Metrics for Controlling Effort During
Adaptive Maintenance of Object Oriented Systems

F. Fioravanti, P, Nesi, F. Stortoni
Department of Systems and Informatics, University of Florence
Via di S. Marta 3, 50139, Florence, ltaly
nesi@ingfil.ing.unifi.it, tel: +39-055-4796523, fax: +39-055-4796363

Abstract

The object-oriented modeling has been largely adopted
in industry in the last years. Several systems built 4 or 5
years age may need an adaptive maintenance process in
order to better satisfy market and customer needs. In this
paper', a model for effort estimation/prediction of the adap-
tive maintenance is presented. A selection of metrics for ef-
fort estimation has been applied to the general model for
evaluating maintenance effort. The metrics presented have
been validated against real data. The validation presented
has shown that some metrics that can be profitably em-
ployed for effort estimation/prediction can be also used with
success for the estimation/prediction of the maintenance ef-
fort. Moreover, the results obtained gives some guidelines
to maintain under control relevant factors for the adaptive
maintenance.
Index texrms. object-oriented metrics, maintenance, effort
estimation.

1 Introduction

Traditional metrics for procedural languages can be dif-
ficulty applied for evaluating object-oriented systems [15],
[23], [24]. Several interesting works on predicting and
evaluating maintainability, reusability, reliability, and ef-
fort for system development and/or maintenance have been
presented. This information has been in many cases re-
lated to complexity, size and sometimes to other parame-
ters which should describe the system conformity with the
object-oriented paradigm concepts. Certain relationships
have been demonstrated correct by using validation pro-
cesses — e.g., [24], [13, (171, [19].

In assessing object-oriented systems, it is very impor-
tant to take into account the relationships of is-part-of, is-

'This work was partially supported by MURST Ex60% govern Min-
istry of University and Scientific Research.

0-7695-0016-1/99 $10.00 © 1999 IEEE

483

referred-by, is-a. These aspects must be captured with spe-
cific metrics, otherwise their related costs are not directly
measurable (e.g., the costs of specialization, the costs of ob-
ject reuse, the cost of development, the costs for reengineer-
ing, maintenance, etc.). The is-part-of relationships is very
important for considering the composition/decomposition
of the system. The relationships of is-referred-by frequently
hide dynamic links that can lead to manage lists and retic-
ular structures. The is-a relationship is a strong vehicle of
reuse and polymorphism, but it has to be used with care
since the inheritance can produce degenerative conditions in
which the presence of specialization can also decrease the
system reusability and maintainability. The object-criented
modeling has been largely adopted in industry in the last
vears. Unfortunately several systems built 4 or 5 years ago
may need an adaptive maintenance process in order to better
satisfy market and customer needs.

In order to guarantee the control of the development pro-
cess, as well as the processes of maintenance or reengineer-
ing, quantitative metrics for evaluating and predicting sys-
temn characteristics must be used. One of the most important
issues that should be maintained under control is the effort
(i.e., man-months or -days needed for system development
or maintenance including analysis, design, test or in some
cases only for coding). To this end, a linear/non-linear re-
lationship between software complexity/size and effort is
commonly assumed [22). Therefore, the problem of effort
evaluation is typically shifted to the problem of complexity
or size evaluation. It should be noted that, when software
complexity evaluation is performed after system building,
it can be useful for: (i) predicting maintenance costs, (if)
comparing productivity and costs among different projects,
(iii) learning the development process efficiency and param-
eters, (iv) predicting reengineering costs. When software
complexity evaluation is performed before system building,
it can be used for predicting costs for development, for test-
ing, for the early maintenance, etc.

Moreover, on the basis of the knowledge, which is
present in the early stages of the software life-cycle (e.g.,

number of classes, main class relationships, number of
methods, method interfaces, etc.), the process of system
analysis allows the definition and tuning of metrics for pre-
dicting the effort. From the cognitive point of view, the
observable complexity can be regarded as the effort to un-
derstand subsystem/class behavior and functionalities. This
complexity can be usually evaluated in the early phases and
can be used for predicting costs of reuse and maintenance
[7] or for estimating and predicting other features — e.g.,
(243, [271, [13], [9], (19], (14], [23]. [18}. [20].

In this paper, a study about the estimation and prediction
of the effort for the adaptive maintenance of object-oriented
systems coded in C++ is presented. To this end, a mode! for
the effort estimation/prediction is proposed. For this model
some new metrics and the adoption of well-known met-
rics are shown. The metrics presented have been validated
againstreal data. The validations presented have shown that
some metrics that can be profitably employed for effort es-
timation/prediction can be used with success also for the
estimation/prediction of the maintenance effort. The met-
rics presented in this paper have been added to a framework
specifically defined for C++ langunage [23], [24], [11].

This paper is organized as follows. In the Section 2, the
metrics proposed for evaluating and predicting class effort
due to the adaptive maintenance on the basis of complex-
ity/size are reported. Then, in Section 3 the validation of
the most important metrics proposed is presented together
with a comparison against metrics extracted from the liter-
ature. Conclusions are drawn in Section 4.

2 Metrics for Estimation/Prediction of Adap-
tive maintenance Effort

In this Section, a new model and metric for the estima-
tion and prediction of adaptive maintenance effort is pre-
sented. The model/metric is based on classical metrics for
the estimation of development effort. To this end, a selec-
tion of metrics from the lterature has been performed on the
basis of the authors experience (e.g., [23], [24], [11], [10},
[6], [22]) and considering the several similar experiences
presented in the literature — e.g. [20], {1], [91, [41, [15], [5],
[19], [26], [8] and {2].

A validation of the proposed metrics for predic-
tion/estimation of the adaptive maintenance effort is re-
ported in Section 3, in which they have been applied on the
real case of MOQODS ESPRIT IV Project. The validation
process has been performed by using a multilinear regres-
sion analysis [25].

Before to present the new model/metric for estima-
ticn/prediction of the adaptive maintenance effort, some al-
ready known metrics are presented since the new model is
based on the latter.

484

To help the reader to understand the mertric formulation
and discussion, the authors have prepared Tab.7, at the end
of the paper, in which the metrics and their corresponding
meaning are reported in alphabetic order.

2.1 Class Complexity and Size

At the method level, traditional functional metrics such
as the McCabe Ciclomatic Complexity, Me¢, [21], [16], the
Halstead measure, Ha [12], and the number of lines of
code, LOC, can be used. On the other hand, these metrics
are not very suitable for evaluating object-oriented projects,
since they are not capable of considering all the object-
oriented aspects {27], [13], [24]. In fact, they neglect in-
formation about class specialization (és_a, that means code
and structure reuse), and class association and aggregation
(is_part_of and is_referred_by, that mean class/system struc-
ture definition and dynamic managing of object sets, re-
spectively). On the other hand, WM C (Weighted Methods
for Class) [9], and LOC (used in [20]) have been adopted
as good compromises between precision and simplicity of
evaluation for measuring the development effort.

In [10], {24], the fuily object-oriented metric, C'C, for
evaluating class complexity/size has been presented to-
gether with a comparison with the above mentioned object-
oriented metrics. This metric includes cognitive, structural
and functional aspects. The class complexity/size, CC, has
been defined as the sum of the External Class Description
(EC D) (complexity/size due to class definition and method
interface definition) and the Internal Class Implementation
(IC'Ty (method implementation):

CC =ECD+ICI, {1

where CC components can be decomposed in complexities
due to locally and inherited class members:

ECD=ECDL+ ECDI, (2)

ICT =wer CL +werCl, 3
where:
ECDYL = weactCACL 4 worrrerCMICL,
ECDI = weaciCACI Y+ wenmictCMICI, @)

and thus: CACL is the Class Attribute Complexity Local
(complexity due to atiributes locally defined); CACT is the
Class Attribute Complexity Inherited; C'M IC'L, the Class
Method Interface Complexity Local (complexity of local
method parameters); CM ICI, the Class Method Interface
Complexity Inherited (as the previous for methods inher-
ited); C'L, the Class complexity/size due to Local methods;

and CI, the Class complexity/size due to Inherited meth-
ads. Metrics C'L and C'T measure the complexity/size of the
functional part estimated by using one of the above men-
tioned metrics: Ha, Me¢, LOC. Thus, according to the
metric used, C'C may be considered a complexity or a size
metric.

Metric C'C' takes into account both structural (attributes,
relationships of is_part_of and is_referred_by) and cognitive
(methods, method “cohesion” by means of CMICL and
CMICI, respectively), and functional by means of C'L,
C1I, aspects of the class. The class attributes can be (i)
class instances (evaluated by considering metric CC of their
corresponding class), or (i1} basic types {e.¢., char, int,
float, etc.) for which the complexity is posed to prede-
fined values.

Weights in the above metrics have 1o be evaluated by us-
ing a multilinear regression [25] on the basis of the actual
class effort [24]. The weight values obviously depend on
the purpose for which the metric is used and on the phase
in which the metric is evaluated. Thus, a trend for the
weights along the development and/or maintenance and/or
the reuse process has to be determined. In general, wo a0
and wey are typically negative stating that the inheritance
of attributes and methods leads to save complexity/size and,
thus, effort.

Please note that WA C [9] is the sum of all McCabe
complexities of class-methods which is quite equivalent to
the above C'L metric evaluated by using M ¢ as basic met-
ric [24]. The metric proposed by Thomas and Jacobson
[27} and its evolution proposed by Henderson-Sellers [13]
can be defined in terms of CC components: TJCC =
WeacrCACL+werCLand HSCC = woacr CACLA+
wer CL+werCl, respectively. For these reasons, C'C can
be considered as a generalization of these metrics.

The above mentioned £C D metric gives a measure of
what can be observed by reading the class definition, for
example in the phase of class reuse or maintenance.

Metric C'CC can also be used for predicting class com-
plexity/size. In particular, the prediction is performed by
considering only the class definition: attributes declarations
and methods prototypes. This estimation can be performed
during system analysis/early-design. Therefore, the predic-
tive version of C'C' meitric has the following form:

oo = ’ELJCACL:CACL‘ +wGM;CLrCMICL, +

wCAcpCAGI’+wCMICpCMICI', (5)

where: CACT' and CACL' are obviously estimated on the
basis of the CC’ of class members. Even in this case, the
weights must be evaluated by using a validation process
such as that reported in the next section.

485

2.2 Class Attributes and Methods

A lighter approach for class size evaluation can be sim-
ply based on counting the number of local attributes and
methods (see metric Size2 = NAL + N M L defined by Li
and Henry in [19], sum of the number of local attributes and
methods). On the other hand, the counting of class members
could be in many cases a too coarse measure. For example,
when a class attribute is an instance of a very complex class,
often implies a high cost of method development, which
is not considered simply by increasing N AL of one unit.
Moreover, Size2 does not consider the class members in-
herited (that is, reuse). In order to improve the metric preci-
sion, a more general metric has been defined by considering
the sum of the number of class attributes and methods both
locally defined and inherited, respectively:

NAM = NAML+NAMI, (6)
therefore, N AM can be expanded assuming the form:
NAM = wnyarNAL+wymiNML
+wnar NAI +wym s NMT. 7

Also 1n this case, the typical values of weights can be es-
timated by using a multilinear regression technigue. If the
purpose is to detect critical conditions (of excessive cost of
reuse or development) the weights can be imposed to be
equal to 1 [24]. Please note that, N AM metric can be used
since the early phases of software development for predict-
ing class size and thus class development costs.

2.3 Metrics for Adaptive Maintenance Effort

As it has been demonstrated in [24], the above mentioned
metrics for complexity/size are strongly correlated with the
development effort. In this section, a new model/metrics
for the estimation and prediction of the class effort for the
adaptive maintenance is proposed.

The class effort for the adaptive maintenance of a sys-
tem is typically spent to perform several operations: the
comprehension of the system, the addition of functionali-
ties, the adapration of selected parts. At the level of code,
the adaptation of selected parts can be decomposed in delet-
ing some parts and adding other portions. Typically, if the
team who performs the adaptive maintenance is the same
that has generated the application under adaptation, the ef-
fort for comprehending the sysiem can be neglected with
respect to other factors. Thus, in these conditions, the effort
is mainly due to the addition and deletion of code pieces.

Therefore, considering: (i) a metric M for class size,
complexity or volume estimation, typically related to effort;

(ii) M, the value obtained evaluating metric M after the
adaptive maintenance; (iii) M,, the value obtained evalu-
ating metric M before the adaptive maintenance; then, the
complexity/size newly enforced in a class during the adap-
tive maintenance, M., can be expressed as:

Mam = Ma— My — my,

where: M can be one of the above discussed metrics such
asCC,CC' \WMC, TJCC, HSCCO, NAM, Size2; and,
my takes into account the class code that has been removed
during the adaptive maintenance. In some cases, mg may
be very difficulty estimated directly on the code. If LOC is
used as M, the estimation of the number of removed lines of
code can be an approximated solution to estimate my. Un-
fortunately, this approach cannot be used when more com-
plete and complex metrics such as C'C are used as M, since
structural and functional aspects and the class definitions
and relationships should be considered. On the other hand,
myg in the adaptive maintenance should be a small percent-
age of the class code, thus, it can be approximated with
wAy, obtaining the following metric:

Meam = Mg — wap, My, (8)

where
wym, =1+ w.

Typically, the programmers are quite reluctant towards
the deletion of methods since in many cases it may be dif-
ficult and time consuming to be sure that they are not used
by other classes or by other team members. Thus, the code
deletion in the classes is typically limited to parts of meth-
ods, and only in some cases to entire methods and attributes.
This produces a well-known maintenance problem for ob-
ject oriented systems: the presence of non-used methods
and aftributes.

If the team that has developed the original system is dif-
ferent with respect to that performing the adaptive mainte-
nance a term for considering the effort of comprehension
has to be added in equation (8).

2.3.1 Class Complexity and Adaptive Maintenance
Phases

Considering M = CC in equation (8) the complexity/size
enforced in the system during the adaptive maintenance,
CCum,» can be expressed as:

C’Oam = C'Oa - ‘LUGCBCC(;.

Therefore, since C'C is defined as the weighted sum of
six terms, the whole metric CC, ., can be regarded as a met-
ric with 12 terms and their corresponding 12 weights, 6 for

486

CC, and 6 for CCy. weg, is practically included into to
the weights of C'C}, that change their meaning. Moreover,
since C'C), also takes into account some cognitive aspects
of the system, C'C,,,,, can also partially model the effort for
comprehending the system before adaptation.

Therefore, a complete validation of C'C',,;; metrics has to
be performed by considering the whole structure of CC'. In
that case, a multilinear regression can be used for estimat-
ing suitable weights. This validation also allows to identify
terms of metric CC,p, that are relevant for effort estimation
of the adaptive mainienance.

The above approach can be used for defining metrics for
the adaptive maintenance on the basis of the above men-
tioned classical metrics for effort estimation: TJCCom,
HSCCy, Size2,.,, etc. In the next section, the adop-
tion of these metrics in equation (8) for effort estimation is
compared with the results obtained for CC,,,,. These met-
rics can be useful for: (i) comparing productivity and costs
among different projects, (ii) learning the development pro-
cess efficiency and parameters.

A predictive version of C'Cl,,, can be obtained by con-
sidering C'C" into equation (8):

CC:;m = CC,'; - wCC’fJCCg

Also in this case, a multilinear regression can be used for
estimating the suitable 8 weights. Once the system analy-
sis of the adaptation phase is performed, the structures of
classes at the end of the adaptive maintenance are known.
With this knowledge, it is possible to use CCY,, metric for
predicting the costs for the adaptive maintenance.

2.3.2 Class Members and Adaptive Maintenance
Phases

Considering M = NAM in equation (8) the size enforced
in the system during the adaptive maintenance, N AM,p.,
can be expressed as:

NAMyp = NAM, — wyar, NAM,.

Even in this case, weight wy aas, has to be estimated by a
validation process (see Section 3). A complete validation
has to be performed by considering the whole structure of
NAM for both NAM, and N AM, for estimating the 8
weights.

Therefore, once a draft analysis of the adaptation phase
is performed, the number of members that the classes will
present at the end of the adaptive maintenance is known.
Exploiting this early knowledge, it could be possible to use
N AM,n, metric for predicting the effort for the adaptive
maintenance.

3 Metrics Validation

A metric analysis has been performed in order to iden-
tify which metrics among the above-mentioned are better
ranked for evaluating and/or predicting the effort for adap-
tive maintenance of a system.

The comparative analysis with validation has been car-
ried out among the previously defined metrics and some of
those already defined in the literature. Moreover, since most
of the new metrics defined are very complex and compu-
taticnally expensive to be evaluated, an analysis to verify
the influence of their parameters in producing the final re-
sult has been performed in order to identify the minimum
number of parameters which are needed to obtain suitable
measures. Therefore, the analysis performed is more than a
simple validation since it has produced a clear view of the
above mentioned metrics for estimating class effort of the

adaptive maintenance.
The wvalidation has been performed by consid-
ering the data relative to MOODS ESPRIT 1V

project (Music Object Oriented Distributed System)
{(hip:fwww. dsi.unifi.it/ " moods) concluded in November
1998. The project consisted in the implementation of
a disiributed systems of music lecterns starting from a
stand-alone music editor (LIOO, Lectern Interactive Object
Oriented) according to the technology transfer approach
of HPCN project managed via Technology Transfer
Nodes, TTNs. The project addressed the adaptation of
a stand-alone music lectern and editor to transform it
in a distributed system of music editors, for cooperative
management of music. The reference TTN was TETRApc
having as partners CPR (Consortium Pisa Research),
CESVIT (High Tech Agency).

MOCDS has been a multipartners project evaluated
about 44 man months including hardware and software.
Hardware effort was mainly devoted for implementing spe-
cial music lecterns. Software effort was used for (i) port-
ing the stand alone music editor from MS-DOS to UNIX,
(ii) adapting the original version of music editor towards
a distributed co-operative version, (iii) implementing an
independent orchestra network configurator and monitor
(called ONCM), {iv) implementing several additional ad-
vanced funciionalities for the cooperative music editor, (v)
connecting the music editors to a database of music scores
(called MOODSDB}).

The data and the code used in the following validations
are referred to points (i} and (i), which are the adaptive
maintenance phases. [n MOODS project, the firsts work-
packages have been the porting and the adaptation to dis-
tributed approach, (i) and (ii); then phases (iii), (iv) and (v)
have been performed in parallel. Phases (i) and (ii} have
been performed by the same team that developed the origi-
nal version of LIOQ. This has strongly reduced the effort for

487

Before (LIOD1) After (LIDOS)

NCL 113 133
NRC 19 25
TNM 1087 1341
TLOC 12150 13891
MCC 876 877
MNA 7 7
MNM 38 39

Table 1. Overview of the system before and after the adap-
tive maintenance process.

class and documentation comprehension. LIOO was com-
prised of 113 classes and these have been become 133 after
performing phases (i) and (ii), with 9.6 man months. This
version has been called LIQOS since several intermediate
versions were analyzed.

MOODS project has been built by using object-oriented
analysis and design methodologies (i.e., Booch [3]), and all
the project phases have been monitored and maintained un-
der control by using all the metrics presented above and sev-
eral others (e.g., those defined and discussed in [24], [11],
[10] and [6]).

Before presenting the validation of the proposed metrics,
the analysis of the system evolution from its early version to
the project completion including the phases of porting and
adaptive maintenance is presented.

3.1 Analysis of System Evolution

In order to better understand the system evolution, in
Tab. 1 a summary of some system level metrics is reported
for both LIQQ1 (before) and LIOOS (after) versions. The
process of adaptive maintenance has provoked an increment
of about 15% in the system size/complexity, because of the
addition of new funcionalities. This increment resulted well
distributed on system classes since the mean values of CC,
N A and N M have not changed their values in a significant
way after the adaptation. By the analysis of N RC results
that 6 roots or stand-alone classes have been added. The
added classes in our example are stand alone classes for rep-
resenting the main score {c.g., class Partitura). In LIOO1,
some classes having a CC very high were identified (e.g.,
C'C about 4300). This condition was corrected during adap-
tive maintenance in version LIOOS in which the maximum
CC is about 3200.

In Fig.1, the trend of metric CC* for complexity predic-
tionfestimation (in log scale) is reported together with the
evolution of the actual effort. The trend analysis shows also
the predicted values obtained by using extrapolation algo-
rithms, e.g., for predicting the cost of designing and coding
in the phase of analysis, ete. The figure considers the com-
plexity evolution from the detailed analysis to the 95% of

the project completion.

— T T T —T T —T T

2500 |
2250 r—

System Etfort
L

1500
1200 |

4 5
Project Phase

Figure 1. Trend of the actual effort and the predicted
effort of the whole system on the basis of CC” class ef-
fort prediction. Several different algorithms for predicting
values on the basis of the values estimated in the previous
phases are reported.

Another interesting trend analysis is that of the melric
weights. In Fig.2, the trend for weights of C'C of the project
is reported (the weights have been estimated during the val-
idation of C'C' against the real effort of development). This
graph is referred to the same project and in the same temn-
poral windows as those discussed for Fig.1. The project
presents from phase | to 5, the period in which has been per-
formed the porting and adaptive maintenance. From Fig.2,
it can be observed that:

* woarcr tends 1o increase quite linearly with the
project phase. The corresponding metric is becoming
lower with respect to other factors;

* Wy, Woag L are quite constant. The local complexity
due to functional and structural aspects of the classes is
always relevant in the same manner along the process
even during the porting and adaptation;

e we; is negative and decreasing (this is much more ev-
ident after the adaptation phase). The corresponding
metric term is a gain for the whole complexity. This
means that the exploitation of inheritance is observed
as a decrement especially in development costs.

e woarrcr presents a negative trend from phase 1 to 5.
During the porting and adaptation, the corresponding
metric has been more relevant and almost comparable
with respect to metrics related to local factors. This
means that during the porting and adaptation the pres-
ence of detailed interfaces for inherited methods was a
source of save.

e woacr presents a positive trend from phase 1 to 5.
During the porting and adaptation the corresponding
metric has been lower with respect to metrics related
to local factors. This is due to the fact that the porting
and adaptation has been implemented by restructuring
functional parts, even for those involved in the inher-
ited part, thus the inspection of the attributes of the
super-classes has been a cost.

This example has shown how the weights trend analy-
sis can give interesting suggestions about the system evolu-
tion. Please note that the above graph reporting the evelu-
tion of LIOO in MOODS project, it includes the configura-
tor, ONCM, and not the database connection, MOODSDB,

03 —
oz | o J

0z f ST 9

Woaci

Woights of CC basod oh LOC
“x

4 5
Project Phase

Figure 2. Trend of the weights of metric CC.

3.2 Validation process

According to the mode! defined may exist some excep-
tions that can lead to obtain non correct estimations; since
in a system under adaptive maintenance:

1. some classes in the early version can be fused into one
in the new version. This is a quite rare operation during
an adaptive maintenance.

2. the functionalities managed by a class in the early ver-
sion can be distributed in more classes in the new ver-
sion. This is quite frequent operation when a class
presents high dimensions.

3. some completely new classes can be added for address-
ing the new functionalities. These have to be consid-
ered totally new classes, M, = 0.

The distribution of the changes along system classes is
typically not uniform. On the other hand, the grouping of

classes with similar needs of adaptation is a solution for
getting more precise results. In the validation reported in
the following no grouping has been performed, since the
system evolution has been only marginally affected by the
above reported problems. For example, in LIOO, there were
several classes representing musical symbols that accord-
ing to the adaptation analysis have been marginally modi-
fied and all in a similar manner. In the same system, there
were classes for managing the user interface that has been
quite uniformly changed for passing from the local to the
distributed version of the system.

Moreover, it is very difficult to collect data by consider-
ing projects that have been evolved in a similar way. Thus,
the validation has been performed by using only MOODS
project. The validation process has been performed by us-
ing a multilinear least median squares technique [25] con-
sidering (i) the relationship between effort and metrics as
linear, (ii) the values of direct metrics, and (iii) the weights
as unknown. Considering that the effort for each class of the
system was available, the metric validation has been based
with more than 120 degrees of freedom. This confers to the
validation process a certain relevance.

The complexity/size metrics can be classified in a-
posteriori and predictive metrics. The main difference be-
tween these two classes of metrics is the availability or not
of the C++ code. In general, predictive metrics are eval-
uated only on the basis of the class interface (e.g., C++
Header files), while a-posteriori metrics need also class im-
plementations (method implementation).

In general, a-posterior: metrics consider all the class as-
pects: attributes, methods interface and method implemen-
tation (both locally defined and inherited). Predictive met-
rics can be evaluated also if the implementation phase has
not been performed yet, such as in the early phase of sys-
tem development. Thus, these metrics can also be used to
predict the adaptive maintenance effort by knowing only the
interface that classes will have at the end of the system adap-
tation. This can be very useful for evaluating the adaptive
maintenance effort needed during the planning of adapta-
tion.

The validation/analysis of metrics for these two cate-
gories are separately discussed in the next subsections.

By using real effort adaptive maintenance data (pro-
vided in man/hours), the weights for CCly,n, CCY,,,. and
NAM,m have been calculated. These weights have been
calculated by minimizing the least median of squares like
robust estimator [25). The estimator represents a good com-
promise between robustness with respect to outliers and the
reaching of correlation optimization.

The correlation values have been reported with all the
data evaluated in order to have an immediate evaluation of
the goodness of the results obtained.

489

CCam

W |t—value| p— value
CLy -0.012 2.32 0.022
Cly -0.024 1.15 0.250
CMICL, 0.522 9.02 0.000
CMICI, 0.009 0.18 0.860
CACLy <{1.009 1.95 0.053
CACT 0.124 1.11 0.267
CLqo -0.022 3.38 0.001
Cl, -0.032 1.94 0.055
CMICL, 0.545 11.12 0.000
CMICI, 0.037 0.94 0.348
CACLq -0.008 1.79 0.076
CACI, 0211 2.13 (.035
Correlation 0.84 with all components

0.87 by removing CMICT

Variance 116
R-squared 0.825
F-stat (p-value) 47.11 (0.000)

Table 2. Resulis of the muitilinear regression analysis for
effort evaluarion of classes by using C'Carm metric. Values
of weights and their corresponding confidence values are
reported.

3.3 A-posteriori estimation

In Tab.2, the results of the multilinear regression analysis
is reporied. It has been carried out by considering the real
adaptive maintenance effort in man-hours and the 12 CCp,
metric components, by using the techniques discussed in
[25].

In Tab.2, some statistical values that shows the confi-
dence of the weights are reported for each component of
CCum. In order to understand the effectiveness of the re-
sults, the Student fest has been performed. Relevant coef-
ficients have to provide a t-value greater than t,_,1_./2,
where n is the number of classes, p is the number of coeffi-
cients o be estimated and « is the percentage of confidence
(i.c., for a equal to 0.05 a confidence interval of 95% has
been obtained). In order to avoid the recovering of data
from probability.tables also p-values are reported. p-value
represents the probability that a Student-f with n—p degrees
of freedom becomes larger in absolute value than the r-value
obtained. Below the rows containing the weights, the corre-
lation between the real adaptive maintenance effort and the
estimated CC,,,,, with the identified weights, is reported. In
order to evaluate the degree of confidence of the regression
process R-squared and the relative F-Test (F-stat) results are
reported.

In order to understand the results, it must be noted that
a Student-t can be considered quite similar to a Gaussian
curve if the number of degrees of freedom is greater than
30. In our assessment n — p > 100, and therefore the ab-
solute value of t-value has to be greater than 1.96 for ob-
taining a confidence interval of 95%. On the other hand, in

Zaim
w |t —wvalue| p-— value

CMICL] 0.476 8.70 0.000
CMIC'I;; 0.122 1.84 0.068
CACL -0.038 4.16 0.000
CACH -0.124 0.76 0.449
CMICL, 0.492 11.83 0.000
CMICT, 0.102 1.77 0.079
CACL,, -0.033 3.94 0.000
CACL, -0.044 027 ¢.791
Correlation 0.79 with all coefficient

0.81 by eliminating CACI’ component
Variance 126
R-squared 0.708
F-stat (p-vaiue) 44.35 (0.000)

Table 3. Results of the multilinear regression analysis for
effort prediction of classes by using metrics C'Cl .t values
of weights and their corresponding confidence values are
also reported.

our opinion, a term like CAC' L, having a probability lower
than 8% that t,,_, 1_./2 is greater than 1.79 could be ac-
ceptable, because it means that a confidence interval greater
than 92% has been obtained. Another important consid-
eration arises from the fact that we cannot eliminate only a
term before or after adaptive maintenance, but we must pro-
ceed to eliminate or consider valid both the terms (affer and
before), otherwise the C'Cl,,,, metric could lose its structure.

According to the above considerations, only CMICT
can be removed from CC,,, structure because both
CMICH, and CMICI, satisfy the null hypothesis. By
imposing a null value (0) to these coefficients the correla-
tion increases to 0.87, while eliminating any other couple
of terms the correlation decreases.

Since the mode! presented for the estimation of the adap-
tive maintenance takes into account the weighted differ-
ence between similar terms (e.g., woenmrcr, CMICL, —
wemior, CM IC L), the coefficient sign must be carefully
considered. In effect, only CMICL and CAC/ terms in-
crease the effort, while the other low-level metrics give a
negative contribution. This result is in conformance with
the typical object oriented paradigm guidelines; in fact, the
consequences of the addition of an attribute near to a root
class can provoke a great effort for adapting the subclasses
that have to manage a bigger quantity of information. On
the other hand, the effort for managing this information is
frequently demanded to method interfaces of leaf classes
adding complexity to the CAM ICL term.

3.4 Predictive estimation

In Tab.3, the results obtained for metric CC),, are re-
ported. Also in this case both the weights for all the com-
ponents and the overalt statistic of the metric are reported.

490

NAMam

w [t —value| p—wvelue

NALy 1.162 0.77 0.440
NAT, 2.194 1.34 0.182
NMLe 1.399 3.73 0.000
NMI -0.587 1.83 0.069
NAL, 3.485 2.46 0.015
NAI, 1.280 0.85 0.396
NMULg 1.501 4.62 0.000
NMI, -0.264 0.88 0.380
Correlation 0.75

Variance 191

R-squared 0.729

F-stat (p-value) 41.813 (0.000)

Table 4. Results of the multilingar regression analysis for
effort prediction of classes by using metric N AMo,,: val-
ues of weights and their corresponding confidence values
ar¢ also reported.

It should be noted that the correlation reported for CCY,,
is very close to those reported for CC'. Analyzing the statis-
tical values related to all the components, it is evident that
C'ACYT satisfies the null hypothesis and, therefore, the rel-
ative coefficient should be zeroed. A new evaluation of the
correlation after removing CACYT’ term raises the correla-
tion to 0.81 with a variance of 118. Even also if the more
complete metric, CClym,, is better ranked with respect to the
reduced C'CY,,,. This can give a very good prediction of the
etfort for the adaptive maintenance.

CMICL components is the most significant term of the
regression process, focusing on the fact that in the reengi-
neering phase a great attention should be devoted to the
method interface.

Metric N AM,,,,, can be suitably and frequently used for
effort prediction [24]. In this particular case, it has been
used for predicting the effort for the adaptive maintenance.
In Tab. 4, the results regarding the correlation with effort
are reported. A relatively strong value of correlation has
been obtained for this metric. Please note that this metric
is very cheap to be calculated, and the high correlation ob-
tained means that it can be a very good first approximation
of adaptive maintenance effort, even if the methods inter-
face of the adapted system has not been defined. The analy-
sis performed on N AM,., evidences that N M L is the most
important factor among the metric components. This is a
sort of confirmation of the considerations about CMICL
component of CCq,,. Thus, NAM,,, can be profitably
used in the early first phase of reengineering analysis; once
the methods interface is defined C'CY,,, can be used to have
a better approximation of the effort. As soon as the adaptive
maintenance phase has been completed CCl,, and CC val-
ues can be adopted to evaluate the correct coefficients to be
applied in future estimations, or to evaluate the productivity
of working group that has worked on the adaptive mainte-

A-Posteriori Metrics

CCom TJdCCem HSCCam
Max Correlation 0.87 0.42 0.43
Variance 166 494 2043
Number of weights i0 2 6

Predicrive Metrics

CCh,, NAMuy, Size2am
Max Correlation 0.81 0.75 0.73
Variance 118 191 59
Number of weights [8 1

Table 5. Comparison of the metrics identified for the
adaptive maintenance effort.

CCa CC, NAM, Size2,
Correlation 0.64 0.56 0.67 0.52
Variance %0 87 166 210
Number of weights 6 4 4 0

Table 6. Correlation between pure effort estimatien metric
and maintenance effort.

nance. This method can be very encouraging because the
cost of obtaining values for these metrics since the early
phases of software life-cycle is very low. Therefore, small
errors may be accepted in the predictive estinzation of effort
by using N AM metric.

3.5 Comparison between metrics in the literature

In Tab.5, a comparison among the metrics defined in the
literature and those proposed in [24] for effort estimation is
reported. The comparison has been performed by using all
these metrics as metric M in equation (8) for the estimation
of the adaptive maintenance effort, obtaining in this way a
set of new metrics: CCum, TJCCupmy HSCCom, CClp,s
NAMgm, Size2gm.

The results have shown that metrics TJCC,, and
HSCCyy are not very suitable; because they do not take
into account the methods interface that have great influence
in the calculation of adaptive maintenance effori. On the
other hand, metric Size2,,, seems to have a relative high
correlation, considering that in Size2,,, only the local class
members are considered. This fact is strengthen by the con-
sideration that in N AM,,,, also the more significant terms
address the local part of the class.

Tab.6 presents the values obtained for traditional devel-
opment effort metrics when these are used for the estima-
tion of the effort for the adaptive maintenance. These val-
ues have been obtained only via validation by considering
the code of LIOQOS (after the adapiive maintenance) and the
real effort for the maintenance. The correlations obtained
between maintenance effort with CC',, N AM, and Size2,
are not satisfactory. The results demonstrate that classical

491

metric comment

CACI Class Attribute Complexity/size Inherited

CACL Class Attribute Complexity/size Local

cC Class Complexity/size

cI Class Method complexity/size Inherited

CL Class Methed complexity/size Local

CMICI | Class Method Interface Complexity/size Inherited

CMICL | Class Method Interface Complexity/size Local

ECD External Class Description

ECDI External Class Description Inherited

ECDL External Class Description Local

Ha Halstead metric [12]

HSCC Class Complexity by [13]

ICI Internal Class Implementation

Loc number of Lines Of Code

Mom Generic Metric for Maintenance

Mc McCabe ciclomatic Complexity

MCC Mean value of Class Complexity

MNA Mean Number of Class Attributes

MNM Mean Number of Class Methods

NOC Number Of Children [9]

NSUB Number of SUBclasses

NSUP Number of SUPerclasses

NA Number of Attributes of a class

NAI Number of Attributes Inherited of a class

NAL Number of Attributes Locally defined of a class

NM Number of Methods of a class

NMI Number of Methods Inherited of a class

NMI Number of Methods Local of a class

NAM Number of Attributes and Methods of a class

NAMI Number of Attributes and Methods Inherited of a
class

NAML Number of Attributes and Methods Locally defined of
aclass

NCL Number of CLasses in the system

NRC Number of Root Classes in the system class tree

Size2 Number of class attributes and methods [19]

TJCC Class Complexity by [27]

TLOC Total (System) Number of LOC

TNM Total {System) Number of Methods

WMC Weighted Methods for Class [9]

Table 7. Glossary of the metrics mentioned in this paper.

metrics for estimating and prediction development effort are
unsuitable for the estimation of the adaptive mainfenance
effort with respect to the newly identified metrics,

4 Conclusions

In this paper, a general mode! for adaptive maintenance
effort evaluation and prediction has been proposed. The ap-
plication of the model to metrics for total etfort estimation
and their validation with respect to real data collected dur-
ing the ESPRIT project MOODS has allowed to identify
a suitable set of new metrics for maintenance effort esti-
mation and prediction. The metrics analyzed and validated
have been compared with well known complexity metrics
for the estimation of development effort presented in the lit-
erature, Statistical validations and the estimated weights,
evaluated with a robust estimator, have been reported. Main
lessons learned from this analysis can be summarized in the
following points: (i) during adaptive maintenance a strong

attention should be paid to methods definition and in par-
ticular to the methods interface; (ii) attributes added in the
higher part of the hierarchy should be carefully considered
in the analysis phase, (iii) C'CY,,, resulted to be the most
suitable metrics for predicting the effort for the adaptive
maintenance, (iv) the complexity of the interfaces for lo-
cally defined methods and their number are the most impor-
tant factors for estimating the adaptive maintenance effort.

Acknowledgments

The authors would like to thank the members of
MOODS team that have accepted to collect data. A very
warm thanks to the several people who have worked for the
implementation and test of the several components of our
system analizer, TAC++.

References

[1] V. R. Basili, L. Briand, and W. L. Melo. A validation of
object oriented design metrics as quality indicators. [EEE
Transactions on Software Engineering, pages 751-761, Oct
1996.

P. Bengtsson and J. Bosh. Architecture level prediction of
software maintenance. In Proc. of the 3rd Euromicro Con-
Sference on Software Maintenance and Reengineering, Ams-
terdam, March 1999. IEEE Press.

G. Booch. Object-Oriented Design with Applications.
The Benjamitn/Cummings Publishing Company, California,
USA, 1994,

L. Briand, J. Wurst, 3. Ikonomovski, and H. Lounis. A com-
prehensive investigation of quality factors in object oriented
designs: an industrial case study. In Proc. of the Ini. Conf.
of Software Engineering (ICSE99), LA, USA.

F. BritoeAbreu, M. Goulao, and R. Esteves. Toward the de-
sign quality evaluation of object oriented software systems.
In Proc. of 5th International Conference on Sofiware Qual-
iry, Austin, USA, Oct. 1995. McLean.

G. Bucci, F. Fioravanti, P. Nesi, and S. Perlini. Metrics and
tool for system assessment. In Proc. of the IEEE Interna-
tional Conference on Complex Computer Systems, Califor-
nia, USA, August 1998,

S. N. Cant, B. Henderson-Sellers, and D. R. Jeffery. Ap-
plication of cognitive complexity metrics to object-oriented
programs. Journal of Object Oriented Programming, JOOP,
pages 52-63, July-Aug. 1994,

M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman. A
change impact model for changeability asscssment in object
oriented software sysiems. In Proc. of the 3nd Euromicro
Conference on Software Maintenance and Reengineering,
Amsterdam, March 1999, IEEE Press.

S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software En-
gineering, 20(6):476-493, June 1994,

F. Fioravanti, P. Nesi, and S. Perlini. Assessment of sys-
tem evolution through characterisation. In Proc. of the IEEE
International Conference on Software Engineering, pages
456-459, Kyoto, Japan, April 1998.

[3]

[4]

fel

7

{10]

492

[11} F Fioravanti, P. Nesi, and S. Perlini. A tool for process
and product assessment of ¢++ applications. In Proc. of the
2nd Euromicro Conference on Software Maintenance and
Reengineering, pages 89-95, Florence, Italy, 8-11 March
1998. IEEE Press.

H. M. Halstead. Elements of Saftware Science.
North Holland, 1977.

B. Henderson-Sellers. Some metrics for object-oriented
software engineering. In Proc. of the International Confer-
ence on Technology of Object-Oriented Languages and Sys-
tems, TOOLS 6 Pacific 1991, pages 131-139. TOOLS USA,
1991,

B. Henderson-Sellers. Identifying internal and external char-
acteristics of classes likely to be useful as structural com-
plexity metrics. In D. Patel, Y. Sun, and S. Patel, editors,
Proc. of International Conference on Object Oriented In-
Jormation Systems, OOI3'94, pages 227-230, London, Dec.
19-21 19%4. Springer Verlag.

B. Henderson-Sellers. Object Oriented Metrics. Prentice
Hall, New Jersey, 1996.

B. Henderson-Sellers and J. M. Edwards. The object ori-
ented systems life cycle. Communications of the ACM,
33(9):143-159, Sept. 1990.

C. F. Kemerer. An empirical validation of software cost es-
timation models. Communications of the ACM, 30(5):416-
429, May 1987.

L. A. Laranjeira. Software size estimation of object-oriented
systems. [EEE Transactions on Software Engineering,
16(5):510-522, 1990.

W. Li and S. Henry. Object-oriented metrics that predict
maintainability. Journal of Systems Software, 23:111-122,
1993,

M. Lorenz and J. Kidd. Object-Oriented Software Metrics,
A Praciical Guide. PTR Prentice Hall, New Jersey, 1994,
T.]. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2(4).308-320, 1976.

P. Nesi. Managing oo projects better. JEEE Software, pages
12-24, July-Aug 1998.

P. Nesi and M. Campanai. Metric framework for object-
oriented real-time systems specification languages. The
Journal of Systems and Software, 34:43-65, 1996,

P. Nesi and T. Querci. Effort estimation and prediction of
object-oriented systems. The Journal of Systems and Soft-
ware, Vol 42:89-102, 1998,

P. J. Rousseeuw and A. M. Leroy. Robust Regression and
Outlier Derection. John Wiley & Sons, New York, USA,
1987.

Q. Signore and M. Loflredo. Some issues ob object-oriented
re-engineering. In Prof. of ERCIM Workshop on Methods
and Tools for Sofiware Reuse, Heraklion, Crete, Greece,
1992.

D. Thomas and 1. Jacobson. Managing object-oriented soft-
ware engineering. In Twroriai Note, TOOLS'89, Interna-
tional Conference on Technology of Object-Oriented Lan-
guages and Systems, page 52, Paris, France, 13-15 Nov.
1989.

(12] Elsevier

[13]

f14]

{15]

(16]

(17

[18]

[19]

[20]
(21]
(221

[23]

[24]

{25]

[26]

[27]

