
Introduction

In recent years researchers have studied the techniques
related to the analysis and synthesis of human
heads/faces under motion and deformation. These tech-
niques can be used for defining low bit-rate image
compression algorithms [following the paradigm of
model-based image coding e.g. [1]] for videophones,
video-conferencing, as well as for applications of virtual
reality, and cinema technologies, etc. In order to be effec-
tively used, such techniques have to integrate
mechanisms for motion estimation with those of 3D
head/face modeling, rendering an animation (i.e.,
head/face synthesis). For most of these new applications,
the processes of motion estimation and synthesis must be
mandatorily performed in real-time.

The head/face motion estimation problem can be divided
into two sub-problems – i.e., the estimation of head
motions (global motions) and the estimation of facial defor-
mations due to changes of expression (local motions)
(Figure 1). The first problem is also known as head track-
ing and can be solved with traditional techniques for 3D
motion estimation e.g., [2,3]. To this end, both matching
and gradient-based techniques [4–6] could be used. In the
literature, the second problem, i.e., the problem of estima-
tion of facial deformations and motions (lips tracking, eyes
tracking, etc.), has been addressed by using several tech-
niques. These techniques can be classified in three main
categories which can be distinguished on the basis of the
mathematical elements they adopt for modeling facial 
features (i.e., mouth, eyes, eyebrows, nose, etc.) that have
to be tracked: (i) deformable or dynamic contours
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(splines/snakes, B-splines) [7–11]; (ii) deformable tem-
plates [12,13]; (iii) points or patterns (by using optical-flow
or matching-based techniques) [14]. These features are
tracked in subsequent image frames in order to estimate
face deformations i.e., by measuring motions and deforma-
tions of the features selected.

It should be noted that most of the above mentioned tech-
niques, which are based on deformable curves and/or
templates, have been used to define methods for recogniz-
ing faces and objects in general [15–19].

As regards the head/face synthesis, this is obtained by
using as a reference a synthetic model generated by (i)
modeling the head/face 3D structure as a wire-frame
object [20–22], and (ii) smearing the real face/head patter
(i.e., texture) on the corresponding 3D wire-frame model
instead of using classical algorithms for shading with
uniform colors (e.g., Phong, Gouraud). Since the ani-
mated model must be as close to the real model as
possible, corresponding points between the facial features
(which are used for tracking the facial deformations) and
the mathematical structures in the reconstructed synthetic
model must be defined. The associations between these
two domains are defined in a phase in which a parame-
trized 3D wire-frame model is adjusted in accordance
with the real measures of the face under analysis. The
process of adjustment in accordance with the real mea-

sures of the face under analysis. The process of adjust-
ment can be simplified by deforming the wire-frame
model in order to match a frontal image of the face shape
[23]. In some cases, the structural model of the face be
defined by also considering facial muscles for a certain
depth [24]. Better results are obviously obtained by mea-
suring the head/face structure directly from the real
subject, but his can be a very difficult and thus unfeasible
task in real applications.

Once a 3D synthetic model is obtained, this can be 
considered as a reference model, and the animation of 
the head/face is performed by applying the motions (i.e.,
global motions and local deformations) estimated from
the image sequence to the reference model [25]. In this
context, animate means translate, rotate, and deform the
reference head/face model in the 3D synthetic space in
order to present the corresponding projection on the
screen. In the last phase, global and local motions can
also be modified by considering external motions, for
example by applying the deformations measured on the
face observed from a different point of view (adding
global motions) or for enhancing some expressions
(adding deformations), etc.

In this paper, a complete system for tracking the main
facial features (like mouth and eyebrows) and for recon-
structing the deformations estimated on a synthetic
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Figure 1. Process of analysis and synthesis of animated actors.



head/face in quasi-real-time by using low-cost architectures
is presented. The method adopted for tracking facial 
features is based on dynamic contours, which in turn are
mathematically modelled as spatiotemporal B-splines. The
wire-frame model of the human head used has been
obtained by improving the well-known CANDIDE model
[21,26]. In the same section, it is shown how the 3D wire-
frame model can be adapted to the face under analysis by
means of a method derived by Reinders et al. which is
based on the face pattern of a single frame [23]. Moreover,
an ad hoc algorithm for guaranteeing as fast smearing of
the real facial pattern on the synthetic model has also been
defined.

Modeling Facial Features as Spatiotemporal 
B-Snakes

The mouth, the eyes, the eyebrows, the nose, etc. can be
considered as the most important facial features. In order
to reproduce their position and shape, it suffices to know
the position of a draft shape which models these features
(Figure 2). For this reason, the tracking of facial features
has often been reduced to the problem of tracking curves
which model the features shapes. Since the feature con-
tour can change its form in subsequent frames, a method
for contour tracking in time is needed. This process can be
obtained by defining an energy model for deformable 
contours [7–10], or for dynamic contours [11,27], or for
deformable templates [12,13]. This classification follows
that proposed by Blake [28].

It should be noted that the approaches based on
deformable contours (splines) and/or templates are usu-
ally computationally too heavy to be used for real-time
tracking on low-cost architectures. Moreover, deformable
contours are so flexible that in many cases it is very diffi-
cult to maintain their shape under control. In fact, in
many applications of that technique the energy model
also contains an energy factor which models the user’s
actions for manually deforming the splines in order to
adjust their shape i.e., the so-called external energy.
Moreover, deformable templates work well only when
the shape of the feature under tracking is known and fea-
ture deformations are small and the feature shape
structure does not change in time (e.g., these approaches
present some limits for shapes which invert their curva-
ture in time). On the contrary, dynamic contours are
based on B-splines and attempt to integrate the above
aspects since they model curves as a combination of ele-
mentary templates. In addition, they use a parametrized
representation of the curve which makes their estimation

cheaper with respect to classical splines and templates.
This model for representing curves is defined as “B-snake”
[27]. Moreover, since the model proposed extends the
adoption of B-snakes to track curves in time by also con-
sidering energy factors expressing the changes in time, it
can be viewed as a “spatiotemporal B-snake based model”
(i.e., STB-snake).

An STB-snake is a deformable parametrized surface con-
trolled by the temporal behavior of internal and image
forces which act at each point of the surface in the spatio-
temporal domain. The internal forces, Fint, represent the
constraints on the shape curve (regularity, elasticity, etc.),
while the image forces, Fimg, guide the contour to match
certain image features (luminance, contrast, etc.). By 
integrating these forces along the curve v(s,t) the corres-
ponding energies are obtained and from these the total
energy:

where v(s,t) is the parametric description of the curve and
v(s,t) = v(x(s,t),y(s,t)). The goal is to find the surface that
minimizes the total energy in time. When a minimum for
Etot is reached, the expressions x(s,t) and y(s,t) define a
curve which best fits the feature contour according to its
definition in terms of Eimg.

The Internal Energy, Eint, is defined as:

where E1 and E2 take into account the tension and the rigid-
ity of the curve shape (the surface at a given time instant),
respectively (i.e., they impose the regularity of the curve
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Figure 2. Modeling with STB-snakes: an open mouth (left) where
the teeth are visible; and an eyebrow (right), with their possible
respective representation.



shape). The corresponding forces are weighted with func-
tions α(s) and β(s) respectively:

Et takes into consideration the temporal regularity of the
surface in time:

where vs(), and vss() are the first and second order partial
derivatives of v with respect to s, and vt() is the first partial
derivative of v with respect to t.

The Image Energy, Eimg, consists of two terms: Ec, that
depends on the contrast of the image points corresponding
to those belonging to the curve, and Ev, that considers the
changes in image contrast with time:

where:

and where: H() is a gradient operation, I(x(s,t),y(s,t),t) is the
value of the image brightness at time t in the point
(x(s,t),y(s,t)),It() is the first order partial derivative of the
image brightness with respect to time, ρ(s) and γ(s) are suit-
able weight functions. It should be noted that the operator
H() must be capable of identifying the shape of the curve
that must be tracked in the image sequence.

At each time step, the minimization of Equation (1) is
reduced to estimate the solution of the system of equations,
which in turn has been obtained by taking the derivatives of
the functional with respect to the unknowns (i.e., points
through which the approximation curves must pass). Thus,
a system of 2(p + 1) unknowns is defined where p + 1 is
the number of curve points. Using a curve representation
based on B-splines the dimension of the system of equa-

tions is strongly reduced since the curve is defined on the
basis of the control points (i.e., the knots) which are usually
much less than the curve points:

where Bi() for i = 0,..,m are polynomials defining the basis
of the B-spline representation, and (Xi,Yi) for i = 0,..,m
are the knots of the curve. Thus, with this representation 
the number of unknowns is reduced from 2(p + 1) to 
2(m + 1) where m << p, and the equation set can be writ-
ten as:

where A is an (m + 1) 3 (m + 1) matrix and Gx, Gy are
(m + 1)-dimensional vectors.

where the above values are estimates for i, j = 0,..,m and
Bs(), and Bss() are the first and second order partial deriva-
tives of B() with respect to s.

In order to meet the request of real-time computation, it has
been necessary to choose linear B-splines as adopted by
Menet et al. [27]. Therefore, in the following, discrete ver-
sions of the above energies have been obtained:

E
p

i x x y yi i i i

i

p

1 2 1
2

1
2

1

10= ( ) −( ) + −( )[ ] ( )− −
=
∑∆

α ,

A s B s B s s B s B S

G s B s
H x s t y s t t

X

G s B s
H x s

ij h si h sj h h ssi h ssj h
h

p

xi h i h
h h

ih

p

yi h i h

= ( ) ( ) ( ) + ( ) ( ) ( )[ ]

= ( ) ( ) ( ) ( )( )











= ( ) ( )

=

=

∑

∑

2
0

0

α β

ρ
∂

∂

ρ
∂

,

, , , ,
,

hh h

ih

p

ij h i h j h
h

p

vxi h t txi

h

p

t y s t t

Y

V s B s B s

E s I x s t y s t t I x s t y s t t

, , , ,
,

,

, , , , , , , ,

( ) ( )( )











= ( ) ( ) ( )[ ]

= ( ) ( ) ( )( ) ( ) ( )( )[ ]

=

=

=

∑

∑

∂

γ

0

0

0

2

2

τ

∑∑

∑= ( ) ( ) ( )( ) ( ) ( )( )[ ]
=

,

,E s I x s t y s t t I x s t y s t tvyi h t tyi

h

p

2
0

γ , , , , , , , ,

AX G VX E

AY G VY E

+ ( ) ( )( ) + + =

+ ( ) ( )( ) + + = ( )
x t vx

t vy

x s t y s t t

y x s t y s t t

, , , , ,

, , , , ,

0

0 9

x s X B s y s Y B si i i i

i

m

i

m

( ) = ( ) ( ) = ( )
==
∑∑ ; ,

00

E s H I x s t y s t t s t

E s I x s t y s t t s t

c

sT

v t

sT

= ( ) ( ) ( )( )( )[ ] ( )

= ( ) ( ) ( )( )[ ] ( )

∫∫

∫∫

ρ

γ

, , , ,  d d ,

, , , , d d ,

7

8
2

E E Eimg c v= + ( ), 6

E s v s t s tt s

sT

= ( ) ( )[ ] ( )∫∫ τ | , |2 5d d ,

E s v s t s t

E s v s t s t

s

sT

ss

sT

1
2

2
2

3

4

= ( ) ( )[ ] ( )

= ( ) ( )[ ] ( )

∫∫

∫∫

α

β

| , |

| , |

d d ,

d d ,

70 P. NESI AND R. MAGNOLFI



where is the distance between

the curve extremes, and the factor is inserted for

normalizing the energy in order to make the energy mea-
sure independent of the scale factor and of the number of
knots and points of the snake. As a consequence, the value
of E1 is greater than 1 in most cases and equal to 1 only for 
rectilinear curves, while E2 ≥ 0. The above energies
depend on p + 1 points and can be expressed in terms of 
m + 1 nodes by using B-splines. Moreover, in order to sim-
plify the calculus the values of weight functions have been
chosen to be constant along the curve; therefore:

The structure of the above expressions is equal to that of
Equations (10) and (11) since: (i) due to the division of
each part of the m parts of the B-spline into n segments
having a constant length, each segment (Xk21,Yk21) –
(Xk,Yk) is as long as 1/n of the B-spline part, and (ii) p/n =
m. The same process can also be applied to energy Et, thus
obtaining:

On the other hand, the energies depending on the image
brightness cannot be expressed by using only references to
the knots since their values also depend on the energy of
the intermediate points: therefore:

and k = [i/n] – i.e., the integer part of the i/n ratio. Hence,
by considering the above expressions, the first deriva-
tives of the total energy with respect to the vectors 
X = (X0,X1,…,Xm)T and Y = (Y0,Y1,...,Ym)T assume the
form:

where C is a vector of functions depending on E1(r21),
E2(r21), Et(r21), which takes into account the dependence of
EX and EY on the energies calculated at the previous itera-
tion (r21); and EimgX indicates a vector whose k-th element
is the derivative of Eimg with respect to Xk. EimgY is defined
in a similar manner. In addition, the structures of the 
matrices are:

Solving the above system of non-linear equations leads to
an estimated value of minimum of the functional repre-
senting of the total energy and, thus, the positions of the 
m + 1 knots of the STB-snake at the current time instant.
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Unfortunately, if traditional methods for solving non-
linear systems of equations are adopted, the solution of
the above system of equations can be computationally
very heavy.

In order to solve this problem, a specific and very fast
method has been defined. According to many other appli-
cations in which splines have been used for modeling
curves in vision, the first hypothesis is that the initial data
is not very far from the final solution. If the deformations
are supposed to be slow or the number of images per sec-
ond high, the above hypothesis can be expanded to be
applied to the changes between two subsequent images.
According to these conditions, the method proposed is
based on the estimation of the sign of the derivatives of
total energy with respect to each variable (Xi,Yi) for
i = 0,..m. Once the derivatives are estimates, the coordi-
nates of each point (Xi,Yi) are increased or decreased of a
given amount, δ, according to the corresponding sign. This
process is performed for each node and for Q iterations
(the stop criterion is based on a threshold applied to the
value of the derivative of total energy with respect to 
the iteration number). In order to decrease the number of
iterations and, thus, to improve the system performance,
experimental results have demonstrated that the value of 
δ at the generic iteration q,δq, can be profitably obtained
on the basis of the initial value δo and the iteration 
number: δq = δoσ

q where σ < 1.

With such a definition for δq, it can be shown that the maxi-
mum variation (increment or decrement) of each coordinate
Xi,Yi, of the generic knot i, is always less than:

By indicating with Xo, Yo the values of vectors X, Y at
the first iteration, the δmax must be chosen so that the 
values which minimize the total energy at the end of
the iterative process lie onto the hyper-cube specified 

by:

Once δmax has been chosen, several values for δo = 10 can
be obtained by using δo = 2 and σo = 0.8, as well as by
choosing δo = 5 and σo = 0.5. By using the first couple of
values, δq decreases relatively slowly, and the solution is
more exact, while for higher values of δo (and lower values
of σ) the iterative process is faster (less iterations are

needed), but the solution is less satisfactorily approximated.
Thus, given δmax, the values for δo and σ which must satisfy
Equation (17), are chosen according to the processor speed,
the time available for each frame and the precision
required.

This technique allows the estimation of the minima at each
time step using only few iterations, typically no more than
10–15 iterations, with δo = 1 and σo = 0.75. The values
must also be chosen by realizing that the final goal is to
reproduce the synthetic model on a screen; this means that
an extreme resolution is often unuseful.

Since the process is driven by the image energy (i.e., when
the image energy changes the curve following it changes in
order to reach the minima), in certain conditions the curves
can lose some points because they find a lower energy due
to the presence of more prominent image gradients, as it
has been noted for classical splines. A typical example is
the case in which an open mouth shows the teeth (the
appearing of the teeth changes the conformation of the
energy surface) (see Figure 3). In particular, in Figure 3
(left) a closed mouth is reported with the corresponding
trend of the total energy. In Figure 3 (right), a frame
obtained after a time instant with respect to the previous
frame is shown and on the left of the same figure the corre-
sponding trend for the total energy is reported. In this case,
at the beginning of the estimation process the curve is
located in b and the presence of a high gradient generates a
different minimum with respect to the correct leap. In these
conditions, the points are attracted from the center of the
mouth. In order to solve this problem, an ad hoc energy of
repulsion has been defined among the points belonging to
the upper and lower parts of the mouth. This factor has
been added to the expression of Eint, Equation (2), in the
complete model, thus obtaining for the total energy a pro-
file modified according to the dashed line reported in
Figure 3. This constraint has also been profitably used for
eyebrows since their thickness can be considered to be con-
stant in time (Figure 3).

Synthetic Model

In Figure 4, two views of the generic 3D wire-frame model
are reported consisting of 105 points which identify the
facet i.e., the triangles. This has been adopted as a generic
wire-frame model and derived from the well-known CAN-
DIDE model (76 points) [21] by adding points around the
mouth and the nose for improving realism and for provid-
ing a correspondence between the points of the synthetic
model and the knots of the STB-snakes.
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Model adjustment

In order to establish the true correspondence between the
face under analysis and the synthetic head/face model dur-
ing the phase of animation, the generic wire-frame model
must be adjusted with respect to the real dimension of the
face under tracking. To this end, a procedure to adapt the
size and shape of the wire-frame facial model to those of

the person in front of the camera has been derived and
used. This is based on elastic deformations of the model
and has been derived from that presented by Reinders et al.
[23]. The adjustment confers a high realism to the phase of
animation of the synthetic model. A better final face model
could be produced by also considering the side views of the
face under analysis. The process of adjusting is summa-
rized in Figure 5 and proceeds as follows. Firstly, some
reference points (corresponding to the most important face
features points and to the vertices of the wire-frame model)
must be marked. On the basis of these references, the
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Figure 3. Modeling with STB-snakes: closed mouth (left), and
open mouth (right) with the teeth, and the corresponding energy
trends. The trend of the total energy with the addition of the
repulsion energy is drawn by using a dashed line.

Figure 4. The generic 3D wire-frame model of the head/face:
frontal and side views.

Figure 5. The process of wire-frame adjustment to the actual face dimen-
sions and shape: (a) source image; (b) reference points on the face; (c) image
with scaled wire-frame model; (d) adjusted wire-frame model superimposed
on the source image (5th iteration).

(c) (d)

(a) (b)



generic wire-frame model of the face is scaled and then,
through an elastic process, the model is adjusted with
respect to the frontal image. The adjustment is driven by
means of an iterative process in which the marked points
play the role of attractors and their forces are propagated by
using a Gaussian distribution through the edges of the
mesh.

In particular, in order to modify the structure of the model
vertices locally, the 3D wire-frame model has been
assumed to be elastic. With this assumption, the move-
ment of each vertex causes a perturbation of the
neighborhood points; a perturbation decreases its effects
with the increment of the distance from the vertex con-
sidered (see Figure 6). Assume a generic contour of the
model, made up of vertices Vi, for i = 1,..,nv, which must
be modified in order to match the corresponding contour
on the face, whose vertices are Pj, for j = 1,..,np, (with
np which might be different or not from nv), for each 
vertex, Vi, of the model, a push vector, Svi, which moves
Vi on the face contour (i.e., on the correct position) can be
defined. In the same way, for each face vertex, Pj, a pull
vector, Spj, which attracts Pj and brings it on the model
contour is defined.

The process of pushing and pulling vectors defines a vec-
tor displacement field i.e., in each point M of the model a
force is present which moves the point itself by a (vector)
quantity DM, depending on the vectors Svi and Spj, a scal-
ing factor e, and a rigidity factor c. The function defining
the vector field is a sort of Gaussian distribution, thus, it

is used to weight vectors Svi, and Spj (29):

The propagation of the forces field produced by the dis-
placement vector depends on the rigidity factor, c: the
higher the value of c the wider the Gaussian distribution.
Decreasing c, leads to a reduction of the interactions
between close points, thus allowing a better local matching.
At the beginning of the iterative process, the difference
between the two contours can be high; therefore, high val-
ues for c are chosen. Then, c is decreased until the
differences between the two contours become less than a
predefined threshold. Our experiments have indicated that
satisfactory results are achieved even by using 445 itera-
tions which correspond to a couple of seconds on i486 DX
33MHz machines.

Model synthesis

Once the process of adjustment is completed the pattern of
the frontal image (called source image) is smeared on the
adjusted wire frame model. In this way, a reference syn-
thetic model with the original pattern is obtained. On the
basis of the reference model, the effective synthetic
head/face is obtained by applying rotations, translations and
local deformations according to the measured movements.
This process of rendering must be repeated each time the
real head/face under analysis changes its position or pre-
sents deformations (at least for the triangles that have been
changed), considering projection law, hidden area removal,
and texture mapping.
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Svi
Spj

Vi

Pj

M

Figure 6. The process of elastic adjustment of the 3D wire-frame head/face mode.

 

DM =

− −





−
− +









− −





−
− +




























= =

= =

∑ ∑

∑ ∑
1

1

2

2 1

2

2

1

2

2 1

2

2

∈

i
nv

vi
i

j
nv

pj
j pj

i
nv i

j
nv j pj

S
M V

S
M P S

M V M P S

exp exp

exp exp

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
ψ ψ

ψ ψ 

.2



Therefore, in order to synthesize the head/face images, it
has been necessary initially to establish a technique for the
2D representation of 3D scenes i.e., projection law. Thus,
to satisfy real-time requests the orthogonal model has been
chosen for the projection law; by using this solution, only
six multiplications per point are needed.

On this basis, a hidden line removal algorithm has been
developed in order to establish the model facets that have
to be displayed, depending on their orientation and/or
deformation. A procedure based on the above mentioned
projection law, applying rotations, translations and local
deformations according to the measured movements has
been used for estimating model facet vertexes on the
image plane and thus analysing the model facet by facet,
instead of line by line. With such an algorithm, the surface
external normal vector for every model facet is firstly cal-
culated, then the inner product with the normal of
perspective plane is performed: if the product is negative,
the facet is not visible and, thus, that face is not drawn.
Finally, a simple technique was used in order to avoid
superposition errors. The facets corresponding to the nose
are the last to be evaluated and displayed, so that the parts
of the face possibly concealed by the nose are correctly
covered. The use of this method is possible when the nose
is supposed to be closer to the observer with respect to the
zone around the nose itself (i.e. the face is not oriented
backward). In general, the triangles are produced starting
from the farthest to the nearest with respect to the
observer.

Therefore, the facets of the synthetic reference model that
must be displayed, and the new position of each vertex for
the model facets have been identified and estimated,
respectively with the above algorithm. On this basis, every
point of each visible facet must be transferred from the ref-
erence model to the actual model by considering the
appropriate color (texture mapping). In order to fill a trian-
gle with the appropriate texture, a linear transform has
been defined which [for each point of the “destination” tri-
angle i.e., the one to be filled, see Figure 7 (right)] gives
the corresponding point on the “source” triangle (left) (the
one containing the reference texture map). For a better
understanding of the texture mapping procedure, consider
a generic triangular facet, and suppose A, B, C to be its
vertices projections on the perspective plane (source tri-
angle). Let A9,B9,C9 be the vertices projections of the
destination triangle. The mechanism consists of estimating
for each image point, P9, of destination triangle A9B9C9 the
corresponding color of point, P, located in the source trian-
gle ABC (see Figure 7). This process has been defined in
order to guarantee at least the evaluation of a pixel color

for each point of the destination triangle, since the oppo-
site process (starting from the source triangle and
projecting each pixel on the destination) can produce sev-
eral holes in the destination map when strong deformations
are present.

To find the corresponding law, a linear transform has 
been defined T(P9) = P – i.e., T(A9) = A, T(B9) = B,
T(C9) = C.

Transform, T, can be expressed through a matrix product:
P – O = M(P9 – O9) where O and O9 are a couple of
homologous points of triangles ABC and A9B9C9 (e.g., 
O = A and O9 = A9), M is a 2 3 2 matrix (of elements
m11, m12, m21, m22) while (P – O), (P9 – O9) are column
vectors. On this basis, by considering the vertex of corre-
sponding triangles ABC and A9B9C9, and tacking as a
reference point A,A9, the following equations must hold:
B – A = M(B9 – A9), C–A = M(C9 – A9). From these
four equations it can be obtained:

The above equations are used to define two systems of two
equations for the direct estimation of the coefficients of
matrix M e.g., Equations (18a,c,d,e). These coefficients are
used for the direct estimation of displacement components
with respect to point A on the reference triangle by using
the displacement components from the point A9 (note that
the estimation is performed only once per triangle, thus
reducing the computational effort):
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Figure 7. Pattern smearing: reference pattern (left), and destina-
tion triangle (right).



The triangles are scanned by using two reference points, A
and A9; then, the point under transformation, P9, is moved
horizontally pixel by pixel from the left edge of A9B9C9 to
the right one. When P9 reaches the right edge, a new line is
scanned in the same way. During the motion of P9, P is
moved according to transform t. At each step, the color of
P is copied onto P9. These equations are computationally
very cheap, since the problem of texture mapping is
reduced to the estimation of displacements that must be
applied to point P on the basis of P9 and of the dimensions
and orientations of the triangles.

Therefore, the problem is solved by using a two phase
process: (i) solving two systems of two equations in two
unknowns for estimating transform t for each triangle, and
(ii) the direct estimation of point displacements.

In Figure 8, some examples of faces obtained by rotating
and deforming the model adjusted in Figure 5 are pre-
sented. For two frames, both the wire-frame and the
patterned models are shown.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Some examples of animation: (a) rotated model; (b)
deformed and rotated model; (c)–(d) wire-frame and patterned
models rotated and deformed (see eyebrows and mouth); (e)–(f)
wire-frame and patterned models strongly rotated.

Figure 9. Selected images from a sequence (128 3 218 pixels of
resolution) where the face under analysis is opening he mouth:
(a), (c), (e), (g) original images; (b), (d), (f), (h) faces synthesized
by using the patterned wire-frame model with estimated deforma-
tions, with: a = 1000, b = 800, s = 0.75, t = 1, and r = 1.

(a) (b)

(c) (d)

(e) (f)

(g) (h)



Experimental Results

The technique proposed for the notion tracking of face fea-
tures and the synthesis of estimated deformations on a
patterned 3D model has been tested on several real image
sequences in which distinct people deform their face. The
final application of our methods is the very long-term tracking
of faces for video-conferencing, videophones and cinema.

In Figure 9, some image frames of a real sequence where a
man is opening his mouth are reported together with the
corresponding synthetic reproductions. The snakes esti-
mated have been superimposed on the source images. As
can be observed in Figure 9h when the mouth of the syn-
thetic model is open, a gray background is visible. In order
to construct a more realistic synthetic model a different pat-
tern can be prepared, for example by presenting synthetic
teeth or a structure patterned by a real open mouth.

In Figure 10, some images selected from a sequence where
a man is moving his eyebrows are reported. It should be
noted that, as a side-effect, he had also opened his eyes. On
the contrary, on the right of the same figure i.e., in the

images reporting the synthetic reproductions, the eyes are
static, since in this case only the eyebrows have been
tracked. The same method used for tracking the eyebrows
can be adopted for tracking other facial features such as
eyelids with the corresponding increment of computational
cost. Moreover, eyelids can be tracked simply by following
only one point (e.g., the center of eyelid border). On the
contrary, for tracking eyes the best results can be obtained
by using templates [12,13], since their shape is constant
even if sometimes occluded. In Figure 11, some examples
of synthesized images obtained by using the deformations
estimated from the sequence of Figure 9 are reported. Some
of these synthetic images have been obtained by rotating in
several directions the synthetic model and/or by assigning
the deformations estimated from the sequence of Figure 9
to a difficult model (in particular, the model of a woman).
Therefore, in our system, it is also possible to assign the
motion of a face to the structure of another. Moreover, the
global motions and the deformations estimated can be inte-
grated by global motions and deformations introduced by
keyboard or by other means. This opens the way for appli-
cations of virtual reality and cinema e.g., a synthetic actor
can be animated by using the mimicry of another actor.

Our experiments have demonstrated that the approach pro-
posed for the estimation of face deformations is quite
robust with respect to noise, and that it is suitable to track
face motions without time limits. Hence, it can be prof-
itably used in non-controlled environments to perform
motion tracking in real applications of long-term motion
analysis such as videophones, video-conferencing, etc.

The system proposed for tracking facial features differs
from other systems presented in the literature since it
adopts a specific energy model and is computationally
lighter. This is due to the STB-snake model and to the
mathematical technique adopted for solving the system of
non-linear equations used for estimating the minimum of
the functional expressing the total energy.

As a result, the algorithm proposed for motion tracking is
computationally very efficient. In fact, our system is capa-
ble of tracking a mouth or an eyebrow with 12 images/s
(10–15 iterations per frame, 8 knots with 3 points for inter-
knot segment) on a 486 DX 33 MHz. By limiting the
number of iterations to 10 it is possible to track the mouth
and the eyebrows 15 times/s on a 486 DX2 66 MHz.

Moreover, the algorithm for image reconstruction is very
fast; it is capable of producing 22 images/s (containing
human faces) having a maximum resolution of 128 3 128
pixels, reproducing rotations, translations, zooming, and
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Figure 10. Selected images from an image sequence (128 3 218
pixels of resolution) where the face under analysis is moving the
eyebrows: (a), (c) original images; (b), (d) faces synthesized by
using the patterned wire-frame model with estimated deformations,
with: a = 10, b = 500, s = 0.75, t = 0.1, and r = 1. note that in the
reconstructed images the eyes are stationary.

(a) (b)

(c) (d)



deformations on a 486 DX 33 MHz. Therefore, a quasi
real-time head/face motion tracking has been obtained with
low-cost architectures.

These measures have been taken independently, since in
most of the applications of low bit-rate image compression
mentioned in the introduction (e.g., for videophones, video-
conferencing, etc.) the analysis and synthesis are executed
on distinct machines.

Conclusions

A complete and integrated system for tracking face deforma-
tions and for reproducing the corresponding synthetic

head/face was presented. The motion estimation process was
based on spatiotemporal B-splines for modeling curves asso-
ciated with the face features that must be tracked. In addition,
an algorithm for adapting the generic 3D wire-frame face
model to the face under analysis was used. This has conferred
a high realism to the simulations of face motions on the
reconstructed faces. Experiments have demonstrated that this
approach is robust with respect to noise; in addition, it works
well even if low image resolution is used. The system pro-
posed differs from others presented in the literature since it
adopts a specific energy model for avoiding spline collapsing
and is computationally lighter because it is based on 
STB-snakes and an ad hoc numerical method for solving
non-linear systems of equations. Therefore, this approach
can be profitably used in non-controlled environments
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Figure 11. Synthesized images by using the image sequence reported in the previous
figure: (a) rotation of the synthetic model of Fig. 9(d); (b) rotation of the synthetic
model of Fig. 9(h); (d) synthetic model obtained by using a different wire-frame
model and pattern, and the deformations estimated on the image of Fig. 9(a); (e) syn-
thetic model obtained by using a different wire-frame model and pattern and the
deformations estimated on the image of Fig. 9(e); (c), (f)–(i) other moved and
deformed synthetic faces.



where robust and fast computations are mandatory, such as
for videophones, video-conferencing, etc.
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