in a polyphonic mixture. Abeysekera has proposed a method for poly-
phonic pitch extraction based on the frequency-lag distribution, derived from
the bispectral analysis [Ahe(4].

3.1 The Bispectrum

Let z(k), k = 0,1,..., K — 1, be a digital audio signal, modeled as a real,
discrete and locally stationary process. The nth order moment, m?, is defined
[NM33] as:

me (71, oy Too1) = E{x(k)x(k+71)...x(k+ 7h-1)},
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where EY{- } is the statistical mean. The nth order cumulant, ¢, is defined
[NM93] as

C(Try ey Tno) =M (T, ooy Tie1) — mf(ﬁ, e Tall),

where m&(ry,..., 7, 1) are the nth-order moments of an equivalent Gaussian
sequence having the same mean and autocorrelation sequence as z(k). Un-
der the hypothesis of a zero mean sequence z(k), the relationships between
cumulants and statistical moments up to the third order are:

= E{z(k)} =0,

c5(m) = m3(m) E{x k—l—ﬁ)}

& (r, 1) =mi(r, 1) = E{z(k)z(k + m)z(k + 1) }. (3.1)

The nth-order polyspectrum, denoted as S¥(fi, fa, ..., fn-1), is defined as
the (n—1)-dimensional Fourier transform of the corresponding order cumulant,
that is:

Sz(fl,fg,...,fn 1 Z Z 7'1,72,...,Tn_1)

T1=—0O0 Tn—1=—00

exp < —712r(fimi + foro + ...+ fn—lTn—1)>~

The polyspectrum for n = 3 is also called bispectrum. It is also denoted as:

B.(f1, f2) = S5(f1, f2) = Z Z 5 (T, To)e I gmImS2T2 (3.2)

T1=—00 T2=—00

3.1.1 Relevant properties of the bispectrum

The bispectrum is a bivariate function representing some kind of signal-energy
related information, as more deeply analyzed in the next section. In Figure B,
a contour-plot of the bispectrum of an audio signal is shown. The bispectrum
presents twelve mirror symmetry regions:

By(f1; f2) = Ba(fo, [1) = Bo(=f2, = f1) = Bo(=f1 = fa, f2) =
= Bx(fb _fl - f2) = B:I:(_fl - f27f1) = Bx(f% _fl - f2)
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Hence, the analysis can take into consideration only a single non redundant
bispectral region [CE94]. Hereafter, B,(f1, f2) will denote the bispectrum in
the triangular region 7 with vertices (0,0), (fs/2,0) and (fs/3,fs/3), i.e., T =
{(fl, fo) :0< fo < f1 < %,fQ < =2f1 + fs}, which is depicted in Figure B,
where f, is the sampling frequency.

Bispectrum
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Figure 3.1: Contour plot of the magnitude bispectrum, according to Equation
(83), of the trichord Ff3(185 Hz), D,(293 Hz), B4(493 Hz) played on an
acoustic upright piano and sampled at f; = 4 kHz. The twelve symmetry
regions are in evidence (clockwise enumerated), and the one chosen for analysis
is highlighted.

It can be shown [NMY3] that the bispectrum of a finite-energy signal can
be expressed as:

Ba(f1, f2) = X(fO)X (f2)X*(fr + f2), (3.3)

where X (f) is the Fourier Transform of x(k), and X*(f) is the complex con-
jugate of X(f).
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As in the case of power spectrum estimation, the estimations of the bis-
pectrum of a finite random process are not consistent, i.e., their variance does
not decrease with the observation length. Consistent estimations are obtained
by averaging either in the time or in the frequency domain. Two approaches
are usually considered, as described in [NMY3].

The indirect method consists of: 1) the estimation of the third-order mo-
ments sequence, computed as temporal average on disjoint or partially overlap-
ping segments of the signal; 2) estimation of the cumulants, computed as the
average of the third-order moments over the segments; 3) computation of the
estimated bispectrum as the bidimensional Fourier transform of the windowed
cumulants sequence.

The direct method consists of: 1) computation of the Fourier transform over
disjoint or partially overlapping segments of the signal; 2) estimation of the
bispectrum in each segment according to (B33) (eventually, frequency averaging
can be applied); 3) computation of the estimated bispectrum as the average
of the bispectrum estimates in each segment.

Finally, an interesting property involving higher spectra and gaussian pro-
cesses. Consider a generic signal y(k):

y(k) = (k) +w(k) with k € N

composed by the sum of two independent processes: a non-gaussian contribute,
x(k), which can be considered more specifically as a deterministic signal, and
a gaussian contribute w(k). Under these assumptions:

¢, =0 Vn > 2,

that is, all cumulant spectra of order greater than two are identically zero
for gaussian additive processes. Therefore, a signal transform in the bispec-
trum domain suppress additive colored Gaussian noise of unknown power spec-
trum. For these reasons, cumulant spectra can become high signal-to-noise
ratio (SNR) domains in which one may perform detection, parameters estima-
tion, features extraction or even signal reconstruction [NMY3].

3.2 Constant-Q Analysis

The estimation of the bispectrum according to (B33), involves computing the
spectrum X (f) on each segment of the signal. In each octave, twelve semitones
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need to be discriminated: since the octave spacing doubles with the octave
number, the requested frequency resolution decreases when the frequency in-
creases. For this reason, a spectral analysis with a variable frequency resolution
is suitable for audio applications.

The constant-Q analysis [Bro91], [DKBNOG| is a spectral representation
that properly fits the exponential spacing of note frequencies. In the constant-
Q analysis, the spectral content of an audio signal is analyzed in several bands.
Let N be the number of bands and let

Spectrum
Analyzer >
Filter & Spectrum
Decimate Analyzer >
Filter & Spectrum
Decimate Analyzer —>
Filter & }
Decimate
(a)
Hann > Fourier
> Window Transform
Spectrum Analyzer
Lowpass
Fiter [ i 2 >

Filter & Decimate

(b)

Figure 3.2: Octave Filter Bank: (a) building block of the tree, composed
by a spectrum analyzer and by a filtering/downsampling block; (b) blocks
combination to obtain a multi-octave analysis.
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where f; is a representative frequency, e.g., the highest or the center frequency,
of the ith band and B; is its bandwidth. In a constant-() analysis, we have
Q:=Q,1=1,2,...,N, where () is a constant.

A scheme that implements a constant-(Q) analysis is illustrated in Figure B2.
It consists of a tree structure, shown in Figure BZ(a), whose building block,
shown in Figure BZ(b), is composed of a spectrum analyzer block and by a
filtering /downsampling block (low-pass filtering and downsampling by a factor
two). The spectrum analyzer consists in windowing the input signal (Hann
window with length Ny samples for each band has been used) followed by a
Fourier transform that computes the spectral content at specified frequencies
of interest. The low-pass filter is a zero-phase filter, implemented as a linear-
phase filter followed by a temporal shift. Using zero-phase filters allows us
to extract segments from each band that are aligned in time. The nominal
filter cutoff frequency is at w/2. Due to the downsampling, the Ny-samples
long analysis window spans a duration that doubles at each stage. Therefore,
at low frequencies (i.e., at deeper stages of the decomposition tree), a higher
resolution in frequency is obtained at the price of a poorer resolution in time.

3.3 Constant-(Q) Bispectral Analysis for Poly-
phonic Pitch Detection

In order to better explain the interaction of harmonics generated by a mixture

of sounds, we first focus on the application of the bispectral analysis to exam-

ples of monophonic signals, and then some examples of polyphonic signals are
considered.

3.3.1 Monophonic signal
Let x(n) be a signal composed by a set H of four harmonics, namely H =

{f17f27f37f4}7 fk =k- fla k= 273747 i'e'a
4
z(n) =Y 2cos(2rfin/f,),
k=1

X(f) = 0(f + o),

k=1
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where constant amplitude partials have been assumed. According to (833), the
bispectrum of x(n) is given by

Be(n,112) = X (1) X (n2) X* (1 +12) =

_ (gam £ 5) (gm =) (;5("1 bt )

When the products are developed, the only terms different from zero that
appear are the pulses located at (f, f;), with f, fi such that fr. + f; € H.
Hence, we have:

By(ni,m2) = 6(m £ f1)0(n2 £ f1)6(m + n2 + fo)
+6(m £ f1)0(n2 £ f2)0(m +n2 £ f3)
+0(m £ f1)0(n2 £ f3)0(m +n2 £+ fa)
+(m £ f2)d(n2 £ f1)0(m +n2 £ f5)
+6(m & f2)0(n2 £ f2)0(m + 02 £ fa)
+0(m £ f3)0(n2 £ f1)0(m + 12 £ fa).
Note that peaks arise along the first and third quadrant bisector thanks to the

fact that fo = 2f; and f; = 2f5. By considering the non-redundant triangular
region 7 defined in Section BT, the above expression can be simplified into:

By(m,m2) = 0(m — f1)o(n2 — f1)d(m +m2 — fa)
+6(m — f2)d(n2 — f1)0(m +n2 — f3)

(3.4)
+0(m — f3)0(n2 — f1)0(m +n2 — fa)
+0(m — f2)0(n2 = f2)0(m + m2 — fa).
Equation (B4) can be generalized to an arbitrary number 7' of harmonics as
follows:
|T/2] T—p
Bo(i,me) = Y 02— £,) > 000 — f)00n + 12— forg). (3.5
p=1 q=p

This formula shows that every monophonic signal generates a bidimensional
bispectral pattern characterized by peaks positions

T

{(fis fo), (figas i) (freis fi) 1 i = 1,2, LEJ- (3.6)

Such a pattern is depicted in Figure B23 for a synthetic note at a fundamental
frequency f; = 131 Hz, with T'= 7 and T' = 8. The energy distribution in
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Figure 3.3: Bispectrum of monophonic signals (note C3) synthesized with (a)
T =7 and (b) T'= 8 harmonics.
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the bispectrum domain is validated by the analysis of real world monophonic
sounds. Figure B4 shows the bispectrum of a C4 note played by an acoustic
piano and a G5 note played by a violin, both sampled at f; = 44100 Hz. Even if
the number of significant harmonics is not exactly known, the positions of the
peaks in the bispectrum domain confirm the theoretical behavior previously

shown.
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Figure 3.4: Bispectrum of (a) a C4 (261 Hz) played on a upright piano, and of
(b) a G3 (196 Hz) played on a violin (bowed). Both sounds have been sampled
at 44100 Hz.

3.3.2 Polyphonic signal

Consider the simplest case of a polyphonic signal: a bichord. Accordingly with
the linearity of the Fourier Transform, the spectrum of a bichord is the sum
of the spectra of the component sounds. From Equation (B33), it is clear that
the bispectrum has a non-additivity nature. This means that, the bispectrum
of a bichord is not equal to the sum of the bispectra of component sounds, as
described in next section. In order to be more specific, two examples, in which
the two notes are spaced by either a major third or a perfect fifth interval, are
considered; such intervals are characterized by a significant number of overlap-
ping harmonics. Figures B35-(a) and B3-(b) show the bispectrum of synthetic
signals representing the intervals C3 — F5 and C'3 — (3, respectively. For each
note, ten constant-amplitude harmonics were synthesized. The top row plots in
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Figures B3-(a) and B3-(b) demonstrate the spectrum of the synthesized audio
segments, from which the harmonics of the two notes are apparent. Overlap-
ping harmonics, e.g., the frequencies 5i - Fo,, = 4i - Fp,, for the major third
interval, with 7 an integer, can not be resolved. In Figure B8, the bispectrum
of a real bichord produced by two bowed violins, playing the notes Az (220
Hz) and D, (293 Hz), is shown. The interval is a perfect fourth (characterized
by a fundamental frequencies ratio equal to 4:3, corresponding to a distance
of 5 semitones in the well-tempered scale), so that each third harmonic of D,
overlaps with each fourth harmonic of As. Both in the synthetic and in the
real sound examples, the patterns relative to each note are distinguishable,
apart from a single peak on the quadrant bisector. In the next section, the
bispectrum of polyphonic sound is theoretically treated, together with some
examples. In particular, the cases regarding polyphonic signals with two or
more sounds have been considered. In the case of bichords, one of the most in-
teresting cases, being a perfect fifth interval, since it presents a strong partials
overlap ratio. In this case, the analysis of residual coming from the difference
of the real bispectrum of the bichord signal with respect to the linear compo-
sition of the single bispectra of concurrent sounds, has been performed. The
formal analysis has demonstrated that the contributions of this residual are
null or negligible for proposed multi-F'0 estimation procedure. This theoretical
analysis has been also confirmed by the experimental results, as shown with
some examples. Moreover, the case of trichord with strong partial overlapping
and a high number of harmonics per sound has confirmed the same results.

3.4 A Polyphonic Pitch Detection Case Study

In this section, the bispectrum of a bichord is theoretically treated, together
with some examples. In particular, the cases regarding polyphonic signals
with two or more sounds have been considered. In the case of bichords, one
of the most interesting cases, being a perfect fifth interval, since it presents
a strong partials overlap ratio. In this case, the analysis of residual coming
from the difference of the real bispectrum of the bichord signal and the linear
composition of the single bispectra of concurrent sounds, have been performed.
The formal analysis has demonstrated that the contribution of this residual are
null or neglectable for multi- F'0 estimation procedure. This theoretical analysis
has been also confirmed by some experimental results. Moreover, the case of
trichord with strong partial overlapping and a high number of harmonics has
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while they overlap in the spectral representation.
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confirmed the same results.

3.4.1 Bispectrum of a polyphonic signal: a bichord

The behavior of the bispectrum for a polyphonic signal is now analyzed. Let
us to recall the spectrum (positive frequencies only) of a generic monophonic
sound with fundamental frequency fy:

Z 3(f—kfo),  kfoeH,

-----

where H is the set of harmonics of the sound, consisting of P partials, fy
included: H = {fo,2f0,3f0,---, (P —1)fo, Pfo}.

Consider now, as an example and without loss of generality, two syn-
thesized sounds, S; and Sy, each one composed by five partials, so that:
H, = {f01,2f01,3f01,4f01,5f01} and Hy = {f02,2f0273f02,4f02,5f02}- The
generated spectra are denoted as X;(f) and Xs(f), respectively. Accordingly
with the linearity of the Fourier Transform, let X (f) = X;(f) + X2(f) be the
spectrum of the polyphonic signal S, composed by the mixture of S; and S,.
Under these assumptions, the bispectrum of the polyphonic signal, computed
with the direct method (defined by Equation B33) can be expressed as follows:

Bis(fi, f2) = X([O)X (L)X (i + fo) =
(X000 + Xa(0) (2) + Xa(h2) ) (Xi (i o) + Xl 1)) =
Xi(fO)Xa(f2) X7 (f1 + fo) + Xa(f1) Xo(f2) X7 (f1 + fo)+
Xo(f)Xa(f)XT(fir + fo) + Xo(f1) Xo(f2) X7 (f1 + fo)+
Xi([)Xa(f2)X5(f1 + [2) + Xa(f1) Xa(f2) X5 (fr + fo)+
Xo(f1)Xa(f2) X5 (f1 + fo) + Xo(f1) Xa(f2) X5 (f1 + fo).

(3.7)

3.4.2 Analysis of Bispectrum nonlinearity

The first and the last terms of the sum in Equation B2 are equal to By(f1, f2)
and Bs(f1, f2), which denote the bispectra associated to signals S; and S,
respectively. The bispectrum is not linear, actually:

Bia(f1, f2) # Bi(f1, f2) + Ba(f1, f2)-

o1
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Let Baisr(f1, f2) be the difference of the three terms By 5(f1, f2), Bi(f1, f2) and
B2(f17 f2)3

Bdiff(flafZ) =B12(f1,f2) B1(f1,f2) B2(f1,f2):

1(f)Xo(f)XT (1 + fo) + Xo(f1) Xa (f2) XT(f1 + f2)+
2([1)Xo(f)XT(fr + fo) + Xa(fO) Xa(f2) X3 (1 + fo)+
1(f1)Xa2(f2) X3 (fr + fo) + Xo(f1) Xa (f2) X5 (1 + f2)-

Let us analyze each term of the sum in Equation B, in order to better
understand the behavior of By;ss(f1, f2). The first term yields:

I><

(3.8)

e

Xy (1) Xo(f)XT (1 + f2) = Z S(fr = kfor) Z 0(f2 = 1foz)
""""" (3.9)

Z O(fr+ fa— mfm) H,

,,,,, 1,2,1}
kfo € Hy,lfo2 € Hy,mfo € Hy.

The product H{17271} is not null only if each term of the product itself is
not null. Concerning the first two terms, this happens when f; = kfy; (that is,
when f; takes the value of any of the partials belonging to H;) and, similarly,
when fo = [fpe. This involves that, considering the third term, the entire
product is non-zero only when it exists at least an integer value m such that
mfor = kfor + lfoe (where k,1 = 1,...,5 and mfy; € Hy). To satisfy this
condition, it is necessary (but not sufficient, depending on the length of H;
and Hs) that the sounds present overlapping partials; a sufficient condition is
that the two harmonic series, H; and Hs, share at least one frequency value.

As an example: consider two sounds, with harmonic sets H; and H,, gener-
ate a perfect fifth interval (which presents a very strong partials overlap ratio);
this implies that 2 fp2 = 3 fo1. Under these conditions, the contribute of || (121}
would be non-zero only for the following couples:

(for, 2f02); (2fo1,2f02),

with fo1+2fo2 = for+3fo1r = 4fo1 € Hy and, similarly, 2 fo, +2fo2 = 5fo1 € H;.
It is worthy to notice that these two couples are located in the upper triangular
region of the plane (f1, f2), above the first quadrant bisector, and so they
are outside the non-redundant region considered in the computation of the
bispectrum (see Section Bl and Figure Bl). For this reason, the contribute of
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[T(12.1) to Baigs(f1, f2) is zero in this context. This analysis can be generalized
for all the terms of the sum in Equation BX, as reported in the following.
Considering the second term of the sum in Equation B=:

Xo(f)Xa (L)X (fr 4 f2) = Y 0(fi—kfw) D 0(fa—1fo)

k=1,...,5 =1,...,5

ST 6t fo-mfa)= ][ .

m=1,...,5 {2,1,1}
kfo2 € Hz,lfor € Hi,mfo1 € Hy.
The term J[y,, y is non-zero only if exist at least an integer values m such

that mfor = kfoa + Ufor (where k,l = 1,...,5 and mfy € H;). Following
the example of the two sounds generating a perfect fifth interval, this happens

(3.10)

only for the couples of frequencies:

(2f027 fOl) (2f02> 2fOl)

As it can be noticed, this is the symmetric case of H{1,2,1}7 with respect to the
first quadrant bisector, and in this circumstance these points are inside the non-
redundant region considered for bispectrum computation. Therefore, [] (211}
is not null in this domain; however, Bi(fi, f2) also generates nonnull values in
correspondence of these two couples, in the equivalent form of (3 fo1, fo1) and
(301, 2fo1) (see Equation B5). For this reason, [],; , does not generate any
additional peaks in the (f1, fo) plane; the only effect is to add an amplitude
contribute to bispectral peaks generated by By (f1, f2) at the same positions in
the (f1, f2) plane. At the end of these considerations we will show that these
contributes can be considered not relevant in the computation of normalized
2-D cross-correlation, within the multi- F'0 estimation procedure.
Consider now the third term in equation B=:

Xo(f)Xa(f) X (fr+ fo) = Z 0(fr—kfo2) > 0(fa—1fo2)

=1,...,5

Z S(fi+ fo—mfu) = []

m=1,...,5 {2.2,1}
kfo2 € Ha,lfo2 € Hoy,mfon € Hy.

II (2.2,1} 18 ON-ZETO only if exist at least an integer value m such that mfy; =
kfoo + 1 foo (where k1 =1,...,5 and mfo; € Hy). In our example, such a case
occurs for the couple (foz2, fo2), actually:

fo2 + fo2 = 3fo1 € Hi.

(3.11)
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This shows that ] (221} only adds an amplitude contribute to a bispectral
peak originated by Bi(f1, f2) at the same position in the (f1, f2) plane, without
generating any additional peaks.

Consider the fourth term in equation B=S:

Xy ()X (f)X5(fr+ f2) = Y 6(fr = kfor) 0(f2 = Lfon)

k=1,..5 I=1,..,5

Z 0 fi+ fo— mfoz) H,

m=1,...,5 {1,1,2}
kfor € Hi,lfn € Hi,mfo2 € Ho.

II (1,12} 18 nON-ZETO only if exist at least an integer value m such that m fopo =
kfor+1for (where k,l=1,...,5and mfy, € Hy). In our example, this happens
for the following couples of frequencies:

o (fo1,2f0), actually for + 2fn = 2foe € Ho.
o (fo1,5f01), actually fo1 + 5fo1 = 4fo2 € Ho.

o (2fo1,4f0), actually 2fo1 + 4 for = 4fo2 € Ha.

These three couples are outside the non-redundant region considered for

(3.12)

bispectrum computation; [] (11,2} 1s not null only in correspondence of the
following couples, which are the symmetric ones of the three ones listed above
(with respect to the first quadrant bisector):

® (2fo1, fo1); this adds an amplitude contribute to the bispectral peak gen-
erated by Bi(f1, f2) at the same position in the (fi, fo) plane;

o (5fo1, for) and (4 fo1, 2fo1); in correspondence of these two couples, H{LLZ}
gives origin (in this particular case) to two additional peaks in the bispec-
trum: they represent an extension to the five harmonics 2-D monophonic
pattern of the sound at pitch fy; (according to equation BH). The rea-
son why Bi(f1, f2) does not generate peaks in correspondence of these
two couples is that the considered harmonic set H; is composed by five
partials.

Consider the fifth term in equation B=3:
Xi(f)Xo(L)X5(Fr+ ) = D 6(fi—kfa) D> 6(f2— 1)

k=1,..5 I=1,..,5

Z O(fi+ fo—mfo) = H,

m=L1,...,5 {1,2,2}

(3.13)
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kfor € Hi,lfo2 € Ho,mfo2 € Ho.

I (12,2} 1s non-zero only if exist at least an integer value m such that m fop, =
kfor+1foo (where k,l =1,...,5 and mfyp, € Hy). In our example, this happens
for the following couples of frequencies:

e (3fo1, foo) and (3fo1,2f02), in correspondence of which [], ,,, adds an
amplitude contribute to the bispectral peaks generated by Ba(f1, f2) in

(2fo2, foz) and (2fo2, 2 fo2);

e (3fo1,3f02), which is outside the non-redundant region considered in the
computation of the bispectrum.

Consider, finally, the sixth term in equation B==:

Xo(f) X0 (L) X5 (fr+ f2) = Y 0(fi = kfon) Z 3(f2 = Lfon)

k=1,...,5 I=1,...

Z O(fi+ fo— mf02) H7

m=1,...,5 {2,1,2}

(3.14)

kfo2 € Ha, lfn € Hi,mfo2 € Ho.

As it can be noticed, this is the symmetric case of the previous [ (122} with
respect to the first quadrant bisector. Therefore, [] (212} is non-zero only
when exist at least an integer value m such that mfos = kfoo + [ fo1 (where
k,l=1,...,5 and mfyp € Hy). In our example, this happens for the following
couples of frequencies:

e (fo2,3f01), which is outside the boundaries of non-redundant region con-
sidered in the computation of the bispectrum;

® (2f02,3f01) and (3fo2,3fo1), in correspondence of which [], , ,, adds an
amplitude contribute to the bispectral peaks generated by Ba(f1, f2) in
(202, 2f02) and (3 foz, 2fo2).

Eventually, let us to remember that we have illustrated an example in which
the two interfering sounds present a strong partials overlap ratio. For a generic
synthesized bichord, the contribute of Bgy;rs(f1, f2) gains more relevance with
the increasing number of partials in the harmonic sets of the sounds, and with
the increasing partials overlap ratio. In the other cases, when the two sounds
don’t share the value of any of their partials within their harmonic sets, the
value of By;ff(f1, f2) is zero.

95



CHAPTER 3. CONSTANT-Q BISPECTRAL ANALYSIS

3.4.3 An empirical example: a synthesized bichord

A graphical example could be useful to illustrate in a clearer way this argu-
mentation. In Figure B, the contour plot of the bispectrum of a synthesized
5 harmonics bichord: Cy — Gy (Cy @ for = 261.63 Hz, G4 : foo = 392 Hz),
which forms a perfect fifth interval; then in Figure B the contour plot of the
sum of the bispectra of Cy and G4 is shown. In Figure BZ, the monophonic
2-D patterns of the two sounds are distinguishable, and also the two additional
peaks generated by the contribute of the product [ (11,2} located at (5 fo1, fo1)
and (4 fo1,2f01), which appear to have a smaller amplitude.

Contour Plot of Magnitude Bispectrum Bn,z;(fffz) forC4—G4 bichord

900
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Figure 3.7: Contour plot of the bispectrum of synthesized bichord Cy — Gjy.

Dealing with real sounds, it is impossible to quantify the amplitude con-
tribute given by each single term present in By rs(f1, f2), if the number of
partials and their amplitude model is not known in advance for each concur-
rent sound. For this reason, it is difficult to perform a general qualitative
analysis. On the other hand, it is possible to evaluate the normalized 2-D
cross-correlations between both By o(f1, f2) and Bi(f1, f2) + Ba(f1, f2) with a
2-D pattern, equivalent to the one used in the multi-F'0 estimation procedure
which is the core of the system described in this PhD. Thesis. The results of
the two normalized 2-D cross-correlation (denoted as pp,, and pp,4+p,) and
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Contour Plot of Magnitude Bispectrum Bf(ff,f2)+52(f1,f2) for C4 and G4
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Figure 3.8: Contour plot of the bispectrum of synthesized bichord Cy — Gj.

the array obtained by subtracting pp, , and pp, +5,, are shown in Figure B.

It can be noted that there are no relevant differences between the two
cases (in Figure B, bottom part reporting the difference, the y-axis scale
has been enlarged to make difference array more readable). Moreover, the
same normalized 2-D cross-correlation for other two synthesized sounds has
been calculated with the same pitch by using 10 harmonics instead of 5. This
operation was made in order to show that the contribute of By;rs(f1, f2) would
not affect significantly the values of 2-D correlation (and, therefore, the results
of multi-F0 Estimation procedure) with increasing number of partials. The
results are shown in Figure B10.

3.5 Comparison of multi-F'0 estimation proce-
dures

In this section, an example of multi-F'0 Estimation procedure step-by-step,

carried out by the transcription system presented in this work. The results

are compared with those obtained by a transcription method performing an
iterative 1-D pattern matching in the spectrum domain, and subsequent direct
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2D Cross-Correlation Comparison for synthesized C,-G, bichord (5 harmonics)
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Figure 3.9: Comparison of normalized 2-D cross-correlation for 5-harmonics
synthesized bichord Cy-Gy4, and the difference of them (with a different scale).
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2D Cross-Correlation Comparison for synthesized C -G, bichord (10 harmonics)
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Figure 3.10: Comparison of normalized 2-D cross-correlation for 10-harmonics
synthesized bichord Cy-Gy4, and the difference of them (with a different scale).
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cancelation of the harmonic pattern of estimated notes. The audio input source
is a real signal taken from the RWC database, analyzed in a single frame for
the purpose of the example. In the processed frame, notes G, D, and B, are
playing, corresponding to MIDI notes 43, 62 and 71, respectively. These notes
present a significant partials overlapping. Actually, denoting the fundamental
frequencies as fo1, foo and fo3, respectively, they stay in the following ratios
each other:

5
Joz = 3fo; Jos = 5for; Jos = §f02~
These ratios are approximated, in the frequency-log scale adopted in our sys-
tem (following the well-tempered scale) with distances of 19, 28 and 9 semi-

tones.
In Figure B, the amplitude spectrum and bispectrum before the F0

estimation process are presented.

RWC17 .wav - audio frame # 1191

L T = T T T T =

i Magnitude Spectrum |

Nomalized Amplitude

f2 (MIDI note)

o] O S —_ . -

£ T 5 20D B PRe
10 | | | | | | |
40 50 60 70 80 90 100 110
f1 (MIDI note)

Figure 3.11: Amplitude spectrum and bispectrum of audio signal before Multi-
FO estimation.

In next Figures (Figure BT2 and B.3) a direct comparison between both
the multi-F'0 estimation procedures is depicted, by plotting the normalized
1-D and 2-D cross-correlations for each step.
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It should be noted that, the 2-D bispectral correlation is much clearer
than the 1-D spectral correlation. As stated in the following (see section B3
in next chapter regarding the system architecture), denoting the normalized
2-D cross-correlation as p(f1, f2), if a monophonic sound has a fundamental
frequency corresponding to index ¢ in the discrete log-frequency array, then
the maximum of p(fi, f2) is expected to be found at (g,q). For this reason,
the cross-correlation is computed only for f; = fo = ¢, that is only upon the
points belonging to the first quadrant bisector.

Moreover, comparing Figure BT2 and B3, it can be observed that af-
ter Step 1 (in which the lowest note Gs is correctly identified by both the
algorithms), the 2-D pattern matching method (in the bispectrum domain)
succeeds in correctly estimating all the other reference pitches. On the other
hand, the direct cancelation of spectral G5 pattern (in the 1-D F0 estimation
method) deletes some coinciding partials of the two higher sounds, including
the fundamental frequencies of both D, and G4, as shown in Figure BT4.

In general, the bispectral representation cannot help to resolve the underly-
ing components of interfering partials; while it is the mechanism of extraction
of the 2-D monophonic pattern of G5 in the proposed bispectrum-based al-
gorithm which allows keeping critical information about the peak positions of
the other sounds harmonic 2-D patterns, which are:

<f027 2f02)7 (2f027 2f02); <f037 2f03)-

In conclusion, the system performing the iterative 2-D pattern matching
and pattern extraction in the bispectrum domain successfully identifies all
the three notes played in the audio source file. The system performing the
iterative 1-D pattern matching and direct cancelation of the pattern in the
spectrum domain identifies only the lowest note, G5, and commits two false
positive errors, due to the removal of partials of the higher sounds in the direct
cancelation procedure.
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Step by step estimation of multiple F 0 using a spectral 1D Pattern Matching
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Figure 3.12: Step by step multi- F'0 estimation procedure with iterative spectral
1-D pattern matching and direct cancelation technique. The dots identify the
notes played in the audio source signal.).
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Step by step estimation of multiple Fo using a bispectral 2D Pattern Matching
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(below).
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Chapter 4

System Architecture

In this section, a detailed description of the proposed method for music tran-
scription, presented in [ANPTIH] is given. First a general overview is given,
then the main modules are discussed in detail.

4.1 General Architecture

A general view of the system architecture is presented in Figure E0. In the
diagram, the main modules are depicted (with dashed line) as well as the
blocks composing each module.

The transcriptor accepts as input a PCM Wave audio file (mono or stereo)
as well as user-defined parameters related to the different procedures. The
Pre-Processing module carries out the implementation of the constant-Q
analysis by means of the Octave Filter Bank block. Then, the processed signal
enters both the Pitch Estimation and Time FEvents Estimation mod-
ules. The Pitch Estimation module computes the bispectrum of its input,
perform the 2-D correlation between the bispectrum and a harmonic-related
pattern, and estimate candidate pitch values. The Time FEvents Estima-
titon module is devoted to the estimation of onsets and durations of notes.
The Post-Processing module discriminates notes from very short-duration
events, seen as disturbances, and produces the output files: a SMF0 MIDI file
(which is the transcription of the audio source) and a list of pitches, onset
times and durations of all detected notes.
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Music Transcription System Architecture
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4.2 The Pre-Processing module

The input PCM signal x(k) enters the Pre-Processing module, where it is
converted into a numerical array and segmented into fixed length frames by
the Signal Gather block. The length of the time-domain analysis window W,
in number of samples, is specified by the user. The Signal Gather block also
calculates the energy of each frame as follows:

Wi—1
Ep=\| Y a2(mW,+i), mel0,....M—1],
i=0
where m = 0,1,..., M —1, is the index over frames and M is the total number

of frames in which the audio file is divided, given by M = [Ty.:/(Ws/f5)],
denoting with T}, the total time length of the audio file expressed in seconds.
In order to discriminate notes from silence or ground noise, E,, is compared
against an energy threshold, which is set to the first frame energy, where
absence of a signal is assumed. Only frames with energy higher than the
threshold are passed to the Octave Filter Bank block.

The Octave Filter Bank (OFB) block performs the constant-Q analysis
over a set of octaves whose number N, is provided by the user. The block
produces the spectrum samples - computed by using the Fourier transform -
relative to the nominal frequencies of the notes to be detected in each octave. In
order to minimize detection errors due to partial inharmonicity or instrument
intonation inaccuracies, two additional frequencies aside each nominal value
have been considered as well. The distance between the additional and the
fundamental frequencies is +2% of each nominal pitch value, which is less
than half a semitone spacing (assumed as approximately +3%); the maximum
amplitude among the three spectral lines is associated with the nominal pitch
frequency value. Hence, the number of spectrum samples that is passed to
the successive blocks for further processing is N, = 12 N, where 12 is the
number of pitches per octave.

As an example, consider that the OFB accepts an input signal sampled at
fs=44100 Hz and consider that ideal filters, with null transition bandwidth,
are used. The outputs of the first three stages of the OFB tree cover the ranges
(0,22050)Hz, (0,11025)Hz, and (0,5512.5)Hz. The spectrum analysis works
only on the higher-half frequency interval of each band, whereas the lower-half
frequency interval is to be analyzed in the subsequent stages. Hence, with the
given sampling frequency, in the first three stages the octaves from Fy to E1q,
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from Fy to Eg, and from F; to Eg, in that order, are analyzed. In general,
in the ith stage, the interval from Fly, ,+1-; to En, .42, © = 1,2, ..., Nog, 18
analyzed.

In the case of non-ideal filters, the presence of a non-null transition band
must be taken into account. Consider the branches of the building block of the
OFB tree, shown in Figure B2-(b), the first leading to the spectral analysis
sub-block, the second to filtering and downsampling sub-block. Notes, whose
nominal frequency falls into the transition band of the filter, can not be resolved
after downsampling and must be analyzed in the first (undecimated) branch.
Useful low-pass filters are designed by choosing, in normalized frequencies, the
interval (0, ) as the passband, the interval (y 7, 7/2) as the transition band,
and the interval (7/2,7) as the stopband; the parameter v (v < 0.5) controls
the transition bandwidth.

Hence, the frequency interval that must be considered into the spectrum
analysis step at the first stage is (vfs/2, fs/2). In the second stage, the an-
alyzed interval is (vfs/4,7fs/2), and, in general, if we define fs(i) = f,/207D
as the sampling frequency of the input of the ith stage, the frequency inter-
val considered by the spectrum analyzer block is (apart from the first stage)
(v fs(i) /2,7 fs(i)). The filter mask H(w) and the analyzed regions are depicted
in Figure B2

Table B0 summarizes the system parameters we used to implement the
OFB. With the chosen transition band, the interval from Fy to F1 is analyzed
in the first stage, and the interval from Ey,_,+1-; to Din,.,+2-i, ¢ = 2,..., Noet,
is analyzed in the ith stage. At the end of the whole process, a spectral
representation from E) (at 41.203 Hz) to Eyo (at 21.096 kHz), sufficient to
cover the extension of almost every musical instrument, is obtained.

4.3 Pitch Estimation Module

The Pitch Estimation module receives as input the spectral information pro-
duced by the Octave Filter Bank block. This module includes the Constant-@Q)
Bispectral Analysis, the Iterative 2-D Pattern Matching, the Iterative Pitch
Estimation and the Pitch & Intensity Data Collector blocks. The first block
computes the bispectrum of the input signal at the frequencies of interest.
The [terative 2-D Pattern Matching block is in charge of computing the 2-D
correlation between the bispectral array and a fixed, bi-dimensional harmonic
pattern. The objective of the Iterative Pitch Estimation block is detecting the
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Figure 4.2: Filter mask and the analyzed regions.

Table 4.1: OFB specifications

Sampling frequency (f;) 44.1 kHz
Number of octaves (N,u) 9
Frequency range [40 Hz , 20 kHz]
Hann’s window length (Npg) 256 samples
FIR passband (0,0.46 )
FIR stopband (m/2,7)
FIR ripples (6; = 62) 1073

Filter length 187 samples
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presence of the pitches, and subsequently extracting the 2-D harmonic pat-
tern of detected notes from the bispectrum of the actual signal frame. Finally,
the Pitch € Intensity Data Collector block associates energy information to
corresponding pitch values in order to collect the intensity information.

4.3.1 Harmonic pattern correlation

Consider a 2-D harmonic pattern as dictated by the distribution of the bis-
pectral local maxima of a monophonic musical signal expressed in semitone
intervals. The chosen pattern, shown in Figure B=3, has been validated and re-
fined by studying the actual bispectrum computed on several real monophonic
audio signals. The pattern is a sparse matrix with all non-zero values (denoted
as dark dots) set to one. The Iterative 2-D Pattern Matching block computes

Distance in
semitones

19 o %)

12 O (@ O @
(@ O O O ) _
0 12 19 24 28 31 Distancein

semitones

Figure 4.3: Fixed 2-D harmonic pattern used in the validation tests of the
proposed music transcriptor. It represents the theoretical set of bispectral
local maxima for a monophonic 7-partials sound all weights are set equal to
unity.

the similarity between the actual bispectrum (produced by the Constant-Q
Bispectral Analysis by using the spectrum samples given by the Octave Fil-
ter Bank block) of the analyzed signal and the chosen 2-D harmonic pattern.
Since only 12N, spectrum samples (at the fundamental frequencies of each
note) are of interest, the bispectrum results to be a 12N, X 12N, array. The
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cross-correlation between the bispectrum and the pattern is given by:

Cp—1Rp—1

Pk k) = > > P(my,ma) |By(ky +ma, ks +ma)|, (4.1)

m1=0 mo=0

where 1 < ki, ky < 12N, are the frequency indexes (spaced by semitone
intervals), and P denotes the sparse Rp x Cp 2-D harmonic pattern array.
The p coefficient is assumed to take a maximum value when the template
array P exactly matches the distribution of the peaks of the played notes. If
a monophonic sound has a fundamental frequency corresponding to index gq,
then the maximum of p(kq, k) is expected to be positioned at (g, q), upon
the first quadrant bisector. For this reason, p(ki, k2) is computed only for
k1 = ky = ¢q and denoted in the following as p(q). The 2-D cross-correlation
computed in this way is far less noisy than the 1-D cross-correlation calculated
on the spectrum (as illustrated in the example in Appendix B). Finally, the p
array is normalized to the maximum value over each temporal frame.

The Iterative 2-D Pattern Matching block output is used by the [terative
Pitch Estimation block, whose task is ascertaining the presence of multiple
pitches in an audio signal.

4.3.2 Pitch Detection

(4a) - Recall on Spectrum Domain. Several methods based on pattern match-
ing in the spectrum domain were proposed for multiple-pitch estimation [KIa03,
KTa05, NAWQOT, BELWO7]. In these methods, an iterative approach is used.
First, a single F0 is estimated by using different criteria (e.g., maximum am-
plitude, or lowest peak-frequency); then, the set of harmonics related to the
estimated pitch is directly canceled from the spectrum and the residual is fur-
ther analyzed until its energy is less than a given threshold. In order not to
excessively degrade the original information, a partial cancelation (subtraction)
can be performed based on perceptual criteria, spectral smoothness, etc. The
performance of direct /partial cancelation techniques, on the spectrum domain,
significantly degrades when the number of simultaneous voices increases.

(4b) - Proposed Method. The method proposed in the present work and de-
scribed also in [ANPTIH]uses an iterative procedure for multiple FO estimation
based on successive 2-D pattern extraction in the bispectrum domain. Consider
two concurrent sounds, with fundamental frequencies F; and Fj, (F; < F},),
such that Fj, : F; = m : n. Let F,, = nF, = mF; be the frequency value of
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the first overlapping partial. Consider now the bispectrum generated by the
mixture of the two notes (as an example, see Figure BH). A set of peaks is
located at the same abscissa F,, that is at the co-ordinates (F,,, k;F;) and
(Fou, knFp), where ky =1,2,....m—1, k, =1,2,...,n — 1. Hence, the peaks
have the same abscissa but are separated along the y-axis. If, for example,
F; is detected as the first F'0 candidate, extracting its 2-D pattern from the
bispectrum does not completely eliminate the information carried by the har-
monic F, related to Fj, that is the peaks at (F,,, k,F}),) are not removed. On
the contrary, if F}, is detected as the first F'0 candidate, in a similar way the
peaks at (F,,, k;F;) are not removed. This is strongly different than in methods
based on direct harmonic cancelation in the spectrum, where the cancelation
of the 1-D harmonic pattern, after the detection of a note, implies a complete
loss of information about the overlapping harmonics of concurrent notes.
The proposed procedure can be summarized as follows:

1. Compute the 2-D correlation p(q) between the bispectrum and the chosen
template, only upon the first quadrant bisector:

Cp—1Rp—1

pl)= Y 3 Plmioma) |Bulg +mug +ma)l,  (42)

m1=0 m2=0

derived directly from Equation (E1);

2. Select the frequency value qq yielding the highest peak of p(q) as the
index of a candidate F0;

3. Cancel the entries of the bispectrum array that correspond to the har-
monic pattern having ¢ as fundamental frequency;

4. Repeat steps 1-3 until the energy of the residual bispectrum is higher
than OgEp, where g, 0 < 0 < 1 is a given threshold and Ep is the
initial bispectrum energy.

Once multiple F0 candidates have been detected, the corresponding energy
values in the signal spectrum are taken by the Pitch € Intensity Data Collector
block, in order to collect also the intensity information. The output of this
block is the array m(t,q), computed over the whole musical signal, where ¢
is the pitch index and t is the discrete time variable over the frames: (¢, q)
contains either zero values (denoting the absence of a note) or the energy of the
detected note. This array is used later in the Time Events Estimation module

72



CHAPTER 4. SYSTEM ARCHITECTURE

to estimate note durations, as explained in the next section. In Appendix
B, an example of multiple F'0 estimation procedure, carried out by using the
proposed method is illustrated step by step. Results are compared with those
obtained by a transcription method performing a 1-D direct cancelation of the
harmonic pattern in the spectrum domain. The test file is a real audio signal,
taken from RWC music database [GHNOO?], analyzed in a single frame.

In conclusion, the component of the spectrum at the frequency F,, is due to
the combination of two harmonics related to the notes F; and F},. According to
eq. (B33), the spectrum amplitude at Fy, affects all the peaks in the bispectrum
located at (F,,, ki F)) and (F,,, kpFy). Interference of the two notes occurring
at these peaks is not resolved; nevertheless, we deem that the geometry of the
bispectral local maxima is a relevant information that is an added value of
the bispectral analysis with respect to the spectral analysis, as experimental
results confirm.

4.3.3 Time Events Estimation

The aim of this module is the estimation of the temporal parameters of a
note, i.e., onset and duration times. The module is composed of three blocks,
namely the Time-Frequency Representation block, the Onset Times Detector
block, and the Notes Duration Detector block.

The Time-Frequency Representation block collects the spectral information
X (f) of each frame, used also to compute the bispectrum, in order to represent
the signal in the time-frequency domain. The output of this block is the array
X(t,q), where t is the index over the frames, and ¢ is the index over pitches,
1 <¢ < 12Npq.

The Onset Times Detector block uses the variable X (¢,q) to detect the
onset time of the estimated notes, which is related to the attack stage of a
sound. Mechanical instruments produce sounds with rapid volume variations
over time. Four different phases have been defined to describe the envelope of
a sound, that is Attack, Decay, Sustain and Release (ADSR envelope model).
The ADSR envelope can be extracted in the time domain - without using spec-
tral information - for monophonic audio signals, whereas this approach results
less efficient in a polyphonic context. Several techniques [BNOH], [Moo78],
[Dol0T] have been proposed for onset detection in the time-frequency domain.

tect rapid spectral-energy variations over time: this goal can be achieved either
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by simply calculating the amplitude difference between consecutive frames of
the signal spectrogram or by applying more sophisticated functions. The pro-
posed solution uses the Modified Kullback-Liebler Divergence function, which
achieved the best performance in [Bro06]. This function aims at evaluating the
distance between two consecutive spectral vectors, highlighting large positive
energy variations and inhibiting small ones. The modified Kullback-Liebler
divergence Dy (t) is defined by:

12Noct
~ [ X(,9)|
Dir(t) = ) log (1 + ,

where t € [2,...,M], with M the total number of frames of the signal; ¢
is a constant, typically e € [107%,1073], which is introduced to avoid large
variations when very low energy levels are encountered, thus preventing D (t)
to diverge in proximity of the release stage of sounds. Dy (t) is an (M — 1)-
element array, whose local maxima are associated with the detected onset
times. Some example plots of Dk (t) are shown in Figure B4,

The Notes Duration Detector block carries out the estimation of notes du-
ration. The beginning of a note relies on the Dy (¢) onset locations. The end
of a note is assumed to coincide with the release phase of the ADSR model and
is based on the time-frequency representation. A combination of the informa-
tion coming from both the functions X (¢, q) and 7 (¢, q) (the latter computed
in the Pitch Estimation module, see B232) is used, as described below. The
rationale for using this approach stems from the observation of the experimen-
tal results: m(t,q) supplies a robust but time-discontinuous representation of
the detected notes, whereas X (t,q) contains more robust information about
notes duration. The algorithm is the following:

For each ¢ such that 3r(¢,q) # 0 for some t, do:

1. Execute a smoothing (simple averaging) of array X (¢, ¢) along the t-axis;

2. Identify the local maxima (peaks) and minima (valley) of the smoothed
X(t,q);

3. Select from consecutive peak-valley points the couples whose amplitude
difference exceed a given threshold 0,,;

4. Let (Vi, P1) and (P», V3) be two consecutive valley-peak and peak-valley
couples that satisfy the previous criterion: the extremals (V7, V5) identify
a “possible note” event;
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Onset Times Detection: Modified KL Divergence on Audio Spectrogram
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Figure 4.4: Example of onset detection procedure: (a) 7 seconds extracted
from Mozart’s String Quartet n. 19, K465; (b) first 30 seconds of Mozart’s
Sonata for piano K331. 75
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5. For each “possible note” event, do:

(a) Estimate (Vi, V) C (V4, Va) such that (V;, V3) contains a given per-
centage of the energy in (V1, V3);

(b) Set the onset time ON7 of the note equal to the maximum of the
Dy (t) array nearest to Vi;

(c) Set the offset time OF Fr of the note equal to Va;

(d) If n(t,q), with ¢t € (ONy,OF Fr) contains non-zero entries, then
a note at the pitch value ¢, beginning at ONy and with duration
OF Fr - ONr is detected.

4.4 System Output Data

The Post-Processing module tasks are the following. First, a cleaning op-
eration in the time-domain is made in order to delete events having a duration
shorter than a user defined time tolerance parameter Tror. Then, all the in-
formation concerning the estimated note is tabulated into an output list file.
These data are eventually sent to a MIDI Encoder (taken from the Matlab®
MIDI Toolbox in [ET04]), which generates the output MIDI SMFO file, pro-
vided that the user defines a tempo value Tgp)s, expressed in beats per minute.
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Experimental Results and
Validation

In this section, the experimental tests that have been set up to assess the
performances of the proposed method are described. First, the evaluation
parameters are defined. Then, some results obtained by using excerpts from
the standard RWC-C database are shown, in order to highlight the advantages
of the bispectrum approach with respect to spectrum methods based on direct
pattern cancelation. Finally, the results of the comparison of the proposed
method with others participating at the MIREX 2009 contest are presented.

5.1 Evaluation parameters

In order to assess the performances of the proposed method, the evaluation
criteria that have been proposed in MIREX 2009, specifically those related to
the multiple F0 estimation (frame level and F'0 tracking), were chosen.

The evaluation parameters are the following [PEQ7]:

e Precision: the ratio of correctly transcribed pitches to all transcribed
pitches for each frame, i.e.,

TP

Prec— — —+
T TP Ep

where TP is the number of the true positives (correctly transcribed

voiced frames) and F'P is the number of false positives (unvoiced note-
frames transcribed as voiced).
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e Recall: the ratio of correctly transcribed pitches to all ground truth
reference pitches for each frame, i.e.,

TP

Ree = 5 7N

where F'N is the number of false negatives (voiced note-frames tran-
scribed as unvoiced).

e Accuracy: an overall measure of the transcription system performance,

given by
TP

T TP+FN+FP

Acc

e [-measure: a measure yielding information about the balance between
FP and FN, that is

Prec x Rec

F-measure =2 X ——.
Prec + Rec

5.2 Validation of the proposed method

5.2.1 Experimental data set: RWC database

The performances of the proposed transcription system have been evaluated by
testing it on some audio fragments taken from the standard RWC - Classical
Music database. The sample frequency is 44.1 kHz and a frame length of 256
samples (which is approximately 5.8 ms) have been chosen.

For each audio file, segments containing one or more complete musical
phrases have been taken, so that the excerpts have different time lengths. In
Table b1, the main features of the used test audio files are reported. The set
includes about 100000 one-frame-long voiced events.

The musical pieces were selected with the aim of creating an heterogeneous
dataset: the list includes piano solo, piano plus soloist, strings quartet and
strings plus soloist recordings. Several metronomic tempo values were chosen.

The proposed transcription system has been realized and tested in Matlab®
environment installed on a dual core 64-bit processor 2.6 GHz with 3 GB of
RAM. With this equipment, the system performs the transcription in a period
which is approximately fifteen times the input audio file duration.
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# Author Title Catalog Number Instruments
Data RWC-MDB

(1) J.S. Bach Ricercare a 6, BWV 1079 C-2001 n. 12 2 Vns, Vc

(2) W. A. Mozart String Quartet n. 19, K 465 C-2001 n. 13 Vn, Vla, V¢, Cb

(3) J. Brahms Clarinet Quintet, op. 115 C-2001 n. 17 Cl, Vla, Vc

(4) M. Ravel Ma Mere I’Oye, Petit Poucet C-2001 n. 23B Piano

(5) W. A. Mozart Sonata K 331, 1st mov. C-2001 n. 26 Piano

(6) C. Saint - Saéns Le Cygne C-2001- n. 42 Piano and Violin

(7) G. Fauré Sicilienne, op. 78 C-2001 n. 43 Piano and Flute

Table 5.1: Test data set from RWC - Classical database. Vn(s): Violin(s);
Vla: Viola; Ve: Cello; Cb: Contrabass; Cl: Clarinet

5.2.2 Comparison of bispectrum and spectrum based
approaches

In this section, the performances of bispectrum and spectrum based methods
for multiple F'0 estimation are compared. The comparison is made on a frame-
by-frame basis, that is every frame of the transcribed output is matched with
every corresponding frame of the ground truth reference of each audio sample,
and the mismatches are counted.

The proposed bispectrum based algorithm, referred to as BISP in the fol-
lowing, has been described in Section E=3. A spectrum-based method, referred
to as SP1 in the following, is obtained in a way similar to the proposed method
by making the following changes: 1) the bispectrum front-end is substituted
by a spectrum front-end; 2) the 2-D correlation in the bispectrum domain,
using the 2-D pattern in Figure 23, is substituted by a 1-D correlation in
the spectrum domain, using the 1-D pattern in Figure 1. Both bispectrum
and spectrum based algorithms are iterative and perform subsequent 2-D har-
monic pattern extraction and 1-D direct pattern cancelation, after an F0 has
been detected. The same pre-processing (constant-Q analysis), onset and du-
ration, and post-processing modules have been used for both algorithms. A
second spectrum-based method, referred to as SP2 in the following, in which
F0 estimation is performed by simply thresholding the 1-D correlation output
without direct cancelation, has been also considered.

The frame-by-frame evaluation method requires a careful alignment be-
tween the ground truth reference and the input audio. The ground truth
reference data have been obtained from the MIDI files associated to each au-
dio sample. The RWC-C database reference MIDI files, even though quite
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faithful, do not supply an exact time correspondence with the real audio exe-
cutions. Hence, time alignment between MIDI files and the signal spectrogram
has been carefully checked. An example of the results of the MIDI-spectrogram
alignment process is illustrated in Figure bl

The performances of algorithms BISP, SP1 and SP2 applied to the audio
data set described in section B2 are shown in Tables b2, bZ3 and b4. The
Tables show the overall accuracy and the F-measure evaluation metrics, as
well as the TP, FP and FN for each audio sample. A comparison of the results
is presented in Figure b2, and a graphical comparison between the output of
BISP and SP1 is shown in Figure b4. In Figure b33, a graphical view of the
matching between the ground truth reference and the system piano-roll output
representations is illustrated. The results show that the proposed BISP algo-
rithm outperforms spectrum based methods. BISP shows an overall accuracy
of 57.6%, and an F-measure of 72.1%. Since pitch detection is performed in the
same way, such results highlight the advantages of the bispectrum represen-
tation with respect to spectrum one. The results are encouraging considering
also the complex polyphony and the multi-instrumental environment of the
test audio fragments.

The comparison with other automatic transcription methods is described
in the next section, where the results of the MIREX 2009 evaluation framework
are reported.

[ # Data || Reference events [ TP | FP | FN [ Accuracy% | F-measure% |
(1) 16063 11025 2482 5038 59.4 74.6
(2) 6584 4401 2158 2223 50.1 66.8
(3) 12652 8865 2079 3787 60.2 75.1
(4) 12424 10663 2655 1761 70.8 82.8
(5) 6054 4120 1294 1934 56.1 71.8
(6) 20032 15122 6746 4910 56.5 72.2
(7) 21653 16563 9933 5090 52.4 68.8
[ TOTAL ] 95412 [ 70759 | 27347 [ 24743 [ 57.6% | 721% |

Table 5.2: BISP: transcription results obtained with the test data set listed in
Table B

5.2.3 Results from MIREX 2009

The Music Information Retrieval Evaluation eXchange (MIREX) is the community-
based framework for the formal evaluation of Music Information Retrieval
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Figure 5.1: Graphical view of the alignment between reference MIDI file data
(represented as rectangular objects) and the spectrogram of the corresponding
PCM Wave audio file (b). The detail shown here is taken from a fragment of
Bach’s Ricercare a 6, The Musical Offering, BWV 1079 (a), which belongs to
the test data set. 81
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[ # Data || Reference events [ TP | FP | FN [ Accuracy% | F-measure% |
(1) 16063 10348 6327 5715 46.4 63.2
(2) 6584 3216 2021 3318 38.0 54.6
(3) 12652 6026 8187 6626 29.0 44.9
(4) 12424 10363 3920 2061 63.8 77.6
(5) 6054 4412 4542 1642 42.0 58.8
(6) 20032 9952 7558 10080 36.2 53.0
(7) 21653 11727 9813 9926 37.4 54.3
[ TOTAL || 95412 | 56044 | 42368 [ 39368 || 40.7% | 57.8% |

Table 5.3: SP1: transcription results obtained with the test data set listed in
Table B

[ # Data || Reference events [ TP | FP | FN [ Accuracy% | F-measure% |
(1) 16063 10234 7857 5829 42.8 59.9
(2) 6584 2765 2243 3769 31.5 47.9
(3) 12652 6206 9590 6446 27.9 43.6
) 12424 9471 | 3460 | 2953 59.6 2%
(5) 6054 3642 3844 2412 36.8 53.8
(6) 20032 7769 6692 12263 29.1 45.0
(7) 21653 10399 8023 11254 35.0 51.9
[ TOTAL || 95412 [ 50486 | 41718 [ 44926 ]| 36.8% | 53.8% |

Table 5.4: SP2: transcription results obtained with the test data set listed in
Table b
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Figure 5.2: Results of comparison between bispectrum based (BISP) and spec-
trum based (SP1 and SP2) multi-F0 estimation methods. SP1 performs itera-
tive pitch estimation and harmonic pattern subtraction; SP2 performs simple
thresholding of cross-correlation measure.

(MIR) systems and algorithms [Dow(&]. In 2009, MIREX has reached its
fiftth running. The proposed BISP method has been submitted for an eval-
uation and a comparison with the other participants in the field of Multiple
Fundamental Frequency Estimation & Tracking, which is divided into the fol-
lowing tasks: 1) Multiple Fundamental Frequency Estimation (MFOE); 2A)
Mixed Set Note Tracking (NT); and 2B) Piano Only Note Tracking. Task 1
is a frame level evaluation (similar to that described in section B22) of the
submitted methods. Task 2 considers as events to be detected notes charac-
terized by pitches, onset and offset times. For a specific definition of tasks and
evaluation criteria, the reader should refer to [MIRE]. Two different versions
of the proposed system have been submitted to MIREX: they are referred to as
NPA1 and NPA2 as team-ID. The differences between the two versions regard
mainly the use of the Time Events Estimation module: NPA1 simply performs
a multiple- F'0 estimation without onset and duration times detection, whereas
NPA2 uses the procedures described in Section B=373. As a result, NPA2 has
reported better results than NPA1 in all the three tasks considered. A detailed
overview of the overall performance results is available at [MIRa], see section
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Figure 5.3: Graphical (piano-roll) view of event matching between the ground
truth reference and transcribed MIDI (b), related to Ravel’s Ma Meére I’Oye -
Petit Poucet (a), present in the test data set.
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BISP vs SP1 : Multi-Pitch Estimation Comparison
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Figure 5.4: Graphical comparison between piano-roll output of BISP and SP1,
and the reference ground truth data. The test audio example is a fragment of
the 3rd variation of Mozart’s Piano Sonata K 331.
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Multiple Fundamental Frequency Estimation and Tracking Results.

For Task 1 (MFOE), accuracy has been chosen as a key performance in-
dicator. The proposed system NPA2 is mid-level ranked, with an accuracy
of 48%; anyway, it presents the second highest recall rate (76%); this demon-
strates that the proposed system has a good capability in detecting ground
truth reference notes, showing a tendency in detecting more false positives
than false negatives. For Task 2A (Mixed Set NT) and Task 2B (Piano Ounly
NT), F-measure has been chosen as the overall performance indicator. In Task
2A, the proposed system NPA2 has achieved the third highest F-measure rate
and the second highest recall rate; again the precision rate show a quite high
false positive detection rate. In Task 2B, the proposed system NPA2 is top-
ranked, outperforming all the other competitors’ systems.

Results of MIREX 2009 are summarized in Figure b43.

86



CHAPTER 5. EXPERIMENTAL RESULTS AND VALIDATION
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Figure 5.5: Results of MIREX 2009 evaluation framework. The system pro-
posed in this work has been submitted in two different versions, referred to as
NPA1 and NPA2, from the name of the authors; (a) task 1: multi-F0 estima-
tion; (b) task 2A: Mized-set note tracking (NT); (c) task 2B: Piano-only note
tracking (NT).
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Chapter 6

Conclusions and Future Work

The automatic music transcription system described in this Thesis implements
a novel front-end, presented in [ANPTTH], obtained by a constant-Q bispectral
analysis of the input audio signal, which offers advantages with respect to lower
dimensional spectral analysis in polyphonic pitch estimation. In every frame,
pitch estimation is performed by means of a 2-D correlation between signal
bispectrum and a fixed bi-dimensional harmonic pattern, while information
about intensity of detected pitches is taken directly from the magnitude spec-
trum. Onset times are detected by a procedure that highlights large energy
variations between consecutive frames of the time-frequency signal representa-
tion. Such a representation is also the basis for note durations estimation: a
pitch against time representation of detected notes is compared with the audio
spectrogram; the duration of each detected note event in the former is adjusted
to the duration of corresponding event in the latter. All these data concerning
pitches, onset times, durations and volumes are tabulated and output as a
numerical list and a standard MIDI file is produced.

The capabilities and the performance of the proposed transcription system
have been compared with a spectrum based transcription system. The evalua-
tion data set has been extracted from the standard RWC - Classical database;
for this purpose the whole architecture has been left the most general as pos-
sible, without introducing any a priori knowledge. Standard parameters have
been used for validation. Our system successfully identified over 57% of voiced
events, with an overall F-measure of 72.1%. Finally, a comparison with other
methods have been made within the MIREX 2009 evaluation framework, in
which the proposed system has achieved good rankings: in particular, it has
been top ranked in the piano-only tracking task. The MIREX results show
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a very good overall recall rate in all the three tasks the proposed system was
submitted to.

The weakest aspect seems to be a still quite high false positive rate, which
affects the precision rate. This could be further improved with the introduction
of physical / musicological / statistical models, or any other knowledge that
may be useful to solve the challenging task of music transcription. The added
values of the proposed solution, with respect to the methods based on multi-F0
estimation via direct cancelation on the spectrum domain, are the less leakage
of information in presence of partial overlapping, and the computation of a
clearer 2-D cross-correlation which leads to stronger decision capabilities.

6.1 Guidelines for Future Work

The solution adopted and described in the present work is mainly based on
a signal representation technique which is quite novel for music transcription
systems, while it has been already applied for sound source separation, instru-
ment timbre modelling, classification and clustering. The Constant-Q bispec-
tral front end has revealed to be a robust front end for multi-pitch estimation,
outperforming traditional spectrum-based techniques.

In Section B272, an analysis of bispectrum nonlinearity behavior, with re-
spect to harmonic interactions retrieval, has been conducted. We believe that
further investigation in this direction could reveal the real advantages and ad-
ditional information hidden in the bispectral signal representation: additional
bispectral peaks, generated by nonlinear harmonic interactions, could be used
to map a richer tone patterns and instrumental models, maybe weighted by op-
portune coefficients or statistically treated in a modified model, at the expense
of a higher computational cost.

Sound source separation is an interesting field of research, which could be
used jointly with traditional pitch estimation and note tracking techniques.
Some experiments have been conducted [Oli0Y9] on the music transcription
system described in this work. Results of this experimentation have shown
good performance, for multi- F'0 estimation, of the constant-Q bispectral anal-
ysis jointly applied to a source separation algorithm; with higher degrees of
polyphony (4 voices or more), this method even improve estimation accuracy.
However, the source separation is not blind: the user has to specify the num-
ber of known sound sources, and this affects the black-box condition of the
proposed system. For the future, agnostic source separation techniques should
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be implemented to evaluate performance improvement.
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