
 1

Expressing and Organizing Real Time Specification
Patterns via Temporal Logics

P. BELLINI, P. NESI, D. ROGAI
DISIT-DSI, Distributed Systems and Internet Technology Laboratory

Department of Systems and Informatics, University of Florence

Via S. Marta, 3 - 50139 Florence, Italy

Tel: +39-055-4796567, Fax: +39-055-4796363

nesi@dsi.unifi.it, http://www.disit.dsi.unifi.it

Date: 14/05/2008

Abstract
Formal specification models provide support for the formal verification and validation of the
system behaviour. This advantage is typically paid in terms of effort and time spent in
learning and using formal methods and tools. The introduction and usage of patterns have a
double impact. They stand for examples on how to cover classical problems with formal
methods in many different notations, so that the user can shorten the time to understand if a
formal method can be used to meet his purpose and how it can be used. Furthermore, they are
used for shortening the specification time, by reusing and composing different patterns to
cover the specification, thus producing more understandable specifications which refer to
commonly known patterns. For these reasons, both interests in and usage of patterns are
growing and a higher number of proposals for patterns and pattern classification/organisation
has appeared in literature. This paper reports a review of the state of the art for real-time
specification patterns, so as to organise them in a unified way, while providing some new
patterns which complete the unified model. The proposed organization is based on some
relationships among patterns as demonstrated in the paper. During the presentation the
patterns have been formalised in TILCO-X, whereas in appendix a list of patterns with
formalizations in several different logics such as TILCO, LTL, CTL, GIL, QRE, MTL,
TCTL, RTGIL, is provided disguised as links to the locations where such formalizations can
be recovered and/or are directly reported, if found not accessible in literature; this allows the
reader to have a detailed view of all the classified patterns, including the ones already added.
Furthermore, an example has been proposed to highlight the usefulness of the new identified
patterns completing the unified model.

Keywords: patterns, real time specification pattern, formal methods, temporal logic, TILCO.

1 Introduction
Many applications must meet some temporal constraints in order to avoid critical and/or
degenerative conditions; examples are in the area of avionics, robotics, process control,
patient monitoring, etc. These applications are frequently considered real-time systems and in
many cases they are modelled by using suitable specification techniques, which allow the
verification and validation of the specified behaviour. For their specification, a set of
formalisms is used to define relationships expressing temporal constraints among events – for
example: properties of invariance, ordering among events, periodicity, liveness and safety
conditions, etc.
In many cases, in order to cope with the above problems, formal models have been used as
requirements analysis and/or specification techniques. The selected methods/formalisms are

 2

often formal enough to verify and validate the specification with respect to system re-
quirements by using theorem provers and/or model-checking techniques.
Among the scenarios of formal methods for requirement analysis and specification of real
time systems, the ones based on temporal logics play a relevant role [Bellini, Mattolini and
Nesi, 2000], [Alur and Henzinger, 1992]. The real-time system specification by using
temporal logics is a time consuming work which can be performed with a sensible efficiency
only by accurately trained people.
The presentation of specification patterns for temporal logics has recently improved its
usability. Such patterns can be used for training and guiding analysts and developers to
express requirements and specifications straight in a formal language [Dwyer et al, 1999],
thus shortening the specification time needed to produce specifications which are more
understandable, since they refer to common well-known design patterns.
In [Dwyer et al, 1999], a set of specification patterns has been proposed by using LTL (Linear
Time Temporal Logic) [Manna and Pnueli, 1992], and CTL (Computational Tree Logic)
[Clarke, Emerson and Sistla, 1986] temporal logics. Such specification patterns were mainly
focussed on formalising specification properties such as occurrence and event ordering. The
identification of those patterns has been produced by analysing a large set of typical
specifications to extrapolate the typical recurrent formal structures in the requirements and in
the specifications, i.e., the patterns. Therefore, similarly organised requirements may be
formalised by using the same specification pattern.

In literature, a wide work has been performed to identify many kinds of pattern to formalise
better and to reduce the time for analysis and designed processes. See for instance: analysis
patterns [Fowler, 1997], architectural patterns [Shaw, 1996], [Douglass, 2003], design
patterns [Gamma et al., 1994]. A different classification has been discussed in [Konrad and
Cheng, 2004].

In the area of real time systems, more recently, Konrad and Cheng [Konrad and Cheng,
2005], [Konrad and Cheng, 2006], have proposed some real time specification patterns with
the aim of extending the early defined patterns in [Dwyer et al, 1999], with some more
specific patterns including quantitative temporal constraints. In [Konrad and Cheng, 2005], a
set of real-time specification patterns expressing concepts of duration, periodic and real-time
ordering has been presented, by using the temporal logics formalizations in MTL (Metric
Temporal Logic) [Koymans, 1990], [Koymans, 1992], TCTL (Timed CTL) [Alur, 1991] and
RTGIL (Real-Time Graphical Interval Logic) [Moser et al., 1997]. Konrad and Cheng, in
their works, have also presented a classification of patterns based on the structured English
formalization of patterns, which helps the user to understand the patterns. Patterns with real
time properties have been also discussed in [Gruhn and Laue, 2005], [Gruhn and Laue,
2005b], while considering the pattern structure (e.g., scope, behaviour and events or
occurrences) and presenting pattern models by means of timed automata.

In [Konrad and Cheng, 2005], in order to allow the specification of real time patterns, the
selected temporal logics were in most cases quantitative extensions of the logics used in
[Dwyer et al, 1999]. On the other hand, while observing the state of the art of temporal logics,
only few of them have a metric of time; that is the possibility of expressing temporal
constraints in a quantitative manner as described in the general survey about the temporal

 3

logics reported in [Bellini, Mattolini and Nesi, 2000]. Therefore, the patterns presented in
[Dwyer et al, 1999] can be regarded as qualitative patterns with respect to the quantitative
patterns proposed in [Konrad and Cheng, 2005]. Qualitative patterns are those in which the
distance among events is not measured in terms of time units. Thus they can be specified also
by means of temporal logics that do not present a metric for time such as LTL, CTL, GIL, etc.
On the other hand, quantitative patterns are those that contain specific time bounds (temporal
constraints expressed in quantitative manner, for example 5 time unitis) that are typically of
real time systems. These patterns can be only expressed by using temporal logics that provide
a metric of time such as TCTL, RTGIL, MTL, TILCO, etc. In many cases the latter type of
logics are an evolution of the former type for logics: e.g., CTL and TCTL, GIL and RTGIL,
etc.

Among the temporal logics endowed of a metric of time, we can classify the above mentioned
MTL, TCTL, and RTGIL temporal logics, but also TILCO (Temporal Internal Logic with
Compositional Operator) [Mattolini and Nesi, 2001], and TRIO [Felder and Morzenti, 1994].
They have been discussed and partially compared with the formers in [Bellini et al, 2000],
[Mattolini and Nesi, 2001] and [Bellini, Nesi and Rogai, 2006]. All of them have a metric of
time and therefore they can be used for specifying both qualitative and quantitative temporal
constraints. In this category, MTL, TILCO and TRIO are first order temporal logics. Please
note that, other temporal logics produce specifications structurally similar to the above logics
or have similar operators [Bellini, Nesi, and Rogai, 2006], [Mattolini and Nesi, 2001]. Among
the above mentioned temporal logics for quantitative reasoning, TILCO and RTGIL are the
only interval logics, and TILCO presents operators making the specification quite compact.
TILCO has been designed for the specification of real-time systems and it extends the FOL
(First Order Logic) with a set of temporal operators. TILCO can be regarded as a
generalization of the classical temporal logics operators possibly and henceforth to time
intervals [Mattolini and Nesi, 2001]. TILCO allows the definition of expressions of ordering
relationships among events, delays, time-outs, periodicity, liveness and safety conditions, etc.
TILCO-X extended TILCO theory and logic by introducing operators for Dynamic Intervals
and Bounded Happen [Bellini and Nesi, 2001]. They allowed to generalize since and until
operators and to write simpler predicates including counting of events that may occur in
intervals.

1.1 Paper organisation, contributions and related works
The usage of patterns has a double impact. They are an occasion to provide examples of the
usage of formal methods in many different notations with respect to the same cases, on such
grounds the user can shorten the time to understand if a formal model can be used for
modelling the cases under specification. Besides, they can be used for shortening the
specification time, reusing and composing different patterns for the specification of more
complex problems and thus for producing more understandable specifications referring to
other users at the commonly known patterns. For these reasons, the practice of specification
pattern exploitation is mainly conceived as collecting and providing organised properties
ready to be used.

 4

This paper reports a review of the state of the art for real-time specification patterns, so as to
organise the latter in a systematic and unified way, while providing some new patterns which
complete the unified model. The analysis of the state of the art patterns has been performed
with the aim of deriving a unified view of the results proposed in the above mentioned
literature mainly considering [Dwyer et al, 1999] for qualitative patterns and [Konrad and
Cheng, 2006] for quantitative patterns. In Section 3, an overview of qualitative and
quantitative specification patterns is presented.

The analysing of the state of the art and the relationships among patterns proposed in it have
persuaded us to produce a unified organisation in which a number of new patters have been
placed as reported in this paper. The organisation proposed in [Dwyer et al, 1999] presented
only qualitative patterns, while that proposed in [Konrad and Cheng, 2006], arranged some
qualitative and quantitative patterns according to their description as “structure English”. On
the other hand, the organization proposed in this paper is based on the effective behavioural
relationships and properties of patterns. The identified relationships are discussed and
formally proved along the paper. The study and the formalization of the proposed behavioural
organisation allowed us to identify new and renovated patterns such as: Time-Constrained
Precedence and Time Constrained Response that complete the unified model.
In Section 4, the proposed patterns organisation is reported together with relationships among
patterns and the arrangement of the new proposed patterns. Section 5 presents both qualitative
and quantitative patterns expressed in TILCO-X together with their relationships and related
demonstrations. The presentation of patterns also includes a comparison among the different
specifications in different logics, that allow to compare the different specification models.
Furthermore, during the pattern formalisation and formal proofs, a particular attention has
been given in separating the specification of the pattern scope from the description of the
pattern behaviour in order to make them re-usable, and the pattern structure more modular. A
discussion about patterns’ scope is offered in Section 6. In [Konrad and Cheng, 2006], other
scopes have been presented with respect to those proposed in [Dwyer et al, 1999]. In this
paper, a generalization of the concept of scope is introduced.
Thus, the proposed pattern organisation and method for their formalisation can be used to
reduce the time to understand if a formal model can be used for modelling the cases under
specification.

During the article, the patterns have been analysed and formalised in TILCO-X [Bellini and
Nesi, 2001] (an extended version of TILCO temporal interval logic [Mattolini and Nesi,
2001]). For this reason a short overview of TILCO-X is also reported in Section 2, together
with its major operators and formalisms, which are used for reasoning on patterns and their
scopes. On the other hand, in Appendix 1 the list of patterns with their corresponding
formalizations in several logics TILCO, LTL, CTL, GIL, QRE, MTL, TCTL, RTGIL are
offered. When their formalisations have been recovered from the literature the link has been
reported, while in the other cases, the patterns have been directly specified by the authors in
the several logics. This has been performed to offer at the reader a detailed view of the whole
classified patterns, including those that have been added. Please note that not all patterns can
be formalised in all logics. With TILCO-X, TCTL, RTGIL and MTL it is possible to
formalise all the patterns proposed in [Dwyer et al, 1999] and in [Konrad and Cheng, 2006]

 5

and those proposed in this paper. Furthermore, in some cases, the TILCO-X specifications
resulted quite simple thanks to the presence of specific operators.

In addition, a case study is proposed in Section 7 to give evidence about the usefulness of the
new identified patterns, and of the unified model and organisation.

2 TILCO-X overview
TILCO-X is a logic language which can be used to specify temporal constraints in either a
qualitative or a quantitative way; the meaning of a TILCO-X formula is given with respect to
the current time. Time is discrete and linear and the temporal domain is the set of integers.
The minimum time interval corresponds to one instant, the current time instant is represented
by 0 and positive (negative) numbers represent future (past) time instants. The basic entity in
TILCO-X is a temporal interval, the boundaries of which can be either included or excluded
by using the usual notation with squared, (“[”, “]”) or round (“(”, “)”) brackets, respectively.
TILCO-X has to be considered for the specification of synchronous systems, meaning that
each system state update increments the system’s clock by 1 time unit. The basic TILCO-X
temporal operators are:
• “@ ”, universal quantification over a temporal interval: []44,2@A means that A will be

true from 2 and 44 time units, with respect to the evaluation time instant;

• “? ”, existential quantification over a temporal interval; []44,2?A means that A will be
true at least for one time unit from 2 and 44 time units, with respect to the evaluation time
instant;

Interval can be also defined as a single time instant. In this case, a compressed notation can be
used, e.g., [] 3@3,3@ −≡−− AA .

Many temporal logics adopt since and until operators to specify dependencies among events.
These operators make a strong distinction between past and future and, subsequently, their
adoption often makes the specification more complex to be read. The adoption of a unique
operator, as in TILCO-X, for the definition of ordering relationships among events, reduces in
many cases the need for the adoption of nested since and until operators. Specifying the
occurrence of one event with respect to a number of occurrences of another event is a
situation arising quite often (operators for event counting are needed). For instance, A has to
start after the arrival of 5 messages on channel B within interval I. To this end, TILCO-X
includes operators called Dynamic Intervals and Bounded Happen.
Please note that the semantics and the deductive system of those operators and therefore of
TILCO-X logic are reported in [Bellini and Nesi, 2001].

2.1 TILCO-X Dynamic Intervals
Dynamic Intervals allow to reduce the need of distinguishing between past and future for
ordering relationships and to avoid the nesting of since and until operators in many cases.
They reduce the number of quantifications and allow the combination of ordering and
quantitative relationships. Thus in TILCO-X the temporal intervals are not only constant
integer sets, but also dynamic interval bound defined as predicates. For example, TILCO-X

 6

formula [)BA +,10@ states that A is true from 10 time units in the future until B is true for

the first time, where B+ identifies the first future instant in which B is true (from the
evaluation time instant), if such instant does not exist, A is forever true in interval [)+∞,10 .
These two conditions are represented in Figure 1, where blue bars depict the defined interval
where predicate A has to be true.

B

evaluation
time instant

A

10

1st

evaluation
time instant

A

10

Figure 1: Example of Dynamic Interval: [)BA +,10@

In a similar way, an interval bound can be located in the past; for example, formula
A@(−B,0] states that A has been true since the last time instant in which B was true until the
current instant. Where −B identifies the last instant where B was true. So that, we have an
implicit operator + and - for referring to events in the future and past, respectively, with
respect to the evaluation time instant.
With TILCO-X, to write intervals which start in the past and end in the future becomes
possible; therefore, the above TILCO specification is greatly simplified:

() ()DCBA +−→ ,@

This TILCO-X formula can be read as: A ⇒ B is true from the last occurrence of C in the past
and the first occurrence of D in the future, with respect to the evaluation time instant.
In many cases, the definition of intervals with dynamic bounds (identified by the validity of a
generic formula) is of great help in avoiding the adoption of nesting temporal quantifiers.
Another example can be []CBA ++ ,? for which A happen at least one in interval [+B,+C].

Note that, the classical weak until and since operators can be defined with the following
formulas:

()ABBA +≡ ,0@until

()0,@since ABBA −≡

The adoption of the Dynamic Interval operator allows writing expressions when events have
to refer to time intervals defined in terms of other events.

2.2 TILCO-X Bounded Happen
Bounded Happen operator has been defined to increase constraint readability which includes
the dependency on the counting of occurrences. Sometimes a constraint implies counting the
number of event occurrences or in general how many times a formula is true in a given time
interval. Bounded Happen operator is used to state that a formula is true in an interval from a
minimum to a maximum number of times. For example, TILCO-X formula [)15,1?2A states

that A is true twice or more times in interval [)15,1 . While [)15,1?3A states that A is true up

 7

to three times in interval [)15,1 . By combining such operators, it can be stated that a formula
A has to be true in the interval from a minimum to a maximum number of times; with the

following example: [)15,1?3
2A .

Bounded Happen operator can be used with the Dynamic Interval operator. The formula
[)BA +,0?3

2 states that A happens two or three times from now until B happens (see Figure
2):

A B

evaluation
time instant

A
1st 2nd 1st

¬A ¬A¬A

Figure 2 – Example of Bounded Happen: [)BA +,0?3
2

3 Overview of Specification Patterns
In [Dwyer et al, 1999], a classification of specification pattern has been proposed. In [Alavi et
al]. details about qualitative specification patterns are published and cover all the typical
situations which a developer could have to deal with, when trying to define reactive systems.

Patterns are typically formalised considering the:
• Pattern: the pattern itself which is the property, the behaviour that has to be specified

with the chosen formalism (formal model in this case). In this paper, a specification of a
pattern with a given logic formalism is also called mapping as in [Dwyer et al, 1999]. So
that, in Appendix I, the mappings for the considered patterns are reported for a certain
number of different temporal logics;

• Scope: the extent of the program execution over which the pattern behaviour must hold.
The scope is determined by specifying a starting and an ending state/event for the pattern:
the scope consists of all states/events beginning with the starting state/event and up to and
not including the ending state/event. Also the Scope has to be formalised with the chosen
formalism. To this end, the person who is going to formalize the pattern can be more or
less interested in making evident the distinction among the scope and the pattern itself, in
order to have the so called “separation of concern”.

Both pattern and scope refer to the occurrence of events/states that could be substituted with
more complex predicates in the aim of creating more complex specifications/models, let’s say
for “composition of patterns”.

3.1 Patterns scope
In [Dwyer et al, 1999], five basic kinds of scopes have been proposed, as shown in Figure 3:

 global – the property has to hold for the entire program execution;
 before R – the property has to hold up to the occurrence of state/event R;

 8

 after Q – the property has to hold after the occurrence of state/event Q;
 between Q and R – the property has to hold in every interval having state/event Q on

left and state/event R on right; please note that multiple overlapped intervals having
the same end point are included in the scope, see Figure 3, for the this scope and
interval covering Q-Q-R sequence;

 after Q until R – the property has to hold in every interval having state/event Q on
left and state/event R on right or no ending event; this means that this property holds
even when the interval is not closed by R.

R R

Q Q

Q Q R Q R Q

Q Q R QR

begin end
Global

Before R

After Q

Between Q
and R

After Q
until R

R R

Q Q

Q Q R Q R Q

Q Q R QR

begin end
Global

Before R

After Q

Between Q
and R

After Q
until R

Figure 3 – Pattern Scopes

Experience points out that in most cases requirements are specified as properties of: (i) the
whole program execution, or of (ii) the specific segments of the program execution.
Therefore, a pattern system for properties allows someone to specify the system behaviour as
to the specific status fragment/condition of the program execution [Dwyer et al, 1999].

In [Konrad and Cheng, 2006], other scopes have been presented:

 in the presence of F – a property has to hold only in an interval where F occurs at
least once;

 in the absence of F – a property has to hold only in an interval where F never
occurs;

 from when F never holds – a property has to hold only from the state/event where
F is going to stay false forever.

Explicit scope operators do not appear in most specification formalisms; interval logics can be
considered an exception, if the operators to define the interval are used for modelling the
scope. Generally, it could be also possible to use scopes which are open on left and/or right. A
discussion about these additional scopes and other aspects related to the scopes are reported in
Section 7.

3.2 Patterns models
In [Dwyer et al, 1999], patterns are classified as:

 9

• Occurrence Patterns are used to express properties related to the existence or to the lack
of existence of certain states/events in the pattern scope. They have been classified in four
subtypes:

o Absence, also known as never happen. The event will never occur within the
scope;

o Universality, also known as henceforth. The event will always occur within the
scope;

o Existence, also known as eventually. The event may occur at least one time
within the scope;

o Bounded Existence. The event has to occur a fixed number of times within the
scope. Variations of this pattern may be defined replacing the fixed counting of
events with “at least” or an “at most” construct.

• Order Patterns are used to express requirements related to pairs of states/events during -
defined scopes. There are two order-related patterns:

o Precedence. P event has always to precede Q event within the scope.
o Response, also known as Follows, Leads-To. P event has always to be followed

by Q event within the scope.
o Chain Precedence. A sequence of Pi events has always to precede a sequence of

Qi events within the scope. It can be regarded as a generalisation of the
Precedence pattern.

o Chain Response. A sequence of Pi events has always to be followed by a
sequence of Qi events within the scope. It can be regarded as a generalisation of
the Response pattern.

In the above classification, the Chain Precedence and Chain Response patterns can be
considered as specific cases (a specialization) of Precedence and Response patterns,
respectively; since the occurrence of a sequence or of a chain of events can be regarded as the
occurrence of the single event (chain or sequence) and in the patterns, the event P may be
interpreted in that manner. For this reason, in the following they have not been reproduced in
TILCO-X.

In [Dwyer et al, 1999], the proposed patterns are defined in terms of what happens in the
future and never in terms of what has occurred in the past. The decision of Dwyer et al. about
presenting only patterns referring to the future may be due to the used formalisms, and related
limitations. In the following, for the presentation of TILCO-X–based pattern, both approaches
have been offered in some cases, see Appendix 1, since TILCO-X allows reasoning in a
uniform manner in both past and future.

In [Konrad and Cheng, 2006], a set of real time patterns has been proposed considering MTL,
RTGIL and TCTL temporal logics. They have been classified as:
• Duration Patterns are used to express requirements related to the duration of a condition

with respect to quantitative value. There are two basic patterns:
o Minimum Duration. When P becomes true, it remains in that condition at least

for a minimum time duration t;

 10

o Maximum Duration. When P becomes true, it remains in that condition at most
for the maximum time duration t;

• Periodic Patterns are used to express requirements related to definition of periodic
events/states. There is one related pattern:

o Bounded Recurrence (called Time-Constrained Recurrence in the classification
proposed herein). Limits the period which a given occurrence has to happen
within. P occurs every t time instants;

• Real Time Order Patterns are used to express requirements related to formalising
patterns where the time duration among event occurrences is limited. There are two basic
patterns:

o Bounded Response (a specific cases also included in the Time-Constrained
Response in the classification proposed in this paper). Limits the maximum time
duration from the event/state where a formula is true until another formula
becomes true;

o Bounded Invariance (called Time-Constrained Invariance in the classification
proposed in this paper). Limits the minimum time duration from the event/state
where a formula is true once another formula is true.

Please note that, in the patterns proposed in [Konrad and Cheng, 2005], the word bounded is
used for describing a bound in time, while in [Dwyer et al, 1999] the same word is used to
refer to a limit in the number of event occurrences. For this reasons, in order to avoid
confusion and provide a unified model, some of the patterns presented in [Konrad and Cheng,
2005] have been renamed in this paper as reported above, mainly by substituting “Bounded”
with “Time-Constrained”.

By analysing the relationships among all the above mentioned patterns, several similarities
have been identified, which persuaded us to produce a unified organisation as reported and
discussed in the next section.

4 Specification Patterns Organization
In this section, the unified organization of patterns is proposed by considering both qualitative
and quantitative patterns. This approach required a reorganization of the existing pattern
catalogues and an extension of the concept of scope. Our choice was to put in strict
relationship real-time patterns with those already existent which are not based on the
availability of a metric of time. That is the possibility of expressing temporal constraints in a
quantitative manner such as it is possible with MTL, TILCO, and other logics [Bellini,
Mattolini and Nesi, 2000] , [Konrad and Cheng, 2005].

In the proposed unified organisation of patterns, unlike [Konrad and Cheng, 2006], no radical
distinction has been performed from qualitative and quantitative (also called real time)
patterns in our pattern organisation. The organisation proposed in [Konrad and Cheng, 2006]
kept the [Dwyer et al, 1999] hierarchy and added an additional hierarchy for the real time
patterns. In their turn, for their purpose, they have been organised grouping together patterns
which share a common root in terms of pattern description as “structure English”. Our
organisation is based on a different purpose as described below.

 11

Figure 4 shows the proposed unified organisation that put together qualitative and real time
patters. At the first layer of the organisation, the pattern categories are a unified view with
respect to those proposed in [Dwyer et al, 1999] and [Konrad and Cheng, 2006]. After the
first layer, the patterns are grouped according to these categories. The categories distinguish
only which kind of constraint the pattern is applying to the predicates:
• Occurrence: properties which express if a given predicate has to occur, always, never,

periodically or for a given amount of times. It has been defined in [Dwyer et al, 1999].
• Duration: properties that, even though not imposing the occurrence, require a predicate

to hold for a given duration. It has been defined as a real-time type category in [Konrad
and Cheng, 2006].

• Order: properties that put in relationship more predicates, by ordering them. It has been
defined in [Dwyer et al, 1999].

Figure 4 – Proposed unified organisation of pattern and relationships, in grey the
real time patterns, in white qualitative patterns and main categories.

Both qualitative and quantitative patterns are organized in these categories. Qualitative
patterns in the proposed unified organization correspond to those presented by [Dwyer et al,
1999]. Quantitative patterns (real time) have been marked in grey.

Therefore, the following remarks can be made:
• the Chain Precedence and Chain Response patterns of [Dwyer et al, 1999] have not been

reported in the proposed organisation, since a chain of events can be considered as an
event itself, which is also stated in [Gruhn and Laue, 2005]. Thus, they should be
classified in the Order category respectively as a specific case of Precedence and
Response patterns;

• the Duration Patterns corresponds to those presented in [Konrad and Cheng, 2006];
• the category of Periodic patterns proposed in [Konrad and Cheng, 2006] with only one

pattern (Bounded Recurrence and called Time-Constrained Recurrence in this paper)
has not been used, because the single pattern Time-Constrained Recurrence can be better
classified as an occurrence pattern – i.e., periodic occurrences, which is demonstrated in
the following section;

• the category of Real Time Order proposed in [Konrad and Cheng, 2006] with two
patterns Bounded Response (a specific case of Time-Constrained Response in this
paper) and Bounded Invariance (called Time-Constrained Invariance in this paper) has

 12

been merged with the Order category. In fact, there are strong relevant relationships
among them, as reported below.

• the Time-Constrained Precedence is a new pattern identified to complete the unified
model. It consists in requiring a cause occurred in the past, in order to accept the present
effect, similarly to Precedence pattern. Besides, in this pattern, time constraints can be
specified as lower and upper bounds of the time window, located in the past, where the
cause is expected. It is dual with respect to the Time-Constrained Response pattern.
Please note that, the needed properties expressing time constraints in the past can be
transformed in “pure future” form. On the other hand, they are more naturally expressed
referring to the past, and for these reasons the authors deem of great value, in term of
readability, to let a past property be formulated in its “past form”. With some temporal
logics, which do not support past operators, a “pure future” transformation could be
required when formulating a mapping of this pattern.

• the Time-Constrained Response pattern used in this paper is more general with respect to
the Bounded Response pattern proposed in [Konrad and Cheng, 2006] since it is able to
specify a lower and a upper bound for the expected effect. The one proposed in this paper
presents a complete model for restricting the response to a given time window. This
pattern can also produce simpler properties by setting bounds to extreme values as
explained in the next paragraph. On the contrary, a single-sided constraint model would
require to use two different properties in order to limit the occurrence of the response in a
given time window (i.e. “S responds to P after at most kmax time units”, and “if P holds
that not S holds for at least kmin time units”).

According to the performed analysis (reported in the following section), some relationships
among the above mentioned patterns have been identified and depicted in Figure 4 using
blank arrows. In particular, as better described in the following section, so co-called
“behavioural generalisation” has been identified between some of them. In the diagram, the
generalization is depicted by using a blank arrow. The general concept is that un-timed
properties can be obtained by relaxing time constraints from timed properties.
For example,
• the Time-Constrained Response pattern, which models properties like “S responds to P

between kmin and kmax” can be used to obtain a Response Pattern by imposing simply
qualitative time bounds as 0min =k and ∞=maxk . Therefore Time-Constrained

Response with 0min =k and ∞=maxk can replace Response wherever in a system

without changing the system behaviour. Conceptually the Time-Constrained Response is
more general since it includes the case of Response pattern, while it can be considered a
subtype of the latter;

• along the same line of reasoning, the Precedence pattern can be regarded as a special case
of the Time-Constrained Precedence. In fact, in this case, the equivalence can be obtained
by imposing 0min =k and −∞=maxk , because the time window is located in the past;

• Existence pattern can be regarded as a specific case of the Bounded Existence pattern,
where the occurrence count is not limited, therefore one occurrence or more occurrences
of P are accepted.

 13

The above reported approach and comments have led to the proposed unified organization of
patterns with respect to those reported by [Konrad and Cheng, 2006], [Dwyer et al, 1999].
According to the above description of the unified organisation some of the patterns have not
been formalised in this section, while they are formalised in details in the next section
together their specification.

5 Temporal Logic Specification of Patterns
In this section, the proposed unified organisation of patterns reported in the previous Section
is discussed and supported while giving the evidence of the relationships among the patterns
that confirm the validity of the unified organisation. The formalism used in the presentation of
the patterns is TILCO-X, which resulted quite effective in the formalisation of many complex
structures. TILCO-X can be used to formalize both qualitative and quantitative real-time
patterns. On the other hand, the same demonstrations reported in terms of TILCO-X can be
replicated in other logics mentioned before such as: RTGIL, MTL, TCTL, etc.

According to the previous discussion, in the literature a certain number of qualitative and
quantitative patterns have been presented by using several different temporal logics such as:
RTGIL, MTL, TCTL, LTL, GIL, etc. (see [Konrad and Cheng, 2005] and [Dwyer et al,
1999]). In all these cases, the patterns have been presented by:
• Referring to a point in which the process starts, nothing has happened before;
• Considering the pattern behaviour from the process start to the infinite;
• Describing the actions towards the future, fixing a point and stating what is going to

happen in the next status or state evolution.

By using TILCO-X for the pattern specification, we noticed some differences that make some
of the specification mappings more intuitive and somehow different with respect to the ones
presented for other logics in [Konrad and Cheng, 2005], [Dwyer et al, 1999]. The main
differences are based on the fact that in TILCO-X:
• it is possible to specify formulas in the past and in future in a uniform manner [Bellini et

al., 2006];
• a specific process start is missing; while one can be defined by means of

AstartprocessAstart →≡ _):(thus process_start is the given time instant
from which any property has to be satisfied;

• once the start has been defined, it is possible to define a rule imposing the validity of the
formula from the process start to the time limit (e.g., infinite)

),0@[):(+∞≡ AstartArule .
In fact, start identifies an expression which has to be verified only on the initial time instant,
while rule imposes the expression to be verified on the entire time domain. Therefore,
patterns are typically presented in the form of start or of rule depending on the needs.

This formalisation for the specification of patterns can be used to formalize the pattern in all
the considered temporal logics, and allows to obtain a more evident distinction from pattern

 14

and the scope. For this purpose, comparison has been offered among the specification
methods used for producing the pattern specifications in different temporal logics.

Therefore, in Appendix 1, all the patterns discussed in the proposed unified organization are
reported for all the scopes. The formalisation of the patterns has been offered in TILCO-X
and in other formalisms (the above mentioned temporal logics, RTGIL, MTL, TCTL, LTL,
GIL, etc.). When those specifications have been found accessible in other documents or web
sites, citations and/or links have been provided; when the they have been missing, a
specification has been provided for completeness.

In the next Section, a description of the patterns according to the proposed unified
organization described in the previous Section is reported (please refer to Appendix 1
whenever an exhaustive view of all formulas for a pattern is needed). The description focuses
on presenting, demonstrating and stressing the main relationships among patterns. In some
cases, such relationships are of behavioural specialization as shown in the sequel.
Please note that the following section also includes the new and renovated patterns such as:
Time-Constrained Precedence and Time Constrained Response Invariance that complete the
unified model.

5.1 Occurrence specification patterns
As stated in Section 4, the category of the Occurrence patterns includes: Absence,
Universality, Existence, Bounded existence and Time-Constrained.

The Absence Specification Pattern aims at describing a portion of a system's execution that is
free of certain events or states. As it can be noted by observing the Absence (Occurrence)
pattern reported below, the scopes are modelled through dynamic intervals. Therefore, the
TILCO-X mapping seems to be very concise for every occurrence pattern on each scope.

Pattern Name and Classification
Absence: Occurrence Specification Pattern

Temporal Logic Mappings
TILCO-X
Globally:),0@[: +∞¬Pstart

Before R: ()),0@[,0?: RPRstart +¬→+∞

After Q:),@[: +∞+¬ QPstart

Between Q and R: [)RQPRrule ++¬→+∞ ,@),0?(:

After Q until R: [)RQPrule ++¬ ,@:

The definition of interval-based operators like “@ ”, “? ”, and “ max
min? ” allows to reuse the

pattern mappings for all the other Occurrence specification mappings.
Please note that in TILCO, in order to specify all the other Occurrence patters on the five
scopes presented in Section 3.1 it is only needed to replace the operators on the left, while
keeping the scopes independently modelled through intervals,

 15

• Globally: [)+∞,0

• Before R: [)R+,0

• After Q: [)+∞,Q

• Between Q and R: [)RQ ++ ,

• After Q until R: [)RQ ++ ,

For example, all the occurrence patterns for the “After Q until R” scope are.

• Universality: [)RQPrule ++ ,@:

• Absence: [)RQPrule ++¬ ,@:
• Existence [) [)RQPRQtruerule ++→++ ,?,?:

• Bounded Existence: [) [)RQPRQtruerule ++→++ ,?,?: max
min

• Time-Constrained Recurrence [)()),@[),0?[,?: RQkPRktruerule ++→+

Please note that formulas share the same structure. The same structure applies for all the other
scopes. TILCO-X operators model the occurrence patterns in a quite simple way, while
leaving to the intervals the definition of the pattern scope and thus keeping separate the two
concepts into the specification.

The only difference is in the semantic of “@ ” and “? ” when the specified time interval is

empty (i.e., R happens before Q with respect to the evaluation instant). In that case the “@ ”

operator is vacuously true, while “? ” operator on an empty interval is evaluated as false
[Mattolini and Nesi, 2001]. For example, in the Existence Pattern, formula [)RQtrue ++ ,?
states that, with respect to the evaluation time instant, a non-empty interval [+Q,+R] will
occur in the future (Q and R are predicates).

According to the definition of the scope in [Konrad and Cheng, 2006], the model accepts the
presence of multiple Q instances in the interval and it is valid in all of them from Q to R. If
the scope needs to be restricted to start from the first Q, the Q in the scope should be
substituted by: ()()0,@ RQQ −¬∧ . This rewriting can be applied also to some other
patterns, for the same purpose. Please note that the “past” semantic of dynamic interval
allows the identification of the first Q in a time interval which begins with Q and ends with R
with a quite simple formula; this would be much more complex using only future operators.

Among the Occurrence patterns, a relationship of behavioural specialization has been
identified. A model of the Bounded Existence pattern is indeed a model of the Existence
pattern in the corresponding scopes: if P exists in a limited number of times from a minimum
to a maximum, it surely occurs at least once. TILCO-X semantics maps this concept with this
substitution:

iPiP ??1 ≡∞

 16

Where: i is any time interval (dynamic or not) [Mattolini and Nesi, 2001]. This relationship is
also confirmed among the pattern mappings in LTL or CTL proposed by [Dwyer et al, 1999].
Please note that, in TILCO-X, the specification of the Bounded Existence pattern turns out to
be quite simple with respect to the specifications performed in formalisms which do not have
operators for modelling/counting the occurrences (e.g., LTL).

When examining other temporal logic mappings, the following remarks can be summed up:
• The LTL mapping for “Universality of P” in “Between Q and R” scope is expressed as

[](Q & !R -> (!R W (P & !R))) while the “Occurrence of P” over the same scope
is expressed as []((Q & !R & <>R) -> (P U R)). Please note that, on the right side
of both formulae expressions appear different: since no interval operators are present, the
right bound event R of the scope is used to impose the occurrence of P (“not R holds until
(P and not R) holds”). In TILCO-X expressions, the use of “?” operator allows to
distinguish parts of the formula which depend on the scope or on the pattern itself.

• The GIL mapping for “Occurrence of P” in “Between Q and R” scope and for
“Universality of P” in “Between Q until R” are shown in Figure 5 (respectively “a” and
“b”). Please note that, an “or” condition is added in order to express the situation where R
never holds in the future. In TILCO-X, this addition is not applied, since the interval
semantics can model unbounded intervals. In fact with [)RQP ++ ,@ the “weak until”
semantics is applied and if R never holds after Q, the formula is equivalent to

[)+∞+ ,@ QP .

Figure 5 – GIL mapping for Pattern: Universality, Scope: Between Q until R

5.2 Duration Specification Patterns
As stated in Section 4, the category of the Duration patterns includes: minimum duration and
maximum duration of events. The minimum duration describes a condition in which “once P
becomes true, it holds for at least k time instants”, while the maximum duration states that
“once P becomes true, it holds for at most k time instants”.

When observing and comparing those patterns as reported in Appendix 1, it can be remarked
that scopes are highlighted and therefore the same pattern specification and scope can be
managed independently.

In the following patterns, the specification segment ()PP ∧−¬ 1@ identifies the occurrence
of a false-true transition of P.

 17

The duration constraints can be imposed with quantitative intervals. For example, considering
both patterns in the same scope “After Q”.

• Minimum duration () ()() [)+∞+→∧−¬ ,@,0@1@: QkPPPstart

• Maximum duration () ()() [)+∞+¬→∧−¬ ,@,0?1@: QkPPPstart

The first property is dual with respect to the second since

()() ()kPkP ,0?,0@ ¬⇔¬ .

5.3 Order Specification Patterns
Order specification patterns include: Precedence, Response, Time-Constrained Precedence,
Timed-Constrained Response and Time-Constrained Invariance.

5.3.1 Precedence pattern
The Precedence Specification Pattern is used to describe relationships between a pair of
events/states where the occurrence of the first is a necessary pre-condition for the occurrence
of the second. It can be expressed as follows: an occurrence of the second is enabled by an
occurrence of the first. Precedence properties occur quite commonly in specifications of
concurrent systems.
The precedence property is intuitively a “past-based” formula; the following example depicts
two different mappings of “S precedes P” on “Between Q and R”.

• with past mapping ()),@[)0,?[),0?(: RQQSPRrule ++−→→+∞

• pure future mapping ()[)RSPRRQrule ∧+¬→+∞∧¬∧ ,0@),0?(:

Please note that the past formula allows keeping scope and pattern specifications independent
each another; the future formula uses the dynamic interval with the conjunction of S and R
(scope boundary). Furthermore the past formula is more readable, since it is still easy to
recognize that “if P occurs, then S has occurred before”.
The use of past in the intervals is a fundamental feature in order to obtain such an intuitive
mapping of the Precedence concept. The use of past keeps intact the actual “aim” of the
expressed property, which is to verify a condition regarding the past with respect to the
occurrence of P.
The model for pattern “S precedes P between kmin and kmax” is more general and includes the
case of “S precedes P” when kmin is the evaluation time instant (i.e., 0, zero) and kmax is the
left bound of the scope. This is presented in Section 5.3.5.

Temporal logic mappings were produced for Precedence pattern in LTL, GIL etc. For these
temporal logics the past operators are not present in their basic form (PLTL has been defined
including past operators for LTL). In fact, the expression for “S precedes P” are twisted in
order to obtain a pure future formula: “not P holds until S holds”. Therefore, LTL mapping
for Precedence pattern on “After Q” scope is expressed as []!Q | <>(Q & (!P W S)).
TILCO-X, by using time interval, that can be located in the past, is using)0,?[QSP −→ to
impose that S has to occur after the beginning of the scope, but before the current time instant.

 18

5.3.2 Response pattern
The Response Specification Pattern is used to describe cause-effect relationships between a
pair of events/states. An occurrence of the first, the cause, must be followed by an occurrence
of the second, the effect.

In a similar way as it occurs with Precedence, Response pattern is quite commonly used in
specifications of concurrent systems. Note that a Response property is like a converse of a
Precedence property. Precedence says that some cause precedes each effect, and Response
says that some effect follows each cause. They are not equivalent, because a Response allows
effects to occur without causes (Precedence similarly allows causes to occur without
subsequent effects).
The mappings with TILCO-X of Response pattern preserve the same structure of Precedence,
while using dynamic interval with future bounds. In fact, “S responds to P” in “Between Q
and R” can be expressed as:

() ()),@[),0?[,0?: RQRSPRrule +++→→+∞ .

In this case, the interval in which S has to occur is between the occurrence of P and the end of
the scope, while, in the corresponding Precedence mapping, the interval is between the start
of the scope and the occurrence of P.
Alike to Precedence, the model for pattern “S responds to P between kmin and kmax” is more
general and includes the case of “S responds to P” when kmin is the evaluation time instant and
kmax is the right bound of the scope. This is demonstrated in Section 5.3.6.

As to expressing this pattern in LTL, GIL and TILCO-X, similar expressions are obtained
when the scope is not so restrictive. For example, in the scope “After Q”, the tree mappings
are presented in Figure 6: a) LTL, b) GIL and c) TILCO-X.

Figure 6 – Response Pattern on “After Q” scope

Differences arise when the scope is an interval like “Between Q and R”, where LTL, without
interval-based operators, has to formulate as follows:
[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R) where it is required that “R
does not hold before S”. The latter formula requires more operators and operands than those
created with intervals, because the property is based on a scope which is an interval. The LTL
formula needs to apply the operator on R (“not R until …”), since the formula aims at
verifying the behaviour of S.

[](Q -> [](P -> <>S))

()),@[),0?[: +∞++∞→ QSPstart

a)

b)

c)

 19

5.3.3 Consideration on Order Specification Patterns
Please note that interval-based logic can model the scopes in a readable manner and it can
keep scopes apart from the specification of pattern behaviour, since the former can be
regarded as an interval. Generally speaking, the Precedence, Response Specification patterns
can be expressed by defining “start of the scope” and “end of the scope”; these events/states
need to be expressed as if considered at any time instant inside the scope. The definitions are
reported in the Table below.

Beginning of scope Scope
w.r.t. process_start w.r.t time instants inside scope

End of
scope

Parameter predicates begscope _ inbegscope __ endscope _
Globally 0 startprocess _− ∞+

Before R 0 startprocess _− R+

After Q Q+ Q− ∞+
Between Q and R Q+ Q− R+

(must exist)
After Q until R Q+ Q− R+

In the second row of the table, parameters predicates have been reported in order to indicate
general scope bounds in expressing TILCO-X mapping, regardless of the scope.

Precedes:
The general expression of “S precedes P” for the first three scopes can be written in terms of
parameter predicates (defined as reported in the above table) as

[)() [)endscopebegscopeinbegscopeSPstart _,_@0,__?: → .

The other two scopes define potentially an infinite set of intervals, therefore it is not possible
to obtain expression which are evaluated only at start time instant, while the need to use a
“rule” is self-evident, so as to detect any scope realization (i.e., whenever an interval between
Q and R takes place).
As depicted in the Universality Pattern (see Appendix 1), to assert a property P at any time
instant after Q until R means to impose),@[RQP ++ on a single time instant just before an
interval that begins with Q and end with R; when using “rule”, the desired expression is
obtained and P is asserted in all the intervals which are delimited by Q and R along the time
axis.
For such reasons, the general expression for “S precedes P” is still valid for “After Q until R”,
while being written with “rule” statement as

[)() [)endscopebegscopeinbegscopeSPrule _,_@0,__?: →

and the expression of “Between Q and R” only adds the scope existence (i.e. R must happen):

[)() [)endscopebegscopeinbegscopeSP
endscoperule

,@0,__?
_:
→

→∃

 20

Responds:
Similarly, the general expression of “S responds to P” for the first three scopes (“Globally”,
“Before R” and “After Q”) can be written as

[)() [)endscopebegscopeendscopeSPstart _,_@_,0?: → .

The “After Q until R” and “Between Q and R” scopes can be respectively written as

[)() [)endscopebegscopeendscopeSPrule _,_@_,0?: →

and

[)() [)endscopebegscopeendscopeSPendscoperule _,_@_,0?_: →→∃

Some of the pattern mappings could accept simpler expressions. Therefore the result of
maintaining the same clear structure for all the mappings, while distinguishing among scopes
and pattern intents, has been considered of great value. This could help in reusing/extending
these mappings to adapt easily their formulae to specific behaviours. In Appendix 1, the
alternative and simpler formalizations are also reported, even if only for some patterns.

In LTL and GIL temporal logic, the above described structure cannot include all the mappings
related to Order patterns, due to the lack of past operators and of “weak-until based” interval
bounds. Furthermore in LTL and GIL mappings on scope such as “Between Q and R” and
“After Q until R” start with “It is always the case that, if Q holds and R will hold in the future
then…”. In TILCO-X, this form could be used, but to let in a clear form the interval “Q-R”
has been considered of great value for the reader. Two versions of TILCO-X mapping for “S
responds to P” in After Q until R scope are reported:

()),@[),0?[: RQRSPrule +++→ or ()()),0@[),0?[: RRSPQrule ++→→

5.3.4 Time-Constrained Precedence Pattern
The above generalization suggested how to generalize Order pattern to add real-time
quantification of the event relationships. Since TILCO-X enables specification of time
intervals with both qualitative (i.e., events) and quantitative (i.e., time durations) manners, the
use of dynamic interval allows to introduce metric of time (e.g., formalizing distances among
events in terms of time units) for Order Patterns, while maintaining a comprehensible
structure.

For example, for the Time-Constrained Precedence Pattern, few examples for some scopes
are as follows:

• Globally

[)
[)
[]

[)

),0@[

,?
,_?

,_?
_,?

:

minmax

max

min

max

+∞

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−−

∨⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−−

→

kkS
kstartprocesstrue

kstartprocessS
startprocessktrue

Pstart

• After Q until R

[) [)()
[] [)()),@[

,?,?
,?,?

:
minmaxmax

minmax RQ
kkSkQtrue

kQSQktrue
Prule ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∧−−

∨−−∧−−
→

 21

The augmented expression, introduced to impose a real-time property to the occurrence of S,
is made complex to distinguish, when the left bound of the scope has occurred before the kmax
time instants in the past. In Figure 7, two different conditions are presented, please note that S
must precede P after the scope boundary, if it happens within the requested time duration.

Q P
Between Q

and R

kmin

begin end

R

kmax

S?
Q P

kmin

R

kmax

S?

Figure 7 – Scope boundaries and time durations

It has to be highlighted that all the mappings of these patterns have been realized by reusing
the same formula structure (see Appendix 1), which is created on the basis of the start and the
end of each scope:

[)
[)
[)

[)

)_,_@[

,?
,__?

,__?
__,?

:

minmax

max

min

max

endscopebegscope

kkS
kinbegscopetrue

kinbegscopeS
inbegscopektrue

Pstart

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−

∨⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∧−

→

If process_start definition also implies that all the examined predicates are false before such
instant:

() ()startprocessSRQP _,@ ∞−¬∧¬∧¬∧¬ .

the above formalizations can be simplified. Some examples are given below:
• “Globally, S precedes P between kmin and kmax”:

[)()),0@[,?: minmax +∞−−→ kkSPstart

• “Before R, S precedes P between kmin and kmax”:
[)()),0@[,?: minmax RkkSPstart +−−→

Generally, replacing “quantitative” time constants with “qualitative” scope bounds, the Order
Patterns as defined by [Dwyer et al, 1999] are obtained. Thus the latter are a special case of
Time-Constrained version. What follows is a demonstration of the fact that Time-Constrained
Precedence generalizes Precedence. It can be proved that to express “After Q until R, S
precedes P” is equivalent to express “After Q until R, S precedes P between kmin and kmax”
where 0min =k and Qk −=− max (the left side of the scope).

Therefore, the real-time TILCO-X mapping can be rewritten as:

[) [)()
[] [)()),@[

0,?,?
0,?,?

: RQ
QSQQtrue
QSQQtrue

Prule ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∧−−

∨−∧−−
→

 22

and according to the dynamic interval semantics of TILCO-X, it can be stated that

[) falseQQtrue =−− ,? (empty interval)

[] trueQQtrue =−− ,? (non-empty interval)

Therefore, the Time-Constrained Precedence mapping can be simplified to

[)()),0@[0,?: RQSPrule +−→

Which is exactly the same expression of the Precedence Pattern mapping on scope “After Q
until R”.

The MTL and TCTL mappings for Time-Constrained Precedence pattern have been created
by the authors of this paper and are reported in Appendix 1, for example in MTL as to
“Before R” scope, the result is as follows:

<>R->([]<km-kmin!S & []<kmax!R->[]=kmax !P)UR.
Please note that the subtraction of the quantitative bounds is present in order to impose the
desired behaviour in the future: “if not S holds for a period then not P holds at a given time
instant in the future”.

5.3.5 Time-Constrained Response Pattern
Time-Constrained Response Pattern can be defined in a similar way to Time-Constrained
Precedence Pattern. In this case, the right bound of the scope has to be evaluated with respect
to kmax. The Time-Constrained Response Pattern can be regarded as a more general version of
the Bounded Response pattern proposed by [Konrad and Chen, 2006]. In fact, it present both
temporal bounds

Some example of TILCO-X mappings are given below, while the complete set of pattern
mappings is presented in Appendix 1:

• Before R

() [) [)()
[] [)()),0@[

,?,?
,?,?

,0?:
maxminmax

minmax R
kkSRktrue

RkSkRtrue
PRstart +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧+

∨+∧+
→→+∞

• After Q: [)()),@[,?: maxmin +∞+→ QkkSPstart

Please note for the “After Q” scope the formula seems simpler, since for this scope there is no
need to have a right bound.

Even in this case the Time-Constrained Response Pattern is a generalization of the
corresponding “un-constrained” Response Pattern .The demonstration is taken by proving that
to express “Before R, S responds to P” is equivalent to express “Before R, S responds to P
between kmin and kmax” where 0min =k and Rk +=max . Therefore, the TILCO-X mapping

of this pattern can be rewritten as:

 23

() [) [)()
[] [)()),0@[

,0?,?
,0?,?

,0?: R
RSRRtrue
RSRRtrue

PRstart +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∧++

∨+∧++
→→+∞

and according to the dynamic interval semantics of TILCO-X, it can be stated that:

[) falseRRtrue =++ ,? ;

[] trueRRtrue =++ ,? .

Therefore, Time-Constrained Response maps exactly Response in the scope “Before R”.

() [)()),0@[,0?,0?: RRSPRstart ++→→+∞

In the specification of real-time constrains, the use of “between kmin and kmax” is a
generalization with respect to the Bounded Response defined in [Konrad and Cheng, 2006],
where one-bound constraint has been used. This Pattern can be obtained by replacing one of
the quantitative boundaries (kmin, kmax) with a qualitative one, which can be “now”, “start of
the scope” or “end of the scope”.

Observing MTL and TILCO-X about Time-Constrained Response pattern, by using only a
single-sided constraint (i.e., the version expressed in [Konrad and Cheng, 2006]) the MTL
formula for “Before R, S responds to P after at most kmax time instants” is
<>R->((P-> (!R U≤kmax(S & !R))) U R
The “bounded until” operator “U≤k” can include the hybrid semantics of quantitative and
qualitative constraint: the case in which end of the scope occurs before kmax time instants is
covered as well as the case in which end of the scope occurs after.
On the other hand, the equivalent TILCO-X formula is

 () [) [)()
[] [)()),0@[

,0?,?
,0?,?

,0?:
maxmax

max R
kSRktrue

RSkRtrue
PRstart +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧+

∨+∧+
→→+∞ .

In TILCO-X, a distinction needs to be taken [)max,? kRtrue + , then two different sub-

formulas, one for the scope end and one for the amount of time instants, have been used. In
the double-sided, version of quantitative constraints, this semantic gap is recovered since the
TILCO-X formula remains the same while the MTL version has to be doubled.

5.3.6 Time-Constrained Invariance Pattern
Also Invariance Pattern is related to the corresponding real-time version: Time-Constrained
Invariance. For example:

• After Q: [)()),@[,0@: +∞+→ QkSPstart

• Between Q and R () [] [)()),@[,0@,,0?: RQkSRktruePRrule ++∧+→→+∞

Please note that, as in [Konrad and Cheng, 2006], the scope end cannot interrupt the time
length where S holds (see Figure 8). The formula []Rktrue +, is placed to state that “R
occurs after at least k time instants”.

 24

P R
Before R

k k
begin end

S@ P

Figure 8 – Examples of Time-Constrained Invariance property

In MTL, the Time-Constrained Invariance pattern in “Before R” is represented as
<>R ->(P-> []<k(S & !R)) U R). Please note that, similarly to the Response pattern,
a property is imposed to R “to not hold for at least k time instant”. In TILCO-X formula,
which has been presented above, the case where scope end occurs within k time instants is
considered by using []Rktrue +, . This expression allows imposing that an interval of k time
instants has to exist since now to the end of the scope and S holds in this interval.

6 Discussion on Pattern Scopes
As mentioned above, in [Konrad and Cheng, 2006] other scopes have been presented with
respect to those proposed in [Dwyer et al, 1999]. These additional scopes may be specified
according to the following constructs, where P is modelled as Universality Pattern, In order to
obtain other patterns of the Occurrence category, it is needed to change the temporal operator
on the time interval.

Scope: in the presence of F – a property has to hold only in an interval where F occurs at
least once.

[) [)+∞→+∞ ,0@,0?: PFstart

Scope: in the absence of F – a property has to hold only in an interval where F never occurs:

[) [)+∞→+∞¬ ,0@,0?: PFstart

Scope: from when F never holds – a property has to hold only from the state/event where F
is going to stay false for ever:

[)()[)+∞+∞¬+ ,,0?@: FPstart

Real-time constraints can also extend scopes as defined by [Gruhn and Laue, 2005]. In fact
scope boundaries can be easily generalized as a given amount of time before or after a
qualitative event. The scope “After Q” can be extended as “After k time instants after/before
Q”. This can be useful to model “the airbag system is ready, after 10 seconds the car engine
has started”. The extension is a generalization, since the present scopes as defined by [Dwyer
et al, 1999] are still modelled by applying 0=k . In Figure 9, an example of real-time scope
“After Q + k” is depicted.

 25

Q Q
After Q + k

k
begin end

Figure 9 – Real-time scope After Q + k

TILCO-X allows modelling simply the real-time extension of scope. Let us write TILCO-X
specification for Universality Pattern on “After Q” scope and on “After Q + k”.
“After Q, P holds” can be imposed by asserting),@[+∞+QP at process start. Similarly,
when “After k time instants after Q, P holds” is imposed, the previous formula can be
changed in)),@(@[+∞−+ kQP or QkP ++∞ @),@[.

7 Case study: Crossroad Traffic-light controller
In this section, a case study is presented aiming at giving evidence about the application of the
above mentioned patterns with quantitative bounds. The case study is introduced presenting
the main requirements and on the basis of their analysis a pattern based specification has been
performed.

7.1 Requirements: Crossroad Traffic-light controller
The Crossroad Traffic-Light controller has to manage two roads with 4 traffic-lights (one for
each direction). The traffic-lights can be modelled as if two, since the opposite ones may be
coupled because they follow the same behaviour. Besides, the considered Crossroad Traffic-
Light controller has to provide: (i) a switch on order to disable (re-enable) the traffic-lights for
maintenance reasons; (ii) two emergency signals (one for each road) to request the turn on of
the green light for the corresponding road as soon as possible (e.g., for rescue or for police).

An informal description of the system can be summarized as:
1. Normally, the car flow alternates between the two roads and the nominal cycle of a

traffic light follows the sequence green-yellow-red-red-yellow. As soon as the green light
is shown to a road, the red light must be shown to the other. Yellow light and red-yellow
configuration are warning messages that respectively communicate “attention, a red light
is about to arrive” and “be ready, a green light is about to arrive”. The normal sequence
respects some time constants for changing the lights from one status to another.

2. In the disabled mode, the yellow lights only start blinking on both roads. Disable mode
activation waits for the completion of the normal sequence until red is shown on both
roads. To enable the system will start the sequence from the same situation.

3. in case of emergency from road A, the light sequence changes as soon as possible into
green light for road A, while respecting safety conditions (i.e., minimum time of green
and yellow lights for the opposite road). The green light is shown as long as the
emergency status on road A holds, then the normal cycle is resumed. Emergency on road
A has higher priority than road B and both ones have higher priority than enable/disable
switch.

 26

This case study requires a relevant usage of specification patterns for expressing the system
real-time properties. For example the most trivial safeness condition to be satisfied is
expressed by the first requirement: “Globally, it is never the case that green1 and green2
holds”. Therefore the Absence Pattern is used in the Global scope.

7.2 Properties: Crossroad Traffic-light controller
In this section, a set of properties of the systems under analysis is reported. For each of them,
the textual description/requirement is reported together with the TILCO-X specification by
using the above mentioned patterns. Furthermore, for each pattern the name and the scope are
reported as well, so as to make the pattern usage more self-evident.

When focusing on real-time behaviour, several requirements can be highlighted They have
been associated with behavioural description. In the following expressions, (i) the
enable/disable switch is monitored with two Boolean variables representing events: on, off;
(ii) emergency conditions are represented by emeA and emeB; (iii) the status of lights is simply
represented by six Boolean variables named greenA, yellowA, etc. Moreover, Boolean function
up(x) is true when x changes from false to true.

The main part of the specification consists in formalizing the light sequence which controls
the car traffic on both roads. This sequence exposes real-time requirements in terms of time
constants that rule the sequence: if yellow light is shown on a road, than red light cannot be lit
until some reasonable time is elapsed.

“Globally, if up(yellowA) holds, not redA holds for at least YELLOWMIN”

() ()() [)+∞¬→∧−¬ ,0@,0@1@: YELLOWMINredyellowyellowstart AAA

Pattern: Time-Constrained Invariance Scope: Globally

The same specification can be applied to green lights, which have to hold for a given time.
Furthermore, liveness property can be added, so as to ensure the light sequence is followed in
no emergency conditions. The following properties express bounds for green light duration.
“Globally, once greenA becomes true, it holds for at least GREENMIN”

() ()() [)+∞→∧−¬ ,0@,0@1@: GREENMINgreengreengreenstart AAA

Pattern: Minimum Duration Scope: Globally

“In the absence of emeB, once greenB becomes true, it holds for at most GREENMAX”

[)
() ()() [)+∞¬→∧−¬

→+∞¬
,0@,0?1@

,0@:
GREENMAXgreengreengreen

emestart

BBB

B

Pattern: Maximum Duration Scope: In the absence of F

Another interesting property is as follows: if a green light on a road occurs, the same event
occurred before in the opposite road. The real-time expression highlights a safety condition
regarding how fast the light sequence is.
“After on until off, greenA precedes greenB between SAFESWITCH and ∞”

 27

[)
[)

[]
[)

),@[

,?
,?

,?
,?

: offon

SAFESWITCHgreen
ontrue

SAFESWITCHongreen
ontrue

greenrule

A

A
B ++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∞−
∧−∞−

∨⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
∧−∞−

→

[)()),@[,?: offonSAFESWITCHongreengreenrule AB ++−−→

Pattern: Time-Constrained Precedence Scope: After Q until R
Please note that the Time-constrained Precedence is used in a specific case where one of the
bounds is undefined (-∞). The expression is subsequently simplified and a hybrid interval is
obtained. The second statement describes what it is expected by the traffic-light in the disable
mode.

The most simple property is expressed to verify whether the yellow light is really blinking at
a given rate.
“After off until on, yellowA and yellowB holds at least every BLINK”

[) ()()),@[),0?[,?: onoffBLINKyellowyellowonBLINKtruerule BA ++∧→+

Pattern: Time-Constrained Recurrence Scope: After Q until R
Please note that hybrid interval used with “?” and with a “true” Boolean expression means if
such interval exists. In this case, on the left side of the implication, if on occurs after BLINK
time instants, then both yellow lights will hold together before BLINK time instants.

Properties can verify the correct enabling and disabling of the traffic-light system.
The disable request can be executed immediately or after the proper sequence has been
completed, so a time constant can be the upper limit of this waiting time. This property can be
evaluated when the disable request is not overwritten by other commands.
“In the absence of emeA or emeB, yellowA and yellowB responds to off between 0 and
FULLCYCLE”

() [)
() ()() [)+∞∧→

→+∞∧¬
,0@,0?

,0@:
FULLCYCLEyellowyellowoff

emeemestart

BA

BA

Pattern: Time-Constrained Response Scope: In the absence of F

The property about enabling the traffic-light has to ensure that the traffic is stopped as the
initial condition on both roads and for at least a given time.
“Globally, if on holds, redA and redB holds at least for STARTUP”

() ()() [)+∞∧→ ,0@,0@: STARTUPredredonstart BA

Pattern: Time-Constrained Invariance Scope: Globally

The presence of the emergency condition led to identify a number of properties that have to
be specified on the traffic-light system. The first one is about how quickly the emergency
request has to be fulfilled. In this case two constraints are active at the same time (safeness
and speed).
“After on, greenA responds to (emeA and greenB) between SAFESWITCH and
EMERGENCY”

 28

[)()),@[,?: +∞+→∧ onEMERGENCYSAFESWITCHgreengreenemestart ABA

Pattern: Time-Constrained Response Scope: After Q

This example highlights how simple is to express properties with nesting interval operators
and with the usage of hybrid intervals. Furthermore, Time-Constrained Precedence and
Response are extremely reusable in their “generalized” form (between kmin and kmax), since
more specific cases are directly simplified towards more readable expressions. Since all the
expressions are clearly structured, they can be changed by replacing sub-parts in a safe
manner, with no risk of changing the time behaviour requirements.
The expression that is produced for “After on, greenA responds to (emeA and greenB) between
SAFESWITCH and EMERGENCY” would require a more complex form by using single-sided
Time-Constrained Response as proposed in [Konrad and Cheng, 2006]. With their pattern, the
above specified property has to be split in two: “After on, greenA responds to (emeA and
greenB) after at most EMERGENCY time units” and “After on, if (emeA and greenB) hold, then
not greenA holds for at least SAFESWITCH time instants”. The used patterns are respectively
Time-Constrained Response and Time-Constrained Invariance.

8 Conclusions
This paper reported a review of the state of the art for real-time specification patterns, so as to
organise the latter in a more systematic manner while providing some new patterns that
complete the unified model. The analysis of the state of the art patterns has been performed
with the aim of deriving a unified organisation of the results proposed in the above mentioned
literature. The proposed organization is based on the effective behavioural relationships
among patterns. The identified relationships have been discussed and formally proved along
the paper. The formalization of the behavioural organisation allowed us to identify new and
renovated patterns such as: Time-Constrained Precedence and Time Constrained Response
that complete the unified model.
The proposed behavioural organisation of patterns can be used to provide organised examples
on the usage of formal methods in many different notations with respect to the same cases.
Therefore, the user can reduce the time to understand if a formal model can be used for
modelling the cases under specification, shortening the specification time, reusing and
composing different patterns for the specification of more complex problems, thus producing
specifications easier to be understood since referred to commonly known patterns.
Besides, during the formalisation of patterns a particular attention has been given in
separating the specification of the pattern scope from the description of the pattern behaviour
in order to make them re-usable. A more general model for the scope has been provided.
During the presentation the patterns have been formalised in TILCO-X, while in Appendix 1
a list of patterns with formalizations in several logics such as TILCO, LTL, CTL, GIL, QRE,
MTL, TCTL, RTGIL is offered disguised as links to the locations which they can be
recovered from or are directly reported, when they turned out to be not accessible from
literature; this provides the reader with a detailed review of the whole classified patterns,
including the ones which were added. In addition, an example has been proposed to give
evidence about the usefulness of the new identified patterns that complete the unified model.

 29

Examples of the pattern usage have been proposed to give evidence about the usefulness of
the new identified patterns completing the unified model and to compare different
specifications provided by authors and in the literature in different temporal logics.
In the end we have also shown that TILCO-X allows to formalise all the patterns proposed in
[Dwyer et al, 1999] and in [Konrad and Cheng, 2006]. Furthermore, in some cases, the
specifications resulted quite simple thanks to the presence of (i) a uniform management of
past and future, (ii) Dynamic Interval operator, (iii) Bounded Happen operator, (iv) interval
operator.

 30

Appendix 1
(to be included as paper Appendix or made accessible as a
WEB page)
What follows is the complete list of Property Patterns. New material only has been presented.
The Pattern Template parts which are missing are totally reused from what has been presented
in [Dwyer et al, 1999].

Occurrence Patterns

Pattern Name and Classification
Absence: Occurrence Specification Pattern

Temporal Logic Mappings
TILCO-X:
Globally:),0@[: +∞¬Pstart
Before R: ()),0@[,0?: RPRstart +¬→+∞
After Q:),@[: +∞+¬ QPstart
Between Q and R: [)RQPRrule ++¬→+∞ ,@),0?(:
After Q until R: [)RQPrule ++¬ ,@:
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml

Pattern Name and Classification
Universality: Occurrence Specification Pattern

Temporal Logic Mappings
TILCO-X:
Globally:),0@[: +∞Pstart
Before R: ()),0@[,0?: RPRstart +→+∞
After Q:),@[: +∞+QPstart
Between Q and R: [)RQPRrule ++→+∞ ,@),0?(:
After Q until R: [)RQPrule ++ ,@:
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml

Pattern Name and Classification
Existence: Occurrence Specification Pattern

Temporal Logic Mappings
TILCO-X:
Globally:),0?[: +∞Pstart
Before R: ()),0?[,0?: RPRstart +→+∞
After Q: ()),?[,0?: +∞+→+∞ QPQstart

 31

Between Q and R: [) [)RQPRRQtruerule ++→+∞∧++ ,?),0?(,?:
 or () [)RPRRQrule +→+∞∧¬∧ ,0?,0?:
After Q until R: [) [)RQPRQtruerule ++→++ ,?,?:
 or [)RPRQrule +→¬∧ ,0?:
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml

Pattern Name and Classification
Bounded Existence: Occurrence Specification Pattern

Temporal Logic Mappings
TILCO-X:
Globally:),0[?: max

min +∞Pstart
Before R: ()),0[?,0?: max

min RPRstart +→+∞
After Q: ()),[?,0?: max

min +∞+→+∞ QPQstart
Between Q and R: [) [)RQPRRQtruerule ++→+∞∧++ ,?),0?(,?: max

min
 or () [)RPRRQrule +→+∞∧¬∧ ,0?,0?: max

min
After Q until R: [) [)RQPRQtruerule ++→++ ,?,?: max

min
 or [)RPRQrule +→¬∧ ,0?: max

min
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml

Relationships
It can be considered as a generalization of Existence patterns, since the latter can be obtained
by substituting min and max with 1 and ∞.

Pattern Name and Classification
Time-Constrained Recurrence: Real-Time Occurrence Specification Pattern
“P holds at least every k”

Temporal Logic Mappings
TILCO-X:
Globally: [)+∞,0@),0?[: kPstart
Before R: () [)() [)RkPRktrueRstart +→+→+∞ ,0@),0?[,?,0?:
After Q: [)+∞,@),0?[: QkPstart
Between Q and R: [)()),@[),0?[,?),0@(: RQkPRktrueRrule ++→+→+∞
After Q until R: [)()),@[),0?[,?: RQkPRktruerule ++→+
MTL: see Bounded Recurrence in [Konrad and Cheng, 2006]
TCTL: see Bounded Recurrence in [Konrad and Cheng, 2006]
RTGIL: see Bounded Recurrence in [Konrad and Cheng, 2006]

 32

Duration Patterns
Pattern Name and Classification
Minimum Duration: Real-Time Occurrence Specification Pattern
“once P becomes true, it holds for at least k”

Temporal Logic Mappings
TILCO-X:
Globally: () ()() [)+∞→∧−¬ ,0@,0@1@: kPPPstart
Before R: () () ()() [)RkPPPRstart +→∧−¬→+∞ ,0@,0@1@,0?:
After Q: () ()() [)+∞→∧−¬ ,@,0@1@: QkPPPstart
Between Q and R: () ()()),@[,0@1@),0@(: RQkPPPRrule ++→∧−¬→+∞
After Q until R: () ()()),@[,0@1@: RQkPPPrule ++→∧−¬
MTL: see [Konrad and Cheng, 2006]
TCTL: see [Konrad and Cheng, 2006]
RTGIL: see [Konrad and Cheng, 2006]

Pattern Name and Classification
Maximum Duration: Real-Time Occurrence Specification Pattern
“once P becomes true, it holds for at most k”

Temporal Logic Mappings
TILCO-X:
Globally: () ()() [)+∞¬→∧−¬ ,0@,0?1@: kPPPstart
Before R: () () ()() [)RkPPPRstart +¬→∧−¬→+∞ ,0@,0?1@,0?:
After Q: () ()() [)+∞¬→∧−¬ ,@,0?1@: QkPPPstart
Between Q and R: () ()()),@[,0?1@),0?(: RQkPPPRrule ++¬→∧−¬→+∞
After Q until R: () ()()),@[,0?1@: RQkPPPrule ++¬→∧−¬
MTL: see [Konrad and Cheng, 2006]
TCTL: see [Konrad and Cheng, 2006]
RTGIL: see [Konrad and Cheng, 2006]

Order Patterns
Pattern Name and Classification
Precedence: Order Specification Pattern “S precedes P”

Temporal Logic Mappings
TILCO-X:
Globally: [)()),0@[0,_?: +∞−→ startprocessSPstart
 or [)SPstart +¬ ,0@:
Before R: () ()),0@[)0,_?[,0?: RstartprocessSPRstart +−→→+∞
 or ()[)RSPstart ∧+¬ ,0@:
After Q: ()),@[)0,?[: +∞+−→ QQSPstart
 or [) QSPstart ++¬ @,0@:
Between Q and R: ()),@[)0,?[),0?(: RQQSPRrule ++−→→+∞
 or ()[)RSPRRQrule ∧+¬→+∞∧¬∧ ,0@),0?(:

 33

After Q until R: ()),@[)0,?[: RQQSPrule ++−→
 or ()[)RSPRQrule ∧+¬→¬∧ ,0@:
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml

Pattern Name and Classification
Time-Constrained Precedence: Real-Time Order Specification Pattern
“S precedes P between kmin and kmax”

Temporal Logic Mappings
TILCO-X:

Globally:

[)
[)
[]

[)

),0@[

,?
,_?

,_?
_,?

:

minmax

max

min

max

+∞

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−−

∨⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−−

→

kkS
kstartprocesstrue

kstartprocessS
startprocessktrue

Pstart

Before R:

()

[)
[)
[]

[)

),0@[

,?
,_?

,_?
_,?

,0?:

minmax

max

min

max

R

kkS
kstartprocesstrue

kstartprocessS
startprocessktrue

PRstart +

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−−

∨⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∧−−

→→+∞

After Q:
[) [)()
[] [)()),@[

,?,?
,?,?

:
minmaxmax

minmax +∞+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∧−−

∨−−∧−−
→ Q

kkSkQtrue
kQSQktrue

Pstart

Between Q and R:
[) [)()
[] [)()),@[

,?,?
,?,?

),0?(:
minmaxmax

minmax RQ
kkSkQtrue

kQSQktrue
PRrule ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∧−−

∨−−∧−−
→→+∞

After Q until R:
[) [)()
[] [)()),@[

,?,?
,?,?

:
minmaxmax

minmax RQ
kkSkQtrue

kQSQktrue
Prule ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−∧−−

∨−−∧−−
→

MTL:
Globally: []([]<kmax-kmin!S ->[]=kmax !P)

Before R: <>R->([]<kmax-kmin!S & []<kmax!R->[]=kmax !P)UR
After Q: [](Q->[]([]<kmax-kmin!S ->[]=kmax !P))
Between Q and R: [](Q&!R & <>R ->([]<kmax-kmin!S & []<kmax!R->[]=kmax !P)UR)
After Q until R: [](Q&!R ->([]<kmax-kmin!S & []<kmax!R->[]=kmax !P)WR)
TCTL:
Globally: AG(AG<kmax-kmin!S ->AG=kmax !P)

Before R: AFR->A[(AG<kmax-kmin!S & AG<kmax!R->AG=kmax !P)UR]
After Q: AG(Q->AG(AG<kmax-kmin!S ->AG=kmax !P))
Between Q and R: AG(Q&!R& AFR ->
 A[(AG<kmax-kmin!S & AG<kmax!R->AG=kmax !P)UR])
After Q until R: AG(Q&!R ->A[(AG<kmax-kmin!S & AG<kmax!R->AG=kmax !P)WR])
Relationships

 34

It is a behavioural generalization of the Precedence pattern, the latter can be obtained from the
former by using 0min =k and Qk −=− max .

Pattern Name and Classification
Response: Order Specification Pattern
“S responds to P”

Temporal Logic Mappings
TILCO-X:

Globally: [)()),0@[,0?: +∞+∞→ SPstart
Before R: () ()),0@[),0?[,0?: RRSPRstart ++→→+∞
After Q: ()),@[),0?[: +∞++∞→ QSPstart
Between Q and R: () ()),@[),0?[,0?: RQRSPRrule +++→→+∞
After Q until R: ()),@[),0?[: RQRSPrule +++→
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml

Pattern Name and Classification
Time-Constrained Response: Real-Time Order Specification Pattern
“S responds to P between kmin and kmax”

Temporal Logic Mappings
TILCO-X:
Globally: [)()),0@[,?: maxmin +∞→ kkSPstart

Before R: () [) [)()
[] [)()),0@[

,?,?
,?,?

,0?:
maxminmax

minmax R
kkSRktrue

RkSkRtrue
PRstart +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧+

∨+∧+
→→+∞

After Q: [)()),@[,?: maxmin +∞+→ QkkSPstart

Between Q and R:

() [) [)()
[] [)()),@[

,?,?
,?,?

,0?:
maxminmax

minmax RQ
kkSRktrue

RkSkRtrue
PRrule ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧+

∨+∧+
→→+∞

After Q until R:
[) [)()
[] [)()),@[

,?,?
,?,?

:
maxminmax

minmax RQ
kkSRktrue

RkSkRtrue
Prule ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧+

∨+∧+
→

MTL: see Bounded Response in [Konrad and Cheng, 2006], that is a special case of this
pattern;
TCTL: see Bounded Response in [Konrad and Cheng, 2006], that is a special case of this
pattern;
RTGIL: see Bounded Response in [Konrad and Cheng, 2006], that is a special case of this
pattern;
Relationships
In the specification of real-time constraints, the use of “between kmin and kmax” is a
generalization with respect to the Bounded Response defined in [Konrad and Cheng, 2006],
where one-bound constraint has been used. This Pattern can be obtained by replacing one of

 35

the quantitative boundaries (kmin, kmax) with a qualitative one, that can be “now”, “start of
the scope” or “end of the scope”.

Pattern Name and Classification
Time-Constrained Invariance: Real-Time Order Specification Pattern
“P activates S holds for at least k”

Temporal Logic Mappings
TILCO-X:
Globally: [)()),0@[,0@: +∞→ kSPstart
Before R: () [] [)()),0@[,0@,,0?: RkSRktruePRstart +∧+→→+∞
After Q: [)()),@[,0@: +∞+→ QkSPstart
Between Q and R: () [] [)()),@[,0@,,0?: RQkSRktruePRrule ++∧+→→+∞
After Q until R: [] [)()),@[,0@,: RQkSRktruePrule ++∧+→
MTL: see Bounded Invariance in [Konrad and Cheng, 2006]
TCTL: see Bounded Invariance in [Konrad and Cheng, 2006]
RTGIL: see Bounded Invariance in [Konrad and Cheng, 2006]

References
[Alavi et al.] SAnToS Laborary, Alavi, H.; Avrunin, G.; Corbett, J.; Dillon, L.; Dwyer M.; Pasareanu,

C. Specification Patterns web site http://patterns.projects.cis.ksu.edu/
[Alur and Henzinger, 1990], Alur, R.; Henzinger, T.A. Real-time logics: Complexity and

expressiveness. Technical report, Dept. of Comp. Science and Medicine STAN-CS-90-1307,
Stanford University, Stanford, California, USA, March, 1990.

[Alur and Henzinger, 1992], Alur, R., and T. A. Henzinger. Logics and models of real time: A survey.
In J. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory
in Practice, Lecture Notes in Computer Science 600, pp.74–106. Springer-Verlag, 1992.

[Alur, 1991], Alur, R., Techniques for automatic verification of real-time systems. PhD thesis, Stanford
University, 1991.

[Bellini and Nesi, 2001], Bellini, P.; Nesi, P. TILCO-X an Extension of TILCO Temporal Logic. Proc.
of the 7th IEEE Int. Conf. on Engineering of Complex Computer Systems, ICECCS 2001,
IEEE Press, Skovde, Sweden pp.15-25, June 2001.

[Bellini, Mattolini and Nesi, 2000], Bellini, P., R. Mattolini, and P. Nesi. Temporal logics for real-time
system specification. ACM Computing Surveys, vol.32, n.1, pp.12–42, 2000.

[Bellini, Nesi and Rogai, 2006], Bellini, P., Nesi, P., Rogai, D., Reply to Comments on "An Interval
Logic for Real-Time System Specification', Reply to Comments on "An Interval Logic for
Real-Time System Specification', IEEE Transactions on Software Engineering, Vol.32,
n.6, pp.428-431, June 2006.

[Clarke, Emerson and Sistla, 1986] Clarke, E. M., E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, Vol.2, pp.244–263, April 1986.

[Douglass, 2003], Douglass,B.P., Real-TimeDesignPatterns. Addison-Wesley, 2003.
[Dwyer et al, 1999], Dwyer, M.B.; Avrunin, G.S.; Corbett, J.C., Patterns in property Specifications for

finite-state verification, Proc. of the 1999 IEEE International Conference on Software
Engineering, pp.411-420, 1999.

[Felder and Morzenti, 1994], Felder, M.; Morzenti, A. Validating real-time systems by history-
checking TRIO Specifications. ACM Transactions on Software Engineering and
Methodology. 3-4 Oct. 1994, 308-339.

[Fowler, 1997], Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
[Gamma et al., 1994], Gamma, E., Helm, R., Johnson, R., and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[Gruhn and Laue, 2005], Gruhn, V., Laue, R., Patterns for timed property specification, Proc. of the 3rd

Int. Workshop on Quantitative Aspects of Programming Languages (QAPL 05), Edinburgh,
Scotland, April 2005. 2005.

 36

[Gruhn and Laue, 2005b], Gruhn, V., Laue, R., Specification Patterns for Time-Related Properties,
Proc. of the 12th International Symposium on Temporal Representation and Reasoning
(TIME05), 2005.

[Konrad and Cheng, 2004], Konrad, S., Cheng, B. H. C., and Campbell, L. A., Object analysis patterns
for embedded systems. IEEE Transactions on Software Engineering, Vol.30, n.12, pp.970–
992, December 2004.

[Konrad and Cheng, 2005], Konrad, S., Cheng, B. H. C., “Real-time specification patterns”
Proceedings of the 27th International Conference on Software Engineering (ICSE05), St
Louis, USA, May 2005.

[Konrad and Cheng, 2006], Konrad, S., Cheng, B. H. C., “Defining and Using Real-Time Specification
Patterns for Embedded Systems”, Technical Report of Michigan State University, MSU-
CSE-04-37, Revision of March 2006.

[Koymans, 1990], Koymans, Specifying real-time properties with metrics temporal logic, Real Time
Systems, Vol.2, n.4, pp.255-299, 1990.

[Koymans, 1992], Koymans, R. Specifying Message Passing and Time-Critical Systems with Temporal
Logic.Lecture Notes in Computer Science 651, Springer-Verlag, 1992.

[Manna and Pnueli, 1992], Manna, Z., and A. Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., 1992.

[Mattolini and Nesi, 2001], Mattolini, R.; Nesi, P., “An interval logic for real-time system
specification”, IEEE Transactions on Software Engineering, pp.208-227, 2001

[Moser et al., 1997], Moser, L.E., Y. S. Ramakrishna, G. Kutty, P. M. Melliar-Smith, and L. K. Dillon.
A graphical environment for the design of concurrent real-time systems. ACM Transactions
on Software Engineering and Methodology, vol.6, n.1, pp.31–79, 1997.

[Shaw, 1996], Shaw, M., Some Patterns for Software Architecture, Pattern Languages of Program
Design, Vol.2, pp.255-269, 1996.

