Object-Oriented Analysis of COBOL

A. Fantechi
Department of Systems and Informatics
Faculty of Engineering, University of Florence
Via S. Marta 3, I 50139 Florence, Italy
fantechi @dsi.ing.unifi.it

P. Nesi
Department of Systems and Informatics
Faculty of Engineering, University of Florence
Via S. Marta 3, I 50139 Florence, Italy
nesi@ingfil.ing.unifi.it

E. Somma
Department of Information Engineering
Faculty of Engineering, University of Pisa
Via Diotisalvi 2, I 56126 Pisa, Italy

Abstract

The object-oriented paradigm is presently considered the
one which best guarantees the investments for renewal. It
allows to produce software with high degrees of reusabil-
ity and maintainability, satisfying in a certain measure also
quality characteristics. These features are not obviously au-
tomatically guaranteed by the simple adoption of an object-
oriented programming language, a process of re-analysis
is needed. In this view, several methods for reengineering
old applications according to the object-oriented paradigm
were defined and proposed. In this paper, a method and tool
(C>0% COBOL to Object-Oriented) for analyzing COBOL
applications in order to extract its object-oriented analysis
is presented. The tool identifies classes and their relation-
ships by means of a process of understanding and refinement
in which COBOL data structures are analyzed, converted
in classes, aggregated, and simplified semiautomatically.
The algorithm is also capable of detecting data structures
which can cause problems passing to the next millennium,
as demonstrated with an example.

1. Introduction

Software languages are evolving towards new paradigms.
As a consequence applications written in the past need to
be maintained aligned with the state of the art. This pro-
cess is often highly expensive since the language evolution
proceeds for high steps — e.g., from procedural to object-
oriented, from textual to visual, from operational to descrip-
tive, etc. [4]. The literature about the software renewal is
quite extensive — e.g., [3], [5], [13]. A solution for mini-
mizing the cost of renewal was proposed by the so-called

0-8186-7892-5/97 $10.00 © 1997 IEEE

157

legacy-techniques. These suggest to reuse old applications
by encapsulating them with suitable interfaces. Unfortu-
nately, these techniques are not suitable when the system
software must be maintained and updated by modifying in-
ternal behavior during its maintenance. This is what usually
happens in a great part of the information systems which are
used in banks, public administrations, and large firms. A
large part of these applications have been traditionally writ-
ten in COBOL and now there is a strong interest in porting
them on new languages and platforms.

The object-oriented paradigm is presently considered the
one which best guarantees the investment for the renewal;
projects REDO [2] and REBOOT [5] are examples. The
object-oriented paradigm allows to produce software with
high degrees of reusability and maintainability, satisfying in
a certain measure also quality characteristics [1], [9], [10].
These features are not obviously automatically guaranteed
by the simple adoption of an object-oriented programming
language, though this is a common opinion. The compila-
tion in C++ of an application written in C does not trans-
form it in an object-oriented application (the same statement
holds for COBOL and ObjectCOBOL, Pascal and OQ Pas-
cal, etc.). In fact, in order to pass from a procedural version
of a program/application to an object-oriented version a pro-
cess of re-analysis is mandatory. The focus must pass from
data transformations — i.e., procedure — to data structure,
categories and entities, that is, classes and objects. This pro-
cess leads to the identification of the classes which model
the application domain and their organization [1], [12].

In this view, several methods for reengineering procedu-
ral applications according to the object-oriented paradigm
were defined and proposed — e.g., [11], [7]. More recently,
the MOORE approach and tool was presented in [6] for con-
verting COBOL applications into Object COBOL. It works

only on pure COBOLS5 programs and it is capable of con-
verting COBOL data structures in classes by means of an
user-guided process in which MOORE tool proposes so-
lutions while the user selects. In this process only small
attention is given to a full analysis of the application and
to establishing the optimal relationships among classes in
order to minimize the effort of code reuse.

In this paper, a method and tool (C>0?, COBOL to
Object-Oriented) for analyzing COBOL applications (col-
lections of programs written in COBOL for covering a whole
applicative domain) in order to extract its object-oriented
analysis is presented. The tool identifies classes and their
relationships by means of a process of understanding and
refinement in which COBOL data structures are analyzed,
aggregated, and simplified semiautomatically. The result is
a complete object-oriented analysis of the application do-
main. The analysis is smart enough to associate structurally
similar data having different names as usually happens in
COBOL programs. The algorithm is also capable of detect-
ing data structures which can cause problems passing to the
next millennium, as we demonstrate with an example.

2. From COBOL to Object-Oriented

The typical COBOL application is organized around a
kernel made up by one or more menu modules and by a col-
lection of independent modules which perform the logically
separated operations. The organization of modules inside
a COBOL application generally reflects the functional de-
composition process usually adopted in COBOL to carry out
the design. The neat separation between modules simpli-
fies the transformation work, since each module can be seen
as a self-standing one with its own well-defined function,
different from all the others.

We will deal in the following with the single programs
which compose the system. It is possible to classify the
COBOL programs in three fundamental types: SUBpro-
grams, BATCH programs and ONLINE programs.

SUBprograms are modules called to perform functions
which are too complex or heavy to be included in the main
program, or which are used to implement generally used
functions or utilities required by several other programs.
Roughly, the goal of SUBprograms is to modify the value of
some parameters according to some other ones, or to access
archives and print reports and presentations.

BATCH programs have as their goal the access to files
and/or databases to produce reports and synthetic presenta-
tions of the databases. The files, the databases, the reports
and the views are the object of program action, though dif-
ferently from the case of reports or views which structure its
control flow, in the case of operations on files or détabases,
the control flow of the program is established by the opera-
tion itself (cancellation, insertion or modification of data).

158

ONLINE programs process on line transactions. They
are built around the transaction they are processing and the
structure of such transactions is reflected by the forms of
the interface prepared to call the transaction. An on-line
transaction can access many files or databases from a single
form.

We can indicate as main programs both BATCH and
ONLINE modules. For each of these types of programs it
is necessary to adopt different conversion strategies which
will be clearly specified in the following.

A COBOL program is always structured in four parts
(divisions):

o IDENTIFICATION DIVISION: reporting the title
and author of the program and other information
needed to identify the module;

ENVIRONMENT DIVISION: reporting the configu-
ration sections of the host system, and the definition
sections for the file or /O device control;

DATA DIVISION: reporting the physical organization
of data on both I/O devices and central memory;

PROCEDURE DIVISION: reporting the sequence of
operations to be performed on the defined data, such
as the reading/writing access operations on external
devices, the numerical computation, controls and al-
ternatives.

Central in a transformation from a COBOL application
in an object oriented design is the analysis of the DATA DI-
VISION, which actually contains all the information needed
to create a representation of the data structures of the appli-
cation domain under examination,

2.1. The Transformation Process

The transformation of a COBOL SUBprogram requires
recognizing its specific functionality in the context of the
modules which activate it. In particular, the transformation
process for a COBOL main program can be performed in
the following phases:

¢ Identification of COBOL data structures, elimination

of redundant definitions;

Identification of COBOL data structures as early
classes;

Identification of class relationships;
Analysis of data and control referring to classes;

Reallocation of code to classes.

The first goal of the transformation of a COBOL main
program (that is, an ONLINE or BATCH one) is the identi-
fication of corresponding classes. This starts by the analysis
of all COBOL data structures of the application domain by
analyzing all data of modules constituting the application.
In this space many data structures are usually repeated. The
identification of minimal number of data structures is per-
formed by deleting the redundant definitions by means of
several mechanisms.

Once the minimal data structures are identified they can
be considered the categories of the application domain, thus
early prototypes of classes. According to the object-oriented
paradigm the process of analysis continues with the organi-
zation of categories in classes by establishing relationships
of aggregation, association and specialization. The result is
the object-oriented reanalysis of the application domain.

The third phase consists in a transformation process based
on the analysis of the accesses to data (e.g. the SELECT,
UPDATE, INSERT, DELETE, READ and WRITE opera-
tions), with which it is possible to evaluate the relationships
between classes and the positioning of the access methods to
the class members. In this way, the completion of the static
structure of the system is possible by reallocating code to
classes and organizing them as methods (fourth phase).

In this paper, only the first three phases are described,
since they are those which involve the reanalysis of the
application. The last two phases can be in practice semi-
automatically performed when classes and class relation-
ships have been identified.

2.2. COBOL Data Structures

The identification of redundant data structures is not at
all an easy task; actually, COBOL is extremely clear in the
definition of the procedural part, but it is quite obscure in
the parts regarding data definition and configuration, since
sometimes it leaves space to several interpretations. The
motivation for a non-immediate identification of redundan-
cies are due to different causes briefly schematized in the
following:

o Since a COBOL programmer is free to define at its
will the data structure in the archives, it is not rare that
different programmers, in different modules of the
same application, give different (Inaybe similar, but
not equal) names to the same data and data structures.
This is an example, taken from a real application:

05 W-DATE 05 w-DT
1¢ DD PIC 99 10 YEAR PIC 99
10 MM PIC 99 10 MONTH PIC 99
10 vy PIC 99 10 DAY PIC 99

159

05 wW-D
10 D PIC 99
10 M PIC 99
10 Y PIC 99

o Since the visibility of identifiers is global, even for a
single programmer there is the need to give different
names to the same structure, if it occurs two times in
the definition of data in a module. Again an example
from the same application:

01 FINV
02 FINV-DATE
03 FINV-DATE-YY
03 FINV-DATE-MM
03 FINV-DATE-DD

01 FBID
02 FBID-DATE
03 FBID-DATE-YY
03 FBID-DATE-MM
03 FBID-DATE-DD

In the definition of the elementary data the specifi-
cation of the same format of the PICTURE clause in
different ways is possible; this is often used to de-
sign logically different data, with the same physical
memory occupation:

01 W-YEAR PIC 99 01 W-YEAR PIC 9(2)

01 W-YEAR PIC 9(002)

Having a complete control on the physical representa-
tionin memory of data, it is also possible that logically
similar data structures are defined as elementary in a
module and as compound in others. An example can
be given by the representation of the date, for which
no international standard is given, butrather a plethora
of national or even regional uses of representing a date
are in use: this can bring, also inside the same pro-
gram, to different structures used for representing a
date, according to the local use of the date itself.

01 W-DATE
05 w-YY PIC 99
05 w-MM PIC 99
05 wW-DD PIC 99

01 W-DATE-N PIC 9(6)

In the phase of name recognition, it is possible to uniform
the different names which are used for simple data and data

structures in different COBOL modules. This process can
be performed by establishing a list of synonyms. This mech-
anism strongly reduces the main causes of redundancy, and
thus the number of classes. An example regarding the first
reason for redundancy, namely the use of different names by
different programmers, is the equivalence: YEAR = YY =
Y. The static dictionary can answer to the global synonyms
problems. More common are local synonyms problems,
due to a widely used convention to make identifiers more
meaningful.

It 1s possible to specify other criteria for finding syn-
onyms, for example: (i) discard numeric suffixes, like in:
YEAR-Q00; (i1) Hungarian notation; EV-IN-DT-YEAR
(Event/Initial/Date/Year). The simultaneous use of these
filters slows down the conversion, and usually does not pro-
vide better results. Actually, it is very likely that every
COBOL application uses a single convention for the iden-
tifiers. A quick inspection of the source code is enough to
recognize the used convention and to select the most useful
filter accordingly.

It would also be possible to attempt to further refine the
equivalence criteria between identifiers, so to enlarge the au-
tomatic recognition cases. In this way a strong dependency
is established upon assumptions on the uniformity of the
code, uniformity which is not provable and which is often
not reasonable: most COBOL applications have been main-
tained by different people in different times and situations,
hence finding uniformity in the code is not justified.

2.3. From COBOL. Data Structures to Classes

The identification of classes is performed at two separate
levels:

o the identification of elementary classes, as previously
discussed;

o the identification and simplification of compound
classes.

The identification is performed through the analysis of
the definition of the elementary data at the field level (see
the PICTURE construct) which, in particular, specifies the
visualization and conversion formats. This parametrizes
classes, and is used to calculate the memory occupation of
numeric or alphanumeric data and to define the default val-

“ues. For example, the following clauses specify elementary
data:

10 fiscal-code PICTURE AAABAAABI9A99BA999X

10 YEAR PIC 99

10 INCOME PICTURE S9(7)P

10 CARTOON PICTURE A(7)BA(5) VALUE "GOOFY"

160

The first definition establishes that the fiscal-code
(i.e., social security number) field is allocated in 16 memory
locations of one byte each and is formatted as the example:
GMM MNL 68R10 A509W (a typical Italian fiscal code).

The identification of the compound classes is performed
through the analysis of the layout of the DATA DIVISION,
WORKING-STORAGE SECTION and LINKAGE SEC-
TION structures of the main program. The simpler proce-
dure for the conversion of compound data is the transforma-
tion of each record in a class and of each field in an instance
variable (class member), whose class is specified by the cor-
responding elementary class if the field is elementary, or by
another class, if the record contains a further record in its
turn.

The identification of the classes is performed through an
iterative strategy based on an algorithm for recognizing the
abstractions and simplifying the redundancies. The appli-
cation of the algorithm provides the automatic recognizing
of the structures which form the program, by means of the
production of tables and diagrams which allow the user to
recognize key aspects of the design or possible areas of re-
finement of the analysis process. It is then possible to use
this information to enrich the basic knowledge on the appli-
cation and to reapply, iteratively, the analysis algorithm. All
the information related to names of variables are collected
in knowledge base.

In the following, it is shown, by means of a particularly
simple example, how the Automatic Abstraction Algorithm
(A%) works and its tables and diagrams.

The first operation performed by A? is the substitution of
the synonyms with the base names. In the following a typical
example of COBOL data structure definition is reported:

Module ONE

01 PATIENT
05 NAME PICTURE X (40)
05 BIRTH
10 DD PIC 99
10 MM PIC 99
10 Yy PIC 99
05 BIRTH-N REDEFINES BIRTH PIC 9(6)

Module TWO

01 CLIENT
02 ID PICTURE XXB999
02 LAST-ORDER
03 YEAR PICTURE 99
03 MONTH PICTURE 99
03 DAY PICTURE 99
02 NAME PIC X(40)

In the example, it is possible to note how labels YY, MM,
and DD in Module ONE are logically equivalent to YEAR,
MONTH and DAY in Module TWO. This consideration can
be performed in a first reading of the code, and so can be in-
troduced in the knowledge base about the application before
the analysis (as we suppose in this case). Alternatively, it
can be recorded in the knowledge base after that the abstrac-
tion process have produced the first diagrams and results.
As it will be shown in the following, once two names are
recognized to be synonyms, the secondary name disappears
since it is completely equivalent to the first.

The next operation is the building of tables containing
important information recovered during the analysis of the
application; in particular, the following tables are built:

.

Table of system Modules (TM);

Table of Types (TT): table of formats;

Table of the Instance Variables (TVI): table of ele-
mentary classes, see Fig.1;

o Table of the Classes (TC);

Each module/file of the COBOL application under anal-
ysis is stored in TM; in our case TM has the following
content:

Table of system Modules, TM "
ModuleID | name | path
1 ONE /WORK/CO20C/ SBN/
2 TWO /WORK/CO20C/SBN/

‘The only data types which can be directly defined in
COBOL are those reported in the following table. Each
type is listed with an example of its use and the classes that
has been defined as fundamental for any object-oriented
application:

Type example Class

Numeric S999v999 CNumber<"S999V999 ">
Alpha AABBAAA CString<"AABBAAA">
Alphanum | A(6)99A999X | CString<"A(6)99A999X">

CNumber<format> and CString<format> are
subclasses of CType<format> class, all these classes are
provided in a library. These have been parametrized on their
format, as shown inFig.1. In practice, each elementary class
defined in the process can be considered as a specialization
of parametrized class CType<format> (see for example
classes tXX, tX(6), etc., of Fig.1).

Each new format generates an entry in TT, where A means
alphanumeric and N numeric:

CType

format —— format

cstring

[3:3 tX(6) tsy €3 (2) €9(002)

Figure 1. Relationships among fundamental classes
and those which are specifically defined for the ap-
Dlication: dashed lines represents in this case the
process of class instantiation with parameters, con-
tinuous lines are is-a relationships.

I Table of Types, TT 1
FormatID | format Type | Dimension
1 X(40) A 40
2 99 N 2
3 9(6)} N 6
4 XXB999 A 5

Each elementary field label of COBOL data structures
generates an entry in TVI. Homonymous labels generate
different entries, see for example for NAME:

il Table of the Instance Variables, TVI |

TVLid | LABEL ClassID | FormatID
1 NAME 1 1
2 DAY 2 2
3 MONTH 2 2
4 YEAR 2 2
5 BIRTH-N 6 3
6 D 3 4
7 YEAR 4 2
8 MONTH 4 2
9 DAY 4 2

10 NAME 3 1

The last column, FormatID, records the references to the
formats as indexes into TT. In this table we can also note

PATIENT

NOME: tX(40)

BIRTH

DD: t98
MM: t539
YY: 93

BIRTH-N

BIRTH-N: £9(€)

CLIENT

NOME: tX(40)
ID tXXB999

LAST-ORDER

YEAR: t99
MONTH: t99
DAY t99

Table TC reports also a column reporting an index of the
cost of coding according to a simplified version of metrics
adopted in [8], [10]. This measure is obtained evaluating the
dimensions of locally defined class attributes, and it is useful
for having an approximative measure of the effort needed for
implementing the system on the basis of the selected class
hierarchy, and thus also for reengineering the code. In this
case the value of total cost is 99, This value will be reduced
by a suitable organization of classes.

In the example, the presence of COBOL clause
REDEFINES in the definition of an elementary type means
that the same memory area, allocated to a previously defined
data structure, is also used by a new data structure. The new
data structure could have a different meaning but shares the
same memory area. In the example BIRTH-N uses the same
area of BIRTH. This mechanism is frequently used by pro-
grammers for specifying that a variable is used in the same
manner of another variable with a mutual exclusive behavior
(e.g., in certain cases the social security number is used in

* the place of the number of drive licence). This relationship

Figure 2. Relationships among classes after the first
phase: is-a as continue lines, is-part-of as dashed
lines, is-referred-by as dotted lines. In the bottom
some elementary classes are collected.

that labels YY, MM and DD have disappeared, substituted by
their synonyms, as we have seen before. Column ClassID
reports the references to the compound classes considered
in the analysis of the definitions of records in the DATA
DIVISION and thus in TC itself, according to an is-part-of
relationship. Each record of the COBOL data structures
generates an entry in TC. The relationships automatically
obtained after the first phase are reported in Fig.2. The
following TC table reports classes and their relationships
according to the Object-Oriented paradigm [1], [12]. Each
entry of columns is-a, is-part-of and is-referred-by reports
the ClassID representing class relationships. In effect, each
entry is a list of ClassIDs. In the example reported, only sin-
gle relationships have been found. In TC the final dimension
in bytes of class instances are also reported.

(

Table of the Classes, TC

C.ID | classname | M.ID | is-p.-of | is-a | is-r-by | dim. | cost
1 PATIENT 1 - - - 46 46
2 BIRTH 1 1 - - 6 6
3 CLIENT 2 - - - 51 51
4 LAST- 2 3 - - 6 6
ORDER
5 BIRTH-N 1 - 2 1 6 0

162

can be regarded as a specialization/generalization since the
instances of the subclass can be substantially used as those of
an its superclass. For thisreason, BIRTH class is considered
the superclass of BIRTH-N. Moreover, since PATIENT
class presents in the COBOL version two different variables
referring the same data area, a relationships of is-referred-
by is established with class BIRTH-N. This means that in
this specific case each instance of class PATIENT holds an
instance of class BIRTH and a pointer to the same instance
produced by class BIRTH-N, thus reproducing the early
conditions.

2.4. Identification of Class Relationships

The second phase of analysis consists in eliminating re-
dundant instance variables in table TVI and unused classes
in TC. This process is drawn on the basis of the relationships
among data structures reported in the other tables. As the
first result redundant instance variables in TV] are removed
and the other tables will be updated accordingly, thus TVI
becomes:

[Table of the Instance Variables, TVI |

TVIid | LABEL ClassID | FormatID
1 NAME, 5 1
2 DAY 2 2
3 MONTH 2 2
4 YEAR 2 2
5 BIRTH-N 4 3
6 ID 3 4

Please note that this table already reports the final values
in the ClassID column, is-part-of relationships between el-
ementary classes and the other classes. In this phase, each

entry of column ClassID of table TVI is in practice a list of
ClassIDs.

In the case in which classes with identical layout are
detected it is possible to eliminate directly the redundant
classes, with the care of maintaining, inside the remaining
class, the synonyms collected in the knowledge base of the
eliminated classes. In this case the analysis can proceed
automatically. On the other hand, this can lead to wrong
assumptions since structurally equal classes, which could
be considered of the same type, can have very different
behaviors. In this case the analysis of the functional aspects
should help to take the final decision.

In our example, by forcing the equivalence of the iden-
tifiers BIRTH and LAST-ORDER it is possible to consider
those classes as unifiable, since they have the same dimen-
sion and equal instance variables. The redundant class is
deleted from TC.

In the case in which classes are equal “to a certain point”
it is possible to create a class hierarchy (is-a relationships)
which aggregates in the superclass the common part and in
the subclasses the variations and enrichments.

In our example both PATIENT and CLIENT classes
share the variable NAME and after the previous step, the
BIRTH/LAST-ORDER class. It is possible therefore to
create a class (e.g., Super-PATIENT~CLIENT)to which
to assign the common contents and to be considered as a
superclass of the two previous classes. In the example TC
and has been updated as follows:

Table of the Classes, TC

CID | classname | M.ID | is-p.-of | is-a | is-r-by | dim. | cost
1 PATIENT 1 - 5 - 46 0
BIRTH/ 1 5 - - 6 6
LAST-
ORDER
3 CLIENT 2 - 5 - 51 5
4 BIRTH-N 1 - 2 1 6 0
5 Super- - - - - 46 46
PATIENT-
CLIENT

In TC, the final dimensions in bytes of class instances are
reported. These values are substantially different from the
theoretical dimension of the class which, by means of the is-
a relationship, can be even defined without adding instance
variables (such as BIRTH-N with respect to its superclass
BIRTH/LAST-ORDER). In fact, with this new class hierar-
chy a strong reduction of cost of coding has been obtained,
thus producing a total cost of coding equal to 57. In Fig.3
the result of the final analysis is reported in the form of a
class tree.

163

Super-PATIENT~-CLIENT

NOME: tX(40)

X
'
CLIENT
PATIENT Y
H ID tXXB999
’I
K
BIRTH/LAST-ORDER
\., YEAR: t99
K MONTH: t99
DAY t89
BIRTH-N

BIRTH-N: t3(6)

Figure 3. Final class relationships: is-a as continue
lines, is-part-of as dashed lines, is-referred-by as dot-
ted lines.

3. C,0? : A Tool for Reengineering COBOL
Applications

C,0? (COBOL to Object-Oriented tool) is an instrument
for analyzing COBOL applications by means of the object-
oriented paradigm. The analysis performed by C20? tool is
focussed on modeling the problem domain according to the
object-oriented paradigm.

C,0? is based on a Lex/Yacc engine which is capable
of processing all COBOL syntax and semantics (the current
prototype is able to recognize a particular version of COBOL
close to the standard, but provisions have been included to
customize it to other versions). Moreover, due to the high
number of similar and identical data structures which are
usually present in a COBOL application, the process of data
structure unification needs to be practically supervised by
the user.

This is performed by means of the definition of 2 knowl-
edge base containing synonyms or by direct assistance from
the user. In the case in which similar data structures iden-
tified by C,0? are missing in the knowledge base, the final
decision about their unification is left to the user.

The objective of the software prototype we have de-
veloped, was to show the practical feasibility of the re-
engineering trajectory sketched in the previous sections.

The prototype is able to perform the recognition, the ab-
straction and transformation of concepts, to support dif-
ferent re-engineering methods, to support multiple models,
to provide visual and textual multiple but consistent repre-
sentations, and to provide an explicit support to software
evolution techniques.

The described features are made accessible to the user
by means of two main activities of C,0? : the automatic
abstraction, using the A algorithm shown in the previous
section and the interactive modelling, which allows the up-
dating of the models of the source code under examination,
following an evolutionary strategy, according to the user’s
needs. The models are collections of meaningful activi-
ties, obtained by the analysis of the source code. Once it has
been created, a model can be refined by the user by means of
commercially available specific evolutionary design tools.

4. C,0? and The Millennium Problem

The Millennium Problem (MP) is substantially a system-
atic implementation error due to the wrong acquisition of
requirements in the early phases of many applications. The
first application of C,0? was the re-analysis of the soft-
ware for managing university libraries on a national basis.
Itis called SBN (Servizio Bibliotecario Nazionale, National
Library Service) and consists of more than 2000 modules
for a total of more than ten megabytes of COBOL code. As
much as 350.000 lines of obscure and old-fashioned COBOL
crafted by more than 30 developers, without a constant evo-
lution plan over eight years of use. In this software, several
instances of the MP have been found, in fact all the modules
have only two-digit-year in the date definitions. Other sys-
tematic errors can be found in procedural code, especially
when the date is read from the system clock.

The process of COBOL code analysis has identified a
huge amount of data structures containing dates. The typical
conceptual process which C,0? follows for enlightening the
problem — first the format and then the label unification —
has allowed to classify no more than ten data structures as
instances of a same class DATE parametrized on the physical
storage format.

By using C,0? the passage from the early implementa-
tion to an object-oriented description of the domain problem
was performed by means of a reasoning-based iterative pro-
cess.

5. Conclusions

In this paper, a method and tool (C,0? COBOL to
Object-Oriented) for analyzing COBOL applications has
been presented. The tool is capable of identifying classes
and their relationships by means of a process of understand-

164

ing and refinement in which COBOL data structures are an-
alyzed, aggregated, and simplified semiautomatically. The
tool can support different re-engineering methods. It has
been used on a large application such as the software for
managing all libraries of the University of Florence (where
many instances of the millennium problem were found) pro-
ducing very interesting results. Work is in progress for im-
plementing the mechanism for the automatic association of
procedural parts to classes.

References

[11 G. Booch. Object-Oriented Design with Applications.
The Benjamin/Cummings Publishing Company, California,
USA, 1994.

P. T. Breuer and K. Lano. Creating specifications from
code: Reverse-engineering techniques. Software Mainte-
nance: Research and Practice, 3, 1991,

T. J. Briggerstaff and A. I. Perlis. Software Reusability:
Volume 1, Concepts and Models. Addison Wesley, ACM
Press, New York, 1989.

G. Bucci, M. Campanai, and P. Nesi. Tools for specifying
real-time systems. Journal of Real-Time Systems, pages 117-
172, March 1995.

J. Fagetand J. M. Morel. The reboot approach to the concept
of a reusable component. In Proc. of 5th Annual Workshop
on Software Reuse, WISR’92, Palo Alto, CA, USA, 26-29
Sept. 1992.

H. Fergen, P. Reichelt, and K. P. Schmidt. Bringing objects
into cobol: Moore - a tool for migrating from cobol85 to
object-oriented cobol. In Proc. of the International Con-
ference on Technology of Object-Oriented languages and
Systems, TOOLS USA 94, pages 435-448,1994.

1. Jacobsonand F. Lindstrom. Re-engineering of old systems
to an object-oriented architecture. ACM SIGPLAN Notices,
26(11), October 1991.

8] M. Lorenz and J. Kidd. Object-Oriented Software Metrics,
A Practical Guide. Prentice Hall, New Jersey, 1994.

[91 P.Nesi. Objective Software Quality, Proc. of Objective Qual-
ity 1995, 2nd Syposium on Software Quality Techniques and
Acquisition Criteria. Number 926 in Lecture Notes in Com-
puter Science. Springer Verlag, Berlin, 1995.

{101 P. Nesi and M. Campanai. Metric framework for object-
oriented real-time systems specification languages. The Jour-
nal of Systems and Software, July 1996.

[11] C.L. Ongand W. T. Tsai. Class and object extraction from

imperative code. Journal of Object Oriented Programming,

1993.

J. Rumbaughin, M. Blaha, W. Premerlani, F. Eddy, and

W. Lorensen. Object-Oriented Modeling and Design. Pren-

tice Hall International, New Jersey, 1991.

O. Signore and M. Loffredo. Some issues on object-oriented

re-engineering. In Proc. of ERCIM Workshop on Methods

and Tools for Software Reuse, Heraklion, Crete, Greece,

1992.

[2]

[3]

{41

(5]

(6]

7

[12]

(13]

