NH,
i
s

ELSEVIER

The Journal of Systems and Software 42 (1998) 89-102

LU, The Journal of
\éé> Systems and Software

Effort estimation and prediction of object-oriented systems

P. Nesi *, T. Querci

Department of Systems and Informatics, University of Florence, Via di S. Marta 3, 50139, Florence, Italy
Received 10 February 1997; received in revised form 24 March 1997; accepted 16 May 1997

Abstract

Due to the growing diffusion of the object-oriented paradigm (OOP) and the need of maintaining under control the process of
software development, industries are looking for metrics capable of producing satisfactory effort estimations and predictions. These
metrics have to produce results with a known confidence since the early phases of software life-cycle in order to establish a process of
prediction and correction of costs. To this end, specific metrics are needed in order to maintain under control object-oriented system
development. In this paper, new complexity and size metrics for effort evaluation and prediction are presented and compared with
respect to the most important metrics proposed for the same purpose in the literature. The validation of the most important of these
metrics is also reported. © 1998 Elsevier Science Inc. All rights reserved.

Keywords.: Object-oriented metrics; Effort evaluation and prediction; Analysis and design metrics; Code metrics

1. Introduction

In recent years, several industries moved to the ob-
ject-oriented paradigm (OOP) in the hope of satisfying
their needs in terms of reusability, capability for pro-
gramming “in the large” (i.e., for the capability of the
OOP in modeling the reality by minimizing the cohesion
among entities), etc., (Booch, 1994). In general, the in-
troduction of the OOP is not immediate because it in-
volves managers, analysts, designers, developers, etc.
Thus, the adoption of the OOP implies to change the
whole development process, (i.e., project management,
resource evaluation, resource planning, requirements
analysis, test, design, etc.). In most cases, the introduc-
tion of the object-oriented technology has not been ac-
companied by a corresponding effort to establish
mechanisms for controlling the development process
(Nesi, 1995). This lack is due on one hand to the lack
of internal tradition in controlling the development pro-
cess and, on the other hand, to the lack of consolidated
suitable metrics for evaluating object-oriented projects.

In general, in order to guarantee the control of the de-
velopment process, quantitative metrics for evaluating

* Corresponding author. Tel.: +39-55-4796523; fax: +39-55-4796363;
e-mail: nesi@ingfil.ing.unifi.it; web: http://www.dsi.unifi.it/~nesi.

! This work was partially supported by MURST Ex60% govern
Ministry of University and Scientific Research and by CESVIT, High-
Tech Agency, Center for Software Quality, Florence.

0164-1212/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PI:S0164-1212(97)10021-38

and predicting system characteristics must be used.
One of the most important issues that should be main-
tained under control is the software cost (i.e., the effort).
To this end, a linear/non-linear relationship between
software complexity/size and effort (i.e., man-months
or -days needed for system development, from require-
ments analysis to testing or in some cases only for cod-
ing) is commonly assumed. Therefore, the problem of
effort evaluation is shifted to the problem of complexity
or size evaluation. It should be noted that, when soft-
ware complexity evaluation is performed after system
building, it can be useful for: (i) predicting maintenance
costs, (ii) comparing productivity and costs among dif-
ferent projects, (iii) learning the development process ef-
ficiency and parameters; when software complexity
evaluation is performed before system building, it can
be used for predicting costs of development, testing
and early maintenance, etc.

Moreover, on the basis of the knowledge which is
present in the early stages of the software life-cycle
(e.g., number of classes, main relationships, number of
methods, etc.) the process of code analysis allows the
definition and tuning of metrics for predicting costs.
From the cognitive point of view, the observable com-
plexity can be regarded as the effort to understand sub-
system/class behavior and functionalities. This
complexity can be usually evaluated in the early phases
and can be used for predicting costs of reuse and main-
tenance (Cant et al., 1991, 1994).

90 P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

Traditional code metrics for complexity/size estima-
tion, often used for procedural languages (e.g., McCabe
(1976), (Henderson-Sellers and Edwards (1990), Hal-
stead (1977) and the number of lines of code (LOC)),
are unsuitable to be directly applied for evaluating ob-
ject-oriented systems (Henderson-Sellers and Edwards,
1990; Bilow et al., 1993; Nesi and Campanai, 1996). This
is mainly due to the fact that working with the OOP
leads to shift part of the human resources from the de-
sign/code phase to that of analysis (Henderson-Sellers
et al., 1994). In that phase, classes are identified together
with their main relationships > (is_a, is_part_of, is_re-
ferred_by). On the other hand, following evolutionary
models for the development life-cycle (e.g., spiral
(Boehm, 1986), fountain (Henderson-Sellers and Ed-
wards, 1990), whirlpool (Williams, 1996), pinball (Am-
bler, 1994)), the distinction among phases is partially
lost — e.g., some system parts can be under design when
others are still under analysis. Therefore, these aspects
must be captured with specific metrics, otherwise their
related costs are unmeasurable (e.g., the costs of special-
ization, the costs of object reuse, etc.).

For eliminating the above mentioned drawbacks,
some authors have defined new specific code metrics
for evaluating size and/or complexity of object-oriented
systems. Thomas and Jacobson have suggested to esti-
mate class complexity as the sum of attribute and meth-
od complexities (Thomas and Jacobson, 1989), without
considering the class external interface (i.e., method in-
terface in terms of parameter complexity) and reuse.
Henderson-Sellers has added to the above metric a term
for addressing the problems of reuse (e.g., inheritance)
(Henderson-Sellers, 1991). Chidamber and Kemerer
have presented the Weighted Method per Class
(WMCQC) which is the sum of the complexity of each class
method and where each method complexity is obtained
by using the McCabe complexity (Chidamber and Ke-
merer, 1994), by considering in this way only the func-
tional and computational aspects of the class. Li and
Henry have suggested to count the number of methods
and the number of attributes (with the so-called Size2
metric) for addressing the problem of effort prediction
(Li and Henry, 1993), without weights and, thus, tuning
the model. In Henderson-Sellers (1994), Nesi and Cam-
panai (1996) and Hopkins (1994) issues regarding the
external and internal class complexity have been discus-
sed by proposing several metrics. In Laranjeira (1990)
and Lorenz and Kidd (1994) class complexity has been
estimated by counting the number of LOC for all class
methods. Most of the above mentioned metrics have
been only partially validated.

2 Following different methodologies, some of these relationships are
defined only in the phase of design or also in that of analysis.

Recently, a growing attention on the process of soft-
ware development has created the need to get process-
oriented information and to integrate metrics into the
software development process. Furthermore, owing to
the presence of many differences among projects by
the same company, it is also important to create an inte-
grated environment for software development (editing,
navigating among classes, measuring, etc.) and to per-
form project-oriented tailored measures. This means
that it is important for a company to adopt a unique
method and approach for project measurement, but this
approach must be capable of being tuned in order to
adapt its features to different types of projects and lan-
guages. This process of adaption is usually performed
by adjusting weights and thresholds (Henderson-Sellers
et al., 1994). Some studies with metrics and measure-
ment frameworks for object-oriented systems have been
presented in Laranjeira (1990), Meyer (1990), Hender-
son-Sellers (1993) and Coulange and Roan (1993), Li
and Henry (1993), Brito e Abreu et al. (1995) and Nesi
and Campanai (1996) where general concepts for the es-
timation of system size, complexity and reuse level have
been proposed together with many other metrics.

In this paper, a research about the estimation and
prediction of effort of object-oriented systems coded in
C++ is presented. The metrics proposed belong to a
framework specifically defined for C++ language. The
main aspects of our metric framework have been inher-
ited from that presented in Campanai and Nesi (1994)
and Nesi and Campanai (1996) by the same research
group. Moreover, due to the high number of metrics
which are available in our framework (see Section 4),
only those metrics which are related to software com-
plexity, size and effort are reported and compared in this
paper with respect to the most important metrics pro-
posed for the same purpose in the literature. The metrics
presented in this paper for evaluation and/or predicting
class effort have been validated against several projects.

This paper is organized as follows. In Section 2, the
metrics proposed for evaluating and predicting class ef-
fort on the basis of complexity/size are reported and
compared with well-known metrics proposed in the liter-
ature. Then the validation of the most important metrics
proposed is presented together with a comparison
against metrics extracted from the literature in Sec-
tion 3. This is followed by a very short overview of
our metric framework and tool for automatic code met-
ric evaluation (Section 4). Conclusions are drawn in Sec-
tion 5.

2. Complexity/size of object-oriented systems
Most of the traditional code metrics proposed in the

literature express the complexity/size as a function of a
number of quantities which can be directly determined

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102 91

from system code — (McCabe, 1976; Henderson-Sellers
and Edwards, 1990; Halstead, 1977); others adjust such
measures with coefficients depending on the application
domain. In addition, it has been often demonstrated
that most of these metrics are related to the LOC which
is a typical measure of code size (Shepperd and Ince,
1993).

Starting with the assumption that software complex-
ity and size are strongly related to the effort value, even
for object-oriented systems, several metrics have been
defined (Henderson-Sellers et al., 1994; Thomas and Ja-
cobson, 1989; Henderson-Sellers, 1991; Chidamber and
Kemerer, 1994; Li and Henry, 1993; Henderson-Sellers,
1994; Hopkins, 1994; Laranjeira, 1990; Lorenz and
Kidd, 1994). As discussed in the introduction, most of
them consider only the functional aspects, while others
are based on both structure (i.e., attributes) and func-
tionality (i.e., methods) of class, or try to predict the fi-
nal complexity by considering class public interface and
definition in general (class Fanln and FanOut, i.e.,
method parameters). As is reported in the literature,
among these, no one is considered fully satisfactory;
for this reason, in our opinion, a more complete metric
collection and an integrated metric framework for mea-
suring all object-oriented aspects and, in particular, the
system complexity/size are necessary.

In the following, several metrics related to software
complexity and size are presented. As regards complex-
ity/size three different levels have been considered — i.e.,
method, class and system. For each level, distinct met-
rics have been defined in terms of metrics of lower levels.
The metrics proposed have also been compared with the
most diffuse traditional metrics for complexity (McCabe
Complexity, Mc (McCabe, 1976; Henderson-Sellers and
Edwards, 1990)) and size (Halstead measure, Ha (Hal-
stead, 1977) or LOC (Lorenz and Kidd, 1994)) estima-
tion and with the most diffuse metrics for evaluating
complexity/size of object-oriented systems (WMC (Chi-
damber and Kemerer, 1994) or Size2 (Li and Henry,
1993)). Traditional metrics have also been obviously
adapted by the authors for dealing with object-oriented
concepts when it was possible. The adaption corre-
sponds to what has been done by many other authors
in order to test the capability of traditional metrics in
evaluating object-oriented systems. In general, the met-
rics presented can be regarded as a generalization of
most of the object-oriented metrics proposed in the liter-
ature in the past.

In addition, the validation of the proposed class met-
rics shows the relevance of the metrics proposed with re-
spect to the results obtained by using other metrics. The
metrics proposed present a high number of components.
This approach has been initially followed to analyze the
importance of each metric term. In fact, a process of re-
finement has been performed in order to identify which
of these terms is more significant than the others in mod-

eling the actual effort; for example, by observing the in-
fluence of each metric component in estimating or
predicting effort. This process has been supported by a
statistic multilinear regression analysis (see Section 3).

In order to help the reader to understand the metric
formulation and discussion, the authors have prepared
from Table 1 in which the metrics and their correspond-
ing meaning are reported in alphabetic order.

2.1. Method level metrics

At the method level, most of traditional metrics could
be used since the method complexity is mainly due to
functional aspects. For this reason, the number of
LOC of a method/function (LOC), the Halstead mea-
sure of a method/function (Ha) (Halstead, 1977), and
the McCabe complexity of a method/function (Mc)
(McCabe, 1976; Henderson-Sellers and Edwards, 1990)
can be used. On the other hand, data flow aspects relat-
ed to method/function parameters are neglected (Zuse,
1991). In order to avoid the above problems of McCabe,
LOC and Halstead metrics, more general metrics have
been defined.

Therefore, a substantial improvement with respect to
traditional pure functional metrics consists in consider-
ing also the complexity/size of the methods interface (list
of parameters). The evaluation of complexity/size of
method/function parameters can be even effective for
considering cognitive aspects of method/function com-
plexity (e.g., related to the cost of adoption and reuse)
and for predicting costs of method/function implemen-
tation. Thus, in the context of OOP, this factor can be
very useful for predicting the method complexity since
the phase in which the class structure (attributes) and
public interface (i.e., parameters of methods) are known.
This usually happens much earlier with respect to meth-
od implementation (see Lorenz and Kidd, 1994), in the
phases of detailed analysis.

For the above mentioned reasons, a generic method
complexity can be defined

MCm = WMIC MICm + Wy, (1)

m

where MIC,, is the Method Interface Complexity/size,
and m is a complexity/size metric for method evaluation;
wmic,,» and w,, are weights, which obviously depend on
metric m adopted. These weights are determined by
means of the validation process reported in the follow-
ing; they present different values in different phases of
the software life-cycle for taking into account the chan-
ges in the incidence of functional and data flow aspects.
Their trend can be evaluated by considering a set of sim-
ilar projects. Their estimation can be performed in order
to predict the costs of the next phases of life-cycle as well
as for predicting the global cost of the system (with dif-
ferent confidence levels and reliability). Each specific set
of weights has been obtained by using the corresponding

92 P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

Table 1

Glossary of the metrics mentioned in this paper. Metrics with m parameter are evaluated on the basis of a functional metric selected from: MS, Mc,
Ha or LOC; for example: CCy,. Class Complexity/size based on McCabe ciclomatic Complexity

Metric Comment

CC, Class complexity/size

CC, Class complexity/size, predictive form

CACI, Class attribute complexity/size inherited

CACT, Class attribute complexity/size inherited, predictive form

CACL, Class attribute complexity/size local

CACL), Class attribute complexity/size local, predictive form

CMC,, Class method complexity/size

CMCI, Class method complexity/size inherited

CMCL, Class method complexity/size local

CMICI, Class method interface complexity/size inherited

CMICT, Class method interface complexity/size inherited, predictive form

CMICL,, Class method interface complexity/size local

CMICL,, Class method interface complexity/size local, predictive form

CM,, Class method complexity/size (pure functional)

CM, oc Class method size (Lorenz and Kidd, 1994)

CMy. Class method McCabe complexity (McCabe, 1976; Henderson-Sellers and Edwards, 1990), see
WMC

Cl, Class method complexity/size inherited

CL, Class method complexity/size local

FC, Function complexity/size

GDC,, Global definition complexity/size

GVC, Global variable complexity/size

Ha Halstead metric (Halstead, 1977)

HSCC Class complexity by Henderson-Sellers (1991)

LOC Number of lines of code

Mc McCabe ciclomatic complexity

MC, Method complexity/size

MIC, Method interface complexity/size

MS Method size metric (Nesi and Querci, 1994)

NA Number of attributes of a class

NAI Number of attributes inherited of a class

NAL Number of attributes locally defined of a class

NM Number of methods of a class

NMI Number of methods inherited of a class

NML Number of methods local of a class

NAM Number of attributes and methods of a class

NAMI Number of attributes and methods inherited of a class

NAML Number of attributes and methods locally defined of a class

NCL Number of classes in the system

NGD Number of global definitions

NGV Number of global variables

NLC Number of leaf classes in the system class tree

NOOSC,, Non-object oriented system complexity

NRC Number of root classes in the system class tree

NSF Number of system functions/procedures

SC,, System complexity/size

Size2 NA + NM: number of attributes and methods of a class (Li and Henry, 1993)

TICC Class complexity by Thomas et al. (1989)

T, Total m-based complexity/size of a system (pure functional)

WMC Weighted methods for class (Chidamber and Kemerer 1994), CMy. according to our notation

effort, for example the total effort for obtaining the
weight for the prediction of the total effort in the next
projects.

The presence of MIC,, metric makes MC,, metric us-
able as a predictive metric, since MIC,, metric can be es-
timated even if the method has not been implemented,
but its prototype is known. MIC,, takes into account
the usually neglected relationships which are established
among classes by means of the parameters of the meth-

ods. MIC,, is estimated by considering the sum of class
complexity/size of each method parameter (the infinite
recursion in the estimation of class complexity/size is
constrained by limiting the recursion to one level). Ele-
mentary types of the language have an assigned com-
plexity. For these reasons MIC,, and MC,, are greater
than zero when only the class definitions in terms of at-
tributes and method prototypes are present even partial-

ly.

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102 93

Metric m can be the well-known McCabe ciclomatic
complexity (McCabe, 1976; Henderson-Sellers and Ed-
wards, 1990) (i.e., m = Mc), the number of LOC (i.e.,
m = LOC), the Halstead metric (Halstead, 1977) (i.e.,
m = Ha), or our Method Size metric (Nesi and Querci,
1994) (i.e., m = MS). Therefore, a set of structurally
similar metrics (MCpye, MCroc, MCha, MCys) have
been defined. In this paper, the term ‘“‘complexity/size”
metric is adopted, since some of the above metrics eval-
uate program complexity and the others estimate pro-
gram size, then the parametrized metrics can be either
a complexity or a size metric. MC,, metrics are more
complete than the simple complexity/size metrics on
which they are based. In fact, they present the terms
MIC,, to adjust the traditional functional metrics for
both: (i) to take also into account complexities due to
data flow, (i) to obtain measures even when the method
is only partially implemented or simply identified. The
above metrics can be obviously useful for obtaining
more complete evaluations of non-object-oriented sys-
tems.

MS metric has been defined by the authors in order to
obtain a reliable evaluation of method size (Nesi and
Querci, 1994). This metric partially avoids the problems
of McCabe complexity which in some cases estimates
low values for synthetic constructs of the language
which once they are exploded produce a high complexi-
ty. MS is based on code analysis and takes into account
the presence of elementary language tokens and con-
structs in both class definition and method implementa-
tion (if, for, switch, else, continue,
break, return, while, public, private,
do, case, typedef, struct, default, class,
friend, virtual, int, char, float, etc., as-
signments, function/method prototype/definition, opera-
tor definition, casting, and algebraic, comparative, and
Boolean operators) and the nesting of levels (Nesi and
Querci, 1994). Since this metrics considers both func-
tional and definitional aspects it results better ranked
for evaluating the above mentioned metrics.

2.2. Class level metrics

At the level of class, by using McCabe, Halstead, and
LOC metrics it is immediately possible to define a set of
pure functional class metrics. Their usual definition for
working with classes is obtained by considering the
sum of complexities of all class methods:

CM,, = Zm(i). (2)

where CM,, is the complexity/size metric for class meth-
ods obtained by using metric m, NM is the number of
class methods. Therefore, the following class metrics
can be defined: CMy, a class level metric based on
McCabe metric; CMy,, a class level metric based on

Halstead metric and CM, oc, a class level metric based
on the number of LOC. In the literature, it has been of-
ten demonstrated that CM,, metrics are not very suitable
for evaluating object-oriented projects, since they are
not capable of considering the object-oriented aspects
(Thomas and Jacobson, 1989; Henderson-Sellers,
1991). In fact, they neglect information about class spe-
cialization (is_a, that means code and structure reuse),
and class association and aggregation (is_part_of and
is_referred_by, that mean class/system structure defini-
tion and dynamic managing of object sets, respectively).
On the other hand, CM) (equivalent to WMC (Chi-
damber and Kemerer, 1994)) and CM| ¢ (used in Lor-
enz and Kidd, 1994) have been adopted as good
compromises between precision and simplicity of evalu-
ation. CMyoc can be set to count also the lines devoted
to the definition of classes.

On the other hand, on the basis of the metrics pre-
sented in Section 2.1 (see Eq. (1)), a more general metric
for evaluating class complexitylsize due to methods (func-
tional part of the class) has been defined

CMC,, = %Mcm(i), (3)

where CMC,, (Class Method Complexity) is the whole
complexity/size due to methods for a class estimated
on the basis of metric m. Therefore, the following class
level metrics have been defined: CMCy, based on
McCabe metric; CMCy,, based on Halstead metric;
CMCioc, based on the number of LOC, and CMC\gs,
based on our MS metric. This last set of metrics takes
also into account the method interface according to

Eq. (1)
NM NM
CMC,, = WMIC,,,ZMICm(i) + mem(i). (4)

These metrics are capable of obtaining estimation values
even when the class implementation is not yet available
if the class definition in terms of attributes and method
prototypes are known, even partially. This is due to the
presence of MIC,, as explained in the previous section.
Even these metrics are not capable of considering the
typical relationships of specialization, aggregation and
association of object-oriented.

According to the above discussion, a fully object-ori-
ented metric for evaluating class complexity/size has to
consider also attributes and methods both locally de-
fined and inherited. These factors must be considered
for evaluating the cost/gain of inheritance, and that of
the other relationships. Therefore, the class complexity,
CC, is regarded as the weighted sum of local class com-
plexity (CCL) and inherited class complexity (CCI) (re-
cursively till the roots are reached)

CC = CCL + CCI. (5)

94 P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

Since CCL and CCI are expressed in terms of complex-
ities due to attributes and methods (local and inherited),
respectively, CC assumes the form

CC = WCACLCACL + WCMCLCMCL
+ WCACICACI + WCMCICMC:I7 (6)

where CACL is the Class Attribute Complexity Local,
CMCL the Class Method Complexity Local, CACI
the Class Attribute Complexity Inherited, CMCI the
Class Method Complexity Inherited (e.g., complexity re-
used). In this way, CC takes into account both structural
(attributes, relationships of is_part_of and is_re-
ferred_by) and functional/behavioral (methods, method
“cohesion” by means of CMICL and CMICI included
in CMCI and CMCL, respectively) aspects of class.
Weights in Eq. (6) must be evaluated by a multilinear re-
gression analysis by knowing class effort Rousseeuw and
Leroy, 1987), as will be discussed in the following. In
general, wcacy is typically negative stating that the inher-
itance of attributes leads to save complexity/size and,
thus, effort. Since the effort for defining and implement-
ing overwritten and overloaded class members is a real
cost these are evaluated in both local and inherited class-
es. The weights take into account also these aspects de-
pendently on the usual style of the company/team and
on the context of the application.
In CC, CACL and CMCL are defined as follows:

NAL

CACL = > "AC, (7)
NML

CMCL = > MC(i), (8)

where NAL, Number of Attributes Local; NML, Num-
ber of Methods Local. CACI and CMCI are analogous-
ly defined (see Table 1 for a summary). Please note that
attributes can be: (i) class instances and, thus, they are
evaluated by considering metric CC of their correspond-
ing class (i.e., AC=CC), or (ii) basic types (e.g., char,
int, float, etc.) for which the complexity is posed to
predefined values. The same mechanisms are used for es-
timating CACI and CMCI from superclasses. It should
be noted that MC can be one of the previously presented
metrics at the level of method, see Eq. (1). Therefore,
CMCL and CMCI are estimated on the basis of
Eq. (4). In particular, by considering Eqs. (4) and (6):

CC,,, = WCACL,, CACLm + CMCLm

+ weaar, CACI, + CMCI,,)
where
CMCLm = WCMICL,,, CMICLm =+ WCL,,, (:Lm7 (10)
CMCIm = WCMICI,,ICMICIW + WCI,,,CIm . (1 1)

Note that, attribute complexity/size of class instances
are also considered by using CC,,; then, their weights de-
pend on the kind of metric used for evaluating methods.

On the basis of the above discussion, several fully ob-
ject-oriented metrics based on functional metrics,
CCue, CCha, CCroc and CCys, have been defined.

During the analysis and validation of these metrics
other versions of them have been adopted and tested.
These versions have been obtained by starting from
the previously defined metrics and reducing the number
of terms — for example, by considering only methods,
only attributes, only members inherited, only local
members, etc. This analysis has been performed on the
basis of technique (Rousseeuw and Leroy, 1987) for
identifying the most important terms.

It should be noted that values for CC,, metrics are ob-
tained even if only the class structure (attribute and
method interface) is available. This can be very useful
for class evaluation and prediction since the early phase
of class life-cycle. The weights or the interpretation scale
can be adjusted according to the phase of the system life-
cycle in which they are evaluated as in Nesi and Campa-
nai (1996).

Please note that the WMC of Chidamber and Ke-
merer (1994) is the sum of all McCabe complexities of
class-methods which is equivalent to the previously men-
tioned CM .. It is also very similar to CL which is esti-
mated by using Mc previously shown. The metric
proposed by Thomas and Jacobson (1989) and the evo-
lution proposed by Henderson-Sellers (1991) can be de-
fined in terms of CC components, that is,
TICC = WCACLCACL + WCLCL and HSCC =
weacL CACL + we CL + weiCl, respectively. For these
reasons, CC,, can be considered as a generalization of
these metrics.

As previously pointed out, metric CC,, can also be
used for predicting class complexity/size. In particular,
the prediction can be obtained on the basis of class def-
inition, that is, attributes declarations and methods pro-
totypes. This estimation can be performed during system
analysis/early-design. According to these requirements
the following predictive version of CC,, metrics has been
obtained:

CC = wg ACL, CACL! + W’CMICLWCMICL;”
+ WICACI,,I CACI:n + WICMICI,,ICMICI:W (12)

In this case, CACI, and CACL], are obviously estimat-
ed on the basis of the CC), of class members. Even in
this case, the weights must be evaluated on the basis
of a set of reference projects by using a validation pro-
cess such as that reported in the next section.

A cheaper approach can be simply based on counting
the number of local attributes and methods (see metric
Size2=NAL + NML defined by Li and Henry
(1993)). On the other hand, the simple counting of class
members (attributes and methods) could be in many
cases too coarse. For example, when an attribute is an
instance of a very complex class its presence in a class
often implies a high cost of method development which

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102 95

is not considered simply by increasing NAL of one unit.
Moreover, Size2 does not consider the class members in-
herited (that is, reuse). For these reasons, in order to im-
prove the metric precision, a more general metric has
been defined by considering the sum of the number of
class attributes and methods both local defined and in-
herited, respectively.

NAM = NAML + NAMI, (13)

therefore, NAM can be expanded assuming the form

NAM = WNALNAL + WNMLNML + WNA[NAI
+ wamiNMLL <14>

Also in this case, the typical values of weights must be
estimated by using a multilinear regression technique.

Therefore, code metrics can be used for effort predic-
tion because according to OOP some definitions about
classes are available since the early phases of the soft-
ware life-cycle. For example, during the analysis one
has at least, for each class, the number of attributes
and methods (not the definitive number but an early ap-
proximation), then the types of the attributes and the
parameters of methods are defined (even partially), then
class relationships are defined, then the phases of meth-
od implementation begins, etc. Therefore, specific code
metrics based on the number of class members, attri-
butes, methods and definitions can be profitably used
as metrics for predicting costs of the successive phases
as well as for predicting the final cost.

2.3. System level metrics

According to the current C++ interpretation of the
OOP, the system level can be comprised of: (i) a set of
classes which can be organized in one or several class
trees, (ii) a set of C functions/procedures (even the main
program in C++ is a function/procedure, if no window
support is present), (iii) a set of global definitions of
types, structures, unions, etc., and (iv) a set of global
declarations of variables (static instantiation of global
variables). Differently from what is stated by the OOP,
in some C++ systems these factors are a significant part
of the system itself. The reference projects used for the
metric validation reported in the following present so
small components of type (ii), (iii) and (iv) which could
be even neglected. On the other hand, in other C++ sys-
tems these non-object-oriented parts may be too rele-
vant to be neglected.

At the system level, several direct metrics can be de-
fined in order to analyze the system structure — e.g.:
NCL, Number of CLasses in the system; NSF, Number
of System Functions/procedures; NGD, Number of
Global Definitions (excluded classes, only typedef,
enum and struct); NGV, Number of Global Vari-
ables (global declaration of instances); etc.

On the other hand, System Complexity, SC,,, is an in-
direct measure which in our framework is defined as

NCL NSF
SCy = wee, »_CCy(i) +wre, > _FCy(i)

NGD NGV

+wepc, Y GDC,(i) + wovc, Y GVCy(i), (15)

where FC,,, GDC,, and GVC,, are complexity/size met-
rics for taking into account non-object-oriented aspects,
that is, functions, global definitions and global declara-
tion of variables, respectively. Definitions and variable
declarations are counted by using the same mechanisms
as that adopted for classes and method parameters, re-
spectively. Note that FC,, is evaluated by applying the
previously defined metric CM,, (see Eq. (2)) to C func-
tions/procedures. SC,, is computed by using the com-
plexity of all system classes augmented by functional
and data complexities due to global parts which can
be found in object-oriented programs written in C++.
In SC,,, weights wcc,,, and wgc, are typically set to 1,
while wgpc, and wgyc, have a lower value, typically 1/
20 (these values have also been estimated by means of
a multilinear regression analysis). This fact does not
mean that the adoption of global variables makes the
system less complex or cheaper, but that GVC,, and
GDC,, present a different scale with respect to the other
metrics. It should be noted that since SC,, has been de-
fined in terms of CC,, which, in turn, can be estimated
since the early phases of class life-cycle (CC)), the sys-
tem complexity presents the same capability.

SC,, metric is capable of producing a more precise
evaluation of system complexity since it considers relat-
ed to the aspects of functional, data and OOP relation-
ships, differently from traditional system metrics: Total
McCabe Complexity (7y) indirectly based on
McCabe’s metric, the Total Halstead Ty,), and the Total
Number of Lines Of Code (7;oc) defined as on the basis
of previously defined metrics

NCL NSF

T, =Y CM, (i) + Y FC,(i), (16)

where also in this case m can be Mc, Ha, MS or LOC.

3. Comparison and validation of metrics

A metric analysis has been performed in order to
identify which metric of the above-mentioned class met-
rics is better ranked for evaluating and/or predicting
class effort.

The comparative analysis with validation has been
carried out among the previously defined metrics and
those already defined in the literature. Moreover, since
most of the new metrics defined are very complex and
computationally expensive to be evaluated (see

96 P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

Eq. (9)), an analysis to verify the influence of their pa-
rameters in producing the final result has been perform-
ed in order to identify the minimum number of
parameters which are needed to obtain reliable mea-
sures. Therefore, the analysis performed is more than
a simple validation since it has produced a clear view
of the above cited and defined metrics for estimating
class effort. The formal definition of the computational
complexity is quite hard since it depends on the relation-
ships defined among classes.

The validation has been performed by considering
three projects with the overall values reported in Table 2
(where: NRC is the Number of Root Classes, NLC the
number of leaf classes, and NOOSC) is the system
complexity due to non-object-oriented parts, see
Eq. (15)). The first reference project is an object-orient-
ed CASE tool TOOMS (Bucci et al., 1993, 1994); the
second is QV, an object-oriented class library for build-
ing applications having GUI on Motif environment, and
the third project is the object-oriented software for con-
figuring and controlling automatic milling machines,
called ICOOMM (ELEXA, CB-Ferrari, Italy). In both
TOOMS and ICOOMM projects, class libraries for
GUI (i.e., CommonView and MSVC++, respectively)
have been used.

All the above projects have been built by using ob-
ject-oriented analysis and design methodologies (i.e.,
Booch, 1994), maintaining under control the develop-
ment process by using the metrics presented above with
the tool discussed in Section 4. During the development
process periodic evaluation sections have been perform-
ed; moreover, the actual effort for each class has been re-
corded on the project database. At the end of the
projects, the measures obtained on the several versions
of the projects and the actual effort recorded have been
used by a multilinear regression analysis for evaluating
weights and, thus, for obtaining specific metrics for the
different phases of the software development.

According to the values reported in Table 2, the
mean number of methods per class is 8.65, the mean
number of class per tree is 5.8. These and others values
are in accordance with the typical values obtained by
others Lorenz and Kidd, 1994; Henderson-Sellers et
al., 1994) when criteria of object-oriented analysis and
design are used by skilled people.

In this paper, only the validation at the level of class
has been reported since it can be considered the most in-
teresting one for the OOP. On the other hand, we have
also proposed method level metrics since they are used
for defining class level metrics, and system level metrics

to give an idea of project dimensions. Note that, being
available the effort for each class the metric validation
has been based on 524 measurements. As demonstrated
by the confidence values reported from the multilinear
regression analysis a confident validation has been ob-
tained even with only 47300 LOC. Moreover, the identi-
fied weights evaluated for the discussed metrics have
been used to maintain other projects under continuous
metrication, confirming that the values obtained are re-
liable. In their evaluation sections, predictive and a-pos-
teriori metrics have been used to predict the cost of the
next phase and evaluate the current costs. The simulta-
neous evaluation of actual cost of these projects has al-
lowed the revalidation of the metrics with their weights,
which have been confirmed in value and sign.

As previously discussed, the above mentioned metrics
can be classified in a-posteriori and predictive metrics.
The validation/analysis of metrics for these two catego-
ries are separately discussed in Sections 3.1 and 3.2. In
other terms, a-posteriori or code metrics take into ac-
count the whole class aspects, attributes and methods
(locally defined and inherited) and need for their evalu-
ation the complete C++ code of the system. Predictive
metrics are those which typically count the number of
class members or are capable of obtaining estimations
since the phase in which the class is defined and not
yet implemented. By using the effort data (in man-hours)
relative to the above mentioned projects, the optimal
weights which must be placed into the expressions of
CCums, CCme, CCha, CCroc, CCyg, CChys CChys
CC] o> and NAM, to obtain the maximum correlations
have been estimated. This analysis has been performed
by using a multilinear least-squares technique (Rous-
seeuw and Leroy, 1987) considering: (i) the relationship
between effort and metrics as linear, (ii) the effort as the
value of metrics, and (iii) the weights as unknowns.

3.1. A-posteriori estimation

In Table 3, the results of multilinear regression ana-
lyses are reported. The analyses have been carried out
by considering the real effort in man-hours and metrics:
CCus, CCpye, CCrLoc and CCy,, by using the techniques
discussed in Rousseeuw and Leroy (1987).

In Table 2, the values of correlation, the variance of
correlation (variance of the error function between the
metric and the actual effort), the scale of the regression
line evaluated, and other statistical values are reported
for each CC,, metric. Hence, it can be observed that a
high value of correlation has been obtained for all met-

Table 2
Overall values for the projects used for the estimation of weights

NCL NRC NLC NM SCwus NOOSCyns Troc Twme Tha
Total 524 90 368 4537 233935 1230 47337 10086 36188534

Table 3

Results of the multilinear regression analysis for effort evaluation of classes by using metrics CC,,: values of weights and their corresponding confi-

dence values are reported

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

CC,, m = MS m = Mc m = LOC m = Ha

w t-value p-value w t-value p-value w t-value p-value w t-value p-value
CACL, .001 4.97 .000 .001 4.39 .000 .001 4.82 .000 .001 4.19 .000
CL, .022 10.01 .000 .092 7.46 .000 .016 8.63 .000 .006 8.37 .000
CMICL, .042 3.39 .001 .042 2.66 .009 .053 4.10 .000 .087 8.18 .000
CACI, -.026 -3.48 .001 -.070 -3.57 .001 -.023 -249 .014 -014 -195 .054
Cl, —-.002 -72 471 .014 1.28 202 —-.001 -.59 .554 .001 .53 .598
CMICI, .013 1.75 .083 .014 1.39 .166 .010 1.49 .140 .002 .28 776
Eff-corr. 0.945 0.926 0.935 0.937
Variance 192.98 149.28 145.68 216.63
LS scale 2.928 3.379 3.166 3.120
R-squared 0.911 0.881 0.896 0.899
F-stat 159.24 115.79 134.00 138.47
p-value 0.000 0.000 0.000 0.000

rics. The correlation between CCroc and effort presents
the lowest value of variance of correlation. Lower values
of variance correspond to less-spread distributions of
the departure from the model - i.e., a lower probability
to get the wrong effort estimation or prediction by using
the selected metric. For these reasons, the analysis re-
ported shows that traditional functional metrics can be
profitably employed for evaluating object-oriented sys-
tems if they are used as a basis for more complete met-
rics — that is, by using them for defining metrics capable
of considering all aspects of the OOP. This is also con-
firmed by the results presented in Table 4, where the
well-known metrics for class estimation: WMC, the pure
functional metrics CM;gc, and CMypy, are also com-
pared on the basis of correlation value and variance of
the departure from the model. Please note that WMC
is widely diffuse for evaluating object-oriented systems,
but it consists in evaluating the McCabe complexity of
class methods, that is CMy,.. The metrics proposed in
this paper present both a higher value of correlation
and a lower value of variance; thus, they are better
ranked with respect to those reported in Table 4. The
differences among the values of correlation are not so
strong but, the values of variance are in these cases more
important since they give an idea of the estimation con-
fidence.

Table 3 reports the values of the weights, w, with
their corresponding t-values and p-values Rousseeuw
and Leroy, 1987). Intuitively, z-value is an index which
establishes the importance of a coefficient for the gen-
eral model. A coefficient can be considered significant if

Table 4

t-value is greater than 1.5 (since a high number of mea-
sures have been used for the regression). On the basis
of t-value, the confidence intervals can be evaluated.
p-value can be considered a probability; when it is less
than 0.05 the corresponding coefficient is significant
with a confidence of 5%. Therefore, components CI,
and CMICI,, are the least significant in all CC,, met-
rics. In fact, by removing these coefficients in the defi-
nition of CC,, metrics, very similar results are obtained
with a simpler metric. In our experiments, it was shown
that coefficients CACL,,, CL,,, and CMICL,, are en-
ough for obtaining correlations of 0.93 (high values
of t-values and p-values all lower than 0.05). By remov-
ing terms of metric CC,, (see Eq. (9)), a very light de-
crease in correlation and an increment of the variance
have been obtained (until the above mentioned version
with three terms was defined); while a strong degrada-
tion was obtained by removing one of the remaining
terms.

The process of analysis has also demonstrated that
the values which can be obtained by using TICC and
HSCC metrics are less satisfactory with respect to those
obtained by CC,, which result to be their generalization.
For these metrics, values of correlation lower than those
obtained for CC,, have been registered. In particular,
HSCC metric presents CI which has been demonstrated
to be totally un-useful for effort estimation.

By considering the weight values estimated for met-
rics CCys, CCe, CCroc and CClh,, it can be noted that
weight related to components evaluating complexity/size
of attributes and methods inherited are negative for

Comparison between the metric defined for effort evaluation of classes with respect to the most important metrics of the literature

WMC = CMy,. (Chidamber and Kemerer, 1994)

CMioc (Lorenz and Kidd, 1994)

CMy, (Halstead, 1977)

Eff-corr.
Variance

0.90
245

1

0.91 0.82
86 423

98 P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

most of those metrics. This confirms that the inheritance
mechanism is a means for effort saving.

A ratio of about 11—0 for wer/wer, as was estimated in
our reference projects, is in compliance with the main
concepts of object-oriented analysis and design. In fact,
this ratio states that an opposite ratio is present between
method complexity/size: CI/CL. Thus, a typical class in-
herits methods for a complexity 10 times bigger with re-
spect to that locally defined. Similar values have been
obtained by several other authors as previously stated.

3.2. Predictive estimation

In Table 5, the results of the multilinear regression
analysis by considering the real effort and metrics
CCys» and CC o, by using the technique discussed in
Rousseeuw and Leroy (1987), are reported. Also in this
case, the table reports the values of the weights, w, with
t-values and p-values. As for the a-posteriori metrics the
weights of the coefficients of complexity/size of attri-
butes inherited are negative, confirming effort saving
by using the inheritance (as above, the effort saving is
comprehensive of the cost of reuse, thus, globally, it is
better to inherit rather than to rebuild). Component
CMICI,, is the lowest significant in all metrics. In fact,
by removing this term in the definition of CC], metrics
(and re-evaluating the multilinear regression line) the
corresponding correlation remains close to 0.87, while
the variance decreases to about 200. In this case, the re-
duction of terms improves the results obtained with the
complete version of CC| reported in Table 5, where
variances in the range 600-700 are obtained. Please note
that the absolute value of weights also depends of the
phase of the development life-cycle in which the predic-
tion is performed and if the prediction is carried out for
evaluating the effort to reach the next phase or to com-
plete the project.

The multilinear regression analysis has also been em-
ployed for analyzing the importance of the coefficients of

Table 5

metric NAM (see Eq. (14)). For the version of NAM
with all its terms a correlation of 0.717, a variance of
about 3000, and a scale of 6.2, have been obtained. In
this case, the fact that wyy is negative means that inher-
iting methods are less expensive than defining them ex-
novo. In out reference projects a ratio of 5 between the
number of methods inherited and locally defined was es-
timated. This is in compliance with the values obtained
by others when the good criteria for object-oriented
analysis and design were employed by skilled people.

Please note that a correlation value of 0.719 with
1700 of variance has been obtained for Size2. In this
case, it has been observed that the most significant com-
ponents of NAM are NAL and NML, while NAI and
NMI are only partially correlated with the effort (p-val-
ues equal to 0.32 and 0.33, respectively), thus confirming
the validity of metric Size2 defined in Li and Henry
(1993). Please note that, when independent variables
with very high p-values and very low z-values (low cor-
relation with the effort) are removed, then the correla-
tion and its variance may usually improve (Rousseeuw
and Leroy, 1987).

The values of correlation and variance for Size2 and
NAM are less satisfactory with respect to predictive
metrics CC) ; on the other hand, Size2 metrics is more
easily evaluated. For these reasons, the suggestion is to
adopt Size2 when the number of methods and attributes
is known while it is better to consider CC,, when more
information on class definition is available. CC, can
be used even when class attribute types and class method
prototypes are only partially known. In these condi-
tions, each method/attribute identified but not fully
specified as type/prototype can be simply counted as a
value equal to the metric scale (see Table 5).

This method can be very encouraging because the
cost of obtaining values for these metrics since the early
phases of software life-cycle is very low. Therefore, small
errors should be accepted in the predictive estimation of
effort by using those metrics.

Results of the multilinear regression analysis for effort prediction of classes by using metrics CC),: values of weights and their corresponding confi-

dence values are also reported

CC, m = MS m = LOC

w t-value p-value w t-value p-value
CACL,, 0.002 9.10 0.000 0.002 9.05 0.000
CMICL,, 0.123 9.33 0.000 0.123 9.29 0.000
CACT, -.027 -2.48 0.015 -.028 -2.31 0.023
CMICT, 0.010 1.56 0.121 0.009 1.44 0.152
Eff-corr. 0.881 0.880
Variance 688.98 770.55
LS scale 4.230 4.243
R-squared 0.810 0.809
F-statistic 101.87 101.19
p-value .000 .000

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102 99

3.3. Context

The values for the weights depend on the application
context. Therefore, it is possible to obtain more precise
results by adjusting the weights depending on the type
of the system under development. This can be simply
done by using 2-3 reference projects into the selected
area and estimating weights with the previously applied
method. The reference projects must be in compliance
with the OOP and the quality profile defined on the basis
of company’s needs (Nesi and Campanai, 1996). On the
other hand, the magnitude of weights remain quite un-
changed (among the weights only weyicr and weacr tend
to increase their values along the development life-cy-
cle). The reported weights are valid for applications
which adopt an object-oriented library of classes for
managing GUI with windows (e.g., Motif plus Com-
monView, MS-Windows plus MSVC++). They have ap-
proximately the 30% of code devoted to user interface
management.

3.4. System level

It should be noted that by using the weights estimated
several other small-medium sized projects (with similar
characteristics) have been measured with satisfactory re-
sults. In particular, in the case of LIOO project (imple-
mentation of a graphical and interactive editor for
music) it has been early analyzed for predicting effort
and, during its implementation, for periodically verify-
ing costs of development (in effect, the project has been
controlled during its life-cycle, in order to maintain its
costs and quality acceptable according to the quality
profile defined, see Nesi and Campanai (1996)).

On the basis of the estimation of NAML, after the
analysis/design phases (when only an effort of 765
man-hours was spent), a final effort of 980 was predict-
ed. This prediction has been confirmed by the final ver-
sion of the LIOO system which consists of 104 classes,
12843 lines of code was built by using 1150 man-hours
(for analysis, design, code and test, plus other 639 hours
for documenting); a team of seven people with a project
manager/analyst was employed. As regards the final
SCus, a value of 389 man-hours (only for coding) was
estimated, while the real effort was 383.5 man-hours.
The estimations on final code have confirmed the effica-
cy of the weights evaluated and, thus, the power of the
metrics defined as depicted in Fig. 1, where the correla-
tion of CCys-Effort is equal to 0.93 with variance of 95,
while the correlation of WMC-Effort equal to 0.89 and
variance of 180, etc.

In addition, since the metrics at the system level are
mainly based on class complexity plus few functional
parts, it is quite obvious that even at the system level
the object-oriented metrics proposed (CC,, CC,,
NAM) are better ranked with respect to system metrics

defined in terms of WMC (Chidamber and Kemerer,
1994), CMy, (Halstead, 1977), Size2 (Li and Henry,
1993) and CM| oc (Lorenz and Kidd, 1994) metrics. This
assumption is quite true since according to the OOP the
system is substantially regarded as a collection of class-

80 3
70
60
50
@ 40
:I
8
30 o s
o
20 el °
L
W0F Py
o
SR
0 %’@o °
-10
0 10 20 0 40 50 60 70
Effort
80
O]
70
60
50
°
Q
= 40
2
30
2
20 o” L s
e 2
0,
° e
L4
10 Ny 5
d
o W8 v i v
0 10 20 30 40 50 60 70
Effort
80
70
60 2 s .
°
50
o
[Q.
&% 40 . P
o
30 s
4
2 ° ° °
° <
° L
10 ... %5,
P ©
o
4
0 L
0 10 20 30 40 50 60 70

Effort

Fig. 1. Correlation of metrics with respect to effort, from left to right
CCys, WMC, Size2 (evaluated on project LIOO, normalized values).
Line with the optimal correlation is also reported.

100

es. On the contrary, most of the newly proposed metrics
are computationally more complex.

4. Short overview of metric framework

In the literature, many metrics frameworks have been
presented — e.g., (Henderson-Sellers, 1991; Zuse, 1994;
Meyer, 1990; Henderson-Sellers, 1993; Coulange and
Roan, 1993; Li and Henry, 1993; Brito ¢ Abreu et al.,
1995). The metrics previously proposed belong to a met-
ric framework such as many other metrics. Our ap-
proach is based on three different system views: a
technical, a cognitive, and a process-oriented view (Nesi
and Campanai, 1996). The technical view refers to the
software engineering aspects of system specification
(size, complexity, etc.); the cognitive view takes into ac-
count the external understandability and verifiability
of system components and libraries, and the process-ori-
ented view refers to system aspects which are influenced
by or can influence the process of system development
(productivity, reuse, size, cost, etc.). Each metric that be-
longs to this view can also be used for producing predic-
tions on its corresponding measure. These three views
are evaluated in a common measurement framework

[d] QV Font
[d] RadioButton
[d] Range

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

in which each view can influence the others as in Nesi
and Campanai (1996). Metrics of each view can be em-
ployed in different phases of system evolution: the cogni-
tive metrics during system development and/or in system
maintenance, the technical metrics for the evaluation/
certification of some specific characteristics of the sys-
tem; the process-oriented metrics for evaluating the im-
pact of technology on the whole development process.
All metrics have been analyzed and validated by using
the previously presented technique.

All these metrics can be evaluated by using the tool,
Tool for Analyzing C++ code (TAC++) specifically de-
fined for C++ language (see Fig. 2). The main aspects of
our metric framework have been inherited from that
presented in Campanai and Nesi (1994) and Nesi and
Campanai (1996) by the same research group; Nesi
and Campanai (1996) version worked on formal ob-
ject-oriented language named TROL (Bucci et al.,
1994) and was directly integrated into its CASE tool.
An accurate work has been performed for remapping
metrics from TROL to C/C++ and for building a new
and independent software instrument for obtaining au-
tomatic evaluation of more that 130 direct and indirect
metrics at the level of class. TAC++ is a research proto-
type and not a commercial tool. It is very suitable for

Widget InWindow;

Widget MenuBar;
Widget PopupMenu;
Widget SerollWindow;
Widget toplevel;
Widget ‘WindowFrame;

[d] ReSizeEvt
[d] Rectangle

< Event > 0,0,11
| < SerollEvt >1,1,0

1.00 93933900 284 J

1,00 933993,00 286,5

N

0 /

1 1/CRI 1,00 999333,00 9

2 1/CR

3 M 0,00 93,00

4 118 0,00 993939,00

5 70,0
(Vo] Activate(Event) 5 Ge o 1.0
[0di] AddInControlList(pContr 7 CAST 0.00 173.00
[V0di] ButtonClick(Control Evt 8 CHSL 0,00 554,00
[V0di] ButtonDblClk(Control E 9 CHST 0,00 553,00
[0di] CanvasErase() 1 ICSL 0,00 S66.00
[0di] CanvasRect() 11 ICSI 0,00 571,00

12 ECSL 0,00 365,00

13 ECSI 0,00 365,00

14 CsL 0,00 931,00

15 Cst 0,00 936,00

16 cs 0,00 1080,00

CuwrsorPoint;
DrawingList;

Point
pQVList

£.43
88,00 20,05
0,01 17246,18
L0 68,86
W00 12,22
L00 0 31,55

200 SB.SEry0) qogL Ny)
75.3L /‘l«
£9.21 / Sn
‘\\\\ '~

+[13] ECSI

(121 EcsLs
: sl

§7
12

oi st

Cs1

Fomo

5%

5,00
566,00
107,47
365,00 997 cwst T
20,12

| e

) (1] 1/CRI

5,00

0.00 2
76.50

127,53

208137 cwsL

931,00
5.00
936,00

[0] 1/CRL

(73 CAsI

21 1/CR

(6] CASL .

! I [3] N
(41 1IS

(57 CCL

Fig. 2. TAC++ at work.

P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102 101

studying metric behavior and includes class browser and
editing capabilities; therefore, it can be considered an in-
tegrated instrument for developing and maintaining un-
der control (e.g., quality, effort, etc.) C/C++ code. This
is also guaranteed by the fact that most of the defined
metrics are capable of producing results since the early
phases of the software life-cycle. The aim of our frame-
work and tool is to cover the entire development life-cy-
cle by using a unique tool in order to provide to software
developers and managers an appropriate instrument for
automatically analysing software since the early phases
of system development when only classes and their main
relationships are defined.

TAC++ is capable of performing measures in compli-
ance with ISO 9126 since specific metrics for the classical
six features of quality profile can be easily evaluated.
TAC++ allows the users to define new high-level metrics
on the basis of metrics, indexes, and variables already
defined in the metric framework by connecting them
with classical operators. In addition, a dedicated and
fully configurable visualiser can be used for defining spe-
cific graphical representations of views/profiles (by using
Kiviat, line graphs, bars, pies, etc.). The views defined
can be used for monitoring aspects of the system under
assessment, at level of class, method and system on the
basis of the context for which they are defined (quality
analysis, reuse analysis, verifiability and test analysis,
etc.). In these graphical views of profiles, different
weights, reference thresholds, minimum and maximum
values for diagrams can be set according to the compa-
ny/user goals and product profile.

5. Conclusions

The adoption of the OOP has produced a great de-
mand of specific metrics. In the past, many researchers
have proposed several direct and indirect metrics for ef-
fort evaluation of object-oriented systems — e.g., WMC,
Size2, TICC, HSCC, CM_gc, Size2, etc. In this paper,
these metrics have been compared with new and more
general metrics for class complexity estimation. During
the validation phase, it has also been demonstrated that
the metrics proposed with optimal weights present the
highest correlation with the real effort with respect to
the other metrics. In addition, the same metrics have a
low value for the variance — i.e., they are also quite
reliable. Factors that reduce the costs of class devel-
opment have been also highlighted on the basis of
objective results (e.g., inheritance of attributes). More-
over, the metric proposed are capable of producing reli-
able evaluations considering a restricted number of
terms. As a limit, the fully predictive metric, CC,, has
been proposed. This metric is not very precise, but it
can be evaluated since the early stages of software life-
cycle.

As a conclusion, the validation phase reported in this
paper and the one in Nesi and Campanai (1996) have
demonstrated that metrics presented in this paper are
enough general to be used for strongly different object-
oriented languages (in fact, their main concepts were
also employed for TROL (Nesi and Campanai, 1996)).

Acknowledgements

The authors would like to thank in particular the fol-
lowing members of TOOMS, ICOOMM, QV, LIOO
and MOODS teams for collecting data about effort class
per class: M. Campanai, M. Traversi of CESVIT, U. Pa-
ternostro, F. Fioravanti, S. Crucchi, M. Bruno, F. Bell-
ini, F. Butera, N. Baldini, F. Spinu, M. Perfetti of Elexa.
A special thank to B. Pages for an early version of the
class browser (i.e., Xcoral), and A. Borri of CESVIT,
for his help in designing the first version of TAC++. A
sincere thank to the reviewers for their contribution in
making the paper clearer.

References

Ambler, S.W., 1994. The pinball lifecycle model, Object Magazine 4
(6).

Bilow, S.C., Lea, D., Freburger, K., deChampeaux, D., 1993.
Workshop on: processes and metrics for object-oriented develop-
ment. In: Proceedings of the OOPSLA’93, Conference on Object-
Oriented Programming Systems, Languages, and Applications.
Washington, DC, USA.

Boehm, B.W., 1986. A spiral model of software development and
enhancement. ACM SIGSOFT Software Engineering Notes 11 (4),
14-24.

Booch, G., 1994. Object-Oriented Design with Applications. Benja-
min/Cummings, California, USA.

Brito e Abreu, F., Goulao, M., Esteves, R., 1995. Toward the design
quality evaluation of object oriented software systems. In: Pro-
ceedings of the Fifth International Conference on Software
Quality. Austin, USA.

Bucci, G., Campanai, M., Nesi, P., Traversi, M., 1993. An object-
oriented case tool for reactive system specification. In: Proceedings
of the Sixth International Conference on Software Engineering and
Its Applications (sponsored by: EC2, CXP, CIGREF, and SEE).
Le CNIT, Paris la Defense, France.

Bucci, G., Campanai, M., Nesi, P., Traversi, M., 1994. An object-
oriented dual language for specifying reactive systems. In: Pro-
ceedings of the IEEE International Conference on Requirements
Engineering, ICRE’94. Colorado Spring, Colorado, USA.

Campanai, M., Nesi, P., 1994. Supporting object-oriented design with
metrics. In: Proceedings of the International Conference on
Technology of Object-Oriented Languages and Systems, TOOLS
Europe’94. Versailles, France.

Cant, S.N., Jeffery, D.R., Henderson-Sellers, B., 1991. A conceptual
model of cognitive complexity of elements of the programming
process, Technical Report, University of New South Wales,
Information Technology Research Centre, no. 57, New South
Wales 2033, Australia.

Cant, S.N., Henderson-Sellers, B., Jeffery, D.R., 1994. Application of
cognitive complexity metrics to object-oriented programs, Journal
of Object Oriented Programming, JOOP 52-63.

102 P. Nesi, T. Querci | The Journal of Systems and Software 42 (1998) 89-102

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering 20
(6), 476-493.

Coulange, B., Roan, A., 1993. Object-oriented techniques at work:
facts and statistics. In: Proceedings of the International Conference
on Technology of Object-Oriented Languages and Systems,
TOOLS, Europe 93. Versailles, France, pp. 89-94.

Halstead, H.M., 1977. Elements of Software Science. Elsevier, North
Holland.

Henderson-Sellers, B., 1991. Some metrics for object-oriented software
engineering. In: Proceedings of the International Conference on
Technology of Object-Oriented Languages and Systems, TOOLS 6
Pacific 1991. pp. 131-139.

Henderson-Sellers, B., 1993. The economics of reusing library classes.
Journal of Object Oriented Programming 43-50.

Henderson-Sellers, B., 1994. Identifying internal and external charac-
teristics of classes likely to be useful as structural complexity
metrics. In: Proceedings of International Conference on Object
Oriented Information Systems, OOIS’94. London, pp. 227-230.

Henderson-Sellers, B., Edwards, J.M., 1990. The object oriented
systems life cycle. Communications of the ACM 33 (9), 143-159.

Henderson-Sellers, B., Tegarden, D., Monarchi, D., 1994. Metrics and
project management support for an object-oriented software
development. In: Tutorial Notes TM2, TOOLS Europe’94, Inter-
national Conference on Technology of Object-Oriented Languages
and Systems. Versailles, France.

Hopkins, T.P, 1994. Complexity metrics for quality assessment of
object oriented design. In: Ross, M., Brebbia, C.A., Slaples, G.,
Slapleton, J. (Eds.), Software Quality Management II, Building
Quality into Software, vol. 2. Computational Mechanisms Press,
pp. 467-481.

Laranjeira, L.A., 1990. Software size estimation of object-oriented
systems. IEEE Transactions on Software Engineering 16 (5), 510-
522.

Li, W., Henry, S., 1993. Object-oriented metrics that predict main-
tainability. Journal of Systems Software 23, 111-122.

Lorenz, M., Kidd, J., 1994. Object-Oriented Software Metrics, A
Practical Guide. Prentice-Hall, NJ.

McCabe, T.J., 1976. A complexity measure. IEEE Transactions on
Software Engineering 2 (4), 308-320.

Meyer, B., 1990. Tools for the new culture: lessons learned from the
design of the Eiffel libraries. Communications of the ACM 33 (9),
68-88.

Nesi, P., 1995. Objective software quality, Proceedings of the Objective
Quality 1995, Second Symposium on Software Quality Techniques
and Acquisition Criteria, Lecture Notes in Computer Science, no.
926 (editorial). Springer, Berlin.

Nesi, P., Querci, T., 1994. Measuring functional complexity, Technical
Report, Dipartimento di Sistemi e Informatica, Facolta di
Ingegneria, Universita di Firenze, RT 27/94, Florence, Italy.

Nesi, P., Campanai, M., 1996. Metric framework for object-oriented
real-time systems specification languages. The Journal of Systems
and Software 34, 43-65.

Rousseeuw, P.J., Leroy, A.M., 1987. Robust Regression and Outlier
Detection. Wiley, New York, USA.

Shepperd, M., Ince, D., 1993. Derivation and Validation of Software
Metrics. Clarendon Press, Oxford.

Thomas, D., Jacobson, 1., 1989. Managing object-oriented software
engineering. In: Tutorial Note, TOOLS’89, International Confer-
ence on Technology of Object-Oriented Languages and Systems.
Paris, France, p. 52.

Williams, J.D., 1996. Managing iteration in OO projects, IEEE
Computer 39-43.

Zuse, H., 1991. Software Complexity: Measures and Methods. Walter
de Cruyter, Berlin.

Zuse, H., 1994. Quality measurement — validation of software metrics.
In: Proceedings of the Seventh International Software Quality
Week in San Francisco, QW’94. Software Research, pp. 4-T-2 .

Paolo Nesi was born in Florence, Italy, in 1959. He received his doc-
toral degree in electronic engineering from the University of Florence,
Italy, and received the Ph.D. degree from the University of Padoa,
Italy, in 1992. In 1991, he was a visitor at the IBM Almaden Research
Center, CA, USA. Since November 1991, he is with the Department of
Systems and Informatics of the University of Florence, Italy, as a
Researcher and Assistant Professor of both “Computer Science” and
“Software Engineering”. Since 1995, he is Assign. Prof. of Information
Technology. Since 1987, he is active on several research topics, object-
oriented technology, real-time systems, quality, testing, formal lan-
guages, physical models, parallel architectures. He holds the scientific
responsibility at the CESVIT for object-oriented technologies and
HPCN. He is a member of the Scientific Committee of the Italian
Association on Object-Oriented Technologies (TABOO). He is a
Program Chair of the “2nd Euromicro Working Conference on Soft-
ware Maintenance and Reengineering”’, CSMR’98, Florence, March
1998. He has been General Chair of Objective Quality Symposium
1995, Lecture Notes in Computer Science no. 926, Springer. He has
been a member of programme committee of international Conferences
(e.g., ICECCS’96 and ICECCS’97, “IEEE International Conference
on Engineering of Complex Computer Systems’’; AQUIS 96, “3rd
International Conference on Achieving Quality in Software”;
CSMR’97”). Nesi is an editorial board member of the “Journal of
Real-Time Imaging”, Academic Press, and responsible of several
projects (e.g., DIM45 ESPRIT III MEPI, MOODS ESPRIT-HPCN,
etc.). He is a member of IEEE, IAPR-IC, TABOO and AIIA.

Torello Querci was born in Florence, Italy. He received his doctoral
degree in information engineering from the University of Florence,
Ttaly, in 1995. Since 1995, he is a researcher at CQ_ware (Center for
Software Quality) at CESVIT (High-Tech Agency for technology
transfer). He is active on object-oriented, quality control, object-ori-
ented methodology for analysis and design, code analysis tools and
product/process assessment, in general.

