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In specifying real-time systems (avionics, robotics, process control, etc.) many factors must be
considered. For example, the techniques adopted must be capable of describing system behavior
as a set of relationships expressing the temporal constraints among events and actions [1], [2]:
properties of invariance, precedence among events, periodicity, liveness and safety conditions,
Moreover, the specification techniques must be formal enough to allow verification and
validation of the specification with respect to system requirements and/or to real stimuli by
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Abstract

Formal techniques for the specification of real-time systems must be capable of describ-
ing system behavior as a set of relationships expressing the temporal constraints among
events and actions: properties of invariance, precedence, periodicity, liveness and safety
conditions, etc. This paper describes a Temporal Interval Logic with Compositional Oper-
ators (TILCO) that has been especially designed for the specification of real-time systems.
TILCO can be regarded as a generalization of classical temporal logics based on the oper-
ators eventually and henceforth and allows both qualitative and quantitative specification
of time relationships. Since TILCO is based on time intervals, instead of time points, it is
very concise in expressing temporal constraints with time bounds, such as those needed to
specify real-time systems. The proposed approach can be used to verify the completeness
and consistency of specifications, as well as to validate system behavior against its require-
ments and general properties. TILCO has been formalized by using the theorem prover
Isabelle/HOL. TILCO specifications satisfying certain properties are also executable by
using a modified version of the Tableaux algorithm. Therefore, the TILCO model can be
considered a dual approach to the specification of real-time systems. This paper defines
TILCO and its axiomatization, highlights the tools available for proving properties of
specifications and for their execution, and provides an example of system specification
and validation.

Index terms: formal specification language, first order logic, temporal interval logic,
verification and validation, real-time systems.
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using theorem provers or model checking techniques.
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During the last decade, many researchers have explored the field of temporal representation
for specifying concurrent as well as real-time programs. For example, many logical languages
integrating temporal or time interval logics have been proposed — e.g., [3], [4], [5], [6], [7]-
These languages, together with algebraic languages — e.g., [8], [9], [10], [11], [12] — provide
the most abstract approaches to requirement specification and real-time system analysis [13],
[1].

In particular, logic-based languages, which are capable of modeling temporal constraints, can
be classified into two main categories time points or time intervals depending on the temporal
semantics adopted. For logics based on time points [14], [15], temporal expressions specify the
system behavior with respect to certain reference points in time; points are determined by a
specific state of the system and by the occurrence of events marking state transition. In order
to describe temporal relationships, the operators O (henceforth) and < (eventually) are usually
adopted to specify necessity and possibility, respectively. In the case of time intervals [16], [5],
[17], [18], [19], [20], [21] [22], formula specify the temporal relationships among facts, events,
and intervals, thus allowing a higher level of abstraction for the temporal logic. These logics
usually have specific operators to express the relationships between intervals (meet, before, after
[23]), operators for combining intervals (e.g., the chop operator [15]), or operators that specify
the interval constituting the context of temporal formulee [21].

The relationships among time points or intervals are usually only qualitative. In the litera-
ture, only a few examples of quantitative temporal logics based on time points exist (RTL [4],
MTL [24] and TRIO [25], [26]). In these cases, an operator expressing the distance between
time points is usually defined. The following paragraphs discuss the expressiveness of some
these temporal logics.

The time structure of the logical language can be linear or branched; however, only a
linear structure can be profitably applied for system specification. A branched future can
be unsuitable for specification languages, since its semantics should be capable of associating
properties with specific branches; but branched models are useful for trace-based approaches
that specify each single system evolution independently; for these cases, the system can have
more than one possible evolution.

The time domain can be modeled as a discrete or as a continuous domain by using natural
or real numbers, respectively. In the discrete case, the specification can be regarded as a set of
possible states and the synchronization among events can be deduced from the specification,
since these events are placed on a regular time grid. In the continuos case, the specification has
an unpredictable number of states and the synchronization among events must be explicitly
declared since each event can be distant from another event even of an infinitesimal amount.

Another important distinction must be made in order to identify the expressiveness of
the temporal logic. Many temporal logics are based on propositional logic — e.g., PTL [3],
[27], TPTL [28], RTTL [29], ITL [17] — and adopt the & and O operators. Other temporal
logics defined more recently are based on first or higher order logic — e.g., TRIO [25], MTL
[24], interval temporal logic [30]. Propositional logic is obviously preferable to First Order
Logic (FOL), since it is decidable. FOL has a greater expressive power but it is intrinsically
undecidable; however, some restrictions can be applied to make the theory both decidable and
executable [17], [31]. Higher order logics have an even greater expressive power, but are usually
avoided since they are more difficult to manipulate automatically than simpler logics. For
these reasons, the most expressive temporal logics are based on FOL and, if executability of
the specification is mandatory, restrictions are usually applied. Therefore, most of the temporal
logics can be translated into FOL. Their definition is very useful since temporal logics constrain
the user to write formulee whose validity and satisfiability can be more easily checked, leading



to specifications that can be verified or automatically validated.

None of the temporal logics presented in the past years is completely satisfactory for real-
time system specification. In fact, most of them have no metric for time, thus allowing only
specification of qualitative temporal requirements — e.g., [3], [27], [5]. Those temporal logics
that provide a metric for time usually allow quantification over the temporal domain — e.g.,
[24], [25] — whereas a prohibition of this kind of quantification has been shown to be a necessary
condition for the existence of feasible automated verification mechanisms. Finally, most of the
approaches are based on propositional logic instead of FOL, and are therefore, not expressive
enough to describe realistic systems.

The problem of executability of specifications (in temporal logics) has often been misun-
derstood, mainly because there are at least three different definitions of executability [32]. In
many cases, specification models are considered executable if they have a semantics defining
an effective procedure, capable of determining for any formula of the logic theory, whether or
not that formula is a theorem of the theory. In effect, this property corresponds more to that
of decidability of the validity problem rather than to that of executability. Another definition
of executability refers to the possibility of generating a model for a given specification (i.e., a
history of input/output values) [33]. The third definition of executability refers to using the
specification itself as a prototype of the real-time system, thus allowing, in each time instant,
the on-line generation of the system outputs on the basis of present inputs and its internal state
and past history. When this is possible, the specification can be executed in order to be tested,
just as in operational approaches. With respect to Using this last definition of “executability”,
there exists in the literature many examples of logics that are supposed to have an executable
semantics, but in reality cannot be used to build an executable prototype [32]. Therefore, dual
models have been recently proposed [34], [29], [35], [36]. The duel models try to integrate the
operational and descriptive capabilities, in order to allow the mathematical proof of properties
and the executability of system specification.

In this paper, a Temporal Interval Logic with Compositional Operators (TILCO) based on
time intervals is presented. It has been especially designed for the specification of real-time
systems. TILCO extends FOL with a set of temporal operators and can be regarded as a gen-
eralization of the classical temporal logics based on the application of the operators eventually
and henceforth to time intervals. TILCO has a metric for the discrete temporal domain, and no
explicit temporal quantification is allowed. Thus, TILCO allows specification of both qualita-
tive and quantitative relationships about events and facts and provides specific compositional
operators among time intervals. In TILCO, the same formalism used for system specification
is employed for describing high-level properties that should be satisfied by the system itself.
These must be proven on the bases of the specification in the phase of system validation. Since
TILCO operators quantify over intervals, instead of using time points, TILCO is more concise
in expressing temporal constraints with time bounds, as is needed in specifying real-time sys-
tems. In fact, TILCO can be effectively used to express invariants, precedence among events,
periodicity, liveness and safety conditions, etc., and these properties can be formally verified
by automatic theorem proving techniques. To this end, a formalization of TILCO has been
implemented in the theorem prover Isabelle/HOL [37], [38]. Using this formalization, a set of
fundamental theorems has been proven and a set of tactics has been built for supporting the
semi-automatic demonstration of properties of TILCO specifications. Causal TILCO specifica-
tions are also executable by using a modified version of the Tableaux algorithm. Since TILCO
has aspects typical of both descriptive and operational semantics, it can be considered a dual
approach following the classification reported in [1].

This paper is organized as follows. Section 2 presents TILCO’s syntax and semantics.



Section 3 discusses the axiomatization of TILCO theory and its soundness and decidability.
Section 4 provides the mechanisms for system validation by means of high-level properties proof
and a brief overview of the executor of TILCO specifications. Section 5 compares TILCO to
other temporal logics in terms of conciseness and expressiveness. Section 6 provides a complete
example of specification to show the language capabilities. Conclusions are drawn in Section 7.

2 Definition of TILCO

This section provides details about the syntax and semantics of TILCO. TILCO extends FOL in
order to create a logic language capable of specifying the relationships between events and time,
as well as the transformations on the data domain. It can be used to specify temporal constraints
among events in either a qualitative or quantitative manner. Therefore, the boundaries of
an interval, which specify the length of intervals and actions, can be expressed relative to
other events (i.e., in a qualitative manner) or with an absolute measure (i.e., in a quantitative
manner). This allows definition of expressions of ordering relationships among events or delays
and time-outs. These features are mandatory for specifying the behavior of real-time systems.
In addition, the TILCO deductive approach is sound, and thus consistent. It forces the user
to write formulee without using direct quantifications over the temporal domain, thus avoiding
the writing overly intricate or difficult to understand specifications [31].

TILCO includes the concepts of typed variables and constants; it provides a set of basic types
and allows the definition of new types by means of the mechanisms of enumerated collection and
type constructors (see App.A). A type-checking mechanism is automatically extended to these
new types. The predefined types are: nat for natural numbers, int for integer numbers, bool
for Booleans, char for text characters, and string for character strings. The usual arithmetic
operators: +, —, *, / , mod, ~ (change sign), are defined for integers and natural numbers.
String manipulation functions are defined for strings. Comparative operators: =, <, >, >, <,
#, can be used with integers, naturals, characters and strings, and they can also be overloaded
for dealing with user-defined types.

A system specification in TILCO is a tuple

{u7 T? f? ,P7 V? W7C7 j}?

where U is a set of TILCO formulee, T a set of type definitions, F a set of functions, P a set
of predicates, V a set of typed time-dependent variables, W a set of typed time-independent
variables, C a set of typed constants (also called time invariant parameters), and J is a set of
integer intervals. U specifies the rules defining the behavior of the specified system. T defines
the types used in the specification. Functions and predicates have their usual meaning and
are used to manipulate predefined and user-defined data-types. Time-dependent variables are
employed for modeling system inputs (read-only), outputs (write-only), and auxiliary variables
(read/write) of the system under specification. Time-dependent variables can assume any
value in their corresponding domain. Time-independent variables are used to build parametric
formule that operate on structured data types (i.e., arrays, lists, etc.) through quantification.
Constants are used for modeling system parameters. Integer intervals, which are connected sets
of integers, are used for specifying quantitative temporal relationships.
A system is specified in TILCO according to the following rules:

e a system is characterized by its input and output ports, which are used to communicate
with the external environment, and by its auxiliary variables, defining its internal state;



e inputs, outputs and auxiliary variables can assume only one value at each time instant.
Each of them is defined by a unique name;

e an input is a typed variable whose value can change due to external events;

e an output is a typed variable which can be forced to assume a value by some predicates
through an assignment. This leads to a change in the external environment;

e an auxiliary variable can be forced to a value by an assignment and it can be read as an
input variable;

e a system is described to be a set of formulee which define its behavior and the data
transformation.

2.1 Syntax and semantics of TILCO

TILCO’s temporal operators have been added to FOL by leaving the evaluation time implicit.
Therefore, the meaning of a TILCO formula is given with respect to the current time such as in
other logic languages — e.g., [25], [26]. Time is discrete and linear, and the temporal domain
is Z, the set of integers; the minimum time interval corresponds to 1 time unit. The current
time instant is represented by 0, whereas positive (negative) number represent future (past)
time instants. TILCO formulee can be time dependent or independent; the latter are those
that do not present any TILCO temporal operator, and are comprised only of time-independent
subformule. A time independent formula can be regarded as a constraint that must be satisfied
in each time instant.

The basic temporal entity in TILCO is the interval. Intervals can be quantitatively expressed
by using the notation with round, “(”, “)”, or squared, “[”, “|”, brackets for excluding and
including interval boundaries, respectively. Time instants are regarded as special cases that are
represented as closed intervals composed of a single point (e.g., [a,a]). Symbols +o00 and —oo
can be used as interval boundaries, if the extreme is open, to denote infinite intervals — i.e.,
[a, +00) represents set {x € Z|a < x}. In this way, TILCO allows both the specification of facts
in intervals and events in time instants. Classical operators of temporal logic (i.e., eventually,
<&, and henceforth, O) can be easily obtained by using TILCO operators with infinite intervals.
For these reasons, TILCO can be regarded as a generalization of most of the interval logics
presented in the literature in the past — e.g., [5], [4], [3] — with the addition of a metric to
measure time.

The basic TILCO temporal operators are:

e “@”, bounded universal temporal quantification over an interval;
e “?” bounded existential temporal quantification over an interval;

e until, to express that either a predicate will always be true in the future, or it will be
true until another predicate will become true;

e since, to express that either a predicate has always been true in the past, or it has been
true since another predicate has become true.

Operators “@” and “?”7 are called temporal quantifiers. AQ@; is true if formula A is true in
every instant in the interval ¢, with respect to the current time instant. Therefore, if £ is the



current time instant, (A@4)") = ¥z € i.ACT) holds. In particular, A@Q[t,,1;) evaluated in ¢
means:

Vo € [tl, tg).A(x—I_t).

Obviously ¢; and ¢, can be either positive or negative, and, thus the interval can be in the
past or in the future. If the lower bound of an interval is greater than the upper bound, then
the interval is null (i.e., it is equal to the empty set). Operators “@” and “?” correspond,
in the temporal domain, to FOL quantifiers V and 3, respectively; hence, they are related by
a duality relationship analogous to that between V and 4. “@” and “?” are used to express
delays, time-outs and any other temporal constraint that requires a specific quantitative bound.
Concerning the other temporal operators, until A B (evaluated in t) is true if B will always be
true in the future with respect to ¢, or if B will be true in the interval (¢, +¢) with & > 0 and
A will be true in x + ¢. This definition of until does not require the occurrence of A in the
future, so the until operator corresponds to the weak until operator defined in PTL [27]. The
operators until and since express the same concept for future and past, respectively; they are
related by a relationship of temporal duality. until and since can be effectively used to express
ordering relationships among events without the need of specifying any numeric constraint.
Given F, P, V, W, C, J, the syntax of TILCO formule is defined by the following BNF-like

definitions:

interval

(a,b)|(a,b]|[a,b)|[a,b] for each a,be Z

interval_list

interval_op
variable

term

term_list

atomic_formula

formula

op
quantifier
temporal_quantifier

temporal_op

interval

interval interval _op interval
Sk

w for each w € W

v for eachv ey

variable

¢ for each c €C
f(termist) for eachf € F
term

term, term list

p(termist) for each p € P
T|L]atomic_formula
—formula

formula op formula
v:=term for eachv eV
quantifier variable. formula
formula temporal_quantifier interval list
temporal_op formula formula
(formula)

VIA|=| & ==«
MElE

@|?

until|since



The use of parentheses in TILCO expressions is reduced by using the operators’ precedence
relationships reported in Tab. 1.

‘ prec. ‘ operators ‘

1 | ~
2 |%x / mod

3 + -

4 = > < > < #
5 |7,

6 =

7 @ ?

8 A

9 Vv

10 & = = =K
11 |v 3 3!

12 | until since

Table 1: Precedences among TILCO operators.

Before defining the semantics of TILCO, it is important to introduce the concept of interpreta-
tion of a TILCO formula. This concept is also used to define the validity and the satisfiability
of TILCO formulee.

Given a syntactically correct TILCO formula A, with {¢1,...,¢,} set of types used in A,
{p1,...,pr} predicates, { f1,..., fi} functions, {vy, ..., v, } time-dependent variables, {c1, ..., ¢,}
constants, and {ji,..., 7.} intervals present in A, then an interpretation 7 is a tuple

{D1,...., DL} {Ry, ... R}, {Fr, . B L AV, V(O 1 {Chy oo C b { o Je )
where:

o {Dq,...,D;} assigns a domain D; to each type ¢;;

o {Ry,..., Ry} assigns an n-ary relation R; over D;, X ... x D; to each n-ary predicate p;
with arguments of type ¢;,,...,¢;,;

o {I,..., [} assigns an n-ary function F; over D; X ... x D, to each n-ary function f;
with arguments of type ¢;,,...,¢;,;

{Vi(t),..., Vi(t)} assigns a function of time Vi(t) : Z — D, to each time-dependent
variable v; of type t,, specifying the history of that variable in every time instant (where
t is the absolute time);

{C1,...,C,} assigns a value C; € D,, to each constant ¢; of type t,;
o {Ji,...,J.} assigns an interval value J; to each integer interval j;.

Given a TILCO formula A and an interpretation Z for A, notation

I, tEA

expresses that Z is a model for A evaluated in the time instant ¢. The evaluation of Z,¢ | A,
stating the semantics of TILCO, is inductively defined on the structure of A by the following
rules:



ItET;

It L,

Tt = —Aiff I, A

Tt A A AT Tt = Ay and Z,t = Ay

T.t = Ay vV Ay iff either T, 1 |= Ay or T, 1 |= Ay;

Tl Ar = A il Tt = = AV Ay

Tt = A=A, iff either 7,1 = —Aj or T, + 1 | Ay;
Tt = Ay=xA; iff either 7.t = —A; or Z,1 — 1 |= Ay;
TtEA & ATt EA = AyA Ay = Aj;

Z,t = x := exp iff there exists a constant k € D, such that Z,t Ex =k and Z,t — 1 |
exp = k, where D, is the domain assigned to the type of = by Z;

Z,t = Va.A(x) iff, for each y € D, it is true that Z,t = A(y), where D, is the domain
assigned to the type of = by Z;

Z,t | Jx.A(x) iff, there exists a y € D, such that Z,t = A(y), where D, is the domain
assigned to the type of = by Z;

Z,t = . A(x) iff, there exists one and only one y € D, such that Z,t = A(y), where
D, is the domain assigned to the type of = by Z;

Z,t E AQq iff, for each s €4, 7,5+ 1 = A is true;
Z,t = A% iff, there exists an s € ¢ such that Z,s + ¢ | A;

.t = until A; A, if either Z,¢ = 4,@(0, +00) or there exists 7 > 0 such that Z,¢+7 =
Al and I,t |: AQ@(OvT)7

T, = since A; A, if either 7, = Ay@(—00,0) or there exists 7 < 0 such that 7,7+ 7 |=
Al and I,t |: A2@(7—70)7

T,t = AQi, jiff 7,1 |= (AQi) A (A@));
It A%, iff It = (AQ) A (A?));
T,t = AQi; j iff 7,1 |= (AQi) V (A@));
It A% 5 iff T,t = (A%9) V (A?));

Z,t = piler, ... eq), iff (Eq,..., E,) € R;, where R; is the relation assigned by Z to p; and
E;, for each j = 1,...,n, are the results of the expressions e; when the values assigned
by Z are substituted for the constants and variables, and the variables are evaluated in ¢.



The semantics of predicates also includes that of functions, variables and constants.
Remark 2.1 In the case where the interval is null, it holds:

AQY = T;
AT = L.

O
Some useful definitions follow.

Definition 2.1 Given an interpretation

(Dr,.... Dy}
(Ri,.... R}

T = {Flv"'vFl}
), V) [
(... cn
(s d)

its temporal translation by s € Z time units is defined by:

{Dy,...,Dp}
{Rl,.--,Rk}
aer | {Fr,..., B}
7(Z,s) = {Vilt+s),..., Vi (t + 5)}
A
{hy oo J}

Definition 2.2 A TILCO formula A is said to be satisfiable if there exists an interpretation
T and a value t € Z such that T,t = A.

Definition 2.3 A TILCO formula A is said to be valid in an interpretation Z if for eacht € Z
it is true that Z,t = A. The notation used is T = A.

Definition 2.4 A TILCO formula A is said to be valid if for each interpretation T and for
each t € Z it is true that Z,t |= A. The notation used is = A.

Definition 2.5 Given a set of TILCO formule, U = {Ay,..., A}, U is said to be satisfiable
if there exists an interpretation T such that T \= Ay,...Z |E A,. T is said to be a model for U.
U is said to be unsatisfiable if for each I there exists an i such that T [= A;.

Definition 2.6 Given a set of TILCO formule U and a TILCO formula A, if every model T
for U is such that T = A, then A is said to be a logic consequence of U. The notation used is
UgEA.

Definition 2.7 Given S(U) = {A|U = A}, S(U) is called theory of U and the elements of
S(U) are called theorems of U. The elements of U are called axioms of S(U).



2.2 Comments

o In a TILCO specification, a system is described by a formula consisting of the conjunction
of all the formula of U, each describing a different aspect of the system. A specification
is defined in a specification temporal domain by means of operator “@Q”. For example, if
U = {F, Iy, F3} and the temporal domain is ¢, then the system is described by:

(F1 A Fy A F3)@q,
which means that all properties £y, Fy, F5 must be valid in each time instant of s.

o Each TILCO formula used in a system specification must be closed, in the sense that
each time independent variable in a formula must be quantified. For instance, formula
ds.f(k,s) = P is open, while 3s.3k.f(k,s) = P is closed. If a TILCO formula is open, it
is replaced by its universal closure (i.e., an external universal quantifier is introduced for
each of the time independent variables which are not quantified). According to the syntax
definition, each quantified variable must be time independent, otherwise (i) it would be
possible to write higher order formule and (ii) time could not be left implicit because the
meaning of the formula would change during system evolution.

o In a TILCO specification, predicates and functions with typed parameters can also be
defined. Predicates are functions that return a value of type bool. Functions and pred-
icates are used to define operations and relationships over predefined and user-defined
types. Functions and predicates are incrementally defined by using predefined functions
and predicates over the basic data types and type constructors. The body of each pred-
icate must be specified by means of a TILCO formula, in which the only non-quantified
variables are the predicate parameters. Predicates are only instruments used to simplify
the writing of formule; hence, more complex temporal expressions and formule can be
hidden in predicates. These also extend the expressiveness of TILCO, since they can be
used to constitute a user-defined library of predicates, thus improving the specifications
reusability. For example, a predicate for specifying that A occurs only once in an interval

1 could be defined as:

OnlyOnce(A : int — bool, 7 : interval) : bool = 3lm.A(m)?,
where each occurrence of A is characterized by a different value of m:

E Vm.A(m) = =(A(m)?(—oc0,0)),

so that Ilm.A(m)?i specifies that the event A happens only once during the interval i. m
can be regarded as a time-stamp. The adoption of time-stamps for distinguishing different
occurrences of events has been introduced in [39], in order to overcome the limitation of
temporal logics in recognizing different occurrences of an event. Since TILCO is an
extension of FOL, the use of time-stamps in specifications is simply obtained by adding
them to predicates whose different occurrences must be distinguished.

e The two predicates
rule(A : bool) £ A@(—o0,400),
fact(A : bool) = A?(—o0,400),

express that a predicate A is always or sometimes true, respectively. These predicates are
often used in specifications to express the concepts of necessity and possibility over the
whole temporal domain.

10



o The classical henceforth operator, O, can be expressed in terms of TILCO operator “Q”:
AQ[0, +00), which means that A will be true forever from the current time instant.
Analogously, the eventually operator, &, can be expressed by A?[0,400).

o Operator “?” could also be defined in terms of operator “@” by using the duality rela-
tionship:
A% = - (- AQy).

e In order to simplify writing specifications the symbol =+ (=) has been introduced to
express that a formula implies that another formula will be (has been) true at the next
(previous) time instant:

A=w»B = A= BQIl,1],
A=«xB = A = BQ[-1, —1].

o TILCO is also characterized by its compositional operators that work with intervals:
comma “,”, which corresponds to A, and semicolon “;”, which corresponds to V, between
intervals. Compositional operators “,” and “;” assume different meanings if they are asso-
ciated with operators “@” or “?”. Other operators among intervals, such as intersection,
“N”, and union, “U”, could be defined by considering time intervals as sets. However,
the introduction of U is problematic because the set of intervals is not closed over this

operation.

2.3 Short examples

Tab. 2 provides examples of TILCO formule.To provide a clearer view of TILCO’s expressive-
ness the formule are accompanied by an explanation of their meaning. In Tab. 2, ¢ stands for
a positive integer number.

A bit more complex example is a formula that specifies a system with an input /; : int and
an output O; : bool. The system produces an output signal for ¢; time instants with a delay
of t5 time instants every time that the input assumes the value val:

I = val = 01Q[ty, t; + 15].
The same system is also specified by the formula:
I = val = 0,@[0,1,]Q@lt,, t5].
Another example is the specification of a system for generating periodic events:
(=BQ@(0,10] & (B@(10,20]A—=B@(20,30]))A((=B?[—1,—1]AB) & (AQ|0,2] A~ AQ(2,20))).

This TILCO formula specifies that signal B is periodic with a duty-cycle of 50 percent and a
period of 20 time units while, being associated with each transition of B (from false to true)
signal A stays true for 2 time units. Fig. 1 depicts the histories of signals A and B.

Once system behavior is specified by means of a set of TILCO formulea, the specification
can be validated to verify whether it corresponds to the system requirements. In TILCO,
system validation is performed by proving that high-level properties (e.g., safety, liveness, etc.)
are satisfied by the TILCO specification of the system. These properties can be expressed
by means of other TILCO formulz, thus TILCO is used to specify both the system and its

11



AQ[1,1]

AQI0,1)
AQ(—o00, +0)
AQ@(0, +00)
A?(0,400)
AQty, 1]
A?[ty,t)
—(AQ(—o00, +00))
—AQ(—o00, +0)
AQ[tq, 1], (L2, t3]
A?[ty, t], (Lo, t3]
AQ[tq, t1]; (L2, t3]
AQIt, t] A —AQ(0, 1)

A@[—t, —t] A ~A@(—t,0)

A?[0,1,]@[0, +00)

(A = B?)@;
(A = B@i)@j

(A = B@i)?;

A will be true at the next time instant

A 1s true from now for ¢ time instants

A has been, is and will be always true

A will be always true in the future

A will be sometimes true in the future

A is true in [tq, 3]

A is true in an instant of [¢,2)

A 1s not always true

A is always false

A is true in t1, and in (¢2,13]

A is true in tq, and is true at least once in (¢, t5]

A is true in tq, or in (2, 13]

t 1s the next time instant in which A will be true

—t 1s the last time instant in which A has been true

A will become true within #; for each time instant in the
future (response)

A will be true, and since then it will remain true for ¢; time
units (persistence)

A causes B always in the future

if A is true within ¢, then also B will be true at the same
time

A leads to an assertion of B in ¢ for each time instant of 5
A leads to the assertion of B in the whole interval ¢ for
each time instant of j

A leads to the assertion of B in the whole interval 7 in at
least a time instant of j

Table 2: Examples of TILCO formulee.

e |

A

] ]

T T+2 T+10 T+20 T+22 T+30

Figure 1: Histories of signals A and B.
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high-level properties. Therefore, the classical safety conditions, such as A@: (where A is a
positive property), and ~B@;i where B is a negative condition) must be satisfied by the system
specification, where the interval ¢ can be extended to the specification temporal domain, as well
as to only a part of it. Moreover, liveness conditions, such as A?¢ (A will be satisfied within ¢)
or deadlock-free conditions, such as (—A?¢)@yj, can also be specified. If during the validation of
a TILCO specification it is found that a desired property (constituting a system requirement)
cannot be deduced from the system specification given in terms of TILCO formule, then the
specification is incomplete. If that property must be satisfied by the system, a new TILCO
formula should be added to the system specification, provided that this formula does not
contradict any other formula contained in the specification. This formula may itself be the
desired property or a formula that completes the system specification in order to prove the
deired property, thus allowing the incremental system specification.

3 Axiomatization

This section presents an axiomatization for TILCO, extending the Hilbert axiom system for
FOL. Axioms and inference rules dealing with TILCO temporal operators have been added to
build a sound deduction system for TILCO. In particular, four new axioms have been added
to deal with the operators until and since, as well as two new inference rules for operator
“@”. Since TILCO is an extension of FOL, the classical properties of FOL are valid theorems
in TILCO. In fact, all these properties can still be deduced by using the FOL axioms contained
in the TILCO axiomatization. The axiomatization for TILCO is divided in three parts: (i) the
axioms for FOL, (ii) the axioms for TILCO temporal operators, and (iii) the inference rules. In
stating axioms and rules

e F A, means that A is provable in every time instant;
e F, A, means that A is provable in the time instant t.

These two notations are related by the following rules which have been proven:

TG T: provided that ¢ is not free in any assumption,
FA

TS ——
e A7

which are called temporal generalization (TG) and temporal specialization (TS), respectively.

First order axioms

The Hilbert axioms for FOL are [40], [27]:
AX1 + B= (A= B);

AX2 F(A=(C=D))=((A=C)= (A= D));

AX3 F(mA=-B)= ((-A= B)= A);

AX4 b (Va.A(z)) = A(a), if a is a free term for x;

AX5 b (Vo.A= B(z)) = (A= (V2.B(z))), if A does not depend on .
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TILCO axioms

The following axioms describe the essential properties of TILCO operators until and since:
AX6 Funtil A B < AQ[1,1] Vv ((B Auntil A B)Q[1,1));

AXT since A B < AQ[—1,—1]V ((B Asince A B)@[—-1,—1]);

AX8 - BQ@(0,400) = until A B;

AX9 + B@(—c0,0) = since A B.

Axioms 6 and 7 are used for induction setup in order to prove propositions containing operators
until and since, respectively. Axioms 8 and 9 constitute the basic cases for induction over
until and since, respectively.

Inference rules

The most important inference rule adopted in the TILCO theory is the Modus Ponens (MP):

FA FA=BEB
- B ’

with its classical associated meaning. Moreover, the Generalization (GEN) rule is adopted for
quantifier V:

F A(a)
FVa. A(x)

where A can either depend or not depend on x, and = must be a time independent variable
— i.e., a variable that can be used to quantify over the elements of a set. With the above
inference rules, the first order theory underlying TILCO can be regarded as a standard theory
with respect to time-independent parameters and predicates.

In order to deal with operator “@”, two new deduction rules in natural deduction style
were introduced instead of adding new axioms. These two rules, @QF and @/, allow the
decomposition and the composition of formule containing “@”. respectively:

F, AQr Fa e

QF ,
B
S = . . . .
@/ % provided that x is not free in any assumption.
F, AQq
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Other general theorems

FOL’s deductive system in natural deduction style has been enhanced by adding rules for
introduction and eliminating TILCO temporal operators:

T = 1E %

o PTYEPERQER L EP o, PO
.y % — E(MP) HD:;% -r

VI F;%% zfreeonlyin P VE %f/%)

37 % IE H"”‘P(l: QP(QC) "9 frec only in P

Rule = [ is also called deduction rule (DR), rule VI is also called generalization rule (GEN),
and JFE is called existential instantiation rule (EI). An alternative way of stating rule EI is:

FJx. P(x)
F P(a)

where a is a new constant
that is sometimes simpler to use.

The following introduction and elimination rules have been specifically proven for TILCO
operators:

Fro=k H_i1e=k Frvi=e bH_i1e=k

=1 Ep— k constant =L Ep—" k constant
) ey P F, PQ; )
@/ J;EI—:T@—I—; & not free in any assump. QF ! '_i_l_t Px €!
Fope P a € e PPy el rrEl
?1 + o P?ix € ?E ! ! R bR x not free in any assump.
til/1 til/2
o F until P Q o F, until P Q
Since[l '_t-l—x P l_t Q@([L’,O) l_ x < 0 Since[Q l_t Q@(—O0,0)
F; since P Q) F; since P Q)
-, until P Q FiroP HQ@Q05) Fo<r  HQ@(0,40)
until ER bR
FR
. FiroP FQ@z0) Foco FOQ@(—c0,0
sincel/ Fe since P Q = I—H]%; S I—(R :
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A set of equivalencies is used to rewrite formulea containing operators for which introduction

and elimination rules have not been proven in formula that contain only operators for which

introduction and elimination rules are available:

(=P) = P= 1 —-equiv
(P&Q) = (P=0Q)AN(Q=P) =-equiv
(Fe.P(x)) = (Fe.P(a)AN Vy.Ply)=y F-equiv
A=>B = A= (BQ[l,1)) =t>-equiv
A=«xB = A= (BQ[-1,-1)) =x-equiv
AQy, g = (AQi) A (AQy) Q@ -equiv
A%, = (A7) N (A?)) ? -equiv
AQy; g = (AQi)V (AQy) @;-equiv
A% = (A%) VvV (A?)) ?:-equiv

Since each TILCO formula is defined with respect to the implicit time, a formula specifies
a behavior that holds in different contexts. Hence, this holds even if the interpretation is

translated in the temporal domain'. Therefore, the following theorem, called the translation

rule, has been proven:

Theorem 3.1 If A is a TILCO formula, T is an interpretation for A and s,t € Z then
I,t = A ifand onlyif 7(Z,s),t—s = A.

Corollary 3.1 From the previous theorem it follows as a corollary that
A7t Z,tE A if and only if VI.IZ.Z,t E A.

As in [41], [26], [42], in TILCO the generalization rule cannot be applied to time dependent
variables and predicates, thus having a time generalization rule (TG). This is due to the implicit
model of time. Therefore, a different kind of rule is needed in TILCO to allow generalization
over the temporal domain. Thus, as a consequence of TG, the following rule has been proven:

FA
F AQ@(—o0,400)

This rule states that, if formula A is provable in every time instant, then formula AQ(—o0, +00)
is true in every time instant. Formula A in the premise of the rule must be provable in every
time instant, otherwise, from the fact that a formula is true in a given time instant, it could be
deduced that the same formula is always true, which is clearly unacceptable. Moreover, it can
be easily shown that A = (A@Q(—o00, +00)) is not provable.

3.1 Theorems and Properties

This Section provides a selection of some TILCO’s basic properties and demonstrates that each
property is a theorem of the TILCO theory. To simplify the demonstrations, application of
inference rules has been omitted.

! This is possible since the specification of temporal constraints is given with respect to events and actions.
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(i) The proofs of the following properties can be easily derived from the definitions of “@” and

“?” operators and by considering the logical equivalencies of the predicate calculus:

a) F (=A%) & AQi

b) b —(-A@i) & A7

) F A% & -(A@i)
d) F (A@iA B@i) & (AAB)@;
¢) F(A@iV B@i) = (AV B)@;
) F(A?V B?%) & (AVB)?i
9) F(AAB)Y = (A% A B?)

(i1) Proof of: F A@Qi A1 #£ O = A

e R A e

{i#ONAQi} Fi# O AN AQi Assumption

{i £ 0 A AQi} F AQ;
{i £ 0 A AQi} b, A@;
(i£0ANAQi} i 0
{i £ 0 ANAQi} b Jrux €

(ii1) Proof of: F AQi, 5 & —(=A%:;7)

SR A

9

10.
11.
12.
13.
14.
15.
16.
17.

AE2 1
TS 2
AET 1

4 using various set-theory properties

{i£0OANA@i}Faei ElL 5
{i £ OANA@I} Fpyy A @F 3,6
{i O AA@i} b, A7 16,7
Foi £ O A AQi = A7 DR 8
Fi# QA A@ = A?i TG 9

{A@i,j} + AQi,

{A@i,j} F AQi A A@)j

{A@i, j} F ~(=A?i) A AQj

{A@i, j} b ~(=A?i) A =(=A?))

{AQi, j} F =A%V A7y
{AQq, j} F =A%
FAQi, ;= —A?4; g
{=A?;; 5} F —A%:
{-A%; 5} = (A% Vv A?))

{=A?3; j} E =(A?8) A ~(A?))
{=A?i;j} B = (~(-AQi)) A -

{=A%; B (= (2AQ0)) A
{=A?i;j} F 2A@i A ~AQ)
{=A?i;j} F —AQ@i, ]
F A% =A@, |

F (=A% = ~A@i, j) A (AQi,j = ~A?i;j)

- A% & —AQ, |

(A7)

~(~(-AQy))

Assumption
@,-equiv. 1
a) 2

a) 3

De Morgan 4
?:-equiv. 5
DR 6
Assumption
?:-equiv. 8
De Morgan 9
b) 10

b) 11

double negation 12
@,-equiv. 13
DR 14

AL 7,15
S-equiv. 16

The theorem A?i, 7 < —(=AQy; j) can be proven in a similar way.
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(iV) Proof of: F A@[tl + tz, tl + tz] A= A@[tl, tl]@[tz, tz]

L. {AQ[t; 4 ta, by + ta], 11 € [t1, 1], L2 € [ta, 2]} F AQ[ty 4 15,1 + 3]  assumption
2. {AQ[ty +to, by + L), ty € [t1,t1], 1y € [ta, ta]} e AQ[ty + to, 81 + 1) TS 1
3. Fili4ty €ty +ta, 1 + 1] set-theory
4. {AQ[ty + to, b1 + ta], ty € [t1,t1], 12 € [ta, ta]} Fraey4e, A QF 2,3
5. {A@[t; + by, by + o], ta € [ta o]} Frpe, AQ[E, 1] @l 4
6. {AQ[ty + la, 81 + 1]} Fr AQ[Ly, 11]Q[L5, 1] @/ 5
7. b AQ[ly + Lo, by + L] = AQ[t, 1)@ty ty] DR 6
8. {AQ[ty,11|@[ty, ta], t1 + 12 € [ty + L2, 81 + 12]} F AQ[t,41]@[t5, 15]  assumption
9. {AQ[t), 1)@ty ta], 11 + 1y € [t + Lo, 11 + to]} b AQ[t1, 1)@t 1] TS 8
10. Fty € [t1,t4] set-theory
1. F ity € [t t3] set-theory
12. {AQ[t;, t,|@[ts, o], b1+t € [ty + ta, b1 + 1]} Fras, AQ[t1, 1] @F 9,11
13. {AQ[ty, t1]@[ts, to], ty + s € [t + sty + ]} Frgeype, A @F 12,10
14. {AQ[ty, 1]Q@lty, L]} Fy AQ[ty + 15,11 + t3] @/ 13
15. b AQ[t, 1)@y, 1] = AQ[t; + ty,; + 1] DR 14
16. b (AQ[t, + Lo, 1y + o] = AQ[t1, 1,]@[ts, 15]) A T.15
A

(A@[t1, 11]@[ty, 5] = AQ[t; + by, t1 + 15])
17. F; AQlty, 14]Qty, to] & AQ[ty + 13,11 + t3] S-equiv. 16
18. F AQ[ty, 1]Qlty, t5] & AQ[ty + 1o, 11 + 15] TG 17

By using the natural deduction system, many other interesting properties have been derived.
For example:

(v) {j Ci}F AQ; = AQy;
(vi) future transitivity: Fj Ci Al =[a,+0)ANa > 0= (AQ = (AQ)Qj);
(vil) past transitivity: Fj CiAi = (—o0,a]Na < 0= (AQi = (AQ7)Qy);

(viii) linearity: F ((AQ: = B@q)Qj) V ((BQi = AQq)@Qj).

3.2 Soundness and decidability results

The axiom system proposed for TILCO has been proven to be sound. In fact, to demonstrate
its soundness, it is only necessary to prove that each axiom is valid according to the TILCO
semantics, and that each deduction rule is sound. In [40] the validity of the axioms and of
the soundness of the deductive rules of FOL are demonstrated. Thus, the validity of axioms
AX6-AX9 and the soundness of rules @/ and @FE remain to be proven.

The proof of validity of axioms AX6-AX9 is obtained by using the definitions of operators
until and since given in the TILCO semantics. The demonstration of the soundness of rules
@] and @QF can be easily constructed by reductio ad absurdum.

For example, the proof of soundness of @QF is: suppose @F were not sound, so there would
be a set of formule

U= {A@i,z € i, A},

such that AQq is valid in ¢ and x € ¢ is valid, but A is not valid in x + ¢. Since A is not valid
in x 4 ¢, there exists an interpretation Z such that Z,z + ¢ £ A. Since AQ@j is valid in ¢ for
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any interpretation, in particular for Z, then Z,¢ = A@:. From the TILCO semantics, this is
equivalent to say that for any instant in ¢ (and thus in particular for x) Z,2 + ¢t = A holds,
leading to a contradiction. Therefore, the hypothesis that @FE was not sound is false, hence
@F is proven to be a sound deduction rule.

The same mechanism can be used for demonstrating the soundness of @/ rule.

Since TILCO has the expressive power of FOL, validity and satisfiability problems are
undecidable in the general case. Nonetheless, the special structure of TILCO formule allows
the construction of a decision procedure for the validity and satisfiability of a wide set of
TILCO formulae: the only requirement for these formulza is that non-temporal quantifications
must bind only variables whose types have a finite domain.

The demonstration of the validity (satisfiability) of a TILCO formula is equivalent to the
validity (satisfiability) of a formula in Presburger arithmetic, which is a decidable problem
[43], [44]. The procedure to solve the decision problem for a full Presburger arithmetic has an
exponential lower bound as demonstrated by [45]. One of the most interesting algorithms for
solving this problem has been proposed in [43]. Less complex solutions have been proposed for
quantifier-free Presburger logic, including uninterpreted predicate and function symbols [46]
[44]. In this case, the complexity resulted to be strongly reduced: “no worse than exponential”.
This kind of algorithms can be used for managing expressions produced by a Skolem’s algorithm.

The algorithm used for TILCO is only partially based on the above-mentioned approaches
and its general complexity is exponential in the worse case. The decision procedure relies
on the transformation of TILCO formulae into FOL formulee written in prenex conjunctive
normal form, after which existential quantifiers are substituted with Skolem constants and
functions. For these formule the validity and satisfiability problems can be decided by solving
a set of parameterized inequalities with a set of constraints for the parameters. In particular,
typical TILCO formulee lead to quite simple set of arithmetic relations (containing =, #, <,
<). The algorithm adopted by our tool is based on the application of a set of heuristics to
simplify the theorem through variable elimination and substitution. Heuristics allow formulae
to be rewritten and variables to be eliminated. This process leads to the ability to reduce
the theorem to subgoals until none or some subgoals have to be demonstrated. This process
may lead to the direct demonstration of the theorem as well as to a set of linear equalities
to be solved by using the classical tactics of Isabelle (see Section 4). The selection of tactics
is supported by tacticals or interactively by the user [47], [37] (similar to the approach used
in other theorem provers). Therefore, even when the prover does not provide a solution in a
reasonable time, the approach aids the user by simplifying the theorem to smaller goals that
can be effectively handled by a human with a limited effort.

4 Property Proof and Executability

In order to support the validation of TILCO system specifications, TILCO theory has been
formalized in Isabelle [47], [37], which is an automatic theorem proving environment. It allows
the definition of new theories and the demonstration of theorems by using either manual or
automatic techniques. Isabelle is written in Standard ML [48]; this language is also used for
constructing functions and tools for automatic theorem proving.

TILCO theory has been built atop Isabelle/HOL [49], an implementation of Church’s High
Order Logic [50]. The use of HOL to construct FOL theories has been justified in [51], [52],
where this is shown to allow not only the demonstration of theorems in the object logic (i.e.,
TILCO), but also theorems about the object logic.
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The first steps taken to implement TILCO theory in HOL were to construct a theory defining
integer numbers and a theory of intervals. Integer theory has been defined by using equivalence
classes over natural numbers as in [533]. This theory provides (i) definitions for all basic arith-
metic operations, (i) a wide set of theorems stating properties of these operations, and (iii)
a set of tactics to perform the automatic deduction of theorems in linear arithmetic. Integer
theory has been constructed [54] and is presently included among the contributed theories of
Isabelle/HOL?. Intervals are implemented as connected sets of integers by using the set the-
ory provided by HOL. Interval theory provides constructors for using intervals with the usual
mathematical notation with round and square brackets. TILCO theory has been built on the
bases of integer and interval theories, and it defines the syntax and semantics of TILCO using
I[sabelle/HOL as a meta-logic for defining the semantics of its operators. A comprehensive set of
theorems regarding TILCO operators has been proven to simplify the construction of theorems
either in manual or semi-automatic manner. In particular, the inference rules discussed in the
Section 3 have been proven and included in Isabelle’s automatic proving tools, thus supporting
the automatic proof of medium complexity theorems and assisting the user in demonstrating
more complex theorems.

The support offered by TILCO theory in Isabelle/HOL has allowed an absolute degree of
confidence in the truth of the theorem proven. This is much safer than using a pencil and
paper approach, because the use of Isabelle ensures that the demonstrations built are, in fact,
correct. In general, with logical approaches, the problem is to demonstrate high-level properties
by using only low-level specifications, which usually describe uncorrelated elementary system
properties. This can be simplified by using an incremental approach to specification through
theorem proving, thus allowing either a top-down or a bottom-up approach:

e Top-Down Approach — A high-level specification is refined into a lower-level specification
using theorem proving techniques to validate the refinement, until a detailed specification
of the system is obtained;

e Bottom-Up Approach - Theorem proving techniques are used on low-level specifications
to prove higher-level properties. This process is repeated until the desired top-level prop-
erties are proven.

This approach easily supports the validation of high-level properties, constituting a high-level
specification, with respect to the system specification, where intermediate lemmas can also be
viewed as intermediate system specifications. This also supports the reuse of specifications of
commonly used systems in the specification of a more complex system, by allowing the use of
systems that have already been validated by proving their characteristic properties.

Once a TILCO specification of a system is validated against a higher-level TILCO specifi-
cation by using the TILCO theory in Isabelle/HOL, it can be used as the description of the
system itself. A TILCO specification is said to be causal if the values of its outputs and auxil-
iary variables at a given time instant can be determined on the basis of the past history of the
system, which includes the past histories of inputs, outputs, and auxiliary variables up to the
previous time instant. If a TILCO specification is causal, it can be executed by means of the
TILCO Ezxecutor [38], [55]. If the specification is not causal, then the TILCO Executor can be
used as a model checker to validate the specification against a complete history of the system,
which describes the temporal evolution of inputs, outputs and auxiliary variables in a specific
execution.

Isabelle is located at http://www.cl.cam.ac.uk/Research/HVG/isabelle.html.
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The classical Tableaux algorithm for FOL [27] has been modified in [56] in order to allow
the history checking of specifications written in the logical language TRIO. On the basis of
this approach, the execution algorithm underlying the TILCO Fzrecutor consists of a modified
Tableaux algorithm based on three-value logic, instead of the classical approach with binary
logic as in [27], [56]. Once the Tableaux for a formula has been built, the tree is iteratively
navigated to construct a model for the formula in the current time instant; thus, completing
the partial model constituted of the past histories of inputs, outputs and auxiliary variables.
If any indeterminacy arises during the execution of a formula, the TILCO Fzecutor warns
about the problem and also shows the subformula that have a undetermined value, but the
execution continues as long as the formula can still be evaluated as to its truth. Therefore, the
execution of a formula allows the simulation of the system specified by the formula, enforcing
an operational approach to the validation of the system specification.

5 Comparison with other Temporal Logics

In this Section, we compare TILCO to TRIO [57] and MTL [24] in order to highlight the
differences in the expressiveness of real-time specifications. TRIO and MTL are among the
most representative and powerful logics for real-time system specification. Both these logics
have been derived from FOL and have a metric for time. With regard to expressiveness, many
other logics produce specifications structurally similar to TRIO and MTL or have the similar
operators. On the other hand, many other logics can be difficulty to use in comparison to
TRIO, MTL and TILCO since they are based on overly elementary operators and lead to the
production of overly complex specifications.

TILCO provides four elementary temporal operators: @, 7, since and until. TRIO presents
only two temporal operators: Futr(A,t) and Past(A,?) for specifying that A occurs at time
instant ¢ in the future and past, respectively (more recently it has been demonstrated that both
these operators can be defined in terms of a unique operator). In this paper, basic temporal
operators of logics are shown in bold face type. TRIO also provides the possibility of using the
quantifiers V and 3 on time-dependent variables. Moreover, in TRIO, based on these operators,
several other operators can be defined as parametric predicates. This is frequently allowed by
many temporal logics - e.g., TILCO, MTL. Defining other more specific temporal operators
increases the complexity of the logic from the cognitive point of view since a high number of
different functions/operators makes the specification harder to understand. An overabundance
of temporal operators does not automatically lead to higher expressiveness. Thus, a comparison
of the expressiveness of temporal logics must be based on fundamental operators and on their
adoption in the context of typical specifications.

Tab.3 shows the most important elementary temporal specifications for both TILCO and
TRIO logics, and for TRIO, the typical definitions for implementing the specifications as specific
operators [57]. Note that specifications in TILCO are more expressive than the equivalent TRIO
specifications. TILCO results to be more expressive than TRIO even if typical new predicates
are used as temporal operators in the specification. The verbosity of TRIO strongly depends
on the presence of (i) a neat distinction between past and future, and (ii) quantifications over
time. The same has been observed for MTL, where several temporal operators are used to
define the elementary set. These are: G (it is always going to be the case), F (at least once in
the future), H (it has always been the case), and P (at least once in the past) [24].

In Tab.4, the TRIO examples shown in Tab.3 have been replicated for MTL. As can be

seen, MTL is more concise than TRIO, but both present a neat distinction between past and
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|| meaning | TILCO | TRIO | TRIO derived
Always Past | A@(—o0,0) Vi(t > 0 — Past(A,t)) AlwP(A4)
Always Fut. | A@(0, 00) Vi(t > 0 — Futr(A,t)) AlwF(A)
Always A@(—00,00) | Vi(t > 0 —= Futr(A, 1)) A AAVLE > 0 — Past(A, 1)) | Alw(A)
Since Weak | since(A, B) Vi'(t" > 0 — Past(A,t"))V
Jt(t > 0 APast(B,1) AV (0 <t/ <t — Past(A,t))) | Sincey (B, A)
Until Weak | until(4, B) V' (" > 0 — Fuatr(A, "))V
Jt(t > 0 A Futr(B,1) AV (0 <t <t — Futr(A4,t))) | Until,(B, A)
Lasts A@(0,1) V' (0 <t <t — Futr(A,t)) Lasts(A,1)
Lasted A@(—1,0) V(0 <t <t — Past(A, 1)) Lasted(A,1)
Within Past | A?(—t¢,0) (0 <t <t APast(A ) WithinP (A4, 1)
Within Fut. | A7(0,1) 3t'(0 < ¢ < t A Futr(A,t')) WithinF (A, 1)
Within A?(—11,t2) (0 <t <ty APast(At')) vV AV
(0 < ¢ < t5 A Futr(A, ) Within(A, t1,2)
Was AQ@(—ty,—t2) | Past(Vt'(0 <t/ <ty —t; — Futr(4,t')),t2) Past(Lasts(A,t3 — t1),12)
Will be A@(tl,tz) Futr(Vt’(O <t < to — 11 — EltP(A, t/)), tz) Futr(Lasts(A, to — tl), tz)
Could be A?(t1,t2) Futr(—Vt'(0 < ¥/ < t2 —t; = Futr(—A, 1)), t5) Futr(—Lasts(—A,t3 —t1),12)

Table 3: A comparison between TILCO and TRIO on the basis of typical temporal specifica-
tions.

future, and allow quantification over time-dependent variables. Moreover, the adoption of time
points instead of intervals also leads to an increase in the complexity of specifications. Thus,
the specifications in MTL result to be structured such as those given in TRIO (in terms of the
number of terms and operators). Therefore, even in this case TILCO specifications are more
concise and expressive.

|| meaning | TILCO | MTL ||
Always Past A@(—o0,0) HA
Always Future | A@(0, c0) GA
Always A@(—oco,00) | HANAAGA
Since Weak since(A4, B) HAV3tit>0AP:BAHLA)
Until Weak until(A4, B) GAV It >0AF:BAGA)
Lasts A@(0,7) G A
Lasted A@(—¢,0) H. A
Within Past A?(—t,0) P A
Within Future | A?(0,1) F..A
Within A?(—t1,12) P , ANAANF A
Was A@(—tl,—tz) H<t1A/\_|H<t2A
Will be AQ@(ty,12) G, AN-Gp A
Could be A?(t1,t2) Fo , AN-F A

Table 4: A comparison between TILCO and MTL on the basis of typical temporal specifications.

5.1 A more complex example

According to the above comparison, TILCO turns out to be the most concise temporal logic
among those compared. In this subsection we will base the comparison on the more significant
example of a real-time system: an allocator that serves a set of client processes for sharing a
resource according to several temporal constraints — [58], [57]. In every time instant and for
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every process a, the resource is assigned to process a (gr(a)) if and only if since the last time
the resource was granted (gr(b)) the resource has been released (fr) and

e a requested the resource (rq(a,d)) and that request has not already expired,;
e since the request was issued, the resource has not already been assigned to a;

e there are no @’ and 4§’ such that:

—a#d
— a' requested the resource (rq(a’,¢")) and that request has not already expired;

— since when the request was issued, the resource has not already been assigned to «’;

— a' requested the resource before a (i.e.: @’ did not request the resource after a).

Equation (1) represents the TRIO specification written by using only fundamental operators:
Futr() and Past(), excepted for the presence of predicate “Alw()”. If we express “Alw()” in
terms of basic operators a specification at least double in size with respect to equation (1) is
produced (see third line in Tab.3). This type of specification is very hard to understand since
several quantifications over time are present.

( Vis(ts > 0 — Past(fr, 3))V ) A
Jt1(t1 > 0 A Past(—3b.gr(b),t1) AVi2(0 < 2 < t; = Past(fr, 1))
Past(rq(a,d),?) A
t<o A
t>5 A
Alw | Vagr(a) o V(0 < 1" <}f — Past(—gr(a),t)) A (1)
3ts. @ 7 a A
Past(rq(a’,d"),t) A
1ot tr<é A
—3t'd’d’. 5 A
>t A

Vt’“(O <t <t s Past(ﬁgr(a/)’t/))

A more concise version of the same specification can be obtained by defining several specific
operators, as shown in equation (2). In [57], a specification for a simpler problem has been
reported by giving an expression a bit more complex than (2), with the presence of quantifi-
cations over time variables. For the sake of comparison, equation (2) has been written by the
authors to specifically avoid quantifications over time. These are hidden inside the operators
(for their definitions see Tab.3). In this case, the specification results are more concise. The
specification in TRIO can be easily translated into MTL by using Tabs. 3 and 4, obtaining
even for MTL a formula with the same structure.

Finally, equation (3) shows the TILCO specification of the same system. By comparing
these equations, it can be easily seen that the TILCO specification is much more concise and
easier to understand than the others. This is due to the absence of quantifications over time
and because a reduced number of temporal operators are needed in TILCO to express the same
concepts (these considerations can be performed also for MTL). The TILCO specification has
only 4 basic operators, while the last TRIO specification includes some non-basic operators. A
greater number of terms is also present in the TRIO/MTL-like formulas in the internal brackets.
Thus, complexity increases and conciseness decrease for both TRIO and MTL. Again, the main
reason for the occurrence of a greater number of terms is due to the neat distinction that TRIO
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and MTL make between past and future. In TILCO, operators @ and ? can be used in both
past and future, and for writing properties that use time interval starting in the past and ending
in the future (please see the specifications for “within” in the above tables).

TILCO specifications cannot be written in terms of temporal quantifications, since this is not
allowed by the language. Therefore, the analyst must write simple and concise specifications.

TRIO version

since,, (—3b.gr(b), fr) A
WithinP(rq(a,d),d + 1) A
- WithinP(rq(a, ), 5)
sincey, (—gr(a), rq(a, d)) A
35 @ #a
’ WithinP(rq(a’,d"), 0" + 1)
—3a'é’. | ~WithinP(rq(a’, d’),5)
sincey, (—gr(a’), rq(a’,d"))
sincey, (—rq(a’,§'),rq(a, d))

>

Alw | Va.gr(e) &

> > > >

TILCO version

since(—3b.gr(b), fr) A
rq(a, §)?[—6, —5] A
since(rq(a, d), ~gr(a)) A
Va.gr(a) & 2. a’ # a A @(—o00,o0) (3)
| rale 87,5 A

51nce(rq(a/,5/),_‘gr( ) A
since(rq(a,d), rq(a’, d"))

6 Specification Examples

This section provides an example of system specification in order to show TILCO’s language
capabilities. The system specified is the Alternating Bit Protocol (ABP), which has been
proposed in [16], [5], [79] (another very similar protocol has been specified in [24], [39]) and
adopted as a classical example for evaluating the expressiveness of temporal logics. For the
ABP, a high-level specification and an implementation in TILCO are examined, and then the
implementation of the ABP is validated against the high-level specification.

6.1 Alternating Bit Protocol

The ABP provides reliable communications over an unreliable communication subsystem. It
considers only one message at a time and does not continue to the next message until an
acknowledgment of the correct reception of the current message is received. The messages are
placed in a packet with a one-bit sequence number, thus the name alternating bit. For simplicity,
the acknowledgment consists of a copy of the packet received. Several packets can be in the
communication subsystem simultaneously. Packets can be lost, duplicated or delayed, but not
reordered by the communication subsystem. Under these hypotheses, the ABP recovers from
every error in the communication subsystem. In the ABP specification below, only a half-duplex
protocol (unidirectional communication) is considered as in [16], [5]. The system specification
and implementation use the following definitions:

msg is the type of messages that are transmitted by the system:;
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Tx Rx

send DT In1 Outl roceivel DR Recv
I RACk Channel - TACk

Out2

Alternating Bit Protocol

Figure 2: Alternating Bit Protocol schema.
pkt is the type of packets transmitted over the channel comprised of a message and a Boolean
value;
msg_of is a function that extracts the message from a packet;
bool_of is a function that extracts the sequence number from a packet;
init is a Boolean constant specifying the initial sequence number value;

time_out is an integer constant that specifies the delay between retransmissions of copies of
a packet;

fair specifies a fairness relationship between two time-dependent predicates:

fair(A, B) = rule(A?[0, +00)@I0, +00) = B?[0, +00)@[0, +-0))

NoReorder is a predicate that is true if the sequences of non-nil values assumed by two
expressions are in the same order:

NoReorder(A, B) £ YX.VY.X # nil A Y # nil =
rule( B=XAB=Y?(-00,0) = (A=XANA=Y?(—00,0))?(—00,0))

NoCreate is a predicate that is true if the occurrence of a non-nil value for an expression has
been preceded by the same occurrence for another expression:

NoCreate(A, B) = VX.X # nil = rule(B = X = A = X?(—00,0))

TimeOut is a predicate that is true if a predicate has been true for the last § time instants:

TimeOut(A,§) = AQ(~ §,0]

Fig. 2 is a block diagram of the complete system. In the block diagram, the Sender, the
Receiver, and the Channel are characterized by the following inputs and outputs:

Rq (output of type Bool) is used to request new messages to be transmitted;
DT (input of type msg) is used to read a new message to be transmitted to the Receiver;

Tx (output of type pkt) is used to send packets over the communication subsystem to the
Receiver;

RAck (input of type pkt) is used to read acknowledgment packets from the communication
subsystem;
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DR (output of type msg) is used to pass new received messages to environment;
Rx (input of type pkt) is used to read packets from the communication subsystem;

TAck (output of type pkt) is used to send acknowledgment packets over the communication
subsystem to the Sender:;

In1(In2) (inputs of type pkt) are used to send a packet through the communication subsystem;

Out1(Out2) (outputs of type pkt) are used to receive packets from the communication sub-
system.

The following assumptions have been made about the environment of the protocol:
e no message transmission is attempted if the ABP does not require a message to be trans-
mitted;

e cach message can be uniquely identified;

e cach transmission of a message happens in one time instant.

These assumptions are expressed by the formule in Tab. 5.

1) rule(=Rq=s-DT = nil)
2) Vmaule(DT =m = DT # m@(—oc0,0))
3) rule(DT # nil=-DT = nil)

Table 5: Assumptions about the environment of the ABP.

6.1.1 Top-level specification

The TILCO formalization of the ABP requirements, its top-level specification, is given by the
following formulee, which must be satisfied in each time instant:

e every non-nil message passed by the environment to the sender is delivered to the envi-
ronment by the receiver;

o the ABP cannot create non-nil messages;
o the ABP cannot reorder messages:
o after a message is passed, the ABP eventually requests a new message to be transmitted;

e sometimes the ABP requests a message (i.e., existence of an initial request).

This specification is expressed by the formulae in Tab. 6. It is worth noting that if stronger
assumptions can be made reagrding the Channel, then formula 4 in Tab. 6 can also be strength-
ened, as will be shown later in this paper.

In [5] the requirements analysis has been provided only informally by describing the high-

level behavior of the system as comprised of the sender, the receiver, and the transmission
medium. In our case, the system requirements have also been formalized in TILCO. This
methodological approach can be applied by using most of the temporal logics which allow
an implicit concept of time, whereas temporal logics with explicit reference to time are too
concerned with implementation details to be profitably used — e.g., [4].
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—_

rule(DT = m A m # nil = DR = m?(0,+00))
NoCreate(DT, DR)

NoReorder(DT, DR)

rule(Ym.DT = m Am # nil = Rq?(0,4+00))
fact(Rq)

]

e o
N e N e e

[

Table 6: TILCO top-level specification of the ABP.

6.1.2 Detailed specification

The previous top-level specification has been refined, through a multi-step process, into a de-
tailed specification of the ABP, which constitutes an implementation of the ABP. For each step
of the process, the refinement relation between the higher-level and the lower-level specifications
has been proven, thus validating the lower-level specification against the higher-level specifica-
tion. This process ensures that the detailed specification is an implementation of the top-level
specification. The implementation constructed contains enough details to be directly executed
or operationally validated. In the following discussion, only the final detailed specification is

described.

Sender

In the detailed specification of the Sender, the following auxiliary variables are added to the
Sender inputs and outputs:

Texp (auxiliary variable of type Bool) contains the sequence number for the next message;

wait (auxiliary variable of type pkt) contains a copy of the packets for which an acknowledg-
ment is waited for.

The detailed specification is defined by the formule reported in Tab. 7. Formula 1) imposes the
initial conditions of the Sender. The second and the third formule show the cases in which the
Sender is waiting for a message to be transmitted: 2) if a message is available, the transmission
process starts, 3) if no message is available, then the Sender does not change its state. The
remaining formulae specify the Sender’s behavior during the message transmission: 4) a correct
acknowledgment has been received, then the Sender is ready to accept the next message; 5) the
acknowledgment has not been received within the retransmission time, and a new transmission
is planned; 6) the acknowledgment has not been received, but the retransmission time has not
elapsed yet, so the Sender still waits for the acknowledgment.

fact((Tx = nil A wait = nil ARAck = nil ADT = nil A Texp = init A Rq)@(—oc0, 0])

rule(Rq ADT # nil=+Tx := Pkt(DT, Texp) A wait := Pkt(DT, Texp) A Texp := —Texp A ~Rg)

rule(Rq ADT = nil=+Tx := nil A wait := nil A Texp := Texp A Rq)

rule(—Rqg A Texp # bool_of(RAck)=+Tx := nil A wait := nil A Texp := Texp A Rq)

rule(—-Rg A Texp = bool_of(RAck) A TimeOut(Tx = nil, time_out)=+Tx := wait A wait := wait A Texp := Texp A =Rq)
rule(—Rqg A Texp = bool_of(RAck) A =TimeOut(Tx = nil, time_out)=t+Tx := nil A wait := wait A Texp := Texp A =Rq)

S T W N~
e e |

Table 7: TILCO specification of the Sender.
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Receiver

In the detailed specification of the Receiver, the following auxiliary variable is added to the
Receiver inputs and outputs:

Rexp (auxiliary variable of type Bool) which contains the sequence number for the next
correctly received message.

The detailed specification is defined by the formule reported in Tab. 8. In particular, the first
formula imposes the initial conditions of the Receiver. The second specifies that every time
a packet is received an acknowledgment is sent to the Sender. The third formula represents
the case in which a packet with a correct sequence number is received; thus, the message is
delivered and the sequence number updated. The latter specifies that the state of the Receiver
does not change if a packet with an incorrect sequence number has been received.

1) fact((Rx = nil A TAck = nil A DR = nil A Rexp = init)@(—o0, 0])
2) rule(TAck := Rx)
3) rule((Im.Rx = Pkt(m, Rexp))=p>Rexp := =Rexp A DR := msg_of(Rx))
4)  rule(—(3Im.Rx = Pkt(m, Rexp))=s>Rexp := Rexp A DR := nil)
Table 8: TILCO specification of the Receiver.
Channel

The communication subsystem has been specified as a couple of identical unidirectional chan-
nels. Since only an abstract description of the communication subsystem is known, the Channel
specification describes only the high-level properties of the two channels. The detailed spec-
ification is defined by the formulea reported in Tab. 9. The first four formule specify that
the channels neither create nor reorder messages, respectively. The last two formula state the
fairness of the two channels, thus allowing delay, duplication, and loss of packets.

NoCreate(Inl, Outl)

NoCreate(In2, Out2)

NoReorder(Inl, Outl)

NoReorder(In2, Out2)

Vm. Vo fair(Inl = Pkt(m,v))(Outl = Pkt(m,v))
Vm. Vo fair(In2 = Pkt(m, v))(Out2 = Pkt(m,v))

W DN =

S Tt
NN N N

Table 9: TILCO specification of the Channel.

To complete the detailed specification of the ABP, it is only necessary to specify the links
between Sender, Receiver and Channel inputs and outputs, by the following formulae:

e rule(Tx = Inl);
e rule(Rx = Outl);
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o rule(TAck = In2);
e rule(RAck = Out2).

6.1.3 Validation of additional properties

In our detailed specification of the ABP, the fairness property of the channel ensures that, if a
packet is sent infinitely often, then it is received infinitely often. This allows us to prove the
message delivery, but no time bound can be deduced; consequently, in order to reason about
the transmission time, a more detailed version of the channel is needed. The following rules
state that if a packet that has already been sent in the past is resent, and if since the previous
trasmission it has not yet been delivered, then it will be delivered within the next d time units:

| Vm.Vb.Inl = Pkt m b A Inl = Pkt m b?(—00,0) A since(Inl = Pkt m b)(Outl # Pkt m b) =
“\ Outl = Pkt m b?(0, d)

e Vm.Vb.In2 = Pkt m b A In2 = Pkt m b?7(—00, 0) A since(In2 = Pkt m b)(Out2 # Pkt m b) =
Out2 = Pkt m 67(0, d)

On the basis of this detailed channel specification, the maximum one-way delay of the channel
is time_out + d, while the minimum number of packet transmission needed to achieve a one-way
delivery is equal to 2. According to this remark, formula 4 in Tab. 6 can be strengthened to:

rule(Ym.DT = m A m # nil = Rq?(0, k]), (4)

where k is a convenient value dependent on the maximum delay and the minimum number of
transmissions. In the worst case, in order to receive an acknowledgment, two acknowledgment
transmissions are needed which, in turn, require two packet transmissions each. Four packet
transmissions require a time duration of 3(6+1) and the passage of the channel in each direction
requires d time units. Two additional time units are used for the beginning and the end of the
transmission. Every instance of formula (4) with & > 36 +2d 45 can be proven, thus validating
the implementation.

In the same way, other high-level properties (both liveness and safeness) have been proven
for the system specification.

The complete specification of the above reported example took approximately 25 person-
days of work. The work included system analysis, specification of all rules and facts, and the
demonstration of all theorems. Once the specification and the demonstrations are given, then
Isabelle 94 version 4 is capable of processing the whole specification in about 40 minutes on a
SUN Sparc LX workstation with 32Mb of RAM. To give you an idea of the degree of the human
interaction required to prove the ABP, the second rule in Tab.6 was validated in about 15 hours
(comprising all the proofs of lemmas needed to solve the various subgoals arising in the full
demonstration). During the demonstration more than 40 % of the time was spent in solving
arithmetical lemmas and theorems to carry out the complete proof. Thus, the formal proof is
time consuming but leads to a higher level of assurance than model checking techniques.

The proof time can be greatly reduced by using a more powerful machine. More recently,
a new version of Isabelle has been made available. It provides better performance and the
automatic tools are more powerful. Thus, the time needed to run the demonstration is reduced.
The corresponding new version of TILCO theory is being upgraded.
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7 Conclusions

This paper has presented, the TILCO temporal logic for the specification, validation and ver-
ification of real-time systems. It differs from other temporal logics proposed in the literature,
TILCO is a first order temporal logic providing a metric for time (thus allowing a specification
of qualitative and quantitative timing constraints), and decidability for a wide set of formulee
(non-temporal quantification must bind only variables with types over finite domains). No
explicit quantification over the temporal domain is allowed. A sound axiomatization has been
proposed for TILCO and then used to build a deductive system in natural deduction style.
This has been used to prove various TILCO theorems.

Since TILCO is based on FOL and an implicit model of time, it is particularly suitable for
requirements analysis and the incremental specification of real-time systems. This is also due to
the fact that TILCO supports validation during all phases of the system life-cycle by means of
its formalization in the automatic theorem prover Isabelle/HOL. This allows the validation for
refinement and the proof of general system properties. Moreover, the final operational validation
is also supported by the TILCO Ezecutor, which allows execution and the model-checking of
systems specifications.
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A User-defined data type

In TILCO, three mechanisms for defining new data types are available: ranges over numeric
types, type constructors, and datatypes.

Given a numeric type [ (i.e., nat or int), a range type o can be defined as a subtype of
type [ by using the syntax:

a =[x, xp]B where z, < xp,

which constrains the terms of type a to assume values between x,, and x,.
Type constructors allow the definition of homogeneous aggregates comprised of entities of
simpler types. TILCO defines type constructors for tuple, sets, and lists:

o “ax(3” is the type of the tuple composed of a first element of type o and a second element
of type 3. A specific tuple is denoted by the expression “(a,b)”. More complex tuples
can be defined recursively. The operations defined on tuples are the extraction of the first

and of the second component of the tuple;

o “a set” is the type of sets comprised of elements of type a. The expression “{a,b,c,d}”
denotes the set composed of elements «a, b, ¢, and d; expression “{x.P(x)}” denotes the
set composed of elements x, such that P(x) holds, where P is a predicate. The usual
operations and predicates on sets are defined: €, C, C, U, N, and \;

o “alist” is the type of lists comprised of elements of type a. The expression “[]” denotes
the empty list, “[a,b,c]” denotes the list composed of elements a, b, and ¢; “
the list constructed by adding the element a at the beginning of list [. The operations

a 2 7 denotes
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defined on lists include: the extraction of the head and tail, the concatenation of two
lists, the evaluation of the length of a list, the extraction of the n-th element of a list.

Finally, structured types can be defined by using ML-like datatype declarations:

datatype TypeVarList Ident Ident, TypeList,

| Ident, TypeList,,
where TypeVarList is a list of type variables, TypelList, are lists, possibly empty, of type
names comprising previously defined types or type variables in TypeVarList, and Ident; are
distinct identifiers. Recursion inside datatype definitions is allowed through the use of identi-
fiers declared in the previous lines in the datatype definition. Functions and predicates over
newly defined datatypes are definable by using pattern-matching definition and primitive re-
cursive functions (if the datatype definition is recursive) by employing Isabelle/HOL facilities
for datatype and primitive recursive function definition. Note that if a datatype is used to
describe a message type variable, an identifier “nil” is usually defined and it is assumed by a
variable when no message is available in the evaluation time instant.

Enumerated collections can be defined by using datatype definitions: the datatype is defined
by utilizing only identifiers with no TypeList. For example:

drink_type = coffee|tea|milk.
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