
1

IDE for real-time system: Temporal logic and C++

A Controller for crossroad signals: Traffic-Light Simulator

Introduction

The aim of this technical report is to describe the whole experience that has been collected during our first attempt in
developing a "real" system with a new IDE, which integrates declarative and imperative programming. The IDE allows
building a C++ project; in this project a new kind of source can be integrated: TILCO temporal logic files can be added
and compiled into the project and they take care of time relationship between events.
This report explains each step of this development process and finally it analyzes how complete is the IDE and which
procedures should be more quick and intuitive.

Crossroad traffic environment
The crossroad traffic devices considered in this simulation are shown in Figure 1:
• 2 roads
• 4 traffic-lights (2 direction x 2 roads)
• 1 disable switch
• 2 emergency requests (one for each road)
• 4 traffic panel (as the traffic-lights)

Figure 1: Crossroad signals

2

Specification of a traffic-light crossroad behavior
To specify the behavior of crossroad signals is not so natural as it likes. A crossroad traffic light system is typically
realized with a simple state-machine. The state sequence of the car flow in the crossroad is the base of the traffic
behavior. Some additional features have been added to make this workbench complex enough to measure meaningful
evaluations on development system properties.

Informal description of a crossroad traffic light system
1 The car flow alternates between the two roads and the nominal cycle of a traffic light follow the sequence

• green
• yellow
• red
• red-yellow

2 If the system is disabled the lights start to blink on the yellow color
3 If a emergency condition is assumed on road A, the light sequence run as soon as possible on green color to road A,

while respecting safety conditions
4 The traffic panel must show commercial spot in a road only when the car flow is stopped in the same road,

otherwise it communicates information about traffic situation nearby the crossroad.

1st Step: Create a state sequence
First of all, during normal mode, the traffic environment follows a state sequence. In the analysis various traffic
scenarios have been recognized and symbolic names, based on the car flow (go, warning, alert, stop), are assigned to the
corresponding states. A complete cycle of traffic signals executes this sequence alternatively between two roads.
In the specification the state order and time constants for each state should be expressed. These parameters should be
clearly visible in the rules and they should not appear more than once in the specification, some rule examples are
illustrated in Specification 1 and Specification 2.

2nd Step: Interface state with boolean light signals
Traffic lights do not accept states like “goA” (free way for cars in road A) as control signal, but, considering every state,
it is possible to determine the traffic light configuration for each road like “green” or “red-yellow”.
After mapping light configurations to flow states it is necessary to map these configurations to boolean signals for each
single light element in the traffic light, so as to determine which lights are “on” or “off”. For example, in the red-yellow
configuration red light and yellow light are on instead of green that is turned off.
Some rules of the two phases state-mapping are illustrated in Specification 3 and Specification 4 and the normal
sequence of the lights is shown in Figure 2.

Specification 1: state order

Specification 2: state time constants

()
()

()
()

()
L

BBB

BAA

AAA

AAA

AAA

warningupgoupgo
goupstopupstop
stopupalertupalert

alertupwarningupwarning
warningupgoupgo

_,_since
_,_since
_,_since

_,_since
_,_since

¬⇔
¬⇔
¬⇔

¬⇔
¬⇔

“ ROADstate is true since its activation signal

ROADstateup _ becomes true, until activation signal

of the next state in the sequence ROADnextstateup _
is false”

[)
[)

[)
[)

[)
L

0 STOP_TIME,@_
0 ,ALERT_TIME@_

0 ME,WARNING_TI@_
0 GO_TIME_A,@_

0 STOP_TIME,@_

−⇔
−⇔

−⇔
−⇔

−⇔

AB

AA

AA

AA

BA

stopgoup
alertstopup
warningalertup

gowarningup
stopgoup

“activation signal of next state ROADnextstateup _ is

true after ROADstate has been true for all the duration
of its time constant”

3

3rd Step: Exceptional conditions
The development of a real-time system, which simply performs nominal sequence of the traffic signals, is a trivial
result, but the safe handling of exceptional conditions, by just extending the behavior specification, is much more
interesting.
In this step some exit departures from normal sequence are considered; for example the disable request should be
satisfied only when both car flows are stopped: it is possible to switch on disable mode at the end of a “stop” state.
After an emergency request the aim is to make the wait period of a vehicle on the road interested by the request as short
as possible, while granting all the safety conditions like a minimum time for the “go” state in the other road (as is
written in Specification 5).

Specification 3: car flow to traffic light configuration

Specification 4: traffic light configuration to light boolean signal

Figure 2: States to output signals mapping

Specification 5: emergency request satisfaction

go 1 warning 1 alert 1 stop 1 go 2 warning 2 alert 2 stop 2

green yellow red red-yellow
red red-yellow green yellow red

Car flow states

Traffic light presets

Light signals

L

BB

BBA

BBAA

AAA

AA

gogreen
stopalertyellowred

warninggostopred
alertwarningyellow

gogreen

⇔
∨⇔

∨∨⇔
∨⇔

⇔

_

“configuration Agreen is true if and only if the Ago
state is true”
“configuration Ayellow is true if and only if

Awarning state or Aalert state are true”

L
BB

AAA

AAA

AA

greensignalgreen
yellowredredsignalred

yellowredyellowsignalyellow
greensignalgreen

⇔
∨⇔

∨⇔
⇔

_
__

__
_

“light signal Asignalgreen _ is true if and if only

the Agreen configuration is true”

[) ∧−⇔ 0 GO_TIME_A,@(_ AA gowarningup

[) ∧− 0 ,_TIMEGO_MINIMUM@(Ago
)__ BA reqemergencyreqemergency ∧¬

∨¬)_ Areqemergency
“activation signal of Awarning state is true after

Ago has been true for its normal duration and no

request has been issued, or Ago has been true for its
minimum time constant and an emergency request is
issued by road B without road A preemption”

4

4th Step: Thread panel control
Display panels have been included into this system exclusively to explain how easy is to perform thread control with
this IDE. Panels show something active, which moves or scrolls. If the implementation of scrolling is demanded to a
dedicated thread; the start and the kill signal has to be sent to such thread depending on the car flow, taking in account
the informal specification. For instance, a kill request is sent to the thread that runs commercial spots when the car flow
restarts on the road; this behavior is illustrated in Specification 6.

Complete Specification
The whole set of rules is presented in Source 1 and Source 2.
Beside some TILCO symbols conversion to stardard ASCII codes, like ∧ to &, some more explanations about to write
a specification file are needed:

 header files – The specification starts with some preprocessor instructions with the aim to include some libraries,
which contain definitions and rule macros. The signal.bth header contains operators “up” and “down”
definitions; the thrsem.bth file is richer and includes all the instruments needed to handle thread and semaphore
functions. The last include statement is expected by the development system and declare the I/O signals that
interface C++ environment.

 time constants – This section improves the readability of the rules about the state sequence by defining a set of
mnemonic constants, which represent states duration and make easier modifying the sequence timing.

 state sequence and triggers – the switch literal is introduced to drive the system in the disable mode, if it has been
requested, after a stop state. The disable_control is a gate for the disable_request signal: while emergency
situations are active it is ignored, otherwise it causes the disable state entering; when such state is exited the system
restarts the sequence from a stop state.

 thread management – the specification source for thread control is slightly different from what has been presented
above: safe_start and safe_kill functions have been defined in the thread control library (thrsem.bth), so to
allow keeping true a thread activation signal until the activation occurs while granting that the actual activation
request (start or kill function) is bounded within a single time instant.

 simulation – the specified system simulation can be accomplished by giving a description of the thread behavior.
The simulated_thread rule fits for this purpose by expressing reasonable hypotheses about the running state history
depending on start and kill functions. With this addiction the specification becomes testable in off-line mode.

Some validations of the specified behavior
The specification is the most important source of this project; it rules every time relationship in the real-time system.
This aspect has migrated in this new type of source code because using an operational style is quite hard to ensure a
correct solution or to debug it when it does not work. Two steps of validation are presented below.

Properties Proof: State sequence
This case study is a typical state machine example, its behavior is based on a set of rules that specify a state sequence.
Since such a general problem has been faced, an open solution, like a template, could be presented for state-sequence-
like behavior.
The interested rule set should be formally validated. The property about activation of one and just one of the states in
the sequence in this example has been mathematically prooved for each time instant. Such property is presented in
Specification 7; the state sequence template considered for this proof does not use any input signal; its evolution
depend only by initial state. For this reason it has been proved if the condition is respected at time t is the same for t+1
instant.

Specification 6: thread activation and deactivation

() ∧¬⇔ disabledinfostart A

()⇔Acommercekill

()() ()()AA infokillcommercekill ,downsince

()()AB commercerunningdisabledupalertup ,__since ∨

“a kill request to the thread, which is responsible of
showing commercial spots on road A, is sent since the

Balert or disable activation signal are true until it
is satisfied”
“a start request is issued to the other thread, which
shows traffic information, if disable mode is off and
since the previous kill request has succeeded until this
thread receives a stop request”

5

History checking: Response to input signals
This validation step is more "practical", history checking produces output signal histories from input ones, which are
given. This simulation of the real-time behavior is made off-line and in this case an "ad hoc" tool , like SgnEdit, is used.
As it has been said above, the behavior is not completely defined, because it depend on input signals like running
functions that watch thread reaction to the start or kill request. The specification has been completed for history
checking test adding simulated_thread rules (macros defined in thrsem.bth).
The aim of this testing is to confirm the expected response which is driven from input signals like disable or emergency
requests. The histories of this signal are coded in simple input files, which are processed by the executable tinx. This
application taking into account the compiled specification produces the respective output histories. The visualization
tool (a snapshot is illustrated in Figure 3) allows to modify and easily watch the I/O behaviour

Specification 7: state sequence property proof

Figure 3: History checking snapshot (disable request satisfaction)

“property checks if just one of the states in the normal
sequence is active.

“property is valid for each time instant.”

⇔stateonejust __

() LL ∨∧¬∧∧¬ AA alertgo Awarning

() ∨∧¬∧¬∧ LAA alertwarningAgo

1@____ stateonejuststateonejust ⇒

6

Source 1: traffic.btl – part 1

// Headers

#include "signal.bth"
#include "thrsem.bth"

#ifndef SIMULATION
#include "../src/traffic_light.bth"
#endif

// Constants

#define GO_TIME_1 16
#define GO_TIME_2 11
#define EMERGENCY_GO_TIME 5
#define WARNING_TIME 4
#define ALERT_TIME 3
#define STOP_TIME 2
#define BLINK_TIME 3
#define BLINK_RATE 6

// State sequence

aux go_1, alert_1, warning_1, stop_1, up_go_1, up_warning_1, up_alert_1, up_stop_1, switch_1,
go_2, alert_2, warning_2, stop_2, up_go_2, up_warning_2, up_alert_2, up_stop_2, switch_2;

init ~go_1 @ 0, ~warning_1 @ 0, ~alert_1 @ 0, stop_1 @ 0,
~go_2 @ 0, ~warning_2 @ 0, ~alert_2 @ 0, ~stop_2 @ 0, switch_1 @ 1;

go_1 == since(up_go_1, ~up_warning_1);
warning_1 == since(up_warning_1, ~up_alert_1);
alert_1 == since(up_alert_1, ~up_stop_1);
stop_1 == since(up_stop_1, ~switch_1);

go_2 == since(up_go_2, ~up_warning_2);
warning_2 == since(up_warning_2, ~up_alert_2);
alert_2 == since(up_alert_2, ~up_stop_2);
stop_2 == since(up_stop_2, ~switch_2);

// State triggers

#ifdef SIMULATION
input emergency_request_1, emergency_request_2, disable_request;
#endif

aux disable_control, disabled, up_disabled, down_disabled;

init ~disabled @ 0;

disabled == since(up_disabled, disable_control);
up_disabled == (switch_1 | switch_2) & disable_control;
down_disabled == down(disabled);
disable_control == disable_request & ~emergency_request_1 & ~emergency_request_2;

up_go_1 == switch_2 & ~disable_control;
up_warning_1 == (go_1 @ [-GO_TIME_1, 0) & ~emergency_request_1) |

(go_1 @ [-EMERGENCY_GO_TIME, 0) & ~emergency_request_1 & emergency_request_2);
up_alert_1 == warning_1 @ [-WARNING_TIME, 0);
up_stop_1 == alert_1 @ [-ALERT_TIME, 0) | (down_disabled & emergency_request_2);
switch_1 == stop_1 @ [-STOP_TIME, 0);

up_go_2 == switch_1 & ~disable_control;
up_warning_2 == (go_2 @ [-GO_TIME_2, 0) & ~emergency_request_2) |

(go_2 @ [-EMERGENCY_GO_TIME, 0) & emergency_request_1);
up_alert_2 == warning_2 @ [-WARNING_TIME, 0);
up_stop_2 == alert_2 @ [-ALERT_TIME, 0) | (down_disabled & ~emergency_request_2);
switch_2 == stop_2 @ [-STOP_TIME, 0);

7

Source 2: traffic.btl – part 2

// Disabled state behaviour

aux yellow_blink, blink_tick;

blink_tick == (disabled & ~blink_tick @ [-BLINK_RATE, 0)) | up_disabled;
yellow_blink == disabled & (blink_tick ? (-BLINK_TIME, 0]);

// Crossroad to semaphore state map

aux green_1, yellow_1, red_1, red_yellow_1,
green_2, yellow_2, red_2, red_yellow_2;

green_1 == go_1;
yellow_1 == warning_1 | alert_1;
red_1 == stop_1 | go_2 | warning_2;
red_yellow_1 == alert_2 | stop_2;

green_2 == go_2;
yellow_2 == warning_2 | alert_2;
red_2 == stop_2 | go_1 | warning_1;
red_yellow_2 == alert_1 | stop_1;

// Light signals generation

#ifdef SIMULATION
output red_signal_1, yellow_signal_1, green_signal_1,

red_signal_2, yellow_signal_2, green_signal_2;
#endif

green_signal_1 == green_1;
yellow_signal_1 == yellow_1 | red_yellow_1 | yellow_blink;
red_signal_1 == red_1 | red_yellow_1;

green_signal_2 == green_2;
yellow_signal_2 == yellow_2 | red_yellow_2 | yellow_blink;
red_signal_2 == red_2 | red_yellow_2;

// Thread management

#ifdef SIMULATION
thread info_1, info_2, commerce_1, commerce_2;
#endif

safe_thread(info_1);
safe_thread(info_2);
safe_thread(commerce_1);
safe_thread(commerce_2);

#ifdef SIMULATION
simulated_thread(info_1, 2);
simulated_thread(info_2, 2);
simulated_thread(commerce_1,2);
simulated_thread(commerce_2, 2);
#endif

init ~safe_start(info_1) @ 0, ~safe_kill(info_1) @ 0,
~safe_start(commerce_1) @ 0, ~safe_kill(commerce_1) @ 0;

init ~safe_start(info_2) @ 0, ~safe_kill(info_2) @ 0,
~safe_start(commerce_2) @ 0, ~safe_kill(commerce_2) @ 0;

safe_kill(info_1) == since(up_stop_1 | up_disabled, running(info_1));
safe_kill(info_2) == since(up_stop_2 | up_disabled, running(info_2));
safe_kill(commerce_1) == since(up_alert_2 | up_disabled, running(commerce_1));
safe_kill(commerce_2) == since(up_alert_1 | up_disabled, running(commerce_2));

safe_start(commerce_1) == ~disabled & since(down(safe_kill(info_1)), ~safe_kill(commerce_1));
safe_start(commerce_2) == ~disabled & since(down(safe_kill(info_2)), ~safe_kill(commerce_2));
safe_start(info_1) == ~disabled & since(down(safe_kill(commerce_1)), ~safe_kill(info_1));
safe_start(info_2) == ~disabled & since(down(safe_kill(commerce_2)), ~safe_kill(info_2));

8

Controller development
A real-time controller for the traffic light signals has to drive directly all I/O terminals of the connected system.
With this new IDE, as soon as the specification is written and compiled, the I/O devices, which are needed to interface
the traffic signals with the controller, remain to be declared. After the I/O elements list has been created, the automatic
configurator of the IDE generates code for device linking with the inference kernel. The controller is completed by
editing the code of the I/O classes just created to embed the I/O devices, controlled by the specification, into the real
system.
The development steps are summarized in Figure 3.

Figure 4: sources-to-executable development steps

Specification
file

(I/O devices
behavior)

Declaration
file

(I/O devices
list)

Automatic
Generated
C++ Code
(I/O devices

link)

Temporal
Inference
Network

file
(behavior

translated for
real-time

execution)

I/O Devices
C++ Code
(I/O devices

customization
and integration)

include

compile

compile

edit

Pre-Compiled
Controller

Library
(controller

kernel)

Executable
(real-time system)

link

load
Application
C++ Code

(external
aspects

implementation)

9

1st Step: List the I/O devices
The I/O terminals in this case study are responsible of controlling light switches and the active text panels.
The exhaustive list is presented in Table 1; it is the starting point of the development system and influences, taking into
account types of declaration, the automatic configuration code written in C++ source, where class names and instances
are defined.

Disable_requestInput Emergency_request_1 emergency_request_2
green_signal_1 green_signal_2
yellow_signal_1 yellow_signal_2Output

red_signal_1 red_signal_2
info_1 info_2Thread commerce_1 commerce_2

Road 1 Road 2

Table 1: I/O devices for the traffic signals controller

2nd Step: Customize the devices C++ code
The executable produces C++ files, source and headers, which are composed by:
1. declarations of the I/O classes;
2. link instructions between devices and inference kernel;
3. empty methods which have to be edited for customizing the devices interface;

Each kind of device has a empty method that has to be filled to make the controller, based on logic inference, to
perform I/O communication with the real system:
• for an Input device the method io_val eval() perform the evaluations needed to signal a true, false or none

event to the controller;
• an Output device, drives the system through a void action(bool val)method;
• if a Thread is used to create a system thread which is totally under controller directives, the bool toRun()

procedure performs the operations when this is running.
The automatic generation of code creates a different class for each I/O element of traffic system, but is possible to group
I/O element that perform the same action, but on a different component of the system.
In this case, three categories of I/O have been created:
• LightOutput,
• ReqInput,
• PanelThread.
This feature of the IDE avoid code duplication, by using middle-level classes, which are created to interface between
Input, Output or TINThreadWithSemaphores (basic class for I/O elements) and final class like Input_disable-request,
Output_green_signal_1 , Thread_info_1, which are responsible of singular characteristics of the single I/O elements.
In this situation just one method for each kind of I/O class is specified. The category classes provides to contain the
references to the element which they operates on, as example a LightOutput contains two Light class pointer that links
the device with two “real” lights of the traffic system.

3rd Step: Integrate devices into application C++ code
The devices are instantiated by the automatic configuration code, but before running the logic-based controller it is
needed to make them get the right entry point into the real system. Such “glue” code is a delicate part of the project,
should be short and easily understandable. For example the object Output_green_signal_1 green_signal_1 has to set his
Light class pointers to the two Light instances (the “green” ones) owned by the traffic lights on road 1 (two opposite
verses). Therefore two class derived from PanelThread, like Thread_info_2 info_2 and Thread_commerce_2
commerce_2, refer to the same two panels on road 2.

Development Sources Overview
All the resources needed to built this real-time system are presented in Source 3, Source 4, Source 5, Source 6.

traffic_con.bth
The I/O list is the starting point of this development process and it is presented in Source 3. This list is the warranty of
consistence in the project, it ensures what is specified in the left side of the flow diagram shown in Figure 4 does found

10

the respective element on the other side; as example the the disable_request input presented in the specification
(traffic.btl) must corresponds to an input device instantiated and automaticly linked by the C++ code generated
in traffic_con.cpp.
Additional information are provided in the declarative source of the I/O items, such as the inference network file
(traffic.tin), which is loaded at run-time from the controller and it has been created by the tilcox2tin compiler
directly form the specification file. This compiler must not process this information, which are useful for the code
generating step; in fact they are written inside pre-processor structure: in this way these lines are skipped by the
tilcox2tin compiler and considered by the tinconf code generator.

Figure 5: Class Diagram for the devices customization (with module separation)

Input_emergency
_request_2

Input ReqInput ButtonReq

Input_emergency
_request_1

Input_disable
_request

Ouput_green
_signal_1

Output LightOutput Light

Ouput_yellow
_signal_1

Ouput_red
_signal_2

(2)

Thread
_info_1

TINThread
With

Semaphores
PanelThread TextPanel

Thread
_commerce_1

Thread
_commerce_2

(2)

Pre-Compiled
Controller Library

I/O Devices C++ Code
(after automatic generated code editing)

Application Code

11

traffic_con_custom .h/.cpp
In Source 4 and Source 5 some C++ code is presented; Some classes, which model I/O items, are defined and
implemented.
This code is the result of automatic generation of the classes and editig for customization; for this applications has been
edited both interface and implementation. Some methods, needed to link the instance to the application, have been
defined in the interface of each class, like void linkLight1(Light *link) for LightOutput class. Anyway the
implementation is responsible of the real “customization”of each I/O item: the void action(bool val) method for the
LightOutput class rules which operations follow a true or false value of specification literal like green_signal_1 or
yellow_signal_2. It is intuitive that in bool toRun() method of PanelThread class are the instruction executed after the
beahvior determines a thread start.

traffic_sim.cpp
The last interesting code section is presented in Source 6, which is part of the final application. In this source the I/O
items are connected with the request, light or panel instances of the application to actively change the state of the traffic
signals. An object diagram is drawn in Figure 6 to explain how this link allows a direct control of the traffic by
evaluating events in the inference engine.
This IDE do not allow to manipulate class instances which are automatically generated as global without previously
declaring as external in the source file, this declaration get away from accidental erroneous manipulation.

Executable creation in a common development system
In the IDE it is possible to build the executable file and his resource at the same time. Using simple pre-build step it is
possible to compile the specification file (if it is changed) to obtain a TIN file and an initialization file; the first file
describe the inference net and it is loaded from the controller at run-time together with the other event list that is
processed by the controller before the system starts.
In the same manner a declaration change is recognized by the IDE; it generates again the C++ sources, but only the files
that are not editable to protect those important modifications.
In the build step the source file are compiled and linked whit the kernel library to create an executable that perform a
real-time system where all the time constant and event relations are formally specified.

Source 2: traffic_con.bth (list of I/O items)

input disable_request;

input emergency_request_1,
emergency_request_2;

output green_signal_1,
yellow_signal_1,
red_signal_1;

output green_signal_2,
yellow_signal_2,
red_signal_2;

thread info_1,
info_2;

thread commerce_1,
commerce_2;

#ifndef __LOGIC

logic traffic(50);

#endif

12

Source 3: traffic_con_custom.h (I/O items interface)

//Custom output class to control 2 light (of the same color)
class LightOutput : public Output
{
private:

Light *light1;
Light *light2;

public:
LightOutput(const char *name) : Output(name) { light1=light2=NULL;}
void action(bool val);
void linkLight1(Light *link) { light1=link; }
void linkLight2(Light *link) { light2=link; }

};

class Output_green_signal_1 : public LightOutput
{
public:

Output_green_signal_1() : LightOutput("green_signal_1") {}
};

class Output_yellow_signal_1 : public LightOutput
{
public:

Output_yellow_signal_1() : LightOutput("yellow_signal_1") {}
};

… < missing part > …

//Custom thread class to control 2 traffic panel
class PanelThread : public TINThreadWithSemaphores
{
private:

TrafficPanel *panel1;
TrafficPanel *panel2;
char scrolltext[100];
char scrolled[200];

bool toRun();
public:

PanelThread(const char *name) :
TINThreadWithSemaphores(name,MAX_SEMS,SAMPLE_TIME) {}

void linkPanel1(TrafficPanel *link) { panel1=link; }
void linkPanel2(TrafficPanel *link) { panel2=link; }
void setScrollText(const char *text);

};

class Thread_info_1 : public PanelThread
{
public:

Thread_info_1() : PanelThread("info_1")
{ setScrollText("traffic info, jam, crushes... "); }

};

class Thread_commerce_1 : public PanelThread
{
public:

Thread_commerce_1() : PanelThread("commerce_1")
{ setScrollText("commercial spot, buy that, buy everything... "); }

};

13

Figure 6: Object diagram of inference-system links

Source 4: traffic_con_custom.cpp (I/O items implementation)

io_val ReqInput::eval()
{

if(!req)
return(IO_NONE);

if(req->getState())
return(IO_TRUE);

return(IO_FALSE);
}

//Action of a custom Ouput device created to control a light
void LightOutput::action(bool val)
{

light1->switchLight(val);
light2->switchLight(val);

}

//Running code of a custom Thread created to scroll a text on a panel
bool PanelThread::toRun()
{

int lenght, cursor;

strcpy(scrolled,scrolltext);
strcat(scrolled,scrolltext);
lenght=strlen(scrolltext);
cursor=0;
while(true)
{

panel1->setText(scrolled+cursor);
panel2->setText(scrolled+cursor);
cursor=(cursor+1)%lenght;
sleep(200);

}
return(true);

}

Input_
disable_request

Ouput_
green_signal_1

ButtonReq

Light
green

Light
yellow

red

TrafficLight

Light

Light
green

Light
yellow

red

TrafficLight

Light

TIN
inference

engine

Event Flow

14

Source 5: traffic_sim.cpp (application code)

// Getting global IO device declared
// in the automatic generated code by TINCONF

// GETTING INPUT
extern Input_disable_request disable_request;
extern Input_emergency_request_1 emergency_request_1;
extern Input_emergency_request_2 emergency_request_2;

// GETTING OUTPUT
extern Output_green_signal_1 green_signal_1;
extern Output_green_signal_2 green_signal_2;
extern Output_yellow_signal_1 yellow_signal_1;

… < missing part > …

// GETTING THREAD
extern Thread_info_1 info_1;
extern Thread_info_2 info_2;
extern Thread_commerce_1 commerce_1;
extern Thread_commerce_2 commerce_2;

… < missing part > …

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

… < missing part > …

//Calling config() function
//...this provides to link all the IO instances to the logic kernel
config();

//Linking the real environment to the I/O items

// INPUT LINKING
disable_request.linkReq(&disableReq);
emergency_request_1.linkReq(&emergency1Req);
emergency_request_2.linkReq(&emergency2Req);

// OUTPUT LINKING
green_signal_1.linkLight1(Road1F.linkGreen());
green_signal_1.linkLight2(Road1B.linkGreen());

green_signal_2.linkLight1(Road2F.linkGreen());
green_signal_2.linkLight2(Road2B.linkGreen());

yellow_signal_1.linkLight1(Road1F.linkYellow());
yellow_signal_1.linkLight2(Road1B.linkYellow());

… < missing part > …

// THREAD LINKING
info_1.linkPanel1(&Panel1F);
info_1.linkPanel2(&Panel1B);

commerce_1.linkPanel1(&Panel1F);
commerce_1.linkPanel2(&Panel1B);

15

IDE for real-time system: Temporal logic and C++

A controller for crossroad signals: Traffic-Light Simulator

Summary

Introduction ___ 1

Crossroad traffic environment__ 1

Specification of a traffic-light crossroad behavior __ 1
Informal description of a crossroad traffic light system __ 2
1st Step: Create a state sequence __ 2
2nd Step: Interface state with boolean light signals __ 2
3rd Step: Exceptional conditions __ 3
4th Step: Thread panel control __ 4
Complete Specification ___ 4

Some validations of the specified behavior __ 4
Properties Proof: State sequence__ 4
History checking: Response to input signals___ 5

Controller development ___ 8
1st Step: List the I/O devices ___ 9
2nd Step: Customize the devices C++ code __ 9
3rd Step: Integrate devices into application C++ code__ 9
Development Sources Overview__ 9

Executable creation in a common development system_____________________________________ 11

Figure 1: Crossroad signals ___ 1
Figure 2: States to output signals mapping ___ 3
Figure 3: History checking snapshot (disable request satisfaction) ___ 5
Figure 4: sources-to-executable development steps ___ 8
Figure 5: Class Diagram for the devices customization (with module separation) ____________________________ 10
Figure 6: Object diagram of inference-system links __ 13

Specification 1: state order __ 2
Specification 2: state time constants ___ 2
Specification 3: car flow to traffic light configuration ___ 3
Specification 4: traffic light configuration to light boolean signal__ 3
Specification 5: emergency request satisfaction __ 3
Specification 6: thread activation and deactivation ___ 4
Specification 7: state sequence property proof ___ 5

Source 1: traffic.btl – part 1 ___ 6
Source 2: traffic_con.bth (list of I/O items) __ 11
Source 3: traffic_con_custom.h (I/O items interface) __ 12
Source 4: traffic_con_custom.cpp (I/O items implementation) ___________________________________ 13
Source 5: traffic_sim.cpp (application code) ___ 14

