
TACoS’04 Preliminary Version

.30

Validating Component Integration with
C-TILCO,

a Case Study

P. Bellini P. Nesi D. Rogai 1

Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze

Firenze, Italy
Via S. Marta 3, 50139 Firenze, Italy,

tel.: +39-055-4796523, fax.:+39-055-4796363

Abstract

Temporal logics are typically used to specify and verify properties and thus re-
quirements, to describe the system and prove that such a formalization meets the
expected behavior. In this paper, C-TILCO temporal logic is considered. C-TILCO
is an extension of TILCO temporal logic which provides compositional and commu-
nication primitives. TILCO specifications of system behavior can be directly used
as implementations since they can be directly executed in real-time by using the
TILCO executor. On the other hand, the validation phase remains of high relevance
in the system deployment. The validation phase can be applied to both the single
components and their integration in order to validate the entire solution. The vali-
dation requires dedicated tools to easily work out a considerable amount of proofs
in reasonable time. To this end, in this article, a case study about specification of a
communicating system is presented together with some important property proofs
taken from the validation phase.

Keywords: formal specification language, first order logic, temporal interval logic,
real-time systems, temporal operators, theorem provers, validation, components
integration, communicating system.

1 Introduction

The specification of real-time systems implies the adoption of a specific formal
model for the definition of temporal constraints among events and actions [6],

1 This work has been partially supported by the Italian Ministry of University and Research
within the COFIN 2001 project ”Quack: a platform for the quality of new generation
integrated embedded systems”

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



[1], [7]. These formal methods are typically used for describing properties of
invariance, precedence amongst events, periodicity, liveness and safety condi-
tions, etc. For this purpose, several temporal logics have been used [1], or
timed state machine, Petri Nets, etc. When the system under specification is
not trivial its specification needs to be performed by decomposing the prob-
lems in smaller segments or components devoted to solve specific identified
sub-problems [10], with the aim of obtain the whole system for composition.

The adoption of compositional models for the systems specification has
to be supported by formal methods for the verification of components and
composed systems [9]. To this end, several approached have been used mainly
on the formal description of the component interface and behavior and sup-
porting the compositional verification dividing the behaviour in external and
internal [10], [2]. In most cases, the external description of the component is
only an abstract description of the internal specification. Thus the validation
based on only the external description may results to be partial with respect
to an exhaustive validation based on the full specification. The verification is
performed by using model checking approaches on the operational description
of the system, in others the verification is performed by validating the formal
composition and thus the compositional behavior.

The approach proposed in this paper is based on TILCO (Temporal Logic
with Compositional Operators) and its compositional version called C-TILCO.
Please note that C in TILCO acronym is referred to the composition of tempo-
ral constraints. TILCO presents a uniform model for time from past to future
and unique operators for stating facts and events along the time axis [8],
together with extended temporal operators (TILCO-X) [5] and process com-
munication support (C-TILCO) [4]. The process communication of C-TILCO
allows to specify a complex system by its decomposition in several process
and to model inter-process communication between them. TILCO language
can be directly executed, such executability consists in using the specification
as an implementation of the real-time system, thus allowing (in each time
instant) the on-line generation of system outputs on the basis of current in-
puts (including those concerning communication) and internal state. In this
sense, TILCO-Executor, presented in [3], is capable of executing a fragment
of TILCO specifications.

This paper presents a case study in which C-TILCO has been used for
the specification and validation. C-TILCO permits the description of the (i)
internal properties of each process involved in the architecture and (ii) the
external properties suitable for a correct interaction of the components.

This paper is organized as follows, in Section 2, a short overview of C-
TILCO and TILCO-X, as presented in [4], is reported. In Section 3, a case
study specified using C-TILCO is presented; Section 4 performs some valida-
tion step for the specified system. Conclusions are drawn in Section 5.

2



2 C-TILCO Overview

A system specification in C-TILCO is a hierarchy of communicating process
components whose specifications are written in TILCO. TILCO is a logic lan-
guage which can be used to specify temporal constraints in either a qualitative
or a quantitative way [5]; the meaning of a TILCO formula is given with re-
spect to current time. Time is discrete and linear and the temporal domain is
the set of integers Z. The minimum time interval corresponds to one instant,
the current time instant is represented by 0 and positive (negative) numbers
represent future (past) time instants. The basic entity in TILCO is temporal
interval, the boundaries of which can be either included or excluded by us-
ing the usual notation with squared, (“[”, “]”) or round (“(”, “)”) brackets,
respectively.

The basic TILCO temporal operators are:

• “@ ”, universal quantification (∀) over a temporal interval;
• “ ? ”, existential quantification (∃) over a temporal interval;
• “until”, to express that either a predicate will always be true in the future,

or it will be true until another predicate will become true;
• “since”, to express that either a predicate has always been true in the past,

or it has been true since another predicate has become true.

TILCO has been extend to provide some more expressive operators cre-
ating the TILCO-X language [5]. The dynamic intervals allow to define an
interval using boundaries which are dependent on TILCO expression. For ex-
ample, A@(0, +B] asserts that A is true from the next time instant to the the
instant when B occurs for the first time from now; such instant is included
in the expression. Similarly a boundary like −B refers to the last time B
occurred in the past.

In C-TILCO many instances of the same process component specification
can be arranged in the global architecture. Processes can have some param-
eters and every instance has distinct values. The communication between
processes is based on a CSP like typed synchronous input/output ports con-
nected through channels. The connection is 1:1, each output port is connected
to at most one input port and vice-versa.

The basic element for C-TILCO is a process component which is repre-
sented by two views:

(i) the external view that describes the input/output behavior of the process;
(ii) the internal view that describes the process decomposition into subpro-

cesses or a low-level formalization of the process behavior if it cannot be
furtherly decomposed.

A C-TILCO process is externally characterized by a set of external input ports
used to acquire information from the outside; a set of external output ports
used to produce information to the outside; a set of external variables used
to give some general information about the process state or to simplify the

3



external behavior specification; a set of external parameters used to permit
general process specification to make easy process reuse, since different process
instances may have different parameter; a set of external TILCO formulæ that
describe the external process behavior by means of the messages exchanged
and constraints on the external variables. C-TILCO is internally characterized
by: a set of C-TILCO subprocesses ; a set of internal input ports, used to get
information from subprocesses; a set of internal output ports used to send
information to subprocesses; a set of internal variables ; a set of internal TILCO
formulæ, which describe the internal behavior of the process.

The ports of subprocesses can be directly connected to the containing
process ports (of the same type, input to input and output to output) or can
be connected through channels to the complementary internal ports (output to
input and input to output). The use of internal ports permits the realization
of partial decompositions, when the process behavior is only partially specified
by subprocesses and, thus, some interactions with the subprocesses are stated
by means of the TILCO formulæ of the internal specification.

In TILCO formulæ, the dot notation is used to access process components.
Since many instances of the same process can be present in the system, its
specification is valid for all of them. By means of colon operator applied to
process components, process and local variables it can be easily distinguished
in the specification.

Since in TILCO the time axis is infinite in both directions there is not a
time instant that can be regarded as the start time instant of the execution
process. In the system specification, it is natural to consider a reference time
instant in which the process starts its work: before that time all the signals are
stable. For this reason, a Boolean variable process start has been introduced
to each process. This variable is true only in one time instant for each process.
It should be noted that each process has its own start instant and a formula
of the internal specification is used to define the start time instant of its
subprocesses. Typically when a process starts all its subprocesses start.

Communication primitives

C-TILCO provides synchronous ports, the basic operators on these ports
are: Send (!!) and Receive (??):

<outPort> !! <expr> [<whileExpr>] ; ; <thenExpr> sends through output port
<outPort> the value obtained by evaluating expression <expr>. When the
communication ends TILCO expression <thenExpr> is asserted. During the
waiting the temporal expression <whileExpr> is asserted.

<inPort> ?? [<whileExpr>] ; ; <thenExpr> waits for a message (if not already
arrived) from input port <inPort>. When the message arrives TILCO ex-
pression <thenExpr> is evaluated as a function of the value received. During
the waiting the expression <whileExpr> is asserted.

Operators: outP !! and inP ?? have been introduced to specify that a pro-
cess has not to send a message on a port or that the process has not to ask for

4



a message. These conditions cannot be specified by using ¬(inP !! v [P ] ; ; W )
which has a different meaning.

3 Using C-TILCO to specify a communication protocol

The following case study is presented to show how C-TILCO can aid in the
formal verification of a component-based architecture.

The system under specification is a communication system, based on a
well know protocol. The communication system is composed of several nodes
which are connected in a ring structure (see Fig 1).

Node

B

A

Communication

Node

B

A

Communication

Node

B

A

Communication

A A A

Communication

Node

Communication

NodeNode

Communication

B B B

Fig. 1. The communication system

This communication basically aims to be robust against a single node
failure and to distribute the communication priority in a uniform manner on
the nodes. Two concentric rings are provided: the main ring where information
is passed along the elements, and the backup ring which recovers a main ring
failure connection and allows to perform the communication until the system
is restored. The main ring is signed with A letter and the backup with B.
Input and output port for each ring is required. The communication system is
the result of the proper connection of the nodes. A fixed information (called
token) is received and retransmitted by every node to the adjacent. If a node
needs to transmit a data, it waits for the token then transmits the data to
the adjacent keeping the token and, when the transmitted data returns back
to the sender, it releases the token. A node recognizes a fault communication
after a time-out and redirects the communication in the backup ring which
works in the opposite direction of the main ring.

A part from the normal communication mode in Fig. 2 a possible scenario
of the data flow is represented: a broken connection which has been recovered
by using the backup ring.

The system is realized in terms of communication nodes; over each one
a higher level communication interface is typically connected. These nodes
perform only simple data communication and protocol management. The
token is considered as boolean and is transmitted over a dedicated channel

5



Node

B

A

Communication

B

A

B

A

A

B

A

B B

A

Node

Communication

Node

Communication

Node

Communication

Fig. 2. The backup complete the cycle communication when a channel is broken

and the message is treated as structured type that includes the origin and the
destination node ID.
The data communication structure is as follows:
struct DATAPACK {

int srcID;

int dstID;

char data[MAX_LENGHT];

}

The communication node provides two ports for each direction of the main
ring and for the backup. Two additional ports are present to communicate
with the higher layer.

3.1 System requirements

The node basically performs the following operations:

• it waits for the token;
• when it has received the token, it can transmit data on the ring without

releasing the token, otherwise it must retransmit the token along the node
chain;

• if the adjacent node does not reply it has to redirect the same information
(token or data) on the back up ring which works in the opposite direction;

• when the transmitted data comes back from the ring the node releases the
token to allow the other to transmit their own data.

• any data received on the backup channel has to be retransmitted without
any check, but just redirecting it on the main ring if the adjacent node does
not replay.

3.2 Communication Node

The node must ensure the communication and a particular attention should be
given to the token passing. When a wrong behavior is observed on a node the
basic token transmission has to be granted to keep alive the communication.
For this reason, the node system is decomposed in sub-systems. The decom-
position has been performed by exploiting the capability of C-TILCO in de-
composing complex system and validating them separately and compounded.

6



The decomposed communication node is shown in Fig. 3 and presents three
sub-systems:

• Communication Manager: it grabs the token and performs the commu-
nication protocol on the main ring;

• Token Repeater: it repeats the token to the next node when the token
reaches the communication node; it is used by the backup ring;

• Data Repeater: analogue of the Token Repeater, while it handles data.

Manager

Communication

inData outData

Repeater

Repeater

DatarecDataBack

recTokenBack

sendDataBack

sendTokenBack

recToken

recDatasendData

sendToken

Token

recTokenBack
recDataBack

sendDataBack
sendTokenBack

Fig. 3. The decomposition of the communication node

The main component is the Communication Manager whose specification
is comprised of several parts to better understand their meaning.

The following TILCO-X specification expresses the basic token passing
inside the communication manager.

:readyForToken =..

:recToken ?? [¬ :readyForToken ∧ ¬ : transmitAnything] ; ;

(¬ :readyForToken∧
(:dataBufferEmpty ⇒ (: transmitToken ∧ ¬∃any. : transmitData(any))@ [0, + :readyForToken))∧
(:getDataBuffer(d) ⇒ (: transmitData(d) ∧ ¬ : transmitToken)@ [0, + :readyForToken)))

A “ready” predicate, which is initialized when the node process starts,
puts the system in a wait status for receiving. While the node is waiting for
the token it cannot transmit anything (either token or data).

When a token comes two different choices are available: to re-transmit the
token or to transmit the data buffered from the inData port.

About the data transmission the requirements specify that a new data is
received from the higher layer input port and is stored in a specific buffer until
the token is grabbed by the node. An asynchronous communication in this
direction is used to avoid any unnecessary delay time in the ring communica-
tion: in this way the token is not grabbed without having a data to transmit.
With a non-empty buffer and the grabbed token the transmission can start as
it is specified in the following formulas.

7



A simple rule, which provides a token (or data) redirection on the backup
ring, when the main fails, has to be considered. The sendingToken (or send-
ingData) predicate asserts that a transmission attempt is on (until the node
receive the ACK signal from the adjacent after a successful transmission).
Thus the time-out condition can be evaluated as:

¬ :reset@ (−((:sendingToken∨ :sendingData)@ (−10, 0]), 0) ⇐⇒ :brokenChannel

The transmission of a token which occurs after a received token is specified
by the following formulæ

: transmitToken ∨ ∃any. : transmitData(any) =⇒: transmitAnything

up(: transmitToken ∧ ¬ :brokenChannel) =..

¬ :readyForTokenB @ [0, + :brokenChannel]∧
:sendToken !! [sendingToken ∧ ¬ :readyForTokenA] ; ;

¬ :sendingToken@ [0, +(: transmitToken∨ :repeatToken))∧
:readyForTokenA ∧ ¬ : transmitAnything

up(: transmitToken∧ :brokenChannel) =..

:sendTokenBack !! [¬ :readyForTokenB ] ; ;

:readyForTokenB ∧ ¬ : transmitAnything

:readyForTokenA∨ :readyForTokenB ⇐⇒ :readyForToken

The following expressions specify the behavior after the activation of a
transmitData(d). Thus the node has to transmit the data d to the adjacent (it
is very similar to the token transmission which has been previously described).

up(: transmitData(d) ∧ ¬ :brokenChannel) =..

¬ :readyForTokenB @ [0, + :brokenChannel]∧
:sendData !! d [sendingData ∧ ¬ :readyForTokenA] ; ;

¬ :sendingData@ [0, +∃next.(: transmitData(next)∨ :repeatData(next)))∧
:readyForTokenA ∧ ¬ : transmitAnything

up(: transmitData(d)∧ :brokenChannel) =..

:sendDataBack !! d [¬ :readyForTokenB ] ; ;

:readyForTokenB ∧ ¬ : transmitAnything

In these formulas, a failed attempt of communication on a broken channel
is recovered using the backup ring, if both channels are broken the node cannot
communicate anymore. Two different predicates can determine the ready state
after a successful transmission (readyForTokenA, readyForTokenB) on one
of the available channels. It has to be noticed that a broken channel will freeze
the port on the send state waiting forever for the remote synchronization.

The management of incoming data is specified with a similar structure. In
this case, the received data d has to be examined to decide which operation
has to take place. The data may

• be addressed to the node: this data has to be sent to the higher level of the
communication (the outData port) and repeated along the node ring;

• be originated from the node: this data is returned back from the ring the
token it has been grabbed has to be released;

• has no relation with the node: it has to be repeated by sending it again
along the ring.

8



The following expressions specify the above aspects where arrivedData(d)
is a predicate which asserts that a data, with value d, has been received
from the recData port. On the basis of d.srcID and d.dstID the appropriate
predicate repeatData or repeatToken is asserted.

:readyForData =..

:recData ?? [¬ :readyForData ∧ ¬ :repeatAnything] ; ;

λd.¬ :readyForData∧ :arrivedData(d)

:arrivedData(d) =⇒ (¬∃any. :arrivedData(any))@ (0, + :readyForData]

:arrivedData(d) ∧ d.srcID 6=:nodeID ⇒ (:repeatData(d) ∧ ¬ :repeatToken)@ [0, + :readyForData)

:arrivedData(d) ∧ d.srcID =:nodeID ⇒ (:repeatToken ∧ ¬∃any. :repeatData(any))@ [0, + :readyForData)

:arrivedData(d) ∧ d.dstID =:nodeID =⇒:outData !! d [true] ; ; true

:resetBuffer ⇐⇒ ∃d.(:arrivedData(d) ∧ d.srcID =:nodeID)

The previous expressions specify the different predicates which are acti-
vated on the basis of the received data. The repeatToken and repeatData
predicates work in a similar manner of the previously presented transmitTo-
ken and transmitData predicates. These ”repeat” predicates have been kept
separated because at the end of the transmission different predicates have to be
activated. In fact, after a repeatToken the system asserts readyForData,while
transmitToken leads to the activation of the readyForToken predicate.

:repeatToken ∨ ∃any. :repeatData(any) =⇒:repeatAnything

up(:repeatData(d)∧
¬ :brokenChannel) =..

¬ :readyForDataB @ [0, + :brokenChannel]∧
sendData !! d [:sendingData ∧ ¬ :readyForDataA] ; ;

:sendingData@ [0, +∃d.(transmitData(d) ∨ repeatData(d)))∧
:readyForDataA ∧ ¬repeatAnything

up(:repeatData(d)∧ :brokenChannel) =..

sendDataBack !! d [¬ :readyForDataB ] ; ;

:readyForDataB ∧ ¬repeatAnything

up(:repeatToken ∧ ¬ :brokenChannel) =..

¬ :readyForDataB @ [0, + :brokenChannel]∧
sendToken !! [:sendingToken ∧ ¬ :readyForDataA] ; ;

:sendingToken@ [0, +(: transmitToken| :repeatToken))∧
:readyForDataA ∧ ¬repeatAnything

up(:repeatToken∧ :brokenChannel) =..

sendTokenBack !! [¬ :readyForDataA] ; ;

:readyForDataA ∧ ¬repeatAnything

:readyForDataA∨ :readyForDataB ⇐⇒ :readyForData

In the following the data buffer and its relation with the inData port have
been expressed. The getDataBuffer(d) predicate is asserted only when a data
with valude d is stored in the buffer. setDataBuffer(d) and resetBuffer are
provided to set and reset the value in the buffer, respectively. The dataBuffer-
Empty predicate denies the getBuffer(d) for every d : no value is stored in the

9



buffer.

:up(DataBufferEmpty) =⇒
: inData ?? [:dataBufferEmpty] ; ;

setDataBuffer(d)

:setDataBuffer(d)∨
since(:setDataBuffer(d),¬ :resetBuffer) ⇐⇒ getDataBuffer(d)

:getDataBuffer(d) ⇐⇒ ¬dataBufferEmpty

Similar expressions are needed to perform the simple replication (with-
out main and back attempt) of data and token which are received from rec-
DataBack and recTokenBack.

The process initialization puts the system in a waiting status all the receiv-
ing ports. Therefore in order to complete the specification, specific predicates
have been introduced to assert that not any data or token is sent until the
apposite predicate is activated. It follows the initialization expression.

:process start =⇒
:readyForToken∧ :readyForData∧
¬ : transmitAnything ∧ ¬ :repeatAnything∧
:readyForTokenBack∧ :readyForDataBack∧
¬ :sendingToken@ (−∞, +(: transmitToken∨ :repeatToken))∧
¬ :sendingData@ (−∞, +∃d.(: transmitData(d)∨ :repeatData(d)))

The other sub-components have not been described in this paper; the
specification of these parts usually reuse formulæ from the communication
manager and introduces different features in a less complex behavior to help
component reuse.

4 Validating the specification

In order to prove properties at level of single process and for the whole system
the inference rules defined for C-TILCO and for TILCO-X could be used. The
validation reported here is only a small part of the whole validation.

To prove properties for a single process the following two theorems has to
be considered:

`t p !! v [Ws] ; ; Ps

`t until0 Ps Ws

`t p ?? [Wr] ; ; Pr

`t ∃v.until0 Pr(v) Wr

These two theorems allow to substitute a Send/Receive operator with a
weak until operator in the premises of a goal.

In the theorems used to prove properties for connected processes, the
RWait operator plays an important role. It summarizes the communication
status saying if a message has been received in the past and it has not been

10



acknowledged. The two main theorems are the following:

I |= out
d→ in

`t in ?? [Wr] ; ; Pr

`t+ts out !! v [Ws] ; ; Ps

`t in ??@[ts − d, 0)

ts < −d

`t Pr(v)

`t+d Ps

`t Ws@[ts, d)

`t out !! @(ts, d)

`t+1 in.RWait

`t in.RWait

I |= out
d→ in

`t in ?? [Wr] ; ; Pr

`t+ts out !! v [Ws] ; ; Ps

`t in ??@[ts − d, 0)

`t out !! @[−d, ts)

−d ≤ ts

`t+ts+d Pr(v)

`t+ts+2d Ps

`t Wr@[0, ts + d)

`t+ts Ws@[0, 2d)

`t in ??@(0, ts + d)

`t+ts in !! @(0, 2d)

`t+ts+d+1 in.RWait

That means in the premises of the left-side theorem: if two ports are
connected with a delay d, a Receive is asserted at time t, and a Send is
asserted ts instants before the Receive. In the implication on the left-side: the
message is received at time t, Ps is true after d time instants, the wait formula
of Send is true from the Send time instant to the end of communication time
instant, and at t + 1 RWait is true stating that no message is pending.

The theorem on the right-side covers the opposite case: in the absence of
pending message, the Send is done after the Receive or within the delay.

Other theorems have been proved: one concerns the RWait operator that
permits deducing that: if RWait is true for an input port and the connected
emitting process is not sending, then RWait will remain true.

At level of a single process the Communication Node safeness properties
about token/data transmission can be proved. The readyForToken predicate
cannot be asserted toghether with the transmission attempt of token/data
(transmitToken and transmitData). This can be stated as:

:process start =⇒ (:readyForToken ⇒ (¬ : transmitToken ∧ ¬∃any. : transmitData(any)))@[0, +∞)

it can be transformed in:
:process start =⇒:readyForToken ∧ ¬ : transmitAnything

:readyForToken ∧ ¬ : transmitAnything =⇒ ¬ : transmitAnything @ [+ :readyForToken]

which can be proved using the specification.
Moreover, from this result a safeness property can be derived: that token

and data cannot be transmitted simultaneously (¬B @ [0, +∞)). This can be
stated as:

:process start =⇒ ¬(: transmitToken ∧ ∃any. : transmitData(any))@(0, +∞)

In order to prove that this critical condition cannot be reached, an initial
induction-like strategy has been adopted to branch the main goal:

:process start =⇒ :readyForToken

:readyForToken =⇒ (¬BAD)@ (0, + :readyForToken]

where BAD =: transmitToken ∧ ∃any. : transmitData(any) asserts the bad
condition. The first part is trivially derived from the specification. The second

11



implication needs a further step to separate the singular point at the end of
the dynamic interval. This can be written as follows:

:readyForToken =⇒ (¬BAD)@ (0, + :readyForToken)∧
:readyForToken =⇒ (¬BAD)@ [+ :readyForToken]

The second sub-goal is directly solved by the safeness condition :readyForToken ⇒
¬ : transmitAnything. While the first subgoal can be proved by looking at
the specification that rules the system when it waits for the token and after
it is arrived. From the expression written at page 7 the following proof status
can be achieved:

`t :readyForToken

`t+1 :recToken ?? [¬ :readyForToken ∧ ¬ : transmitAnything] ; ;

(¬ :readyForToken∧
(:dataBufferEmpty ⇒
(: transmitToken ∧ ¬∃any. : transmitData(any))@ [0, + :readyForToken))∧
(:getDataBuffer(d) ⇒
(: transmitData(d) ∧ ¬ : transmitToken)@ [0, + :readyForToken)))

`t(¬BAD)@ (0, + :readyForToken)

By using the communication theorem allowing the substitution of a Send/Receive
operator with an until0 operator the goal can be transformed in this way:

`t :readyForToken

`t+1 until0(¬ :readyForToken∧
(:dataBufferEmpty ⇒
(: transmitToken ∧ ¬∃any. : transmitData(any))@ [0, + :readyForToken))∧
(:getDataBuffer(d) ⇒
(: transmitData(d) ∧ ¬ : transmitToken)@ [0, + :readyForToken)))

(¬ :readyForToken ∧ ¬ : transmitAnything)

`t(¬BAD)@ (0, + :readyForToken)

Using the rules for until0 two subgoals are generated:

`t :readyForToken `t+1(¬ :readyForToken ∧ ¬ : transmitAnything)@ [0, +∞)

`t(¬BAD)@ (0, + :readyForToken)

`t :readyForToken

`t+1+x (¬ :readyForToken∧
(:dataBufferEmpty ⇒
(: transmitToken ∧ ¬∃any. : transmitData(any))@ [0, + :readyForToken))∧
(:getDataBuffer(d) ⇒
(: transmitData(d) ∧ ¬ : transmitToken)@ [0, + :readyForToken)))

`t+1 (¬ :readyForToken ∧ ¬ : transmitAnything)@ [0, x)

`t(¬BAD)@ (0, + :readyForToken)

The first goal is proved considering that ¬ : transmitAnything ⇒ ¬BAD
holds. The second goal is proved using the specification and considering the
two possible cases: that there it is a pending data in the buffer or not.

The specification must be validated against the integration of the com-
ponent. The property which grants the token passing, ensures a balanced
communication priority for all the nodes of the ring. The token passing is
quick and, on the basis of a small delay of port communication, is performed
inside a single time sample. An integration property asserts that if the com-
munication channel is broken a token is passed along the backup ring.

12



Considering two adjacent nodes (n1, n2) it has been supposed that n1 is
attempting to transmit the token (n1.sendingToken) and n2 is waiting for a to-
ken. The waiting status of n2 can be expressed as: n1.sendToken !! @ [−n2.readyForToken, 0)
Moreover it must be asserted that ¬n1.brokenChannel ∧ n2.brokenChannel;
n2.bufferEmpty is true, meaning that on n2 no message has to be sent.

The synchronization between the connected ports n1.sendToken and n2.recToken
activates n2.transmitToken; the broken channel condition enables the trasmis-
sion of the token on the n2.sendTokenBack port. The connected port n1.recTokenBack,
which was waiting for a synchronization can propagate the token in the backup
ring.

It should be noted that in the specification there have been omitted all the
port !! and port ?? operators. They are needed to complete the specification
and to use the communication theorems previously described.

5 Conclusions and Future Work

The verification and validation is very important for the system which are
build on the basis of components. C-TILCO allows the specification of the
whole system in sub-components and the primitives to control communication
among them. After a proper formalization of the component-based architec-
ture integration tests can be performed by means of properties proofs. This
validation requires dedicated tools to easily work out a considerable amount
of proofs. To this end, an implementation of TILCO temporal logic (including
TILCO-X and C-TILCO features) in the PVS theorem prover is in progress.

In addition the core specification of component can be easily turned into
the implementation of the behavior since TILCO specification can be directly
executed.

References

[1] P. Bellini, R. Mattolini and P. Nesi, Temporal logics for real-time system
specification, ACM Computing Surveys 31 (2000).

[2] P. Bellini, M. A. Bruno, P. Nesi, Verification of External Specifications of Reactive
Systems, IEEE Trans. on Systems Man and Cybernetics - Part A, 30-6(2000),
pp. 692–709.

[3] P. Bellini, A. Giotti and P. Nesi, Execution of tilco temporal logic specifications,
Proc. of the 8th IEEE Intl. Conference on Engineering of Complex Computer
Systems, Greenbelt, (Maryland, USA) (2002).

[4] P. Bellini and P. Nesi, Communicating TILCO: a model for real-time system
specification, in: Proc of the 7th ”IEEE International Conference on Engeneering
of Complex Computer Systems”,ICECCS’01.

[5] P. Bellini and P. Nesi, TILCO-X: an extension of TILCO temporal logic, in:
Proc. of the 7th ”IEEE International Conference on Engeneering of Complex
Computer Systems”,ICECCS’01.

13



[6] G. Bucci, M. Campanai and P. Nesi, Tools for specifying real-time systems,
Journal of Real-Time Systems 8 (1995), pp. 117–172.

[7] A. Coen-Porisini, C. Ghezzi and R. Kemmerer, Specification of real-time systems
using ASTRAL, IEEE Trans. on Soft. Eng., 23 (1997) 572-598

[8] R. Mattolini and P. Nesi, An interval logic for real-time system specification,
IEEE Trans. on Soft. Eng., March-April (2001).

[9] G. Leavens and M. Sitaraman. Foundations of component-based systems.
Cambridge University Press, (2000).

[10] L. Mariani, A fault taxonomy for component-based software, proc. of
International Workshop on Test and Analysis of Components Based Systems,
TACOS2003, (M. Pezze, Ed.), Warszawa, April, 2003.

14


