

Hadoop Monitoring, SOLR vs Elastic Search

- Paolo Nesi, Gianni Pantaleo, Imad Zaza
- DISIT Lab
- Dipartimento di Ingegneria dell'Informazione, DINFO
- Università degli Studi di Firenze
 Via S. Marta 3, 50139, Firenze, Italy
 Tel: +39-055-4796567, fax: +39-055-4796363
- http://www.disit.dinfo.unifi.it alias http://www.disit.org

- Monitoring
- Apache HBASE
- Apache Phoenix
- Case studio
- Apache Solr
- Elastic Search

What really going on !?

- How many maps are issued?
- Where are computed the maps?
- Does my job executing normally or something is going wrong !?
- Does my cluster being underutilzied or overutilized !?

Basic web interface

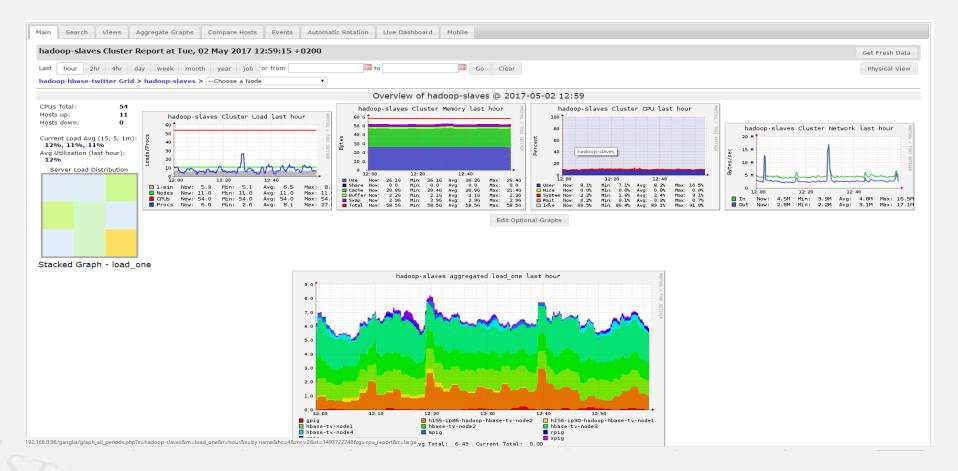
<u>Phee</u>						A	I App	licatio	ns					Logged in as: dr.wh
Cluster	Cluster Metrics	5												
odes	Apps Submitted		Apps Running	Completed Ru	ainers Memory nning Used	Memory Total	Memory Reserved	VCores Used	Total	VCores Reserved	Nodes	Decommissioned Nodes	Nodes N	ealthy Rebooted odes Nodes
<u>NEW</u>	28 User Metrics fo	0 0 or dr.who		28 0	0 B	40 GB	0 B	0	24 0	1	<u>0 1</u>		<u>0</u>	<u>0</u>
NEW_SAVING SUBMITTED ACCEPTED	Apps Submitted 0	Apps Pending	Apps Ru 0	nning Apps Completed 28	Containers Running 0	Containers Pe	ending Conta 0	ainers Reserved		Memory Pendi 0 B	ng Memory Re 0 B	eserved VCores 0	Used VCores Per 0	ding VCores Reserve
NING SHED	Show 20 • ent	tries											Search:	
	10	D .	User ≎	Name 🕸	Application Type	≎ Qu	ieue 🌣	StartTime ≎	FinishTime	≎ State ≎	FinalStatus	s \$ Progress		Blacklisted Nodes
:	application_1493	3383630745_0028	<u>B</u> hduser	GraphChannel Phase 2	MAPREDUCE	root.hduse	ſ	Tue, 02 May 2017 09:45:43 GMT	Tue, 02 May 2017 09:46:56 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0023	7 hduser	GraphChannel Phase 2	MAPREDUCE	root.hduse	ſ	Tue, 02 May 2017 05:55:16 GMT	Tue, 02 May 2017 05:57:21 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0026	6 hduser	GraphchannelRetweet	MAPREDUCE	root.Data Analytics.g	Iraphchannel	Mon, 01 May 2017 22:30:43 GMT	Tue, 02 May 2017 09:45:40 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_002	5 hduser	Graphchannel	MAPREDUCE	root.Data Analytics.g	Iraphchannel	Mon, 01 May 2017 22:30:42 GMT	Tue, 02 May	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0024	4 hduser	GraphKeywords	MAPREDUCE	root.Data Analytics.g	raphkeywords	Mon, 01 May	Mon, 01 May 2017 23:50:11 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0023	<u>3</u> hduser	GraphKeywordsRetwee	t MAPREDUCE	root.Data Analytics.g	Iraphkeywords	Mon, 01 May 2017 22:30:42 GMT	Mon, 01 May 2017 23:34:41 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0022	2 hduser	GraphChannel Phase 2	MAPREDUCE	root.hduse	۲	Mon, 01 May 2017 03:53:31 GMT	Mon, 01 May 2017 03:54:56 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_002	1 hduser	GraphChannel Phase 2	MAPREDUCE	root.hduse	ſ	Mon, 01 May 2017 00:38:08 GMT	Mon, 01 May 2017 00:38:54 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0020	0 hduser	GraphchannelRetweet	MAPREDUCE	root.Data Analytics.g	Iraphchannel	Sun, 30 Apr 2017 22:30:54 GMT	Mon, 01 May 2017 00:38:05 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0019	9 hduser	Graphchannel	MAPREDUCE	root.Data Analytics.g	Iraphchannel	Sun, 30 Apr 2017 22:30:54 GMT	Mon, 01 May 2017 03:53:26 GMT	FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0018	<u>B</u> hduser	GraphKeywordsRetwee	t MAPREDUCE	root.Data Analytics.g	raphkeywords	Sun, 30 Apr 2017 22:30:54 GMT	Sun, 30 Apr 201 23:17:24 GMT	7 FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0013	7 hduser	GraphKeywords	MAPREDUCE	root.Data Analytics.g	Iraphkeywords	Sun, 30 Apr	Sun, 30 Apr 201 23:28:13 GMT	7 FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_0016	6 hduser	GraphChannel Phase 2	MAPREDUCE	root.hduse	r	Sun, 30 Apr 2017 07:28:57 GMT	Sun, 30 Apr 201 07:30:00 GMT	7 FINISHED	SUCCEEDED		History	N/A
	application_1493	3383630745_001	5 hduser	GraphChannel Phase 2	MAPREDUCE	root.hduse	r	Sun, 30 Apr 2017 06:25:35 GMT		7 FINISHED	SUCCEEDED		History	N/A
								GIVIT						

Advanced web interface

- ANU	JE 🔺 Query Edito	ors 🗸 🛛 Notebooks 🔹 Data Browsers 🗸	Search Security ~		📄 File Browser	🗐 Job Browser 🛛 🛱 admin 🗸 😧 🏁 🗭
4	Job Browser					
	1493383630745_0019	Graphchannel	MAPREDUCE	1000	root.Data N/A 5h Analytics.graphchannel	:22m:32s 05/01/17 00:30:54
	1493383630745_0020	GraphchannelRetweet	MAPREDUCE		root.Data N/A 2h Analytics.graphchannel	:7m:11s 05/01/17 00:30:54
	1493383630745_0017	GraphKeywords	MAPREDUCE		root.Data N/A 57 Analytics.graphkeywords	m:19s 05/01/17 00:30:54
	1493383630745_0018	GraphKeywordsRetweet	MAPREDUCE		root.Data N/A 46 Analytics.graphkeywords	m:30s 05/01/17 00:30:54
	1493383630745_0016	GraphChannel Phase 2	MAPREDUCE			n:2s 04/30/17 09:28:57
	1493383630745_0015	GraphChannel Phase 2	MAPREDUCE		root.hduser N/A 47	
	1493383630745_0014	GraphchannelRetweet	MAPREDUCE		Analytics.graphchannel	:58m:28s 04/30/17 00:30:26
	1493383630745_0013	Graphchannel	MAPREDUCE		Analytics.graphchannel	:55m:6s 04/30/17 00:30:25
	1493383630745_0011	GraphKeywords	MAPREDUCE		Analytics.graphkeywords	:51m:43s 04/30/17 00:30:25
	1493383630745_0012	GraphKeywordsRetweet	MAPREDUCE		root.Data N/A 1h Analytics.graphkeywords	:49m:15s 04/30/17 00:30:25
	1493383630745_0010	GraphChannel Phase 2	MAPREDUCE	SUCCEEDED hduser 100% 100%	root.hduser N/A 1n	n:14s 04/29/17 09:44:18

What really really going on !?

The aforementioned application doesn't give specific information


• • •

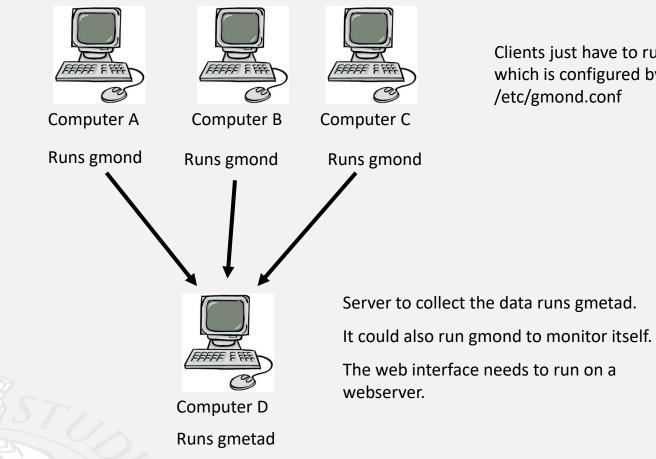
- Unix tools
- Batch System tools
- Really need something that can provide a quick visual overview of the health and load on your cluster

Ganglia

Host level detail

October 2020

How does Ganglia work?


- Ganglia works through a small agent, *gmond*, on each node or machine to be monitored. You can distribute a single gmond instance to lots of machines at once. Gmonds communicate the state of their local node to a machine running a Master *gmetad* instance.
- The server uses RRDtool to store the data over time
- The Ganglia framework can be extended to monitor many parameters.

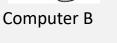
Setup

The software can be downloaded from http://ganglia.sourceforge.net/

Clients just have to run gmond, which is configured by /etc/gmond.conf

Computer D gmetad gmond httpd

Client Setup



Runs gmond

Computer A

Runs gmond

Runs gmond

Computer C

Apt-get install ganglia-gmond edit config file service gmond start

chkconfig gmond on

/etc/gmond.conf extracts

cluster {
 name = "LCG Workers"
}
/* Feel free to specify as many udp_send_channels as you like. Gmond
 used to only support having a single channel */
udp_send_channel {
 mcast_join = 239.2.11.95
 port = 8649
 host = pplxconfig
 }
}

/* You can specify as many udp_recv_channels as you like as well. */
udp_recv_channel {
 mcast_join = 239.2.11.95
 port = 8649
 bind = 239.2.11.95
}

/* You can specify as many tcp_accept_channels as you like to share an xml description of the state of the cluster */ tcp_accept_channel { port = 8649

Server Setup

Extracts from /etc/gmetad.conf

data_source "LCG Workers" 127.0.0.1:8655 computerA.physics.ox.ac.uk ComputerB.physics.ox.ac.uk computerC.physics.ox.ac.uk:8655

data_source "LCG Servers" t2se01.physics.ox.ac.uk:8656 t2ce02.physics.ox.ac.uk:8656 gridlogger.physics.ox.ac.uk:8656

Aptitude install ganglia-gmond ganglia-gmetad ganglia-web edit /etc/gmond.conf edit /etc/gmetad.conf

- Monitoring
- Apache HBASE
- Case studio
- Apache Phoenix
- Apache Solr
- Elastic Search

Introduction

- Hadoop is a framework that supports operations on a large amount of data.
- Hadoop includes the Hadoop Distributed File System (HDFS)
- HDFS does a good job of storing large amounts of data, but lacks quick random read/write capability.

Introduction (cont.)

- We need a tabular form to store our data
- The storing system must preserve the advantages of hadoop
 - Fault tolerance
 - High perfomance on large amount of data
- Limits of Relational Databases (RDBMS)
- OLTP vs OLAP
- Big Data storing paradigms...

Introduction (cont.)

- HBase is a NoSQL (schema-less), column-oriented database.
- It is open source, sparse, consistently distributed, sorted map modeled after Google's BigTable.
- Developed as part of Apache's Hadoop project and runs on top of Hadoop Distributed File System.
- Horizontaly, linearly scalable

Conceptual View

- A data row has a sortable row key
- Table is a collection of rows.
- Row is a collection of column families.
- Column family is a collection of columns.
- Column is a collection of key value pairs.
- A Time Stamp is designated automatically if not artificially.
- <family>:<identifier>

Conceptual View

Rowid	Column Family		Column Family			Column Family			Column Family			
	clo1	col 2	col 3	col 1	col 2	col 3	col1	col2	col3	col1	col2	col3
1												
2												
3												

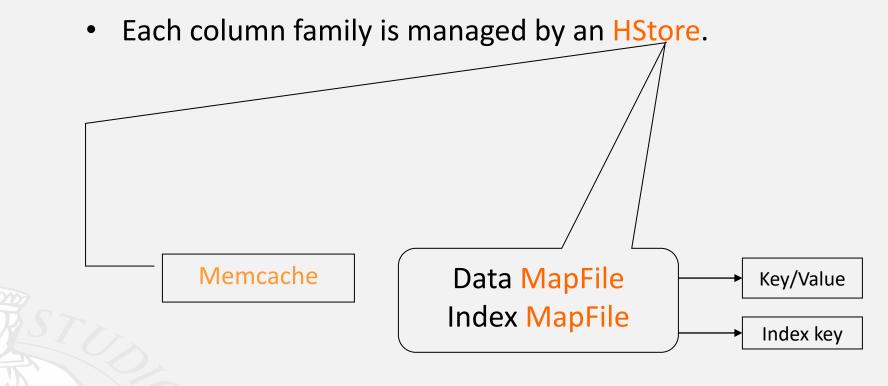
		COLUMN FAM	ILIES		
Row key	personal dat	a	professional	data	
empid	name	city	designation	salary	
	raju	hyderabad	manager	50,000	
2	ravi	chennai	sr.engineer	30,000	
3	rajesh	delhi	jr.engineer	25,000	

Hbase table

v_key, row_prefix* +s	scan_len [col1, famil	y:col2, fam3:, col_pre	efix* +3, fam: col2 to	col3] {Filter1() AND F	Filter Q twitter_info:				Nam	ily>: <la< th=""><th></th><th>ort By</th></la<>		ort By
-19.00000								,* _*	Filter Column Names/	Family Sort By /	ASC 🗸 🗇 Drop Colum	nns
twitter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	nt t
pt	#Lurdinhas6x1 htt p://t.co/vn9dgL91Q6	0		0	607565246186799104	1	lofcarlos	caldo	BR	Greenland		
(C
-23.00000												
twitter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	nt t
pt	<pre>(x) pergunta no gru po da universidade</pre>	0		2	609854356561786160	3	felipeanchieta_	caldo	BR	Brasilia		96
4				-	*****							
-34,00000												
twitter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	nt 🕻
es	#Tramando	0		0	600847996499206144	0	TINCHOROMEROOK	#empire	UY	Buenos Aires	@foxlife_ar	
•												
-8.00000												
twitter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	
in	#Empire	0		0	601702468565643264	0	rayn_christ	#empire	ID	Jakarta		2
4 0								_				
twitter_info: sql_id	twitter_info: date	twitter_info: publicationTin	ne twitter_info: hashtags0	DnTwitter twitter_info: ha	shtag twitter_info: ID_requ	est twitter_info: twitterL	Jser twitter_info: userId	twitter_info: message				
				0	0			Guadalajara				
0.0000												
twitter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	nt [
it	- sei troppo arguto	0		0	615195778613669888	3	claudiorossoit	caldo				- 2

D

Let's try it !



October 2020

Physical Storage View

- Physically, tables are stored on a per-column family basis.
- Empty cells are not stored in a column-oriented storage format.

HBase Brows	er						Store		<fam< th=""><th>ily>:<la< th=""><th>bel></th><th></th></la<></th></fam<>	ily>: <la< th=""><th>bel></th><th></th></la<>	bel>	
key, row_prefix* +s	scan_len [col1, famil	ly:col2, fam3:, col_pre	efix* +3, fam: col2 to	col3] {Filter1() AND	Filter Q twitter_info					Filter Columns/Families	All So	ort
-19.00000					/			,× ⁴ 🗹	Filter Column Names/	Family Sort By J	ASC 🗸 🖻 Drop Colum	nns
vitter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime		twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	rt.
t	#Lurdinhas6x1 htt p://t.co/vn9dgL91Q6	0		0	607565246186799104	1	lcfcarlos	caldo	BR	Greenland		
							1					
-23.00000												
retweetCount	<pre>twitter_info: sql_id (x) pergunta no gru</pre>	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	л П
	po da universidade											
-34.00000												
witter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	nt
25	#Tramando	0		0	600847996499206144	0	TINCHOROMEROOK	#empire	UY	Buenos Aires	@foxlife_ar	
-8.00000												
witter_info: retweetCount	twitter_info: sql_id	twitter_info: mentions	twitter_info: lang	twitter_info: place	twitter_info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	nt
n	#Empire	0		0	601702468565643264	0	rayn_christ	#empire	ID	Jakarta		
0												
witter_info: sql_id	twitter_info: date	twitter_info: publicationTin			ashtag twitter_info: ID_req	uest twitter_info: twitter	User twitter_info: userId	twitter_info: message				
			en	0	0			Guadalajara				
0.0000												
	twitter_info: sql_id	twitter info: mentions	twitter info; lang	twitter_info: place	twitter info: publicationTime	twitter_info: time_zone	twitter_info: hashtagsOnTwitter	twitter_info: message	twitter_info: geo_long	twitter_info: locationUser	twitter_info: favoriteCount	it
witter_info: retweetCount	squa											

Physical Storage View

• Each cell value of the table has a timestamp

• Subsequent column values are stored contiguously on the disk.

What we can do ?

- Mysql-like commands
 - Create table
 - Drop table
 - Insert data in table
 - Delete data
 - Query data
- Mysql-like interface (cli, API)

\$ hbase shell

Hbase commands

- Table manipulations
 - create 't1', 'f1', 'f2', 'f3'

create '<table-name>', '<column-family1>', '<column-family2>'

- alter 'tablename', NAME => '<new-column-family>'
- Disable/enable 't1' enable/disable '<table-name>'

```
– drop 't1' (but t1 must be disabled)
drop '<table-name>'
```


More commands

• put 't1', 'r1', 'c1', 'value1', ts1

put '<table-name>', 'row-key', 'columnfamily:columnname', 'value', 'timestamp'

- delete 't1', 'r1', 'c1'
- delete 't1', 'r1', 'c1', 'ts1'
- get 't1', 'r1' → scan 't1'
- get 't1', 'r1', {TIMERANGE => [ts1, ts2]} → scan 't1', {TIMERANGE => [ts1, ts2]}
- get 't1', 'r1', {COLUMN => 'c1'} → scan 't1', {COLUMN => 'c1'}

More commands

- scan 'syslog', {COLUMNS => ['msg:body', 'msg:timestamp'], LIMIT => 100}
- scan 'syslog', {COLUMN => 'msg:body', FILTER => "ValueFilter(=, 'binaryprefix:<STRING_TO_MATCH>')"}
- scan 'syslog', {COLUMN => 'msg:body', FILTER => "ValueFilter(=,'regexstring:.*prova.*')"}

- create 'students', cf=['a','b']
- put 'students', 'pippo', 'a:name', 'pippo'
- put 'students', 'pippo', 'a:age', 20
- put 'students', 'pluto, 'a:name', 'pluto'
- scan 'students'

HBASE Client

- Cli : hbase
- Java API
 - HTable hTable = new HTable(config, "students");
 - Put p = new Put(Bytes.toBytes("row1"));
 - p.add(Bytes.toBytes("personal"),Bytes.toBytes("name"),Bytes.toBytes("PIPPO"));
 - p.add(Bytes.toBytes("personal"),Bytes.toBytes("age"),Bytes.toBytes("21"));
 - hTable.put(p); hTable.close();
 - Get g = new Get(Bytes.toBytes("row1")); Result result = hTable.get(g);
 - byte [] name = result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));
 - Delete delete = new Delete(Bytes.toBytes("row1"));
 - delete.deleteColumn(Bytes.toBytes("personal"), Bytes.toBytes("age"));
 - hTable.delete(delete);

Hbase Mapreduce Flavor

 hbase org.apache.hadoop.hbase.mapreduce.RowCounter <tablename>

Hbase Mapreduce Program

```
Configuration config = HBaseConfiguration.create();
Job job = new Job(config, "ExampleRead");
job.setJarByClass(MyReadJob.class); // class that contains mapper
```

```
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs
```

```
•••
```

```
TableMapReduceUtil.initTableMapperJob(
tableName, // input HBase table name
scan, // Scan instance to control CF and attribute selection
MyMapper.class, // mapper
null, // mapper output key
null, // mapper output key
job);
job.setOutputFormatClass(NullOutputFormat.class); // because we aren't emitting anything from mapper
```

```
boolean b = job.waitForCompletion(true);
```

if (!b) {

throw new IOException("error with job!");

Hbase Mapreduce Program Mapper

public static class MyMapper extends
TableMapper<Text, Text> {

public void map(ImmutableBytesWritable row, Result value, Context context) throws InterruptedException, IOException { // process data for the row from the Result instance.

Hbase Mapreduce Program Sink and source

Count the number of distinct instances of a value in a table and write those summarized counts in another table.

Configuration config = HBaseConfiguration.create(); Job job = new Job(config,"ExampleSummary"); job.setJarByClass(MySummaryJob.class); // class that contains mapper and reducer

Scan scan = new Scan(); scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs scan.setCacheBlocks(false); // don't set to true for MR jobs // set other scan attrs

TableMapReduceUtil.initTableMapperJob(sourceTable, // input table // Scan instance to control CF and attribute selection scan, MyMapper.class, // mapper class Text.class, // mapper output key IntWritable.class, // mapper output value job); TableMapReduceUtil.initTableReducerJob(targetTable, // output table MyTableReducer.class, // reducer class job); job.setNumReduceTasks(1); // at least one, adjust as required boolean b = job.waitForCompletion(true); if (!b) { throw new IOException("error with job!");

throw new iOException

Hbase Mapreduce Program Sink and source: Mapper

A column with a String-value is chosen as the value to summarize upon. This value is used as the key to emit from the mapper, and an IntWritable represents an instance counter.

public static class MyMapper extends TableMapper<Text, IntWritable> {

```
private final IntWritable ONE = new IntWritable(1);
private Text text = new Text();
```

public void map(ImmutableBytesWritable row, Result value, Context context)
throws IOException, InterruptedException {

```
String val = new String(value.getValue(Bytes.toBytes("cf"),
Bytes.toBytes("attr1")));
text.set(val); // we can only emit Writables...
```

context.write(text, ONE);

Hbase Mapreduce Program Sink and source: Reducer

In the reducer, the "ones" are counted (just like any other MR example that does this), and then emits a Put.

```
public static class MyTableReducer extends TableReducer<Text, IntWritable,
ImmutableBytesWritable> {
```

```
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
    int i = 0;
    for (IntWritable val : values) {
        i += val.get();
    }
    Put put = new Put(Bytes.toBytes(key.toString()));
    put.add(Bytes.toBytes("cf"), Bytes.toBytes("count"),
```

Bytes.toBytes(i));

```
context.write(null, put);
```


D

Let's try it !

October 2020

Missing !?

- Mysql is sql complaint
 - To search data we issue commands like
 - «select columns where conditions >>
 - Generally we take advantgae of joining table

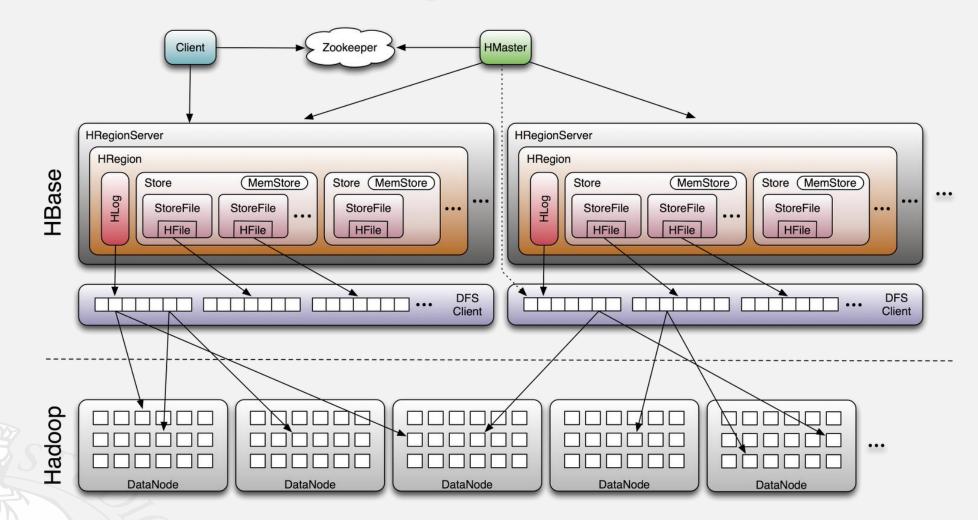
- HBASE is essentially an hashmap
 - No join of tables
 - No select

Filters

- Filters are Java classes restricting matches;
- Filter list: combines multiple filters with AND and OR
- Compare values of one or multiple columns
 - Smaller, equal, greater, substring, prefix,
- Compare metadata: column family and qualifier Qualifier Qualifier prefix filter: Return (first few) matching columns
 - Column range filter: return a slice of columns (e.g. bb-bz)
- Compare names of rows Note: it is preferable to use scan options

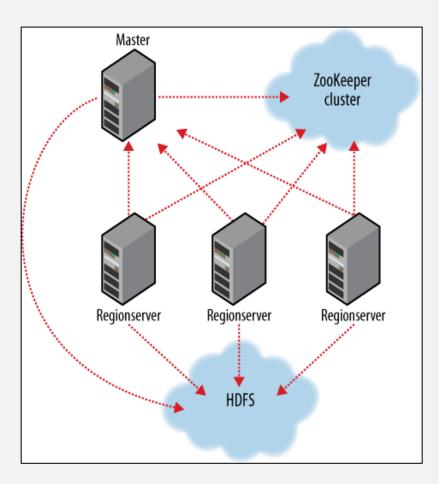
Scan advanced

- scan 'student',{ FILTER => "KeyOnlyFilter()"}
- scan 'student',{ FILTER => "(PrefixFilter ('pi')) AND MultipleColumnPrefixFilter('a','b') AND ColumnCountGetFilter(2)"
 }
- scan 'student',{ COLUMNS=>['a:age'], FILTER => "SingleColumnValueFilter('a','age',>,'binary:19')"}

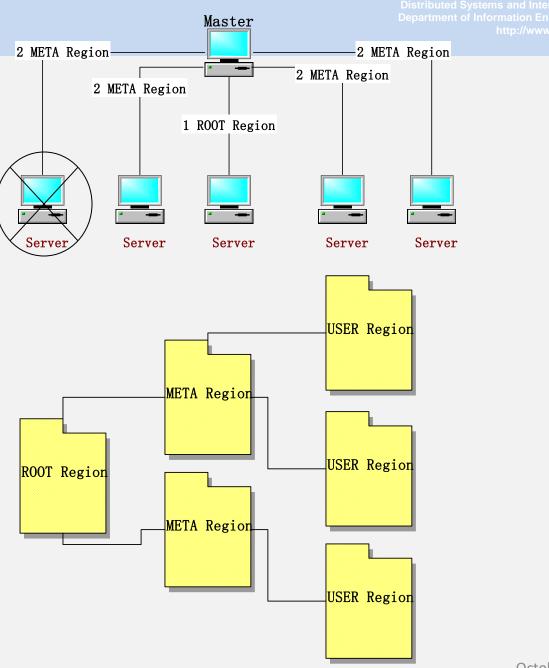


HBase Components

- Region
 - A subset of a table's rows, like horizontal range partitioning
 - Automatically done
- RegionServer (many slaves)
 - Manages data regions
 - Serves data for reads and writes (using a log)
- Master
 - Responsible for coordinating the slaves
 - Assigns regions, detects failures
 - Admin functions

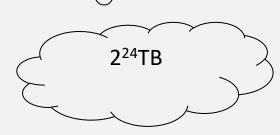

Big Picture

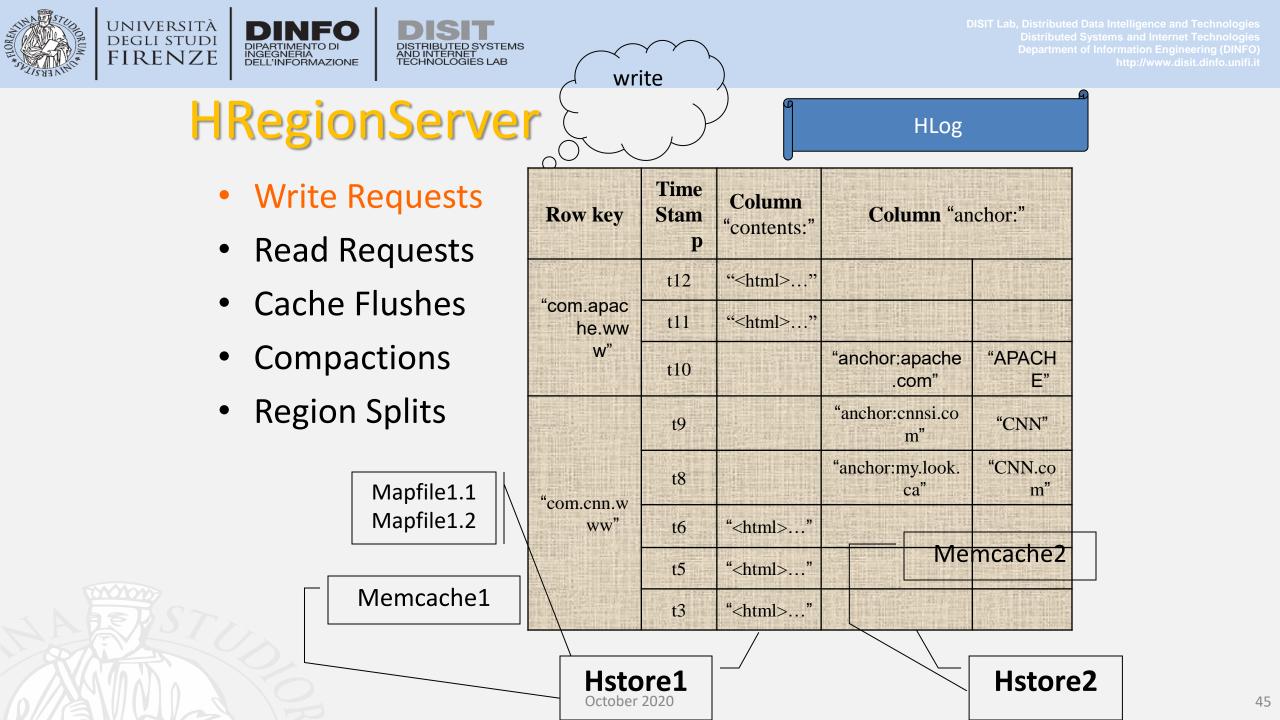
ZooKeeper


- HBase depends on ZooKeeper
- By default HBase manages the ZooKeeper instance
 - E.g., starts and stops
 ZooKeeper
- HMaster and HRegionServers register themselves with ZooKeeper

HBaseMaster

- Assign regions to HRegionServers. ٠
- 1. ROOT region locates all the META regions.
- 2. META region maps a number of user regions.
- 3. Assign user regions to the HRegionServers.
- Enable/Disable table and change table schema ۲
- Monitor the health of each Server ۲


43

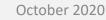


ROOT/META Table

- Each row in the ROOT and META tables is approximately 1KB in size. At the default size of 256MB.
 - 1 ROOT table = 2^{18} META regions = $2^{18} \times 2^{18}$ USER regions = 2^{54} KB = 2^{64} bytes

HRegionServer

- Write Requests
- Read Requests
- Cache Flushes
- Compactions
- Region Splits


Memcache1

Hstore1

Mapfile1.1

Mapfile1.2

Row key	Time Stam P	Column "contents:"	Column "anchor:"	
"com.apach e.www"	t12	" <html>"</html>		
	t11	" <html>"</html>		
	t10		"anchor:apache. com"	"APACHE"
"com.cnn.w ww"	t9		"anchor:cnnsi.co m"	"CNN"
	t8		"anchor:my.look.c a"	"CNN.com"
	t6	" <html>"</html>		
	t5	" <html>"</html>		
	t3	" <html>"</html>		

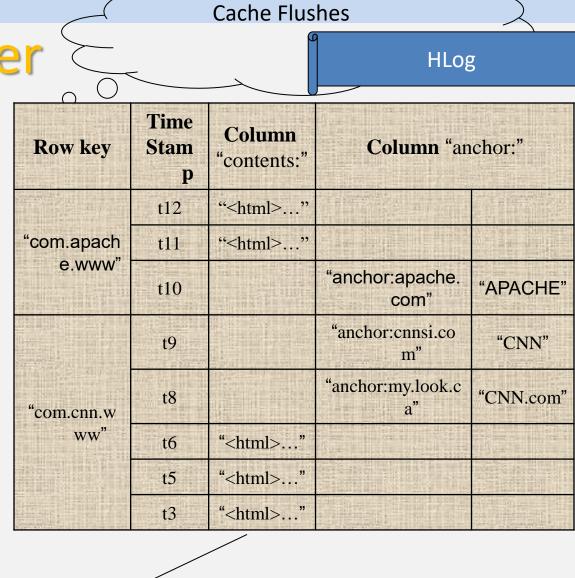
SIT Lab, Distributed Data Intelligence and Technologies Distributed Systems and Internet Technologies Department of Information Engineering (DINFO)

- Write Requests
- Read Requests
- Cache Flushes
- Compactions
- Region Splits

Mapfile1.1

Mapfile1.2

Memcache1


Mapfile1.1

Mapfile1.2

Mapfile1.3

Hstore1

October 2020

DISTRIBUTED SYSTEMS AND INTERNET TECHNOLOGIES LAB

Compactions

ISIT Lab, Distributed Data Intelligence and Technologies Distributed Systems and Internet Technologies Department of Information Engineering (DINFO) http://www.disit.dinfo.unifi.it

HRegionServer

- Write Requests
- Read Requests
- Cache Flushes
- Compactions
- Region Splits

Mapfile1

Hstore1

Mapfile1.1

Mapfile1.2

Memcache1

Row key	Time Stam P	Column "contents:"	Column "anchor:"	
"com.apach e.www"	t12	" <html>"</html>		
	t11	" <html>"</html>		
	t10		"anchor:apache. com"	"APACHE"
"com.cnn.w ww"	t9		"anchor:cnnsi.co m"	"CNN"
	t8		"anchor:my.look.c a"	"CNN.com"
	t6	" <html>"</html>		
	t5	" <html>"</html>		
	t3	" <html>"</html>		

HRegionServer

- Write Requests
- Read Requests
- Cache Flushes
- Compactions
- Region Splits

Row key	Time Stam P	Column "contents :"	Column "anchor:"	
"com.apac he.ww w"	t12	" <html>"</html>		
	t11	" <html>"</html>		
	t10		"anchor:apache .com"	"APACH E"
"com.cnn.w ww"	t9		"anchor:cnnsi.co m"	"CNN"
	t8		"anchor:my.look. ca"	"CNN.co m"
	t6	" <html>"</html>		
	t5	" <html>"</html>		
	t3	" <html>"</html>		

Region Splits

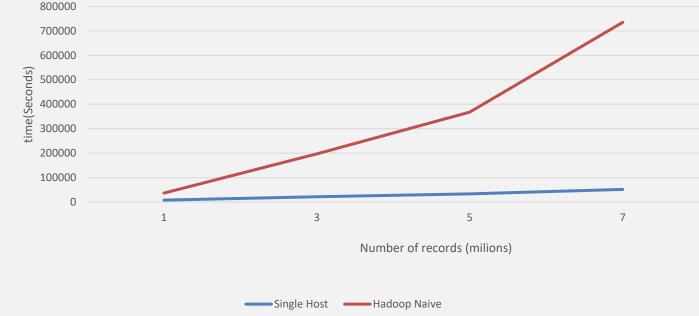
- Monitoring
- Apache HBASE
- Case studio
- Apache Phoenix
- Apache Solr
- Elastic Search

Solution

- Migrating to a distribuited architcure
 - We have to rethink the problem in parallel way

Sequential minded approach

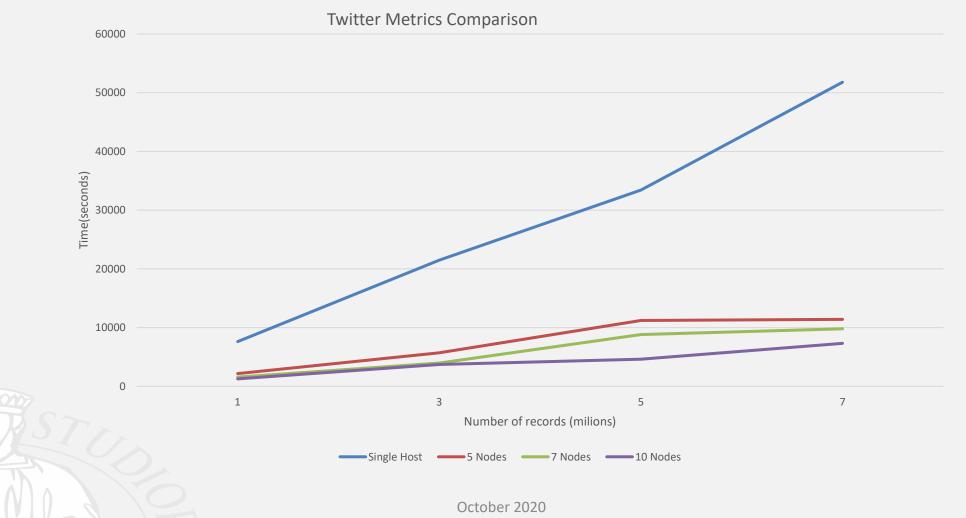
• For each search execute a MR job


If a MR job takes 1 minute (ideally) time and i have to compute for 1000
 -> i have to wait 1000 minute !

Single Host vs Hadoop

Twitter metrics processing time

October 2020


Parallel-computing minded aproach

- Scan all records and counts each word sorting per day
- As final step consider only the words involded in our search

Single Host vs Hadoop

All Quiet on the Western Front ...

Google calls it:	Hadoop equivalent:	
MapReduce	Hadoop	
GFS	HDFS	
Bigtable	HBase	
Chubby	Zookeeper	

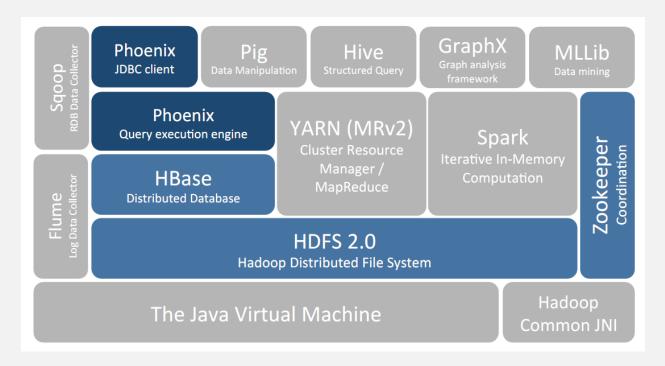
- 1979: First commercial SQL RDBMs
- 1990: Transaction processing on SQL now popular
- 2006: Hadoop and other "big data" technologies
- 2008: NoSQL
- 2011: SQL on Hadoop
- 2014: Interactive analytics on Hadoop and NoSQL with SQL (Phoenix)

- Nesi, Paolo, Gianni Pantaleo, and Gianmarco Sanesi. "A hadoop based platform for natural language processing of web pages and documents." *Journal of Visual Languages & Computing* 31 (2015): 130-138.
- II. Michael, Maged, et al. "Scale-up x scale-out: A case study using nutch/lucene." 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE, 2007.
- III. Appuswamy, Raja, et al. "Scale-up vs scale-out for hadoop: Time to rethink? " *Proceedings of the 4th annual Symposium on Cloud Computing*. ACM, 2013.

- Apache Hadoop ver. 3.0.0
- Apache Hbase ver 1.2.6
- Apache Phoenix ver 4.14.0

- Monitoring
- Apache HBASE
- Case studio
- Apache Phoenix
- Apache Solr
- Elastic Search

- Hbase is Ok BUT
 - It takes too much expertise to write an application
 - It takes too much code to do anything
 - Your application is tied too closely with your data model



Apache Phoenix

- What: A relational database layer for Apache Hbase
 - Low Latency Query Model & SQL support over HBase API
 - SQL query compiled it into a series of HBase scans
 - Metadata is stored in an HBase table and versioned
 - Pushes Computation to the HBase Region Servers
- How: Coprocessors (Server-Side) Minimize Data Transfer Uses
 Native HBase APIs Not Map/Reduce framework of Hbase
- A JDBC driver

Apache Phoenix

October 2020

Performance

- Pushes down computatioon to region servers
 - Start/stop key range(s)
 - Time range min/max
 - Predicates
 - Aggregation
 - Sort
 - Limit
- Parallelizes query from client
 - Intra-region through staBsBcs collecBon
- Supports secondary indexes
 - Global & co-located

Ó

- Monitoring
- Apache HBASE
- Case studio
- Apache Phoenix
- Apache Solr
- Elastic Search

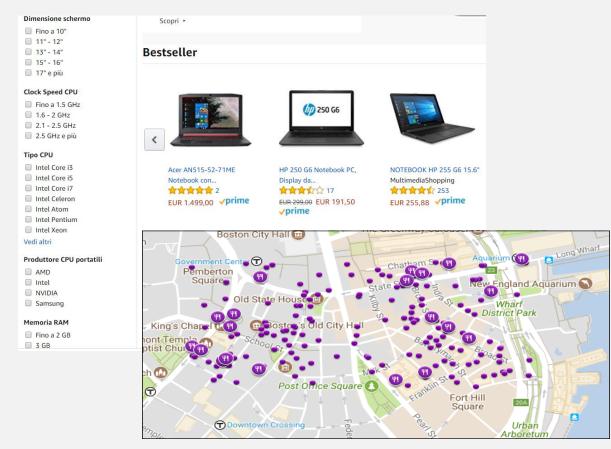
- Introduction to Lucene & Solr
 - Getting started
 - Indexing using Solr
 - Updating & deleting files
 - Searching using Solr

What is Lucene?

 Lucene is An open source Java-based IR library enabling text based search

What is Solr

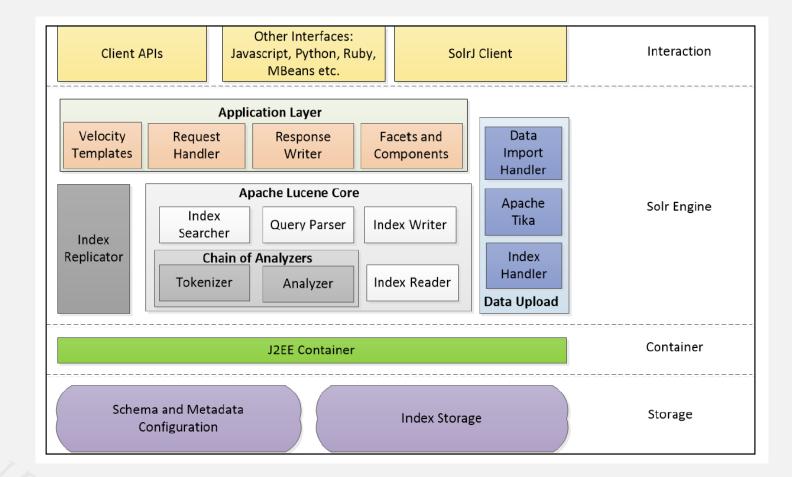
- Solr is:
 - An open source enterprise search server
 - Based on the Lucene Java search library
 - A web based application that processes HTTP request and returns HTTP responses
 - completed with XML/HTTP APIs, caching, replication, and web administration interface.


Why solr

- Using many Lucene best practices
- Easy setup, configuration and Easy to extend
- Providing faceted navigation, spell checking, highlighting, clustering, grouping, & any other search features
- Supporting clients in:
 - HTTP
 - Java
 - Python
 - PHP
 - Ruby
 - JSON

Why Solr

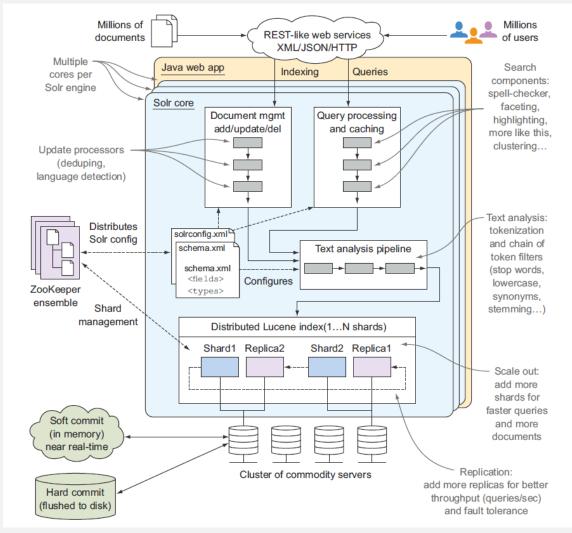
- Some reasons of using Solr:
 - Good indexing performance
 - SolrCloud feature (Solr 4.x above)
 - Multi-Faceted searches
 - Geospatial searches
 - Who uses Lucene/Solr?
 - Cisco, ebay, Boeing, AT& T, Ford and many, many others...!



Comparison to Database Technology

- The most important comparison to make is the data model
 - Data model is the organizational structure of data
- RDBMS:
 - Its data model is based on multiple tables with lookup keys between them
 - A join capability for querying across tables
 - A flexible data model
- Lucene Solr:
 - Has a document oriented data model
 - Analogous to a single table without join possibilities
 - Document-oriented databases have a rich nested structure similar to XML/JSON \rightarrow MongoDB (NoSQL)
- Has a flat document structure
 - Supporting multi-valued fields with an array of values

Solr Architecture

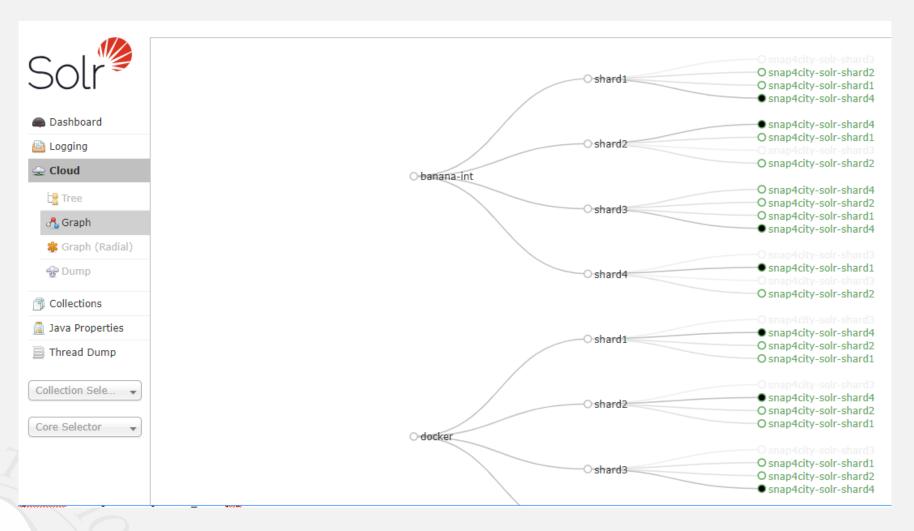


A LEVE

Source: «Scaling Big Data with Hadoop and Solr», (H. V. Karambelkan) Packt Publishing Ed. (2015)

Solr Architecture

Ser S



Solr Interface & Functionalities

1		X	0	Solr Admin - Mozilla Firefox 🛛 🗛 🗆
/ 🦓 Solr Admin	× /		🖉 🥙 Solr Admin	× ↓₽
$\leftrightarrow \supset \ \ \bigcirc \ \ \bigcirc$	i localhost:8983/solr/#/	९ 🕁 💩 🔕 😽 🗄	(Solocalhost:	8983/solr/#/my_core/query ∨ C Q Search >> =
🖞 New Tab by Yaho	oo 💪 Google 😣 JavaScript, the weird 🕫	» 🛅 Other bookmarks	Griedinosta	
		Use original UI 🛞 🔺	Most Visited ✓	Centos 🗌 Wiki 🗌 Documentation 🗌 Forums
	Instance	🔳 System 🛛 🖏		Request-Handler (qt) IR8 http://localhost/8983/solr/my_core/select?indent=on6.g=*:*&wt=json
Solr	B Start about a minute ago	Physical Memory 77.1%	Solr 7	/select
Dashboard	😤 Versions		Dashboard	- common "responseHeader": {
🔒 Logging	n soir-spe6.2.0	6.10 G8	Logging	q "QTime": 0,
Core Admin	solr-imp8.2.0 764d0f19151dbff6f5fcd9fc4b2682cf93	Swap Space 77.7%	重 Core Admin	"params":[q":"*:*",
Java Properties	ペ lucene-転送の lucene-転送の 764d0(19151dbff6(5fcd9fc4b2682cf93)		Java Properties	"indent":"on",
Thread Dump	Incente-Imagina / Order 1913100/101009/04020320193	7.60 GB	Thread Dump	fq "wt": "json", "_":"1475558110164"]},
💩 No cores available		9.78 68	E Iniead Dump	"response": ["numFound": 6, "start": 0, "docs": [
Go and create one	MACE 🗑	JVM-Memory 5.9%	my_core +	sort "id":"001",
	RuntimeDracle Corporation Java HotSpot(TM) 64-Bit		To verview	"phone":[9848022337],
	Processors		Y Analysis	<pre>start, rows "first_name":["Rajiv"],</pre>
	Args -DSTOP.KEY=solrrocks -DSTOP.PORT=7983 28.7	4 MB	Dataimport	0 "last_name": ["Reddy"],
			C Documents	10 "_version_":1547234975539003392),
				fl "id":"002",
			📰 Ping	"phone":[9848022338], "city":["Kolkata"],
			📕 Plugins / Stats	df "first_name":["Siddarth"],
			P Gum	"last_name":["Battacharya"], Raw Query "version ":15472349755515863041,
				Raw Query "_version_":15472349755515863041,

Solr Interface & Functionalities

Solr API

COLLECTIONS API

create -c NewC curl http://localhost:8983/solr/admin/cores?action=CREATE&name=NewC&instanceDir=NewC

INSERT / UPDATE API

SEARCH API

http://localhost:8983/solr/<COLLECTION>/select?q=<QUERY> curl http://localhost:8983/solr/techproducts/select?q=<KEYWORD> curl http://localhost:8983/solr/techproducts/select?q=cat:electronics

Solr API

http://localhost:8983/solr/techproducts/select?q=cat:electronics&fl=id,name,price

Solr Quert Parameters

•**qt** – Query handler for the request. Standard query handler is used if not specified.

•**q** – It is used to specify the query event.

•fq – Used to specify filter queries.

sort – Used to sort the results in ascending or descending order. **start, rows** – start specifies the staring number of the result set. By default it is zero. rows specify the number of records to return.

•fl – Used to return selective fields.

•wt – Specifies the response format. Default is XML.

•indent – Setting to true makes the response more readable.

•debugQuery – Setting the parameter to true gives the

debugging information as part of response.

•dismax – To specify the dismax parser.

•edismax – To specify the edismax parser.

- •facet Setting to true enables the faceting.
- •**spatial** Used for geospatial searches.

October Spellcheck – Setting to true help in searching similar terms.

78

Solr Faceted Search

http://localhost:8983/solr/techproducts/select?q=price:[0 TO 400]&fl=id,name,price&facet=true&facet.field=cat

- Monitoring
- Apache HBASE
- Apache Phoenix
- Case studio
- Apache Solr
- Elastic Search

Elasticsearch

- real time
- Search & Analytics Engine
- Distributed
- Scales massively
- High availability
- Restful api
- Json over HTTP
- Schema free
- Multi tenancy
- Open source
- Lucene based

>curl -X GET localhost:9200/?pretty

Input Data
Retrieve Data
Update Data

➤ Delete Data

Input Data

PUT /index/type/id

PUT /myapp/tweet/1 -d '
{ "tweet": "A tweet text",
"nick": "@twitternick",
"name": "Pippo",

Retrieve Data

• GET /myapp/tweet/1

{
 "_index": "myapp",
 "_type": "tweet",
 "_id": "1",
 "_version": 1,
 "exists": true,
 "_source": { ...OUR
 TWEET... }
}

Update Data

```
PUT /myapp/tweet/1 -d '
"tweet": "I know #elasticsearch is AWESOME",
"nick": "@clintongormley",
"name": "Clinton Gormley",
"date": "2013-06-03",
"rt": 5,
"loc": {
"lat": 13.4,
"lon": 52.5
```

```
{
    "_index": "myapp",
    "_type": "tweet",
    "_id": "1",
    "_version": 2,
    "ok": true
}
```

```
# atomic delete and put
```


Delete Data

• DELETE /myapp/tweet/1

"_index": "myapp", "_type": "tweet", "_id": "1", "_version": 3, "ok": true, "found": true

RDBMS comparison

SQL Server manage Databases i.e. Tables i.e. Columns/Rows

RDBMS comparison

Elastic Search manage Indices i.e. Types i.e. Documents with Properties

An Elastic Search cluster can contain multiple **Indices** (databases), which in turn contain multiple **Types** (tables). These types hold multiple **Documents** (rows), and each document has **Properties**(columns).

- Node: A node is a running instance of elasticsearch which belongs to a *cluster*.
- Shard: A shard is a single Lucene instance. It is a low-level "worker" unit which is managed automatically by elasticsearch. An index is a logical namespace which points to primary and replica shards.
- Primary Shard: Each document is stored in a single primary shard. When you index a document, it is *indexed* first on the primary shard, then on all replicas of the primary shard.
- Replica Shard: Each *primary shard* can have zero or more *replicas*. A replica is a copy of the primary shard, and has two purposes: a) increase fail over b) increase performance

- Index: An index is like a *database* in a relational database.
- Type: A type is like a *table* in a relational database. Each type has a list of fields that can be specified for documents of that type.
- Document: JSON document which is stored in elasticsearch. It is like a row in a table in a relational database.
- Field: A *document* contains a list of fields, or key-value pairs. The value can be a simple (scalar) value (eg a string, integer, date), or a nested structure like an array or an object. A field is similar to a column in a table in a relational database.
- Mapping: mapping is like a *schema definition* in a relational database. The mapping defines how each field in the document is *analyzed*.
- Routing: When you index a document, it is stored on a single primary shard. That shard is chosen by hashing the *routing* value. By default the *routing* value is derived from the ID of the document.

Core Field Types

- Strings: string
- Datetimes: date
- Whole numbers: byte, short, integer, long
- Floats: float, double
- Booleans: boolean
- Objects: object

Also: multi_field, ip, geo_point, geo_shape,

Auto Detection of Field

- "foo bar" string
- "2018-10-09" date
- 10 byte, short, integer, long
- 10.0 float, double
- true boolean
- { foo: "bar" } object
- ["foo","bar"] values

No special mapping. Any field can have multi-

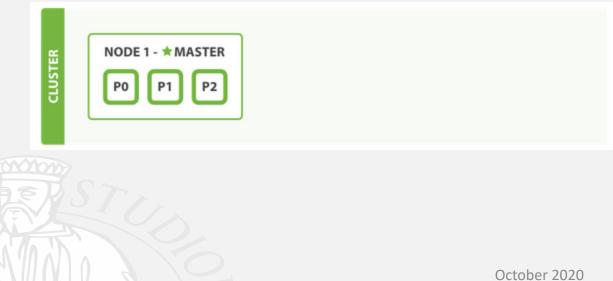
Some more Glossary

- Term: A term is an exact value that is indexed in elasticsearch. The terms foo, Foo, FOO are NOT equivalent.
- Text: Text (or full text) is ordinary unstructured text, such as this paragraph. By default, text will be analyzed into terms, which is what is actually stored in the index. Text fields need to be analyzed at index time in order to be searchable as full text, and keywords in full text queries must be analyzed at search time to produce (and search for) the same terms that were generated at index time.
- Analysis: Analysis is the process of converting *full text* to *terms*. Depending on which analyzer is used, these phrases: FOO BAR, Foo-Bar, foo,bar will probably all result in the terms foo and bar. These terms are what is actually stored in the index.

Some more glossary (Cont.)

- Tokenizer: Tokenizers are used to break a string down into a stream of terms or tokens. A simple tokenizer might split the string up into terms wherever it encounters whitespace or punctuation.
- Facets: They enable you to calculate and summarize data about the current query on-the-fly. They can be used for all sorts of tasks such as dynamic counting of result values or even distribution histograms. Facets only perform their calculations one-level deep, and they cant be easily combined.
- Aggregations: Aggregations are similar to facets in many ways, and overcome the limitations of facets. Indeed, aggregations are meant to eventually replace facets altogether. Facets are and should be considered deprecated and will likely be removed in one of the future major releases. One of the major limitations of facets is that you can't have facets of facets. Which is to say, facets cannot be nested. The ability to nest aggregations therefore brings a great deal of power that was missing in facets.
 - The two broad families of aggregations are <u>metrics aggregations</u> and <u>bucket aggregations</u>. Metrics
 aggregations calculate some value (like an average) over a set of documents, and bucket aggregations
 group documents into buckets.

- Schemaless, Document Oriented
- No need to configure schema upfront
- No need for slow ALTER TABLE like operations
- Define mapping (schema) to customize the indexing process
 - Require fields to be of certain type
 - If you want text fields that should not be analyzed


Distributed & Highly Available

- Multiple nodes running in a cluster
 - Acting as a single service
 - Nodes in cluster that store data or nodes that just help in speeding up search queries
- Sharding
 - Indices are sharded (#shards are configurable)
 - Each Shard can have zero or more replicas
 - Replicas on different servers for failover
- Master
 - Automatic Master detection + failover
 - Responsible for distribution/balancing of shards

A Single Node Cluster with An Index


- All 3 Primary Shards allocated to Node1
- No replication Nodes
- A single node means single point of failure
- Health of the Cluster: Yellow

Add Failover

- Add one Node to cluster by configuring the cluster name.
- 3 replica shards have been allocated.
- Cluster Health : Green.
- Now 6 Shards. There is redundancy

Scale horizontally

- A 3 node cluster
- One shard each from Node 1 and Node 2 have moved to Node 3
- Better performance as hardware resouces (CPU,RAM, I/O) are shared

Scale some more

- More Nodes can be added
- More replicas can be added
- This will allow faster searches
- Allows better redundancy
- However the number of **primary shards is fixed** at the moment an index is created.
- Effectively, the maximum amount of data that can be stored in the index is defined by this number.
- Is this a limitation

Coping with Node Failure

- Kill Master Node
- Elect a New Master (Node 2)
- Primary Shard 1 and 2 were lost
- Cluster Health : Red
- Node 2 & 3 have Replicas of these shards, which are now promoted as primaries

NODE 2 - * MASTER	NODE 3		
R0 R1 P2	P0 P1 R2		

Beauty Of Elastic Search

 In Elasticsearch, all data in every field is indexed by default. That is, every field has a dedicated inverted index for fast retrieval. And, unlike most other databases, it can use all of those inverted indices in the same query, to return results at breathtaking speed

