
0018-9162/99/$10.00 © 1999 IEEE26 Computer

Co
m

pu
tin

g
Pr

ac
tic

es

Computing Practices

Managing Music
in Orchestras

T
he typical orchestra manages a huge
amount of information. A symphonic
work’s main score often runs to more
than 100 pages, while an operatic score
can run 600 or more. From the main

score, the conductor draws some 15 to 30 different
instrumental parts and distributes them to 40 or
more lecterns so that 70 musicians can play from
them during rehearsals and performances. This over-
head increases significantly if the piece requires a cho-
rus as well. Typical performance times range from a
few minutes to more than two hours.

Individual musicians often make simple changes to
the score, writing them in pencil or pen on the music
parts during rehearsals—most often by adding inter-
pretation symbols such as dynamics, expression
marks, and string bowings. More complex changes—
such as arrangements for different instruments, trans-
positions, and the deletion or addition of music
sections—must be decided by the conductor. Operas,
ballets, and new symphonic works frequently require
such time-consuming modifications.

To effect these changes, the archivist team uses
manual cut and paste techniques, including clipping
pages together writing long passages. This work can
take a few hours, days, or even weeks, delaying and
fragmenting rehearsals. Relevant changes should be
decided in advance, but frequently are identified only
during rehearsal. Such major on-site decisions are
especially frequent with stage works like operas and
ballets, where decisions on musical changes can
derive, during rehearsals, from the various needs of
singers, stage directors, and venue acoustics. The
cumulative time spent waiting for adaptations to the
score can add up to a significant percentage of the
total time allotted for rehearsals.

Further, when different musicians use the same paper
version of a music score, old modifications must be
deleted sometimes, and the copy updated with new
ones. If existing marks are too heavy, the scores or parts
must be replaced—often at significant cost because
many classical music scores are covered by copyright.
Deleting old changes and replacing scores are both par-

ticularly time consuming. On the other hand, various
versions of a set of scores and parts must be archived
sometimes because they carry important musicians’
interpretation marks or may be required years later for
a new performance. The costs of storing, maintaining,
or replacing multiple unique sets of parts can become
exorbitant for theater archivists and publishers.

To reduce these costs, many theaters and symphony
halls rent music scores. Unfortunately, the logistics of
renting music material or storing sets of music scores
and parts make it difficult, if not impossible, to retain
copies of all a work’s various annotated versions. At best,
a modified copy of the score may be set aside, but not the
full set of instrument-specific parts. Thus, when the
orchestra repeats a production several seasons later, the
modifications must be regenerated at significant cost.

Given the shortcomings of renting printed scores,
many performing organizations and publishers could
benefit from an alternative that makes possible the
storage of multiple versions and greatly reduces the
amount of repetitive work involved. We have devel-
oped such a system: the Music Object-Oriented
Distributed System. MOODS’ main features and ben-
efits include the ability to

• reduce the time needed for modifying main scores
and parts during rehearsals;

• manage (load, modify, and save) instrumental and

An electronic music management system may provide musicians, music
publishers, and music schools with an unprecedented ability to create,
update, and store expertly annotated scores.

Pierfrancesco
Bellini
Fabrizio
Fioravanti
Paolo Nesi
Universita’
degli Studi
di Firenze

September 1999 27

personal symbols on main scores and parts;
• manage and reproduce the exact execution rate at

which each measure of a score has been per-
formed;

• automate page turning during rehearsals and final
performances;

• visualize in only a few minutes scores that usu-
ally must be retrieved from the theater archive
and copied or adjusted by hand before being
placed on musicians’ lecterns;

• change music pieces quickly or restart from
marked points; and

• manipulate the main score and all instrument
parts as a full music score in real time.

We specifically designed MOODS to meet the needs of
theaters and symphony halls, itinerant orchestras,
musician groups, music schools, television network
orchestras, and music publishers.

MOODS’ DESIGN AND STRUCTURE
In 1994, a research group at DSI began studying the

problems of producing a network of computer-based
music lecterns. Our studies focused on providing music
score editing and display via a suitable interface. The
music industry could, we reasoned, use computerized
lecterns to avoid transporting many kilograms of paper
music scores, to save work, to manage version control,
to reduce rehearsal costs, and to improve the quality of
service offered by music publishers.

After implementing an early prototype lectern, we
helped establish a consortium for MOODS develop-
ment, then obtained funding from the European
Commission in the High-Performance Computer
Networking domain. The MOODS project, which
concluded in October 1998, created an integrated sys-
tem of computer-based lecterns for the cooperative
editing and visualization of music. Figure 1 shows the
system in operation at Milan’s La Scala theater. In
place of metal stands that hold printed scores,
MOODS’ “electronic lecterns” let musicians and the
conductor read from screens that scroll the music in
time with the performance.

MOODS differs markedly from sound-oriented
tools, which neglect most specific interpretation sym-
bols, and analysis-oriented models, which do not
address notation’s visualization problems. Thus, in
terms of how MOODS arranges music symbols, it
appears most similar to notation-oriented music edi-
tors such as Finale, Score, and Sibelius. Such music
publishing applications must produce high-quality
music scores that include the correct symbols correctly
placed on the staff.1-5

This requirement is more complex than it first
appears. Music scores must be presented to profes-
sional users—musicians—with specific relationships

and proportions between the symbols. Most currently
available music editors give users this level of precision
by allowing the free placement of symbols anywhere
on the staff, without regard for relationships between
elements. The many exceptions in music notation make
formalizing such relationships dauntingly complex.
Yet with free placement, notation-oriented music edi-
tors permit incorrect symbol placement, which results
in incorrect scores. Such scores cannot be correctly
played by musicians, interpreted by style analysis algo-
rithms, nor used to generate sound.

This limitation makes professional music editors,
despite their power, difficult for users not expert in
music notation to employ. Typically, musicians can
read music but have only a vague understanding of
the exact rules for arranging symbols. On the other
hand, musicians have no problem correctly reading a
properly annotated score but can be perplexed by even
slight errors in printed symbols or annotations.
Conductors and composers tend to be even more
schooled in and sensitive to problems of music nota-
tion and visual expressiveness, with archivists func-
tioning as the ultimate authority.

These problems also exist when using the so-called
interchange languages for storing, coding, and inter-
changing music, such as Notation Interchange File
Format (NIFF) and Standard Music Description
Language (SMDL). Even these relatively comprehen-
sive languages do not model all relationships and they,
too, allow placement of symbols at any point on the
staff.5

Figure 1. MOODS, the
music object-oriented
distributed system, at
work in Milan’s La
Scala theater. The
large screen in the
background appeared
only during the tech-
nical presentation.

28 Computer

Components
MOODS consists of the following elements, in var-

ious numbers, as shown in Figure 2:

• a musician’s lectern—called DLIOO for distrib-
uted lectern, interactive object-oriented—that
allows editing and visualization of score parts;

• a director’s lectern—called Mase for main score
editor—that directors and conductors use to dis-
play and modify the main score;

• an archivist’s workstation—called Masae for main
score auxiliary editor—that can be used to make
extensive modifications directly to the main score
during rehearsals or score revision, and that can con-
figure the orchestra using the Orchestra Network
Configurator and Manager (ONCM); and

• a database workstation for managing the music
archive.

We use the term “lecterns” to refer to both DLIOOs
and Mases. The MOODS cooperative distributed sys-
tem is based on a 100-BaseT Ethernet. The Masae can
distribute music to all orchestra lecterns and interacts
with the database that manages a theater’s or school’s
orchestral archive. Masae also connects the theater’s
archive to the music publisher via the Internet.

General architecture
MOODS’ general architecture consists of four main

components: the Masae, communications support, the
DLIOOs, and the Mases. The Masae functions as the
architecture’s general server and contains the whole
object-oriented model of the currently loaded com-
position. The Masae is the only machine in the orches-
tra with a hard disk. This centralization prevents the
system, which is based on Linux, from producing
noise due to fans and other mechanical equipment.

MOODS uses the network for booting system com-
ponents. Communication support is used during edit-
ing for satisfying lectern requests, and during execution
for just-in-time distribution of symbolic page descrip-
tions for visualization on lecterns and for synchroniz-
ing page turning. In both cases, the Masae is always
the communications master, which increases the whole
system’s reliability. The communication is managed as
a set of 1:1 communications, thus reducing the num-
ber of collisions and possible conflicts. Execution, the
most communications-intensive of MOODS’ two
operating modes, requires that the Masae simultane-
ously sends a large amount of data to many lecterns,
each of which consumes the data quickly. Moreover,
during execution musicians who have rests may choose
to preview their next musical passage, which further
adds to the communications burden because several
musicians may request pages from Masae at once.

Given that the fastest pace at which music is con-
sumed is 3.3 beats per second, and that describing a
measure of four beats takes about 2 Kbytes, we have
a base load of 1.4 Mbps for the 100 DLIOOs and
about 1 Mbps for the Mases. Thus, during execution,
the system presents a bandwidth demand of at least
2.4 Mbps for music distribution to an orchestra’s
musician, chorus, and director lecterns. We derived
these numbers from the assumption that music will be
distributed only in symbolic format. Distributing
music via image format would impose a much higher
computational burden—13 Mbps for distributing
music during execution. The much higher CPU
demands of requiring Masae to prepare images for
transmission is totally infeasible in real time. Worse,
image format does not support the cooperative edit-
ing and changeability that symbolic format does.

The system’s bandwidth demand refers only to that
required for distributing music to lecterns. The effec-

Mase
Mase

100-BaseT hub

Masae/ONCM

100-BaseT hub 100-BaseT hub 100-BaseT hub

Database

Figure 2. Primary
components of the
MOODS music object-
oriented system of
distributed electronic
lecterns. The Mase
lecterns are editing
stations, the conduc-
tor and archivist man-
age the main score
from the Masae, and
three 100-BaseT
Ethernet hubs distri-
bute instrumental
parts to the individual
musicians’ electronic
lecterns.

September 1999 29

tive bandwidth required in both cases is at least dou-
bled when you consider the synchronization and pro-
tocol costs. Moreover, the time spent receiving and
sending messages must be very small since the lecterns
must generate the page internally while performing
gradual page turning—all time-consuming tasks.

In the editing phase, if the users do not first define
specific communication rules, cooperative distributed
systems can fall into a deadlock state when, for exam-
ple, two users try to manipulate the same entity. In our
case, the Masae is the communications master, and

any operation performed by lecterns—such as sym-
bol deletion or insertions—is considered atomic. These
operations can be permitted or not. Moreover, they
can fail or not depending on the status of the com-
munication master. When a fault occurs, a user can
click again—if the user interface protocol allows it—
without having to restart a complex sequence of oper-
ations. This is an established behavior in many
well-known GUIs, even if they are not cooperative.
The “Change Distribution in MOODS ” sidebar
shows what happens when a DLIOO makes a change

Change Distribution in MOODS
When a musician makes a change to his

or her part on a specific DLIOO musician’s
lectern, MOODS then shares that change
with other lecterns. To accelerate the
change’s distribution across related
lecterns, MOODS uses a routing table.
Figure A shows the sequence triggered by
such a change, as follows:

(1) DLIOO6 performs a change in its
part; (2) PVM sends the message contain-
ing the change through the network; (3) the
Masae editing station acknowledges the
message; (4) Masae performs the change
on the main score and searches in the rout-
ing table for the group leader for that part
of the score in which the change was made;

(5) Masae sends a notification message to
the group leader and searches for the next
DLIOO that shares the changed part; (5a)
the group leader receives the update mes-
sage and revises the leader’s music accord-
ingly; (6) Masae sends a message to
DLIOO with ID=6, then searches for the
next DLIOO that shares the part; (6a)
DLIOO6 receives the message and updates
its piece of music; (7) Masae sends a mes-
sage to DLIOO with ID=7, which indicates
that no more DLIOOs will be affected by
the changed part; (7a) DLIOO 7, the last
in the DLIOO chain, receives the message
and updates its piece of music; (8) Masae
pulls up the first director’s station; (9)
Masae sends the update message to the

director with ID=8, which indicates that no
more conductors share this part.

In steps 6, 7, and 8 the router must ver-
ify which of the identified lecterns that share
the changed part are currently visualizing
the modified piece of music. Then, the mes-
sage for updating the music is sent only to
these lecterns. The message identified by
label 10 can cause a deadlock because
Masae is sending message 6 to DLIOO6
and, therefore, both Masae and DLIOO6
wait for an acknowledge message at the
same time. Masae detects this situation and
skips message 10. Paths labeled 11 are page-
turning messages that can be processed and
acknowledged while Masae is distributing
the modifications issued by DLIOO6.

DLIOO7

7a 9a

DLIOO5

5a

DLIOO5Masae DLIOO6 DLIOO7 Mase8

Message

Message

Message

Message

Message

Message

Message

Ack

Ack

Ack

Ack

Ack

Ack

Ack

11

11

1

3

5 5a

6
10

6a

7

11
7a

11

9
9a

Ti
m

e

DLIOO6

OO music model

DLIOO
GUI First violin part

Object-oriented model

Object-oriented PVM

6a

PVM-TCP/IP

PVM-TCP/IP

Mase8

OO music model

Mase
GUI

Director score
a view on
archivist full score

Object-oriented model

Object-oriented PVM

PVM-TCP/IP

OO music model

Masae

Masae
GUI

Full score
archivist

Routing
tables Object-

oriented
model

1

Object-oriented PVM

Routing table detail

Part index

Part configuration table

IDP 0
flute

2

1
violin

5

2
viola

4
Part

Leader

0
0
0
0

1
1
1
8

2
1
2
3

3
0
2
0

4
1
4
0

5
1
5
6

6
0
5
7

7
0
5
0

8
0
1
0

ID
Leader
Group_leader
Kids_id

5-6-7-9

Network layer Network layer

4

5

7

6

9

8

4

3

2

Figure A. How the MOODS architecture facilitates distribution of a change from one lectern to related lecterns.

30 Computer

to its part, which MOODS then shares with other
lecterns. A specific routing table accelerates the eval-
uation of related lecterns.

To implement these mechanisms, we based the com-
munication support adopted in MOODS on a specific
object-oriented evolution of PVM (Parallel Virtual
Machine). To retain full control of the communica-
tion protocol details, we decided to develop our own
custom communications support instead of adopting
one of the classical approaches, such as CORBA or
Java, for implementing distributed systems. Our
approach let us define mechanisms for avoiding the
generation of deadlocks that could be frequent in a
cooperative system where up to 100 processes work in
parallel on the same data structure—Masae’s main
music score. At the same time, the PVM allows sim-
ple control of remote processes: starting, allocation,

deallocation, and error managing. To facilitate these
features, during system analysis and design we used
techniques typically employed in real-time systems
specification.6

MOODS IN ACTION
The MOODS project addressed several interrelated

aspects, starting with the definition and implementa-
tion of a user-friendly interface. We designed the UI
to interact with music scores by considering the posi-
tion, adjustment, and justification of notation sym-
bols independently of lectern dimensions, instrument
type, and importance in the orchestra hierarchy.

Next, we designed mechanisms for automatically
decomposing the main score into parts while main-
taining a unique model of the managed information.
This process involves formatting musicians’ scores dif-

Formal Model Development
When designing MOODS to incorporate

the functions described in the main text, the
main obstacle we encountered was the lack
of a formal model for music. The relation-
ships among visual notation constructs can
only be maintained if we formally define first
the syntax and relationships among the nota-
tional entities. In the case of music, defining
the visual grammar is highly complex.1-5 As
the number of music symbols grows, the
number of relationships and related rules for
visualizing them grow at a greater than pro-
portional rate, since certain symbols influ-
ence the relationships among other symbols
and generate exceptions to the standard
rules.

To create MOODS’ formal model, we
first modeled music notation components
with a unified object-oriented formal
model and language. We use MOODS’
OO model as a music representation model
and coding language, and also as the net-
work message interchange protocol among
lecterns and the Masae. The MOODS lan-
guage and model integrate aspects of
analysis-based, notation-based, and inter-
change-based approaches by including a
semantic model of music that reports the
structure of music and the symbols, with
all their detailed relationships; a large set
of notation symbols and rules for their
placement; and a platform-independent
model that’s also independent of the visu-
alization features integrated with the other

aspects of the model and language.
Given MOODS role, it must help musi-

cians easily produce music scores that are
correct with regard to the relative posi-
tioning of notation symbols. We chose to
implement this capability by integrating
into MOODS’ music language and model
a real-time engine for arranging the sym-
bols on-screen automatically, according to
specified rules. These mechanisms are typ-
ical of visual-language editors, which pre-
sent a visual parser and analyzer based on
grammatical symbols rules, as well as an
engine for the automatic, rule-based
arrangement of symbols. For our symbol-
arrangement engine, we defined rules for

• positioning symbols during insertion,
such as the length of stems, distance
with respect to staff lines, position
with respect to note stem, angle of
beam, and beaming of notes;

• ordering symbols with respect to the
presence of neighboring symbols, ensur-
ing precedence among symbols with
respect to the notehead when depicting
slurs, accents, markers, and so on;

• justifying the measures and the lines
according to specific algorithms, such
as linear, logarithmic, and different
scales; and

• compressing symbols for the activation
and deactivation of rules that display
symbols in compressed format, includ-
ing generic rests and repeat symbols.

MOODS automatically invokes most
rules when symbols are first inserted, when
music is loaded from disk, and when music
is received from the network. Different rules
can be imposed for each lectern. This flexi-
bility lets us present music to different musi-
cians according to their needs, and lets
musicians reformat music without manually
rearranging music symbols. MOODS’ lan-
guage includes constructs for the integrated
description of the following music aspects:

• logic, which describes the scoring of
information, musical notation sym-
bols, and their relationships;

• classification, which allows the iden-
tification and organization of a piece
according to standard library and
archive indexing mechanisms;

• protection, which, in addition to
defining detailed permissions rights
for music manipulation, distinguishes
between the publisher’s version of a
work—encrypted so that it cannot be
altered—and the versions upon which
musicians can perform changes;

• visual, which involves the visual
arrangement of symbols when spe-
cific exceptions must be imposed with
respect to standards defined by the
rules, and the music fonts;

• performance, which deals with the
exact execution rate of music during
a performance; and

• versioning, which supports monitor-

ing the evolution of music pieces while
considering logic performance and
visual evolution.

Figure B shows an example of the
MOODS language extracted from a corre-
sponding piece of music. The language is

structured according to the music notation:
measures contain a layer for each voice,
with accompanying figures that can repre-
sent notes, rests, chords, and beams, as well
as information about these elements. Each
element may have any of several attributes,
including alterations, expressions, and

markers. Attributes are assigned directly to
the elements. MOODS lists horizontal sym-
bols, such as slurs and diminuendos, sepa-
rately.

Leaving all graphical details to the auto-
matic positioning mechanisms directly pre-
sent on the lecterns makes MOODS concise
and expressive. The language’s keywords
are particularly short—especially the fre-
quently used ones—to maintain the low
bandwidth needed for efficient music dis-
tribution.

References
1. T. Ross, Teach Yourself: The Art of Music

Engraving, Hansen Books, Miami, Fla.,
1987.

2. G. Heussenstamm, The Norton Manual of
Music Notation, Norton & Company, New
York, 1987.

3. G.M. Rader, “Creating Printed Music Auto-
matically,” Computer, June 1996, pp. 61-68.

4. J.S. Gourlay, “A Language for Music Print-
ing,” Comm. ACM, May 1986, pp. 388-401.

5. D. Blostein and L. Haken, “Justification of
Printed Music,” Comm. ACM, Mar. 1991,
pp. 88-99.

September 1999 31

ferently than those for conductors. We also provided
MOODS support for distributed and cooperative
music editing, including cooperation and configura-
tion rules. Cooperative editing lets MOODS show
changes performed by one operator to others musi-
cians at DLIOOs, Mases, and the Masae—all in real
time.

In addition to automating page turning during per-
formances, we also designed MOODS to support
cooperative manipulation of music scores. For exam-
ple: during the rehearsals several musicians may work
simultaneously on the same music score, on the same
part, and on the same measure, changing and adding
music notation symbols and sharing the results of the
manipulation in real time with the other musicians.
These in turn may work on the same music score with
conductor, archivist and directors. All of them may

introduce changes according to a set of configurable
permissions, and these changes are shared in real-time
with the other orchestra components. To broaden the
choice of music available to the platform, we wrote
drivers for converting music scores available in other
formats—such as Score and MIDI—to the MOODS
format.

To better support the iterative nature of tailoring a
composition during rehearsals and subsequent per-
formances, we devised mechanisms and rules for pre-
cisely managing the versioning of music scores.
MOODS considers the changes performed on each
lectern to be distinct and separable during each exe-
cution. Further, we developed a comprehensive pol-
icy for managing the versioning of scores and their
components, tracked first by changes performed, then
classified by type and author.

EC // end chord
N32
………
EB // end beam

EF // end figure
………
LAYER 2
………

EM // end measure

BH 1 // a slur
SLUR,DWN

START(………)
END(………)

EH
…………
BH 10 // a diminuendo

DIM,DWN
START(………)
END(………)

EH

BM 1,1 // begin measure
…
CLEF TREBLE NORM
..
TEMPO 4/4

LAYER 1
BF 14 // begin figure

BB // begin beam
……

EB // end beam
EF // end figure
……
BF 6 // begin figure

N4 HN 7 // 1/4 note
BS BWUP,UP ES //
expression

EF // end figure
……
BF 55 // begin figure

BB // begin beam
BC // begin chord

N16 HN -6 // 1/16
note

BA FLT EA //
alteration
………

Figure B. A short example of MOODS code (a) and the piece of music it represents (b).

(a)

(b)

32 Computer

DLIOOs and Mases. Different lecterns display new
pages at different times due to the dimensions of the
lectern and the different amount of written music that
must be performed by each instrument.

On the DLIOO screen, shown in Figure 3a,
MOODS constructs the next page by starting from
the top to bottom as soon as the measures have been
performed. Mases and Masae lecterns, shown in
Figure 3b, display two pages: the current page, on the
right, is gradually reduced as the measures are exe-
cuted, while the next page is displayed on the left..
This approach mirrors the traditional way musicians
read scores.

In execution, Masae drives the page-turning mech-
anism, synchronizing the turning to the point at which
the orchestra is performing the current selection,
marked by the heavy vertical line in Figure 3b. The
Masae controls all communication with the lecterns,
which are totally slaved to it. In this way, the system
completely avoids lock-ups during execution.

The rate that MOODS updates the music display is
set initially on the basis of beats per minute. This pre-
set rate can be adjusted in real time by increasing or
decreasing the execution rate. The adjustment can be
made easily by comparing the position of the line that
marks the preplotted execution instant on the score—
the heavy, central line of the triple vertical lines shown
in Figure 3b—with the sound actually produced at
that moment by the orchestra. To make such adjust-
ments effectively, the person monitoring the perfor-
mance must be capable of reading music and matching
the score with the notes the musicians are playing. For
a trained musician, this is a trivial task. The archivist
typically follows the music on the score during
rehearsals and performances as a sort of quality con-
trol on musicians and the prepared scores.

Alternatively, the archivist could track the conduc-
tor’s movements using a video camera, but this
approach is less precise because the conductor does
not mark each beat with a gesture. For example, when
a special interpretation—such as a shift in dynamics

MOODS can operate in two modes: editing or exe-
cution. The Masae controls MOODS’ mode switch-
ing. Before it can be used, the MOODS system must
be configured to accommodate both the orchestra’s
particular mix of instruments and the cooperative
work rules imposed by the orchestra’s relationships
between its musicians.

Editing mode
In editing mode, the MOODS system functions as

a fully cooperative distributed music editor. Musicians
use the lecterns to adjust the music score in a cooper-
ative manner, during rehearsals, in classrooms, and
during composition. In these cases, all musicians may
perform changes at the same time on the same score.
Each lectern can navigate its assigned part indepen-
dently while visualizing measures forward and back-
ward. Thus, at any one time each lectern may display
a different vision of the same information. For exam-
ple, one lectern may display the part for the first vio-
lin, another that for the flute, both of which are just
subsets of the full score, which the Masae displays.
Each change performed on a DLIOO is sent in real
time to the Masae and from there to other lecterns
using the same part, and to the Mases main-score
lecterns. Score changes appear on a particular lectern’s
screen when that station displays a revised section of
the score. Modifications on the score may involve both
classical music symbols and interpretation symbols.

Typically, an orchestra maintains a hierarchical
organization in that for each group of musicians exe-
cuting the same part, the group’s leader decides spe-
cific performance execution details, such as whether
to bow up or down. MOODS automatically sends the
comments that reflect these decisions to all other
lecterns affected by the decisions.

Execution mode
During execution, MOODS distributes the music

score to all lecterns. The system automates page turn-
ing by providing the right page at the correct time to

Figure 3. A DLIOO musician’s lectern (a) with a single instrument’s score displayed, and a Masae main score auxiliary editor lectern (b) with part of a
full score displayed.

(b)(a)

from loud to soft, or the reverse—is required from a
certain part of the orchestra, the conductor uses his
hands to depict the desired effect. While doing so he
disregards general movements such as marking time.

In MOODS, the execution rate, both preset and as
adjusted by the archivist, can be saved for reuse. Thus,
MOODS can regenerate the registered execution rate
of each performance and rehearsal. This capability
can improve the quality of orchestra work (allowing
the exact reproduction of the execution rate for a
score) and aid the study of performances by impor-
tant conductors and musicians.

ORCHESTRA AND NETWORK MANAGEMENT
Run from the Masae station, the Orchestra

Network Configurator and Manager (ONCM) estab-
lishes configuration relationships between lecterns and
defines rights for manipulating music symbols.

The process of network and orchestra configura-
tion requires mapping the main score to the many
musicians’ parts by following the structure of the
orchestra, expressed as instruments, musicians, and
their hierarchical relationships. As few as four and as
many as 30 parts may need to be mapped. On each
DLIOO, different sets of interpretation and instru-
mental symbols must be provided depending on the
instrument assigned to it.

MOODS organizes DLIOOs according to the
orchestra hierarchy shown in Figure 4. First-level
DLIOOs can perform changes on the current score
using main and interpretation symbols, while other
DLIOOs typically need less editing power. For
instance, lower-level lecterns could be limited to
adding such annotations as fingering, attention mark-
ers, bowing, and textual annotations.

This hierarchical organization allows the first
instrument—for example, the leader of the 2nd vio-

lins—to directly transmit the changes performed on
that musician’s score to the group’s other lecterns.
Sometimes a group can have two or more leaders; in
this case, all leaders can perform fully cooperative
work on the score, with changes reflected on all the
group’s lecterns.

ONCM also manages cooperative work. Clearly,
letting all musicians concurrently manipulate elements
such as notes, rests, measures, beams, and slurs is
impractical—chaos would almost certainly result.
According to MOODS’ established permissions hier-
archy, all musicians may modify their specific inter-
pretation symbols, but more extensive changes can
only be performed by or with the supervision of the
archivist on the Masae station. Group leaders are usu-
ally allowed to modify some other notation symbols
with respect to the hierarchically related DLIOOs.

In reality, however, typical scenarios are much more
complex because, during operas and ballets, the per-
formers often make extensive changes. In such cases,
the group leader could be delegated to make in-depth
modifications to the music. Initially, for each lectern,
the conductor or archivist defines a permission pro-
file, specifying the notation symbol categories that can
be inserted or deleted by musicians. Moreover, the
right to modify music through the addition or dele-
tion of specific symbols can be granted or forbidden by
the ONCM, in real time, during editing. The updated
profiles can then be maintained for the next section of
work.

When changes involve the music’s structure—notes,
rests, key signature, and so on—the archivist is best
qualified to supervise the changes, which may then be
validated or annulled. Moreover, when a symbol cat-
egory is enabled for a lectern, it is marked with a qual-
ifier. This qualifier specifies whether or not changes to
symbols of that category for that specific lectern must

September 1999 33

Masae

Database

Mase

Mase

Mase
Mase

DLIOO

DLIOODLIOODLIOO

DLIOO DLIOO
DLIOO

Archivist

Conductor

2nd violin leader

2nd violins

Chorus conductor

Director

Light director

DLIOO DLIOO

DLIOO

Figure 4. Conceptual relationships among the different lectern types in MOODS. The Masae lectern is capable of making extensive modifications to the
main score, which are then distributed to MOODS’ other lecterns. The Masae also interacts with the music database and can be used to configure the
orchestra. The Mase lecterns, reserved for director-level users, also have strong editing capabilities that can be used to alter the main score and to dis-
tribute changes to musician lecterns. Musicians use the DLIOO lecterns, have only limited editing capabilities.

34 Computer

be validated by the Masae user. Symbols that must be
validated appear on the Masae’s main score in differ-
ent colors. Symbols that do not need validation appear
in black.

Once a main score’s standard version—as received
from the publisher—has been loaded, the orchestra
typically modifies it during rehearsal. In MOODS, the
changes made during rehearsals can be separately
saved and loaded with a complex mechanism that
allows changes to be selected based on specific crite-
ria such as musicians who authored the changes or
types of notation symbols. This procedure allows a
permanent and accurate record to be kept of changes
made to the publisher’s original score and enables the
integration of changes by one conductor with those
of another.

Starting in 1991, music publishers began using
professional music-processing programs to
replace traditional, hand-processed technologies.

These programs have created a growing library of
computer-based musical scores. However, given the
constant evolution of music programs, and that the
only viable market for scores so far has been paper-
based, electronic scores have remained locked in pub-
lishers’ archives. MOODS creates a new market for
these electronic products.

Clearly, MOODS’ ability to store customized music
information may lead to significant savings in time
and money. Aside from benefiting orchestras and
musicians, MOODS also offers cultural and educa-
tional benefits: For example, students can now exam-
ine different interpretations of the same score in rapid
succession on their computerized lecterns, accelerating
the learning process.

From its first end-user tests, MOODS has been
regarded as a useful tool for orchestras and music
schools. MOODS’ functionality frees composers and
conductors from mundane, time-consuming clerical
tasks, allowing more space for experimenting in real
time with new approaches or effects. MOODS also
provides an enormously increased level of creative
feedback between conductor and performing group,
furthering their common goal of effectively interpret-
ing the music score. Ultimately, MOODS opens the
path to what may become a revolution in music pub-
lishing and how musicians approach music scores. ❖

Acknowledgments
The authors thank all members of projects LIOO,

MOODS and O3MR, and particularly: Antonio
Albino, Stefano Biagini, Timna Panfietti Monaco,
Marius Spinu Bogdan, Fabio Bennati, Nicola Baldini,
Luigi Mengoni, Simone Marinai, Andrea Giotti,

Stefano Macchi, Alessandro Silvestrini, Andrea Mati,
Luca Gambineri. We also thank the following
MOODS partners: Maestro Carlo Tabarelli of Teatro
alla Scala, Maestro Gabriele Dotto of BMG Ricordi
and CASA Ricordi, Maestro Nicola Mitolo of Scuola
di Musica di Fiesole, Francesco Cicillini of ELSEL,
Sandro Moro of Shylock, and Hewlett-Packard Italy,
which partially supports us in music projects. A spe-
cial thanks to Prof. Giacomo Bucci for his valuable
suggestions.

References
1. T. Ross, Teach Yourself: The Art of Music Engraving,

Hansen Books, Miami, Fla., 1987.
2. G.M. Rader, “Creating Printed Music Automatically,”

Computer, June 1996, pp. 61-68.
3. J.S. Gourlay, “A Language for Music Printing,” Comm.

ACM, May 1986, pp. 388-401.
4. D. Blostein and L. Haken, “Justification of Printed

Music,” Comm. ACM, Mar. 1991, pp. 88-99.
5. E. Selfridge-Field, Beyond MIDI—The Handbook of

Musical Codes,” The MIT Press, London, 1997.
6. G. Bucci, M. Campanai, and P. Nesi, “Tools for Speci-

fying Real-Time Systems,” J. Real-Time Systems, Mar.
1995, pp.117-172.

Pierfrancesco Bellini is a PhD candidate in software
engineering and telecommunication at the University
of Florence. His research interests include software
engineering, formal methods, computer music, and
object-oriented technologies.

Fabrizio Fioravanti is a PhD candidate in software
engineering and telecommunications at the University
of Florence. His research interests include software
engineering, object-oriented technologies, and soft-
ware metrics for quality estimation of object-oriented
systems.

Paolo Nesi is an associate professor at the University
of Florence, Department of Systems and Informatics.
His research interests include object-oriented tech-
nology, real-time systems, quality, system assessment,
testing, formal languages, physical models, computer
music, and parallel architectures. Nesi received a PhD
in electronic and informatics engineering from the
University of Padoa, and is the coordinator of
MOODS and related projects. Contact Nesi at
nesi@dsi.unifi.it, or at nesi@ingfi1.ing.unifi.it.

