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1 Introduction

For the specification of real-time system behaviour, the definition of temporal constraints amongst events and
actions is needed [1], [2], [3]: properties of invariance, precedence amongst events, periodicity, liveness and safety
conditions, etc. To this end, several different temporal logics with different degrees of expressiveness have been
proposed. Some of them are based on propositional logic — e.g., PTL, TPTL, RTTL, ITL ([3]). Others are
based on first or higher order logic — e.g., TRIO [4], MTL [5], interval temporal logic [6], TILCO [7].

According to [7], in which TILCO (Temporal Interval Logic with Compositional Operators) temporal logic
has been presented, only a few examples of quantitative temporal logics exist. In these cases, an operator
expressing the distance between time points is usually defined. First-order temporal logics that provide a
metric for time usually allow quantification over the temporal domain — e.g., RTL [8], MTL [9], TRIO [4] —
whereas a prohibition of this kind of quantification has been shown to be a necessary condition for the existence
of feasible automated verification mechanisms [10]. All these temporal logics are based on time points rather
than on intervals and provide a sharp distinction between past and future (e.g., MTL: G, H; TRIO: Past()
and Futr()). In contrast, TILCO does not allow the quantification over time, presents a uniform model for
time from past to future and unique operators for stating facts and events along the time axis [7], [11], [12].

The problem of executability of specifications given by means of temporal logics has often been misunderstood
with that of validation. The validation of a logic specification usually consists in proving high-level properties,
which are also given in the form of logical expressions, by means of theorem provers [13]. Other techniques are
based on the so-called history-checking [14]. In these cases, the time ordering is not satisfied, history-checking
is mainly oriented to validating specifications against off-line generated histories of system inputs and outputs.

There are at least three different definitions of executability [15]. According to concept of execution, which
is closer to that used in software engineering, the execution of a specification leads to the on-line production
of outputs on the basis of inputs and system status. Thus the time ordering of events must be satisfied with
real-time constraints. This concept of execution is quite far from that of validation since it is supposed that the
specification under execution is a verified and validated specification.

In this report, the TILCO-Executor algorithm for executing TILCO is presented. The meaning adopted
by TILCO-Executor for executability consists in using the specification itself as a prototype of the real-time
system, thus allowing, in each time instant, for the on-line generation of system outputs on the basis of current
inputs and internal state and inputs and outputs history. The algorithm is capable of executing a fragment of
TILCO specifications, and can be used for execution other first order temporal logics under similar restrictions.
In order to simplify the execution of TILCO specifications a Basic Temporal Logic (BTL) with a lower number
of operators has been introduced, this is capable of expressing all complex operators of TILCO. In the following
it is briefly described how to translate TILCO to BTL. Inference rules for BTL are presented and it is described
how to graphically represent the BTL specifications as Temporal Inference Networks, TIN. An algorithm for
executing temporal inference network is presented and the possibility of real-time execution is highlighted.
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2 Overview of TILCO

TILCO is a logic language which can be used to specify temporal constraints in either a qualitative or a
quantitative way. This allows both to define ordering relationships amongst events and to express durations
of facts by an absolute measure. A formalization of TILCO has been implemented in the theorem prover
Isabelle/HOL, together with a set of sound axioms and deduction tactics [7], to allow the automatic verification
of TILCO properties. Such properties can be expressed in TILCO, so the same language can be used to specify
both general requirements, detailed behaviour of real-time systems, specification and execution. TILCO includes
the concepts of typed variables and constants by providing a set of basic types and allowing the definition of
new types. Finally, causal propositional TILCO specifications are executable in real-time as shown in the rest
of the report.

2.1 TILCO Operators

TILCO’s temporal operators have been added to FOL by leaving the evaluation time implicit, so the meaning
of a TILCO formula is given with respect to current time. Time is discrete and linear and the temporal domain
is the set of integers �. The minimum time interval corresponds to one instant, the current time instant is
represented by 0 and positive (negative) numbers represent future (past) time instants.

The basic entity in TILCO is temporal interval, the boundaries of which can be either included or excluded
by using the usual notation with squared, (“[”, “]”) or round (“(”, “)”) brackets, respectively. Time instants are
regarded as closed intervals composed of a single point while symbols +∞ and −∞ can be used as boundaries
to denote infinite intervals. Thus, TILCO allows both the specification of facts on intervals and events in time
instants.

The basic TILCO temporal operators are:

• “@ ”, universal quantification (∀) over a temporal interval;

• “ ? ”, existential quantification (∃) over a temporal interval;

• “until”, to express that either a predicate will always be true in the future, or it will be true until another
predicate will become true;

• “since”, to express that either a predicate has always been true in the past, or it has been true since
another predicate has become true.

For instance, A@ i is true if formula A is true in every instant of the interval i with respect to the current time
instant. By denoting with t the current time instant, (A@ i)(t) ⇐⇒ ∀x ∈ i.A(t+x) holds. The (t) notation has
the purpose to put in evidence the formula evaluation instant and is omitted in the following, such as in several
other temporal logics. This approach is called implicit time and it is used for example in RTL and TRIO [3].

Similarly, until(A,B) is true when evaluated in t if B will always be true in the future with respect to t or
if B will be true in the interval (t, t+x) and A will be true in t+x with x > 0. This definition of until does not
require the occurrence of A in the future, so as to correspond to the weak until operator defined in PTL [16].
The operators until and since express the same concept for future and past, respectively, and can be used to
express ordering relationships amongst events.

Classical operators of temporal logic as eventually (�) and henceforth (�) can be easily obtained by using
TILCO operators with infinite intervals. TILCO can be regarded as a generalization of most of the interval
logics presented in literature[7], [3], with the addition of a metric for time. Tabable 1 provides some examples
of TILCO formulae, accompanied by an explanation of their meaning.

(A ? [0, t])@ [0,+∞) A will become true within t for each time instant in the future (response)
(A ⇒ B)@ [0, t] if A is true within t, then also B will be true at the same time
(A ⇒ (B ? i))@ j A leads to an assertion of B in i for each time instant of j
(A ⇒ (B @ i))@ j A leads to the assertion of B in the whole interval i for each time instant of j
(A ⇒ (B @ i)) ? j A leads to the assertion of B in the whole interval i in at least a time instant of j

Table 1: Examples of TILCO formulae
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3 From Specification to Execute of Temporal Logics

A TILCO specification is made of:

• a set of formulae which define system behaviour and temporal constraints (i.e., if the water level is over
the danger level for three time instants then the alarm has to be switched on);

• a set of input signals, typed variables representing information acquired from outside (i.e., water level,
temperature, etc.), the value of which can change due to external events;

• a set of output signals, typed variables representing information produced to outside (i.e., alarm enable,
pump speed, etc.), which can be forced to assume a value by some predicate through an assignment and
lead to a change in the external environment;

• a set of auxiliary signals/internal variables, typed variables representing the information processed inter-
nally and constituting the system state, which can be either read as input signals or forced to a value as
output signals.

System inputs, outputs and internal variables can assume only one value at each time instant.
A TILCO specification can be validated to verify whether it corresponds to the system requirements. System

validation is performed by proving that high-level desired properties, as safety or liveness, are satisfied by the
specification of the system on the basis of TILCO-Theory implemented on Isabelle/HOL theorem prover. These
properties can be expressed by means of other TILCO formulae, thus the same language is used to specify both
the system general requirements and its detailed behaviour as shown in [13]. If during the validation phase
it is found that a desired property cannot be deduced from the system specification, then the specification is
incomplete. If the property must be satisfied by the system and does not contradict the specified behaviour,
a new TILCO formula has to be added to the specification to express the wished property. This allows an
incremental system specification by theorem proving, with an absolute degree of confidence due to the support
of TILCO-Theory on Isabelle. This process of refinement ends when the detailed specification turns out to be
an implementation of the top-level specification.

In this context, executability means the capability to use the system specification itself as a prototype of
the real-time system, thus allowing, in each time instant, the on-line generation of system outputs on the
basis of present inputs and internal state. Given an interpretation Iin of input signals’ histories, to execute a
specification formula S formally means to deduce the interpretations Iout, Iaux of output and auxiliary signals’
histories which satisfy S by applying a set of inference rules which will be detailed later on. When this is
possible, the specification can be directly executed in real-time by means of TILCO-Executor without having
to translate it in a programming language.

In literature, there are only few executable temporal logics which can be used to build a system prototype.
The execution or simulation of logic specifications with the intent of producing system outputs in the correct
temporal order while meeting the temporal constraints is a quite difficult problem. The difficulty mainly depends
on the computational complexity of the algorithms proposed which makes their adoption for executing logic
specifications in real-time impossible. Usually, the computational complexity is O(Dh) where D is the domain
size of the nested quantifications which have been specified, for both time dependent and independent variables,
and h is number of these quantifications.

For the design and the implementation of a temporal logic executor, two aspects have been taken into
account:

• the definition of an executable semantics for common temporal logic operators based on time instant,
intervals, event ordering, etc.;

• the definition and implementation of an algorithm based on the adopted semantics and allowing real-time
execution of the specification.

According to these aspects it has been decided to adopt a minimum number of temporal logic operators,
those strictly necessary to implement at higher level the TILCO language.

The temporal logic executor presented in this report, called TINX (Temporal Inference Network eXecutor),
can execute specifications in a Basic Temporal Logic, BTL, which can be used to automatically rewrite TILCO
propositional logic specifications by using simple rules. FOL specifications involving quantifications on finite
domains can be rewritten in propositional logic and thus in BTL.
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4 Basic Temporal Logic

Basic Temporal Logic (BTL) is a propositional logic with And (∧), Or (∨) and with the Delay (∂) operator,
where a true/false value is associated to each signal for each time instant.

The BTL syntax is the following:

formula := signal | ¬signal |
formula ∧ formula | formula ∨ formula |
∂ formula | ∂kformula | (formula)

As can be noted from the syntax the ¬ operator can be applied only to signals and not to complex formulae.
Moreover, a BTL formula can be evaluated at an instant t with @ operator or asserted on the whole temporal
horizon:

assertion := formula @ t | ¬formula @ t | � formula

where F @ t means that formula F is true at time instant t, ¬F @ t means that formula F is false at time
instant t and � F means that formula F is always true.
The operators are inductively defined in the following way:

(¬A)@ t ⇐⇒ ¬(A)@ t

(A ∧ B)@ t ⇐⇒ A@ t ∧ B @ t

(A ∨ B)@ t ⇐⇒ A@ t ∨ B @ t

(∂ A)@ t ⇐⇒ (∂1 A)@ t

(∂k A)@ t ⇐⇒ A@ (t − k)

A BTL specification is a formula always true.

4.1 TILCO in BTL

TILCO temporal operators can be easily translated into BTL by using the following formulas:

A@ [m,M ] ⇐⇒
M∧

i=m

∂
−i A,

A ? [m,M ] ⇐⇒
M∨

i=m

∂
−i A,

until(A,B) ⇐⇒ A ∨ (B ∧ ∂
−1 until(A,B)),

since(A,B) ⇐⇒ A ∨ (B ∧ ∂
1 since(A,B)).

In order to automatically translate a TILCO formula to BTL some steps are needed. As a first step, the ⇒
and ⇐⇒ operators are translated by using the following rewriting rules:

A ⇒ B 	→ ¬A ∨ B

A ⇐⇒ B 	→ (A ⇒ B) ∧ (B ⇒ A)

after that, the ¬ operator has to be propagated down to the signals using by the following rewriting rules:

¬(A ∧ B) 	→ ¬A ∨ ¬B

¬(A ∨ B) 	→ ¬A ∧ ¬B

¬(¬A) 	→ A

¬(A ? i) 	→ ¬A@ i

¬(A@ i) 	→ ¬A ? i
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Since there is no rule to propagate ¬ operator for until and since, the ¬until and ¬ since operators are
translated by using the following properties:

¬until(¬A,¬B) ⇐⇒ A ∧ (B ∨ ∂
−1 ¬until(¬A,¬B))

¬ since(¬A,¬B) ⇐⇒ A ∧ (B ∨ ∂
1 ¬ since(¬A,¬B))

Moreover, since the ¬until and ¬ since operators generally are not in the form needed to use these properties,
the following rewite rules can be used:

¬until(A,B) 	→ ¬until(¬(¬A),¬(¬B))
¬until(¬A,B) 	→ ¬until(¬A,¬(¬B))
¬until(A,¬B) 	→ ¬until(¬(¬A),¬B)
¬ since(A,B) 	→ ¬ since(¬(¬A),¬(¬B))

¬ since(¬A,B) 	→ ¬ since(¬A,¬(¬B))
¬ since(A,¬B) 	→ ¬ since(¬(¬A),¬B)

Whereas @ and ? operators can be simply substituted by equivalent BTL expressions, the BTL definition of
since and until is recursive and thus requires the introduction of new literals. For example, TILCO formula:

A ? (−3, 0) ∧ since(A,¬B) ⇒ until(A,B)

after ⇒ substitution and ¬ propagation becomes:

¬A@ (−3, 0) ∨ ¬ since(¬(¬A),¬B) ∨ until(A,B)

then the substitution of the temporal operators (@ ,¬ since,until) is made, leading to the BTL formula:

((∂−2 ¬A ∧ ∂
−1 ¬A) ∨ nsince ∨ until) ∧

(¬nsince ∨ (¬A ∧ (B ∨ ∂ nsince))) ∧
(nsince ∨ (A ∨ (¬B ∧ ∂ ¬nsince))) ∧
(¬until ∨ (A ∨ (B ∧ ∂

−1 until))) ∧
(until ∨ (¬A ∧ (¬B ∨ ∂

−1 ¬until)))

where signals nsince and until have been introduced to represent the ¬ since and until formulae.

5 Temporal inference with BTL

An inference process produces new information by applying inference rules to known facts. These rules gener-
ally are composed of an antecedent which represents the condition to be satisfied, and the consequent which
represents the new information inferred.
For example:

(A ∧ B)@ t � A@ t, B @ t

is an inference rule which states that if A ∧ B is true at time t then the fact that A and B are true at time t
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can be inferred. The inference rules chosen for BTL are the following:

(A ∧ B)@ t � A@ t, B @ t ↓ 
¬(A ∧ B)@ t, A@ t � ¬B @ t ↓ ⊥
¬(A ∧ B)@ t, B @ t � ¬A@ t ↓ ⊥

¬A@ t � ¬(A ∧ B)@ t ↑ ⊥
¬B @ t � ¬(A ∧ B)@ t ↑ ⊥

A@ t, B @ t � (A ∧ B)@ t ↑ 
(A ∨ B)@ t,¬A@ t � B @ t ↓ 
(A ∨ B)@ t,¬B @ t � A@ t ↓ 

¬A@ t,¬B @ t � ¬(A ∨ B)@ t ↑ ⊥
¬(A ∨ B)@ t � ¬A@ t,¬B @ t ↓ ⊥

A@ t � (A ∨ B)@ t ↑ 
B @ t � (A ∨ B)@ t ↑ 

(∂kA)@ t � A@ (t − k) ↓ 
¬(∂kA)@ t � ¬A@ (t − k) ↓ ⊥

A@ t � (∂kA)@ (t + k) ↑ 
¬A@ t � ¬(∂kA)@ (t + k) ↑ ⊥

l @ t � ¬(¬l)@ t → ⊥
¬(l)@ t � (¬l)@ t → 
(¬l)@ t � ¬(l)@ t → ⊥

¬(¬l)@ t � l @ t → 
This set of rules have been classified in the following classes:

↓  rules which propagate the truth from a parent formula to a child formula;

↑  rules which propagate the truth from a child formula to a parent formula;

↓ ⊥ rules which propagate the falseness from a parent formula to a child formula;

↑ ⊥ rules which propagate the falseness from a child formula to a parent formula;

→  rules which propagate the falseness of a signal to truth of the complementary signal;

→ ⊥ rules which propagate the truth of a signal to falseness of the complementary signal;

It should be noted that for all operators, after applying a ↑ rule, a ↓ rule cannot produce new knowledge. For
example if A@ t is true then rule A@ t � (A∨B)@ t (↑  rule) can be applied and if ¬B @ t is true then from
(A∨B)@ t,¬B @ t � A@ t (↓  rule) can be found that A@ t is true, but it was already known. Moreover if we
consider all the ⊥ expressions at a given time instant these were not found using ↓ ⊥ rules. This can be proved
by considering that all the a priori information not associated to a signal is known true (the specification) and
the application of a ↓ ⊥ rule after a ↑ ⊥ one does not produce any new knowledge. For this reason this kind of
rules can be dropped. Also the ↑  rules are not needed since to their result cannot be applied a ↑ ⊥ rule (the
rule produces a  while this rule needs a ⊥) nor a ↓  rule (no new information can be inferred), only another
↑  rule can be applied but this rules will never produce new knowledge about a signal. For this reason also
the ↑  rules have been dropped. As a result also the →  rules have been dropped since their result could be
used only with ↑  rules which are nomore present.

Therefore, the final set of inference rules for BTL is:

(A ∧ B)@ t � A@ t, B @ t ↓ 
¬A@ t � ¬(A ∧ B)@ t ↑ ⊥
¬B @ t � ¬(A ∧ B)@ t ↑ ⊥

(A ∨ B)@ t,¬A@ t � B @ t ↓ 
(A ∨ B)@ t,¬B @ t � A@ t ↓ 

¬A@ t,¬B @ t � ¬(A ∨ B)@ t ↑ ⊥
(∂kA)@ t � A@ (t − k) ↓ 

¬A@ t � ¬(∂kA)@ (t + k) ↑ ⊥
l @ t � ¬(¬l)@ t → ⊥

(¬l)@ t � ¬(l)@ t → ⊥
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5.1 A graphical view of temporal inference

Given a BTL specification, a graphical view of the formula can be built from its syntax tree. For each operator
the corresponding component presented in Figure 1 can be used.

A B

A      B

A B

A      B

k

A

A∆

S S

Joint Gate Delay
signal

Positive
signal

Negative
true

Always

Figure 1: The basic components

For example formula: �(∂ ¬s ∧ s ⇒ up)

states that signal up is true if at the previous time instant signal s was false and now s is true. This formula
is not written in BTL since there is the imply (⇒) operator, but it can be translated to BTL by using the
presented rewriting rules: �(∂ s ∨ ¬s ∨ up)

The syntax tree of this formula is depicted in Figure 2.

S

S

up

1

Figure 2: Syntax tree of up

A direction can be associated with the arcs connecting a parent to a sub-tree, either from the parent to
the sub-tree if the sub-expression is true or from the sub-tree to the parent if the sub-expression is false. This
association depends on the evaluation time instant, thus for each time instant different arc directions may exist.
For instance, in the up example, the fact that s is known false at time t is represented by an arrow from the s
signal to the delay component. Moreover, since the always operator means that the expression is always true
there is also an arrow from the always component to the gate as depicted in Figure 3. With the association of
true/false with the arc direction, the inference rules reported in the previous section can be represented in a
graphical way, see Figure 4 where the black arrows represent the antecedents of the rules and the white arrows
the consequents.

When returning to the up example, an arrow from the delay to the parent gate can be drawn at the following
time instant by applying rule (D2) to the presented configuration. If at this time instant signal s is true, an
arrow from the ¬s component to its parent gate can be added. At this point, rule (G3) can be applied to draw
an arrow from this gate to the upper one. Since the always component imposes an arrow from it to the upper
gate then rule (G1) can be applied to draw an arrow from the gate to the up signal that can be interpreted
as up being true. This is correct since s is true and it was false at the previous time instant. This deduction
sequence is depicted in Figure 5. The inference rules can be applied also to the case in which up signal is known
false and s signal is known true: the fact that s has to be true at the previous time instant can be derived by
using these rules.
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S

up

1

S

Figure 3: The up example, arrow configuration

6 Temporal inference networks

A temporal inference network is built from the syntax tree of a specification by applying the simplifications
reported in Figure 6 to eliminate the � component. Simplifications (1a) and (1b) are based on the following
properties:

∀t.(A ∧ B)@ t ⇐⇒ (∀t.A@ t) ∧ (∀t.B @ t),
∀t.(∂kA)@ t ⇐⇒ (∀t.A@ (t − k)) ⇐⇒ (∀t.A@ t),

which permit the propagation of � to the lower levels.
Simplification (1c) has been derived by considering the two ↓  inference rules of ∨ operator:

(A ∨ B)@ t,¬A@ t � B @ t

(A ∨ B)@ t,¬B @ t � A@ t

When (A∨B)@ t is true for all t, if sub-expression A is false then B is true. Thus, if there is an arrow from
A to the gate then there is an arrow from the gate to B, and the same property holds in reverse order (from
B to A), as reported in Figure 4. The same behaviour is accomplished by eliminating the � component and
directly connecting sub-tree A to sub-tree B.

Other substitutions to eliminate signal components are reported in Figure 7. Simplification (2a) permits to
substitute two signal nodes of the same type (either asserted or negated occurrences of the same signal) with
only one signal node, with the same behaviour. If the signal (asserted or negated) is false, an arrow is drawn
from the signal node to the joint node, and the application of rule (J1) permits to derive the correct directions
of arrows for the two connections. On the other hand if a signal (asserted or negated) is derived as true from
upper levels, the signal node is derived as true by using rule (J2) or (J3). This substitution rule allows to replace
all the signal nodes of the same type with only one signal node.

Simplification (2b) permits to substitute two complementary signal nodes (one asserted and one negated)
with a arc connecting its parents. In fact, an arrow from the asserted to the negated node can be drawn if the
signal is known true or in the opposite direction if it is known false. Moreover, if the signal is derived as true
then an arrow from the asserted parent to the negated one can be drawn or in the opposite direction if the
signal is derived as false. In this way a signal is represented in the network by an arc labeled both with the
signal name and with an arrow in the middle meaning the direction to be given when the signal is known true.

If for a signal s there are present only asserted or negated nodes then tautology (s∨¬s) has to be added to
the specification to allow the substitution for s. By applying these simplifications the resulting graph has only
the three basic types of nodes (joint, gate and delay), and can be executed by using the defined inference rules.

Since in the temporal inference network of the up example the signal up is present only as asserted, tautology
up ∨ ¬up has to be added to the BTL specification:

�((∂ s ∨ ¬s ∨ up) ∧ (up ∨ ¬up))

In the up left part of Figure 8 the syntax tree of this formula is reported, together with the steps showing the
application of the simplifications (1a, 1c, 2b, 2a, 2b).
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Joint

Gate

Delay

(J1) (J2) (J3)

(G1) (G3)(G2)

(D1) (D2)
Signals

(S1) (S2)
Always

(A1)

for every t

k

@t

k

@(t-k)

k

@t

k

@(t+k)

SSSS

Figure 4: Graphical inference rules

6.1 Sketch of the execution algorithm

A temporal inference network N is formally defined as:

N =< N, k, p, l, r >

where:

• N is the set of nodes;

• k : N → {∧,∨, ∂k} is a function which returns for each node its type;

• p : N → N is a function which returns for each node its parent;

• l : N → N is a function which returns for each node its left son;

• r : N → N is a function which returns for each node its right son;

An arrow from node n1 to node n2 of the network is represented as a couple (n1, n2), but at each time
instant the network can have different arrow directions, thus each arrow has a time instant. The fact that there
is an arrow from node n1 to node n2 at time t is represented by the 3-ple (n1, n2, t) or in a more readable way
(n1, n2)@ t. Such an element is also called an event.

The set T = [0, Tmax ] ⊂ � represents the temporal horizon. The known information of a network is a subset
of D = N × N × T , whereas the inference process can be seen as a sequence of subsets of D, Φ0 ⊂ Φ1 ⊂ . . . ⊂
Φn ⊆ D. The elements of Φk+1/Φk represent the new information which has been deduced from Φk by using
the inference rules or acquired from outside via inputs.

A general schema for the algorithm is:

repeat forever
acquire information from outside;
if there is information to be processed

select an event to be processed;
infer new events from the event selected;
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(D2) (G3)

(G3)

@(t+1)

up

1

S

(G1)

@(t+1)

up

1

S

@(t+1)

up

1

S

@t

up

1

S

S S

S S

Figure 5: The up example execution

end if
add new information (inferred or acquired)

to information to be processed;
end repeat

This process can be detailed in the following algorithm, where:

• Ω0 ⊂ D is the set of initial knowledge;

• ω() is a function which for each evaluation returns a subset of D representing information acquired from
outside;

• λ(e@ t, S) ⊂ D is a function which determines the events derivable from e@ t on the basis of knowledge
S ⊂ D;

• variable Φ ⊂ D is the set of available knowledge;

• variable ∆ ⊂ D is the set of acquired information which has not been processed yet;

• variable Ψ is the set of new knowledge found during current iteration.

Φ← Ω0; // initial info
∆← Ω0; // initial info which has to be processed
repeat forever
Ψ← ω() \ Φ; // acquire new info from outside
if ∆ �= ∅ then// if there is something to process...

choose e@ t ∈ ∆ with the minimum t;
Ψ← Ψ ∪ λ(e@ t, Φ \∆) \ Φ;

// determine the new info inferred by e@ t
∆← ∆ \ {e@ t};
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Simplification (1a):

Simplification (1b):

Simplification (1c):

Figure 6: Simplifications to eliminate �

S

S S

SS

Simplification (2a):

Simplification (2b):

S

Figure 7: Simplifications to eliminate signals

// drop e@ t from info to be processed
endif
∆← ∆ ∪Ψ;// add the new info as to be processed
Φ← Φ ∪Ψ; // add the new info to the current knowledge

endrepeat

The function λ((ni, no)@ t,Φ) can be computed by using the temporal inference rules presented in the previous
section.

To obtain an evaluation of the amount of steps needed to produce the whole information for a single time
instant, the inference function λ has to be causal. This means that it infers events in the present or in the
future with respect to event e@ t:

∀e@ t, S, f @ t′. f @ t′ ∈ λ(e@ t, S) ⇒ t ≤ t′

With this assumption, and by assuming that all the events in each sample of ω share the same non-decreasing
time, an amount of steps equal to the amount of network arcs Na is needed in the worst case to drop from ∆
all the events with time τ , where τ is the minimum time of the events in ∆ ∪ ω(). In fact, at each step the
algorithm chooses an event with time not less than τ (neither λ nor ω can introduce in ∆ events with time
previous than τ) and if an arc has been processed for a time instant it will be never reprocessed for the same
time instant. Thus it is possible to deduce that in the worst case all the arcs of the network are processed.
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Figure 8: Simplifications of the up example

By assuming that the time of the events in ω() is not more than the minimum time of the events in ∆, meaning
that all the events referencing previous time instants have already been processed, and by using appropriate
data structures to store Φ and ∆, the asimpthotical complexity for a single inference step (the “repeat” body)
can be evaluated as O(Dmax + card I), where Dmax is the maximum of the absolute value of delays present in
the network and card I is the size of ω(), which is equal to the number of inputs. In this case, the maximum
time needed to infer all the outputs for a single time instant is an:

O((Dmax + card I) Na)

6.2 Real-time execution

The execution algorithm has been developed even for on-line execution, when continous input signals are sampled
and outputs are produced at a given rate. If the specification is strictly causal, meaning that current values of
outputs and internal variables depend only on present and past samples of inputs and internal variables, then at
each discrete time instant the outputs for the next time instant can be deduced by using the inference process
as depicted in Figure 9. However, the time comprised between two consecutive input acquisitions or output
productions may not be enough to deduce the information about outputs.

As showed in the previous section, if the inference function is causal at most Na inference steps are needed
to produce all the inferrable information for time t, where Na is the number of network arcs. The maximum
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from info @ t+2
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Figure 9: Real-time execution

time needed for one step of the algorithm can be evaluated depending on the underlaying hardware and the
inference network structure (Dmax ), so that the maximum time required to produce the outputs for an instant
can be found by multiplying this time duration for the amount of arcs of the inference network. If this time is
less then the time sample then real-time execution can be accomplished:

Ts > Tmax Na

where Ts is the duration of the time sample and Tmax is the maximum time needed to execute an inference
step.

In order to have a more accurate evaluation of the time needed, Tmax can be split in two times, Tinput +Tinfer ,
where Tinput is the time needed to add inputs to set ∆ and Tinfer the one needed to infer information. By
considering that, during execution, for each time sample there is only one step in which new inputs are acquired,
then condition on the time sample becomes:

Ts > Tinput + Tinfer Na

The condition presented do not change the asymphtotical complexity of the algorithm as evaluated in the
previous section, but may be useful when the evaluation of condition Ts > Tmax Na fails.

7 An Example

The selected example is a control system by which a fictitious but dangerously unstable reaction evolves within
a control field under the supervision of a human operator. Therefore, the interacting components are:

• The reactor

• The human operator

• The control system, composed by:

– The field control subsystem, charged to manage field monitoring, feeding and cooling
– The reaction control subsystem, charged to manage reaction monitoring, feeding, ignition and ex-

tinction
– The supervisor subsystem, charged with the operational condition evaluation and the communication

with the operator

A scheme summing up the relationships amongst these components is shown in figure 10. The signals
appearing hereinafter have following meaning:

• Reactor interface:

– sense field: sensors measure the field presence
– feed field: field generators are feeded
– sense overheat: field temperature is above danger level

13



– cool field: field cooling systems are on
– sense reaction: sensors measure the reaction presence
– feed reaction: reagents are let in inside the reactor
– ignite reaction: reaction ignition system is on
– extinguish reaction: emergency extinction system is on

• Human operator interface:

– switch on: operator requests the process activation
– engine halt: process is stopped on the ground of precautionary measure
– alert: situation requests the operator’s attention
– acknowledge: operator realized the situation and process can go on

• Interface amongst subsystems:

– engine on: supervisor subsystem requests process activation
– field on: field is steadily on
– field fault: field does not stabilize although it is feeded
– field nominal: field temperature is steadily within working limits
– field overheat: field temperature steadily exceeds danger level
– reaction off: reaction is steadily off
– reaction fault: reaction does not stabilize although it is feeded
– reaction persistence: reaction keeps on although it is not feeded
– warning: there is a pre-alert condition

feed_field

cool_field

Field
Control
System

sense_field

engine_on

field_on

Reaction
Control
System

feed_reaction

ignite_reaction

sense_reaction

reaction_off

field_fault

Supervisor
System

reaction_fault

REACTOR

warning

engine_on

reaction_persistence

field_overheat

field_nominal

acknowledge

engine_halt

switch_on

extinguish_reaction

sense_overheat

alert

Figure 10: A concise outline of the control system

If, on the one hand, the behaviour of both reactor and operator is not modelled herein, on the other hand
the control system is fully defined by the specification which follows:
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• Field control subsystem:

field on ⇐⇒ sense field @ [−3, 0]
field nominal ⇐⇒ (¬sense overheat)@ [−3, 0]
field overheat ⇐⇒ sense overheat @ [−3, 0]

field fault ⇐⇒ feed field @ [−12,−1] ∧ ¬field on
feed field ⇐⇒ engine on ∨ ¬reaction off
cool field ⇐⇒ since((∂ ¬field overheat ∧ field overheat) ? [−20, 0],¬field nominal)

• Reaction control subsystem:

reaction off ⇐⇒ (¬sense reaction)@ [−2, 0]
reaction on ⇐⇒ sense reaction @ [−2, 0]

reaction fault ⇐⇒ feed reaction @ [−9,−1] ∧ ¬reaction on
reaction persistence ⇐⇒ (¬feed reaction)@ [−9,−1] ∧ ¬reaction off

feed reaction ⇐⇒ engine on ∧ field on ∧ ¬warning
ignite reaction ⇐⇒ feed reaction ∧ since(reaction off ,¬reaction on)

extinguish reaction ⇐⇒ since(¬engine on ∧ reaction persistence,¬reaction off )

• Supervisor subsystem:

engine on ⇐⇒ switch on ∧ (∂ ¬switch on ∨ switch on)@ [−10,−1] ∧ ¬engine halt
engine halt ⇐⇒ since(field fault ∨ reaction fault ∨ general fault , switch on)

warning ⇐⇒ ¬field nominal ∨ reaction persistence ∨ danger ? [−15, 0]
danger ⇐⇒ (field overheat ∧ reaction persistence) ∨ emergency

emergency ⇐⇒ ¬field on ∧ ¬reaction off
alert ⇐⇒ since(∂ ¬danger ∧ danger ,¬acknowledge ∧ switch on)

general fault ⇐⇒ (danger ∧ alert)@ [−35, 0] ∨ emergency

When restricting oneself to the reaction control subsystem analysis, one can notice that the reaction is
considered stable if it is measured as either absent or present for three consecutive instants. From this evaluation,
nine instants are the greatest interval allowed to get a steadily present reaction in a constant feeding condition,
afterwards an unsettled problem is notified to the supervisor system. The reaction is ignited only if it is feeded
and for all the time needed to grant its transition from stable absence condition to stable presence one. On
the other hand, possible further fluctuations which do not bring back to the starting condition do not cause
interventions as to bound control activity. The feeding is granted only provided that the supervisor subsystem
requests the process activation, the field is steadily on and there is no warning condition. The persistence of
residual reaction traces after nine instants of interrupted feeding is considered anomalous and for that reason
it is notified to the supervisor subsystem. If the latter does not request the process prosecution, the emergency
shutdown system is activated and kept on until a stable reaction absence condition is reached.

A graphical representation of the network corresponding to the described specification appears in figure 11,
while an execution example of the overall system is shown in figure 12.

By observing the signals’ histories which appear in the example you can notice that the ignition happened
in a regular way after the reactor activation request, but then an overheating condition occurred, which caused
the reaction feeding shutdown and the cooling systems’ activation. Since the reaction persists even in absence
of feeding, the alert starts ringing and the operator is careful to turn it off by using the suitable signal. In
fact, rather than do anything else, he prefers requesting the reactor shutdown, which happens by activating the
emergency extinction system.
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Figure 11: Network corresponding to the reaction control subsystem

Figure 12: An execution example
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8 Conclusions

This report has described the executable model for TILCO specifications, based on Basic Temporal Logic (BTL)
and Temporal Inference Networks (TIN). TILCO specifications can be executed after having been transformed
in BTL and represented by TIN networks. Each TIN network presents a set of nodes on which the inference
rules are applied to produce the outputs on the basis of inputs, and thus to execute in real-time the specification.
The TIN engine has been implemented in C++ and can be used under both Linux and Windows platforms. It
permits also the integration of complex, time dependent behaviours in Visual C++ applications, where the use
of traditional programming languages turns out to be difficult and very time consuming.

The work proposed in this article has been partially supported by MIUR (Italian Ministery of University
and Research), with QUACK project in which several other universities are involved.
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