
  Rights Enforcement and Licensing Understanding 
for RDF Stores Aggregating Open and Private Data 

Sets  
Pierfrancesco Bellini, Lorenzo Bertocci, Filippo Betti, Paolo Nesi 

Distributed Systems and Internet Technology, DISIT Lab, University of Florence, Italy 
Tel 0039-055-2758517, fax: 0039-055-2758570, http://www.disit.dinfo.unifi.it, paolo.nesi@unifi.it 

 
 

Abstract—Several applications are going to aggregate data on 
triple stores coming from different data sets and presenting 
different licenses. Semantic queries should provide only allowed 
triples, while most of the RDF stores have strong limitations in 
providing support for access control, licensing, rights 
enforcement and supporting the developers in providing tutoring 
information about what is possible and what is not. In this paper, 
a specific solution is proposed for supporting developers in 
understanding the licensing level of the requested triples, and the 
RDF stores in enforcing rights. The proposed solutions can be 
integrated into a range of different RDF stores for removing their 
limitations and assisting developers.  The proposed solution has 
been developed and tested in the case of large smart city solution 
called Km4City and adopted in a number of projects: Sii-
Mobility SCN, RESOLUTE H2020 and REPLICATE H2020. 

Keywords— RDF store, rights enforcement, smart city, data 
aggregation licensing 

I.  INTRODUCTION 

Many smart city solutions are focused on data aggregation, 
reasoning and delivering of services via Smart City APIs. 
Smart City data can be coarsely aggregated by using solutions 
such as CKAN [1], OpenDataSoft [2], ArcGIS and OpenData 
[3]. These solutions are suitable for indexing data and metadata 
sources, providing support for browsing and querying data. In 
more advanced cases, they  provide access to data sets as 
Linked Data (LD), Linked Open Data (LOD), from an RDF 
store endpoint [4], via SPARQL queries [5] exploiting some 
ontology. The access to RDF stores for data search and 
browsing can be performed by using visual browsers such as 
Linked Open graph, LOD of [6].  

In most cases, the effectiveness of data services for Smart 
City is enabled by the availability of private data owned and 
managed by City Operators addressing specific domains: 
mobility, energy, business services (health, water), telecom, 
tourism, school and university, welfare, health, etc. City 
Operators are stakeholders also providing data and services 
with different granularities and size, and in some cases with 
under certain access conditions. Different “data granularity” 
implies different methods for collecting, licensing and 
providing access to those data. Real Time data are provided by 
city operators through some APIs such as Web Services or 
REST calls. The effective deploy of smart services for city 
users is very frequently viable only by exploiting the semantic 
integration of open data, private data and real time data coming 
from administrations and different city operators. This 

approach of data aggregation implies semantic processes of 
reconciliation and the adoption of unifying data models and 
ontologies as in Km4City [7]. Thus, aggregated data can be 
exploited to implement a large number of services and 
applications by structuring the Smart City Architecture and the 
corresponding Smart City APIs. For open data, as well as for 
private data, several different licensing models can be adopted 
[8], [9] enabling or preventing some business models, or 
simply their usage.  

Services on smart city are typically based on a large amount 
of data sets (static and real-time) coming from different 
sources. Most of the data sets coming from governmental 
entities are licensed with some open license as CC [10], while 
data sets coming from city operators are frequently provided 
with some limitations. For example with: CC “no-commercial” 
constraint to limit their usage in business applications or even 
with no-distribution and/or no-derivative restriction: preventing 
the aggregator to distribute the data and/or providing derivative 
works from them. Therefore, a data aggregation service 
providing access to aggregated data with the aim of setting up 
mobile and web applications has to be very careful and provide 
support for managing the different licensing models by: 
Aggregating data coming from different operators and 
governmental entities by accepting input data sets with 
different licensing models, which in some cases may refer to 
the same entities. For example, the position of a bus stop is 
provided as open data, while the real time delays of busses are 
no-commercial and no-derivative.  

Providing aggregated data and services via API with 
coherent licenses with respect to: (i) those of the original data 
sets, that cannot be violated [11], [12]; (ii) the different user 
kinds/profiles (e.g., city operators, citizen, tourist, student, 
researcher, policeman), (iii) the different application domains 
and contexts (cultural heritage information city promotion, 
commercial advertising, education, civil protection emergency 
advertising, car sharing, education of citizens, etc.); other 
constraints can be imposed as well.  

Facilitating the work of developers in setting up their 
mobile and web applications via API according to the 
application domain and user kind. The same application may 
access to different data according to the application domain 
context and user role kind.  

The license compatibility table adopted included license 
families of CC, ODC, OS Open Data, and takes into account 
duties and permissions. Duties are: Attribute, ShareAlike, and 



Notice; and Permissions are: Derive, Distribute, Reproduce, 
and Commercialize. See for the adopted table the web page 
accessible from http://www.disit.org/6877. Relevant 
restrictions are present when derivative is not permitted, and 
when data set with share alike are tried to combine with non 
commercial share alike licenses.  In order to control the 
exploitation/access of content/data (and specifically on open 
data via RDF stores) a number of problems have to be 
addressed and solved by using different approaches as 
explained in the following paragraphs. The problems are 
related to data service or right formalization, license 
formalization, grant computing, and right enforcement.  
Additional problems can be related to RDF versioning [13].  

In this paper, the focus is on query analysis for right 
enforcement since these aspects are not addressed in a suitable 
manner by RDF storage, which leaves the developer without 
assistance during the development of queries, which should 
respect the data set licenses.  

The paper is structured as follow. Section II describes the 
related work. In Section III, the reference architecture of RDF 
stores with supportive tools for developing SPARQL queries 
respecting data licenses and understating limitations and 
constraints is presented. Section IV presents experimental 
results by providing an annotated example of query 
enrichment, control and aggregated license generation. 
Conclusions are drawn in Section V. 

II. RELATED WORK 

Data services or rights formalization can include data 
access, read/write, change, derive, distribute, copy, adapt, etc. 
To this end, right ontologies or vocabularies could be used 
such as MPEG‐21 RDD (Right data dictionary) [14], the 
ODRL vocabulary [15] or the Access Management Ontology 
[16]. The simplest solution to control right exploitation may 
consist of a conditional access system, CAS, based on the 
authentication via credentials and/or certificates.  

License formalization may include the capability of  
describing complex conditions with temporal constraints, 
number of accesses, user localization, prices, etc., for example 
following the MPEG-21 standard [17],  ODRL [15], XACML 
(an XML-based language used to specify policies on web 
resources in terms of polices) [https://wiki.oasis-
open.org/xacml/], OASIS XAMCL [18], etc. Licenses may 
include permitted and/or forbidden functionalities and are 
substantially logical equations. Most of the above mentioned 
technological solutions have been developed for content and 
media, and may be applied to open data and private data. For 
example, Creative Commons licensing framework (a set of 
licenses) [10], [19] allows users to formalize the usage of 
data/content that the owner is sharing but applying some 
legally formalized duties, restrictions, permissions (e.g., no 
commercial use, attribution, no derivative, share alike). On the 
contrary, a number of specific open data licenses have been 
defined, some of them directly inherited from content and 
media. Other set of licenses are: ODC [20], Open Government 
License [21], Italian Open Data Licenses [22]. Most of the 
above licensing models are adopted for licensing open data 
sets, and when they are integrated and provided as Linked Data 

from stores the problems is reduced to the access at the RDF 
stored data in terms of triples [7].  

The grant computing for the exploitation of rights can be 
performed on the basis of a combination of (i) user roles 
associated with actions to be performed on content (i.e., data 
sets, objects and/or services); (ii) license can be associated with 
a given user or user category, for content, condition and rights. 
Conditions may include: context, location, times, intervals, etc. 
The grant computing in accessing to multiple data sets having 
different licenses has to take into account license combination 
compatibility such as in [11], [12], and in their extended 
version provided by the authors on http://www.disit.org/6877. 
As regards of license formalization and grant computing in 
[23], a model for license formalization and access control of 
triples with context, related to time, location, credentials has 
been presented. The grant is computed by processing facts into 
an RDF store, including licensing models. The Access 
Management Ontology (AMO) [16] defines licenses as a role-
based access control model and a reasoning model for 
processing rules/licenses via OWL. Similarly also [24] 
presented a license server for grant computing for RDF store 
where the access policies are expressed in a descriptive 
language formalizing the triple patterns to be licensed. In [25] a 
Relation Based Access Control model (RelBAC), providing a 
formal model of permissions based on description logics has 
been proposed. In [9] an access control model based on S3AC 
ontology (Social Semantic SPARQL Security for Access 
Control) has been presented. In [26], Privacy Preference 
Ontology (PPO) expressed access control policies to RDF in 
SPARQL.  

The right enforcement can be regarded as the set of 
technical solutions to assure that certain rights adopted in 
licenses are not violated (respected) by using technological 
solutions as: encryption, certification and authentication, 
filtering, etc. For example, the right enforcement to control the 
exploitation of right to play a video is a set of technical 
solutions into the media player so as to guarantee that a user 
would be capable to play only the videos for which the user has 
received the grant authorization. Thus, the right enforcement is 
implemented in the tools used for content access, i.e., media 
player, browser, decoder, databases, mp3 player, etc. The 
above models integrating licenses formalization and grant 
computing collected policies/licenses into RDF triples and the 
grant computing (verification of access policies) is formalized 
via a ASK clause of SPARQL. The obtained results may be 
true of false to give at the user the rights on performing the 
corresponding action on the real RDF store containing data 
(that is conceptually different from that containing the license 
information). 

The enforcement of right to access at triples on RDF store 
implies to guarantee that a given user can access only to triples 
for which he/she is authorized to access. When a SPARQL 
query for access is performed, as a result: several different 
triples may be provided, and may be identified exploiting some 
inference. The resulting triples may belong to different data 
sets, i.e., RDF graphs, presenting different licenses (i.e., the car 
sharing position coming from different providers). This means 
that the license computing based on triple patterns cannot be 
enough for fine-right enforcement. Therefore, according to the 



abov
asso
prop
enfo
impl
patte
avoi
to ac
cont
Grap
perfo
Jena
triple
simp
(RD
the 
SPA
with
pote
licen
solut
reco
that 
acce
to te
data 
deve
grap
licen
for 
quer
deve
patte
expl

T
the d
RDF
and 
Ther
mult
if th
depl
user 
servi
critic
acce
each
repo
num
quer
iden
store
obta
quer
enric
The 
sets,
list o

ve presented 
ciated with 

posed are focu
orcement, that
lementation o
erns, or on th
ding requestin
ccess. Most o
trol to the w
phDB [28]. 
orm access co

a [27] provide
es. Virtuoso 
ple licenses (a
F graph), and
case of Vir

ARQL query g
hout any exp
ntially access

nse. The RD
tion, storing in
vering from i
the results are

essing to the R
est in advance 

when a user
elopers it is ve
phs (data sets
nses to be acq

example du
ry/data identif
eloper make a
erns. The logic
anation. 

III. REFER

The reference 
developer hav

F store in whi
where each 

refore, the tri
tiple data sets
he data requ
oyed for a giv
App may ac

ices on the ci
cal. To this en

ess to the SPA
h defined que
orts (point (7)

mber of data s
ry. This app
tified in Virt
es that do not
in all possible

ry. To this en
ched accordin
enriched que
 etc.) is applie

of involved Da

licensing com
triple (triple

used on grant 
at is totally 
or on the filte
he rewriting 
ng triples for w
of the RDF sto

whole reposito
ORACLE R
ontrol to user

es API to writ
[29] and St

as read/write p
d associate the
rtuoso and S
get back only 
planation of 
ible data set w

DF store sup
n the fourth el
its metadata th
e dependent on
RDF store via 

if the query a
r category or 
ery important t
s) for each 

quired for expl
uring the mo
fication. The 
a query with w
cal engine wil

RENCE ARCHIT

architecture i
ve to tune a 
ch a number 

of them m
iples resulting
. And thus the

uested can be
ven category o
ccess to the p
ity or only to
nd, according 

ARQL Query L
ery for each 
)) describing 
sets) would b
proach solves
tuoso, Smartd
t provide a de
e data potenti
nd, the SPAR
ng to an algori
ery (addressin
ed to the RDF
ata Sets (4). T

mputing mode
e patterns) a
computing an
demanded to

ering of triple
of SPARQL 

which the use
ores provide 

ory, such as 
RDF store pr
rs at level of 
te JAVA proc
tardog [30] al
permissions) a
em to users. T
Stardog an us

triples for w
filtered tripl

with a differen
pporting quad
lement the ID
he original lic
n data, and thu
API and SPA
and API used 
role will be 
to understand 
query, and t
loiting the dat
obile APP 
same proble

wrong object, 
ll not find any

TECTURE AND 

is referring to
SPARQL que
of graphs (da

may have a 
g from a que
e developer ne
e obtained fo
of users. For 
osition of sen

o those that ar
to Figure 1, 

License Verifi
specific user
which triples

be provided i
s the develo
dog and in a
etailed list of n
ially resulting

RQL query is 
ithm described

ng inference, i
F Store (3) to 

This list is furth

els, the licen
and the solu
nd not on the 
o the RDF 
es on the bas

queries so a
er is not autho
support for ac
Fuseky-Jena 

rovide suppor
triple and m

cesses for filte
llow to form
at level of dat
This means th
ser performin

which is autho
les, and thu
nt user profile

druples can b
 of the dataset
cense. This m
us the program

ARQL queries 
will provide 
the requester
the involved 

the correspon
ta of their inte
development 

ems arise wh
reference, su

y triple withou

PURPOSE 

o a phase in w
ery on a com
ta sets) are st
different lic

ry may belon
eeds to unders

for an applic
example, if a 
nsitive and cr
re generic and
the developer

ication Tool to
r profile to s
s (belonging 
n response to
opment prob

all the other 
needed licens

g from a SPA
analyzed (2)

d in Section I
inspecting all 
get as a resul

herly analyzed

nse is 
utions 

right 
store 

sis of 
as to 

orized 
ccess 
[27], 
rt to 

model. 
ering 

malize 
ta set 
hat in 
ng a 

orized 
us of 
e and 
be a 

et and 
means 
mmer 
have 
them 
. For 
RDF 

nding 
erest, 

and 
hen a 
ubject 
ut any 

which 
mplex 
tored, 
ense. 
ng to 
stand 

cation 
final 

ritical 
d not 
r can 
o test 
see a 

to a 
o the 
blems 
RDF 

ses to 
ARQL 

) and 
III.A. 

data 
lt the 
d (by 

the 
invo
repo
Ver
resp

Fig

O
Figu
RDF
Virt
righ

F

A
usin
of th
by th
Figu
filte
do n
adop

License Ver
olved can acc
ort at point (
rification Eng
pectively. 

gure 1 – Architec

Once the set 
ure 1 process),
F store provid
tuoso and Sta
hts of read/writ

Figure 2 Referenc

According to 
ng information
he figure). Thu
he developer, 
ure 1 process
red by the sto

not present a r
pted. In case (

ification Eng
cess to those 
(7). Both SPA
gine are descri

cture of the SPAR

of queries ha
, they can be u

des support for
ardog allow a
te.  

ce architecture fo
enforc

Figure 2, th
n collected into
us, in that case
which is awa

s, can be dire
re. On the oth

right enforcem
(B), the solutio

gine) to see 
e data sets, th
ARQL Anal
ibed in Sectio

 

RQL Query Licen

ave been final
used into final
r right enforce
associating wi

or SPARQL query
rcement 

hey can be au
o the License 
e, the SPARQ
are about the r
ectly applied a
her hand, for t

ment support, s
on implies to p

if the User 
hus producing
yzer and Lic

ons III.A and 

nse Verification T

lized (accordin
l applications 
ement. In that 
ith graphs spe

y usage with righ

utomatically s
Database (lin

QL queries fina
results accordi
and triples wi
the RDF store
solution (B) c
process each q

Kind 
g the 
cense 
III.B, 

 
Tool 

ng to 
if the 
case, 
ecific 

 
hts 

et by 
ne (A) 
alized 
ing to 
ill be 
s that 
an be 
query 



for recovering in real time the datasets involved (3) and those 
that can be accessed case by case (path from (4) to (6)). The 
results for each [Call,UserKind] may be cashed to increase 
performances. The computing of the results (6) allows 
rewriting the SPARQL queries that violate licenses by using 
FROM clauses of SPARQL syntax to limit the access to certain 
datasets (graphs).  

 

A. SPARQL Analyzer Algorithm 

In this section, the SPARQL Analyzer Algorithm is 
described. It is used to extract the list of RDF graphs used in a 
given SPARQL Query. The solution adopted involves the 
analysis of the SPARQL query for its rewriting to produce an 
enriched SPARQL query that allows get the graphs used from 
the RDF store. The following example is reported for triple 
access, while different rights could be addressed similarly.  

For example, in case in which the following query is used 
(to find all the service with name containing “CASA” and 
having a geo position): 

SELECT ?name ?lat ?long WHERE { 
 ?s a km4c:Service. 
 ?s schema:name ?name. 
 ?s geo:lat ?lat. 
 ?s geo:long ?long. 
 FILTER(contains(?name, “CASA”)) 
} 

 

The above query is transformed/enriched into a query to 
find all the distinct graphs (data sets) where the different triples 
matching the constraints are stated: 

SELECT DISTINCT ?g1 ?g2 ?g3 ?g4 WHERE { 
 GRAPH ?g1 {?s a km4c:Service. } 
 GRAPH ?g2 {?s schema:name ?name. } 
 GRAPH ?g3 {?s geo:lat ?lat. } 
 GRAPH ?g4 {?s geo:long ?long. } 
 FILTER(contains(?name, “CASA”)) 
} 

 
In general, two different cases have to be taken into account: 
 result graphs which are those used to provide a value in 

the SELECT projection variables (e.g. g1, g2, g3 in the 
above example). The data provided from result graphs is 
provided to the user and thus need to be accessible in the 
results; 

 connection graphs which are used to connect different 
pattern matching. These constraints do not involve a 
projection variable (e.g., g1 in the above example). Thus, 
connection graphs which are used in the computation of 
the result may not be accessible from the user and can be 
exploited to find other results (providing that the license 
for the usage of the involved data sets allows to exploit 
them).   

The SPARQL Analyzer algorithm for query rewrite has to 
take into account the following cases, since the query may 
contain some SPARQL constructs of: 

 UNION of triplets constraints; 
 OPTIONAL constraints; 
 property path expressions; 
 GRAPH constraints; 
 other sub-queries. 

 

In cases of UNION and OPTIONAL constructs, the 
rewriting is performed recursively on the triplet constraints. In 
case a triplet constraint uses one or more property path 
expressions they are substituted with the equivalent form. For 
example, when a triplet constraint is multiple as: ?s p1/p2/p3 
?o, then it is rewritten / decomposed to: 

 GRAPH ?g1 {?s p1 ?x1}  
 GRAPH ?g2 {?x1 p2 ?x2}  
 GRAPH ?g3 {?x2 p3 ?o}  

 

In case of unbounded property paths as with p1* and p1+ 
operators, it is not possible to rewrite the query with a finite set 
of triplet constraints. Therefore, (A) and (B) cases have to be 
addressed differently. In case (A), the construct is not a 
problem since the triples are not provided in any case by the 
RDF Store and the only limitation is on the analysis of the 
graphs involved. In case (B), the right enforcement is not 
provided by the RDF store. So that the above constructs cannot 
be accepted in the queries since they can cause the violation of 
licenses. Thus the developer is informed that the query 
rewriting has to be performed, for example making explicit the 
number of successive paths in the query.  Thus permitting their 
rewriting, and re-conducting the issues to the other cases.  

When a query presents a GRAPH constraint, it is rewritten 
as it is, thus, the graph variable is used as the other graph 
variables generated from the rewrite process. When a query 
contains one or more sub-queries, the sub-queries are analyzed 
to find the graphs used and graphs used by the upper query is 
the union of the graphs of all sub-queries plus other graphs 
used on the sub-queries results. 

ሺܳሻݏ݄݌ܽݎܩ ൌ 	ራݏ݄݌ܽݎܩሺܳ. ௜ሻܾܳݑݏ ∪ ሺܳሻܩ

௡

௜ୀଵ

 

 

Where Graphs(Q) is the set of graphs used by a query, Q.subQi 
is the i-th sub-query of Q, and G(Q) is the set of graphs used by 
query Q not rewriting the sub-queries and adding the GRAPH 
constraint to the other triplets constraints. 

To find the result graphs and the connection graphs, the 
graphs involving a variable in the projection list of the 
SELECT statement are considered. It should be noted that the 
use in the projection list of the graph content may not be 
directly in the projection list but indirectly via a BIND variable. 
This approach is used to compute ResultGraph(Q) that is the 
result graph of query Q. 

B. License Verification Engine 

Therefore, the graphs involved into a query can be 
extracted by executing the produced query generated by the 
SPAQRL Analyzer Algorithm. For each dataset a 



corresponding license can be recovered from the License 
Database; making possible to compute the license needed for 
accessing or addressing the query result. 

Let P be the set of Permissions that a license may allow or 
not for a dataset, D the set of Duties that the license may 
require or not to use a dataset, C the set of User Categories that 
will use the data. Please note that among ShareAlike (intended 
as in CC) is a Special Duty (SD) since it can be applied only in 
the cases in which the re-distribution is possible. Thus, a 
license for datasets in G is modeled with two functions: 

:ݓ݋݈݈ܽ ܩ ൈ 	ܥ ൈ ܲ → ሼ݁ݑݎݐ,  ሽ݁ݏ݈݂ܽ
:݁ݎ݅ݑݍ݁ݎ ܩ ൈ ܥ ൈ ܦ → ሼ݁ݑݎݐ,  ሽ݁ݏ݈݂ܽ

The allow function associates for a dataset in G an use 
category in C, and a permission in P a value true or false 
meaning that this permission is allowed or not on the dataset 
for an user of a specific category, and function require 
associates for a dataset, an user category and a duty in D true or 
false if the duty has to be required or not for a user on the 
specified category. The computing of permissions can be 
estimated by using one of the solutions proposed by the state of 
the art as [9], [26]. 

On the other hand, if the license models are limited to those 
for open data, the functions allow() and require() to estimated 
bounds on permission and duties can be defined on the results 
of query Q as follows: 

,ሺܳݓ݋݈݈ܽ ܿ, ሻ݌ ൌ ሥ ,ሺ݃ݓ݋݈݈ܽ ܿ, ሻ݌
௚∈ோ௘௦௨௟௧ீ௥௔௣௛௦ሺொሻ

 

,ሺܳ݁ݎ݅ݑݍ݁ݎ ܿ, ݀ሻ ൌ 	 ሧ ,ሺ݃݁ݎ݅ݑݍ݁ݎ ܿ, ݀ሻ
௚∈ோ௘௦௨௟௧ீ௥௔௣௛௦ሺொሻ

 

 
Where: ResultGraphs(Q) are the graphs/datasets used by query 
Q.  Meaning that permission p is granted on results of query Q 
only if it is granted on all used dataset and duty d is required if 
at least one dataset requires it. Using this procedure and 
knowing the permissions associated with the application (e.g., 
a commercial application) the License Verification Engine can 
produce a report for the developer putting in evidence the 
datasets that can/cannot be used for each specific query.  

In some cases, a global license cannot be provided, for 
example of Table 1, for the  presence of protected content, or 
when data forbidding derivative  (i.e., no-derivative), or when 
data sets with Share alike should be combined with data sets 
with no-commercial share alike data sets. In these cases, the 
developer is informed to reformulate the query with FROM 
construct, for the right enforcement (case B), the triples are not 
provided.  

IV. EXPERIMENTAL RESULTS 

A SPARQL Analyzer and License Verifier Engine have 
been implemented according to the architecture of Figure 1, 
and it is available at http://log.disit.org/sparql-license-checker. 
The service has been validated using the queries from a smart 
city RDF store benchmark accessible from [31], [32]; which is 
based on queries similar to those used in Km4City API by 
http://servicemap.disit.org web service to discover services in 
Florence and in the Tuscany region. 

For example, a query involving several datasets searches 
for all services distant less than 100m from a geographic 
coordinate (the Florence main train station). It gets the service 
name and an optional street address as well as its geographical 
coordinates: 

SELECT DISTINCT ?name ?addr ?lat ?long ?dist WHERE { 
   ?s a km4c:Service OPTION (INFERENCE "urn:ontology"). 

   ?s schema:name ?name. 

   OPTIONAL{ ?s schema:streetAddress ?addr } 
   { ?s geo:lat ?lat; geo:long ?long;  
      geo:geometry ?geo 
   } UNION {  ?s km4c:hasAccess [ geo:lat ?lat; geo:long ?long;  
                                           geo:geometry ?geo ] } 
   BIND(bif:st_distance(?geo, bif:st_point(11.2484,43.7765)) AS 
?dist) 
   FILTER(?dist<=0.1)  
} ORDER BY ?dist 
 

Thus the SPARQL query is transformed into: 

SELECT DISTINCT ?g1 ?g2 ?g3 ?g4 ?g5 ?g6 ?g7 ?g8 ?g9 ?g10 
WHERE { 

 GRAPH ?g1{?s a km4c:Service OPTION (inference 
"urn:ontology"). } 
 GRAPH ?g2{?s schema:name ?name. } 
 { 
  GRAPH ?g3{?s geo:lat ?lat. } 
  GRAPH ?g4{?s geo:long ?long. } 
  GRAPH ?g5{?s geo:geometry ?geo. } 
 } UNION { 
  GRAPH ?g6{?s km4c:hasAccess _:Nf7. } 
  GRAPH ?g7{_:Nf7 geo:lat ?lat. } 
  GRAPH ?g8{_:Nf7 geo:long ?long. } 
  GRAPH ?g9{_:Nf7 geo:geometry ?geo. } } 

 OPTIONAL {GRAPH ?g10{?s schema:streetAddress ?addr. }} 
 BIND(bif:st_distance(?geo,bif:st_point(11.2484,43.7765)) AS 
?dist) 
 FILTER(?dist<=0.1) } 
 

The tool, for each variable for GRPAH clause generate a 
table in which the graphs associated with the variable al listed. 
Thus, by using the above rewritten query on Km4City, 8 
different datasets have been identified, and the final most 
restrictive license computed as reported in Table 1.  

TABLE 1 – Licenses for the example described. 

 
 

Thus the developer may verify if the resulting license is 
suitable for the application under development or it could be 
better to restrict the access at only some data sets. For example, 

SD

s
h

a
re

a
lik

e

a
tt

ri
b

u
ti

o
n

n
o

ti
c

e

d
e

ri
v

a
ti

v
e

c
o

m
m

e
c

ia
liz

e

re
d

is
tr

ib
u

te

re
p

ro
d

u
c

e

C
it

iz
e

n

T
o

u
ri

s
t

P
o

lic
e

C
iv

il 
p

ro
te

c
ti

o
n

F
ir

e
fi

g
h

te
rs

DigitalLocation CC-By-NC-SA ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Eneergy Cabins protected ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✔ ✔
Commercial firms CC-By ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Graph street CC-By ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Services on the city CC-By-NC ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Renting bikes CC-By ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Taxi CC-By ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Enogastronomy CC-By ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

dataset/graph 
description

license

user categoriespermisionsDuties



the resulting query can provide all triples for Police personnel 
which are also informed of the data kind and attribution; while 
Citizens and Tourists cannot access to those data and a FROM 
clause has to be added for scenario of case (B) of Figure 2. 
And, commercial applications are not going to access and 
visualize at data sets regarding “Energy cabins”. The developer 
is assisted by the tool providing full information of what is 
viable and what cannot be done according to the different 
application and user category. Thus the developers is also 
assisted in producing coherent queries receiving suggestion on 
how the query cam be modified by using clauses FROM and 
FROM NAMED. 

V. CONCLUSIONS 

RDF store based applications aggregating several data sets 
with different licenses may lead to certain complexity in data 
access for developers. Most of the RDF stores present strong 
limitations in providing access control, licensing, rights 
enforcement and thus on supporting the developers in getting 
information about what is possible and what is not. For 
example,  those supporting access control, limit the number of 
triples accessible without informing the developer that the 
results triple set is empty only for him and not in general. In 
this paper, a specific solution has been proposed for supporting 
(i) developers in understanding the licensing level of performed 
queries, and (ii) RDF stores in enforcing rights. The proposed 
solutions can be integrated into a range of different RDF stores 
(in different manner for different RDF store kinds as described 
in the paper); thus removing their limitations and assisting 
developers.  The proposed solution has been developed and 
tested in the case of large smart city solution called Km4City 
and adopted in a number of projects: Sii-Mobility SCN, 
RESOLUTE H2020 and REPLICATE H2020.  

ACKNOWLEDGMENT 

This works has been developed in the context of Sii-
Mobility Smart City National project (http://www.sii-
mobility.org ), for RESOLUTE H2020, and for REPLICATE 
H2020 European Commission Projects. 

REFERENCES 
[1] CKAN: http://ckan.org 

[2] OpenDataSoft: https://www.opendatasoft.com/  

[3] ArcGIS OpenData: http://opendata.arcgis.com/ 

[4] RDF https://www.w3.org/RDF/  

[5] W3C Consortium, “SPARQL 1.1 Query Language”, W3C 
Recommendation, 21 March: https://www.w3.org/TR/rdf-sparql-query/  

[6] P. Bellini, P. Nesi, A. Venturi, “Linked Open Graph: browsing multiple 
SPARQL entry points to build your own LOD views”, http://log.disit.org 
Int. Journ. of Visual Language and Computing, Elsevier, 2014, DOI: 
http://dx.doi.org/10.1016/j.jvlc.2014.10.003  

[7] P. Bellini, M. Benigni, R. Billero, P. Nesi and N. Rauch, “Km4City 
Ontology Building vs Data Harvesting and Cleaning for Smart-city 
Services”, Int. Journal of Visual Language and Computing, Elsevier, 
2014, http://dx.doi.org/10.1016/j.jvlc.2014.10.023   

[8] Korn, N., Oppenheim, C.. “Licensing Open Data: A Practical Guide”, 
Discvery on line, June 2011   
http://discovery.ac.uk/files/pdf/Licensing_Open_Data_A_Practical_Guide
.pdf 

[9] Villata S., Delaforge N., Gandon F., Gyrard A.,  “An Access Control 
Model for Linked Data”, OTM Workshops, Oct 2011, Heraklion, Greece. 
Springer, 7046, pp.454-463, 2011, LNCS. 

[10] Creative Commons, http://creativecommons.org 

[11] CC compatibility 
http://wiki.creativecommons.org/Wiki/cc_license_compatibility 

[12] “The ODI license compatibility”,  https://github.com/theodi/open-data-
licensing/blob/master/guides/licence-compatibility.md 

[13] P. Bellini, I. Bruno, P. Nesi, N. Rauch, “Graph Databases Methodology 
and Tool Supporting Index/Store Versioning”, publication on JVLC, 
Journal of Visual Languages and Computing, Elsevier, 2015 
doi:10.1016/j.jvlc.2015.10.018  

[14] Xin Wang, Thomas DeMartini, Barney Wragg, M. Paramasivam and 
Chris Barlas, “The MPEG-21 rights expression language and rights data 
dictionary”, IEEE Transactions on Multimedia, vol. 7, no. 3, pp. 408–417, 
June 2005. 

[15] R. Iannella and S. Guth, “ODRL version 2.0 common vocabulary”, 
Specification, W3C ODRL Community Group, 04 2012. 
http://www.w3.org/community/odrl/two/vocab  

[16] Buffa, M., Faron-Zucker, C., Kolomoyskaya, A., “Gestion semantique 
des droits d'acces au contenu: l'ontologie AMO”, In: Yahia, S.B., Petit, 
J.M. (eds.) EGC. Revue des Nouvelles Technologies de l'Inf, vol. RNTI-
E-19, pp. 471-482, 2010. 

[17] MPEG21-REL, “MPEG-21 Part 5: Rights Expression Language”, 
ISO/IEC 21000-5:2004. 

[18] T. Moses, “Privacy policy profile of XACML v2.0,” Oasis standard, 
OASIS”, 02 2005. http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-privacy_profile-spec-os.pdf 

[19] [Abelson et al., 2008] H. Abelson, et al. “ccREL: the Creative Commons 
Rights ExpressionLanguage,” 
wiki.creativecommons.org/images/d/d6/Ccrel-1.0.pdf, 2008. 

[20] [Open Data Commons, 2009] Open Data Commons. “Legal tools for 
Open Data”, 2013, Retrieved from http://opendatacommons.org/licenses/  

[21] “Open Government Licence, 2014” , Retrieved from 
http://www.nationalarchives.gov.uk/doc/open-government-
licence/version/3/  

[22] Italian Open Data Licenses https://data.gov.uk/  

[23] Abel, F., Coi, J.L.D., Henze, N., Koesling, A.W., Krause, D., Olmedilla, 
D., “Enabling advanced and context-dependent access control in rdf 
stores”, Proc. of the 6th Int. Semantic Web Conf. (ISWC-2007), LNCS 
4825. pp.1-14, 2007. 

[24] Muhleisen, H., Kost, M., Freytag, J.C., “SWRL-based Access Policies for 
Linked Data” , Proc. of the 2nd Workshop on Trust and Privacy on the 
Social and Semantic Web (SPOT-2010), 2010. 

[25] Giunchiglia, F., Zhang, R., Crispo, B. “Ontology driven community 
access control”, Proc. of the 1st Workshop on Trust and Privacy on the 
Social and Semantic Web, 2009. 

[26] Sacco, O., Passant, A., “A Privacy Preference Ontology (PPO) for Linked 
Data” , Proc. of the 4th Workshop about Linked Data on the Web (2011) 

[27] Jena, https://jena.apache.org 

[28] GraphDB, http://ontotext.com/products/ontotext-graphdb/ 

[29] O. Erling and I. Mikhailov. “Virtuoso: RDF Support in a Native 
RDBMS”. Semantic Web Information Management, pp. 501-519, 
Springer, 2009. 

[30] Startdog, http://stardog.com/ 

[31] DISIT Smart City RDF BenchMark,  
http://www.disit.org/smartcityrdfbenchmark 

[32] P. Bellini, P. Nesi and G. Pantaleo, "Benchmarking RDF Stores for Smart 
City Services," 2015 IEEE International Conference on Smart 
City/SocialCom/SustainCom (SmartCity), Chengdu, 2015, pp. 46-49. 
doi: 10.1109/SmartCity.2015.45 

 

 
 


