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Abstract 

The gradient-based methods ~Dr optical flow estima­
tion are based on a constraint equation which is defined 
for each image pixel. The structure of constraint equa­
tion make the problem ill-posed so in the past have been 
proposed some solutions based on regularization. On 
the contrary, under the assumption that in the imme­
diate neighbourhood of a pixel the optical flow field is 
smooth, the constraint equations in that neighbourhood 
should have a common solution, in this case the problem 
is not ill-posed. Following this reasoning, an algorithm 
for evaluating the optical flow, which is suitable for paral­
lei implementation is proposed in this paper. Moreover, 
parallel implementations of selected algorithms from the 
literature, for optical flow estimation, are presented in 
this paper with the intention of comparing their com­
plexity and performance with respect to the proposed 
approach on a Connection Machine-2. 
Index term: computer vision, motion estimation, opti­
cal flow, partial differenti al equation, local voting, par­
allei implementation, real-time. 

1 Introduction 

The main problem of sequence analysis in vision is the 
estimation of the apparent motion usually called "velo c­
ity field" or "motion field" [1], which is the perspective 
projection of the 3D real velocity on the image piane. 
The estimation of the apparent velo city in a regular grid 
of the image is useful in solving many problerns related 
to dynamic scene analysis such as 3D motion estimation 
and 3D object reconstruction, robot navigation, etc .. 

Recently, the necessity to perform motion analysis in 
real-time for robot navigation anel other applications has 
provoked an interest in real-time estimation of the ap­
parent motion. Parallel implementation is one way to 
achieve it. Presently, there are only few examples of 
parallel implementation for motion estimation in the lit­
erature, though, many computational approaches for mo­
tion estimation are highly parallelizable. 

Three main approaches for solving the motion estima­
tion problem, which are suitable for parallel implemen­
tation, can be identified in literature: matching (corre­
spondence), spatio-temporal filtering, and the gradient­
based. In the first, local matching techniques are used 
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to evaluate the displacements in subsequent frames for 
each element of the moving object (lines, corners, pat­
terns) [2], [3]. In the second approach, the estimation of 
motion is obtained by filtering both in the temporal and 
frequency domains. Filtering is tuned in frequency and 
space in order to detect the components of the motion 
[4], [5], [6], [7]. The third approach (i.e., gradient-based) 
provides a solution to motion estimation from the ob­
servation of brightness changes in the image piane, thus 
leading to motion estimation of image brightness features 
[8], [9], [lO], [11], [12], [13]. The flow field of these fea­
tures is normally called "optical flow" of "image flow" . 
The gradient-base approach is suitable for parallel im­
plementation since it requires access only to loeal image 
information. An example of is the fully pyramidal im­
plementation presented by Enkelmann in [14]. A par­
allei implementation on the Connection Maehine-2 ar­
ehiteeture (CM-2) of the algorithm presented by Tretiak 
and Pastor in [11] has been presented by Tistarelli in 
[15], providing quasi-real-time estimations. An example 
of hardware implementation can be found in Danielsson 
and al. [16]. 

The gradient-based approaches evaluate the optical 
flow by using the so-called Optieal Flow Constraint 
(OFC) equation: 

(1) 

where the abbreviation for partial derivatives of the im­
age brightness has been introdueed, and u, v correspond 
to dxjdt, dyjdt, and represent the eomponents of the 
loeal veloeity vector along the x and y directions, re­
spectively. The definition of the OFC is derived from 
the observation that the ehanges in the image bright­
ness E(x(t), y(t), t) are supposed to be stationary with 
respect to the time variable (i.e., dEjdt = O). In generai, 
boundary and smoothness eonstraints are needed to ob­
tain a eomputational solution for the OFC. Aeeording to 
the OFC equation, the optical flow field is defined as the 
field of image gray value pattern displaeements. 

Optica! flow estimation is suseeptible to two main dif­
ficulties. The first involves the diseontinuities in the lo­
eal veloeity, relating to image brightness diseontinuities, 
which are originated by the presence of noise, too erisp 
patterns on the moving object surfaees, oeclusions be­
tween moving objects. Generally, this difficulty ean be 
overeome (or its effeet attenuated) by eonvolving the im-
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age with a 2-D or 3-D Gaussian smoothing operator. The 
second difficulty is the so-called "problem of aperture" , 
which is also present in the human vision [8], and it is 
related to the impossibility to recover univocally the di­
rection of motion if the object is observed through an 
aperture which is smaller than the object size. 

In this paper, a new algorithm for optical flow est i­
mation in real-time and its parallel implementation is 
proposed. In addition, new parallel implementations of 
two well-known algorithms for optical flow estimation, 
selected from the literature, are presented. AlI the three 
algorithms are compared on a SIMD architecture such as 
the Connection Machine-2. These features of these three 
algorithms are summarised as follows: 

• the approach of Horn and Schunck [8], is a 
regularizaiion-based algorithm, where the optical 
flow estimation problem, by using the OFC (i.e., 
dE/di == O), is considered an ilI-posed problem. The 
solutions are obtained minimizing a functional by 
means of an iterative process; 

• the approach of Tretiak and Pastor [11], is a 
multiconsiraini-based algorithm, where the optical 
flow is obtained by solving a determined system of 
constraint equations (i.e., dV E/di == O) at each im­
age pixel; 

• the proposed approach is a multipoini-based algo­
rithms, which is based on the fact that: if the op­
tical flow changes are smooth, then the OFC equa­
tions in a neighborhood of estimation point repre­
sent the same velo city, and can be used to define an 
over-determined system of OFC equations. This ap­
proach is derived from the multipoint technique for 
solving partial differential equation. The obtained 
over-determined system of equations is solved by us­
ing a least-squares technique. 

The reference machine used for the parallei implementa­
tions of these algorithms is the Connection Machine-2, a 
SIMD machine with a processing element (PE) for each 
image pixel, and an efficient communication among pro­
cessing elements. On such machine alI the calculations 
involved in the algorithms described are performed si­
multaneoualy by the PEa aaaigned to the image pixels. 

The paper is organized aa follows: Sections 2 presents 
a parallel implementation of the regularization-based al­
gorithm of Horn and Schunck [8]. A parallel implemen­
tation of the multiconstraint-based algorithm proposed 
by Tretiak and Pastor [11], is discussed in Section 3. 
In Section 4 an efficient multipoint-baaed algorithm and 
its parallel implementation is presented. Comparison of 
complexity and experimental results for the algorithms 
discussed is offered in Section 5. Conclusions are drawn 
in Section 6. 
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2 Regularization-Based Algorithm 

The regularizaiion-based approaches consider the op­
tical flow estimation an ill-posed problem [8], [9], [17]. 
Solutions are obtained minimizing a functional, where a 
smoothness constraint is appropriately weighted to reg­
ularize the solution. UsualIy, these methods lead to it­
erative solutions, and the velocity is evaluated in every 
point of the image. The drawbacks of these approaches 
are related to the fact that difficulties occur in the pres­
ence of object ocdusions, and the depth of propagation 
of the field depends on the number of iterations and on 
the weighting factor. Horn and Schunck solution [8] is 
taken as representative of this dass of algorithms. The 
defined functional in this case is: 

F = J J [(Exu + Evv + Et}2+ 

(\'2(U; + u; + v; + v;)] dxdy, (2) 

where the first term is the OFC, the second term is taken 
as a measure of the goodness of OFC approximations, 
and (\' is a weight factor to control the influence of the 
smoothness constraint. This functional was minimized 
by using calculus of variations. That approach leads to 
a system of two coupled differential equations from the 
Euler Lagrange equations. 
These equations are decoupled and solved iteratively 
by using the discrete approximation of the Laplacian, 
whereby a couple of iterative equations is obtained by 
using a finite difference method. These are then used to 
estimate the optical flow components: 

(3) 

where: Exi,;,t, Eyi,;,t and Eti,;,t are estimated by using 
equations: 

E.. = (E-+ 1 ' - E- 1 . )/2 Z',J,t t ,),t t- ,l,t , 

Eyi,;,t = (Ei,i+l,t - Ei,i-1 ,t)/2, 

Et·· = (E- . t+1 - E.. 1)/2 t,l,t 1,1, I,},t-, 

(4) 

where, only the estimations of Exi J' t, and Ey . . t require 
, ) Z,), 

the communication of the pixel data from neighbouring 
PESi and: 



u~),t = (Ui-I,.1-I,t + Ui-l,)+l,t + Ui+l,)-l,t + Ui+I,)+1,t}/12 + 
(Ui-l,),t + Ui+l,),t + Ui,)-l,t + Ui,)+1,t}/6, 

ii~),t = (Vi-l,)-l,t + Vi-l,)+l,t + Vi+l,)-l,t + Vi+I,)+I,t}/12 + 
(Vi-l,),t + Vi+1,),t + Vi,)-l,t + vi,)+1,t}/6, 

where n is the iteration number, In this iterative solution 
a guessed value for optical flow estimation at time t can 
be obtained from the previous time-step (i.e., u? j t = 
ui',j,t-l> where w is the number of iterations executed at 
the previous time step). 

2.1 Regularization-based: parallel imple­
mentation and compl1exity 

The parallel solution of Horn and Schunck algorithm 
is composed of two phases, In the first estimations of the 
image brightness derivatives are calculated. The second 
is an iterative calculation process defined by equations 
(3). It should be noted that both these phases involve 
communication of data among neighbouring PEso 

The explicit complexity of this solution is strongly de­
pendent on the number of the iterations, I t , and results 
on a sequential machine in CO = 3M2+ItM2 where M is 
the image dimension; the first term is due to the estima­
tion of the partial derivati ves for the image brightness, 
and the second to the iterative process for evaluating 
equations (3). On a mesh-connected parallel architec­
ture like the Connection Machine-2 with M x M pro­
cessing elements the asymptotical complexity is O(1t), 
The number of floating point operations (FLOP) which 
have to be executed at each iteration by each PE is only 
49. 

3 Multiconstraint-Based Algorithm 

The multiconstraint-based appl'oaches for optical flow 
estimation are based on the observation that the con­
dition dF / dt = ° can be made valid for any motion­
invariant function F such as cont.rast, entropy, aver age , 
variance, etc., instead of the image brightness, E, in the 
OFC, By using a set of these constraints, which are eval­
uated at the same point in the image, an over-determined 
set of equations with u and v as unknowns can be ob­
tained [18]. Other methods derive constraint equations 
which can be regarded as obtained by taking the first 
derivatives of optical flow constraint with respect to x, 
y and t [lO], [ll], [12], [13]. These multiconstraint­
based approaches use traditional numerical methods for 
the inversion or pseudo-inversion of the coefficient ma­
trix of the set of equations. In generaI, most of the 
multiconstraint-based algorithms are suitable for paral­
lei implementation on SIMD architectures, since they use 
only local information. 

In this paper, the solution of Tretiak and Pastor [11] 
has been taken as a representative of the multiconstraint­
based direct solutions. In particular, this solution adopts 
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a couple of constraint equations which can be obtained 
by taking the derivative of the OFC equation with re­
spect to x and y, and neglecting the first-order deriva­
tives (ux , uv, vx , vy) of the velocity components [16] or 
through a different path by using the equations of motion 
components such as in [12]: 

Exx u + Exyv + Ext = 0, 

Exyu + Eyyv + Eyt = 0, (5) 

The solution is obtained directly through the inversion 
of the matrix of coefficients H (i.e., the Hessian). Thus, 
only for those points where the determinant of H (gc = 
ExxEYll - EXll 2 

) is different from zero a solution of the 
optical flow is provided. 
The components of the optical flow field are estimated is 
each pixel by using: 

(6) 

where the second-order partial derivati ves of the lm­
age brightness are estimate by using the centraI dif­
ference on the first-order derivati ves - e.g" Exy· . t = 

l,}, 

(Exi,j+l,t - Exi ,j_l,t)/2. This solution is very seusitive 
to discontinuities, siuce it uses the second-order deriva­
tives of the image brightness. To improve the solution 
quality, an image convolution with a Gaussian filtering 
was adopted in [ll], [16], [15], and also in our experi­
ments. 

3.1 Multiconstraint-based: parallel imple­
mentation and complexity 

The parallel solution to this algorithm is composed of 
three phases: the first is the convolution of the images 
with a Gaussian filter, the second is the estimation of the 
first- and second-order image brightness derivatives, and 
the third is the estimation of the velo city components 
from equations (6). The first two phases involve data 
communication among neighbouring PEso 

The explicit complexity of this solution is strongly 
dependent on the dimension of the Gaussian pattern 
which is usually convolved with the image, prior to the 
optical flow estimation. At any time instant only one 
new image is filtered, while the optical flow estima­
tion is caIculated for the previous sequence, The ex­
plicit complexity involved on a sequential machine is 
CO = 2F2M2+3M2+5M2+M2, where M is the image 
dimension, and F is the dimension of the Gaussian filter­
ing pattern, The first term of the above equation is due 
to the Gaussian filtering, the second to the estimation 
of the first-order derivatives of the image brightness, the 



Il 
Fil tering h

5
"---'----"7,...-,---,.,....F-,-.,..,,..--,r--;;o--ti 

_ 9 I 11 13 
Il Time in msec. 22 60 108 I 183 291 

TabIe 1: Timing expressed in milliseconds for the convo­
Iution of the image with a pattern with dimension F x F, 
on Connection Machine-2 with vp-ratio 1:4. 

third to the estimation of the second-order derivatives 
of the image brightness (Exx , E yy , E xy , E tx , E ty ), and 
the forth to the estimation of the optical flow by using 
equations (6). The asymptotical complexity on a paral­
leI architecture such as a mesh of M x M PEs is O(F 2 ). 

The number of floating point operations that must be 
executed by each PE to estimate the optical flow -and 
filter the results are 2F2 +27. As can be seen in Table 1, 
increasing the dimension of the filter mask, the filtering 
stage becomes the dominant (due to the intensive com­
munication required among PEs within the filtering mask 
boundaries), compared to the calculation effort in image 
brightness derivati ves and optical flow estimation which 
takes only about 22 msec. on a Connection Machine-2 
with 64 floating point unit and a vp-ratio of 1:4. 

4 Multipoint-Based Algorithm 

Considering that the optical flow changes follow a law 
which is approximately linear, a smoothed solution for 
optical flow estimation can be obtained from a linear ap­
proximation of the adopted constraint in the neighbor­
hood of the point under consideration. This assumption 
is valid only if the optical flow field under observation 
is smooth. Then, the constraints evaluated in a set of 
neighboring pixels at a certain point represent the same 
velocity, as a first approximation. This approach was 
called multipoint, and in literature several cases are pre­
sented [19], [20], [13]. 

In this section, an improved version of the multipoint­
based algorithm proposed by Del Bimbo, Nesi, and Sanz 
in [21] has been presented and parallelized. Considering 
a generic point p on the image pIane having velo city 
components (u, v). Ifthe optical flow changes following a 
law which is approximately linear in x, y, then each point 
in the neighbourhood of p has approximatively the same 
velo city components of p [21], hence, an over-determined 
system of N x N OFC equations: 

Et(i,j,t) + EX(i,j,t)U + EY(i,j,t)v = O, 

can be defined, where N is the dimension of the im­
age neighbourhood around the point p (if N is odd for 
i = -(N -1)/2, .. , (N -1)/2, j = -(N -1)/2, .. , (N -1)/2 
). This over-determined system of N x N equations has 
2 unknowns (i.e., N ~ 2), which are the velocity compo­
nents (u, v) of p. The solution of this over-determined 
system of equations is obtained by means of a Ieast­
squares technique in each estimation point. 
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Augmenting the neighbourhood dimension, N, 
around the pixel under consideration smoother optical 
flow fields can be obtained. On the other hand, large N 
values lead to a Ioss in resolution on the moving object 
boundaries. 

The presented algorithm is less sensitive to the discon­
tinuities than the methods which use the second-order 
partial derivative of the image brightness with the same 
neighbourhood dimension, N [21]. On the other hand, 
inaccurate results can be obtained, sin ce the estimation 
of the optical flow field is computed in a pixel neighbour­
hood, disregarding the possible difference in velocities. 
Therefore, it can be used safely only when the optical 
flow is smooth. 

4.1 Multipoint-based: parallel implementa­
tion 

The multipoint-based algorithms work locally on the 
immediate neighbourhood of each pixel, and thus can be 
profitably mapped on a mesh architecture, where a PE is 
assigned to each pixel of the image. Corresponding pixels 
of three consecutive images which belong to the same 
time window used (to estimate the partial derivati ves of 
the image brightness in (4» are stored in each PE. Thus 
each PE can directly manages the time history of the 
corresponding to its pixel (4c). 
After the estimation of the image brightness derivatives, 
each PE (pixel) has an OFC equation. Then, each PE 
recei'es from the N x N neighbouring PEs the coeffi­
cients of their OFC equations. Every PE has in this way 
an over-determined set of N x N OFC equations in 2 
unknowns: 

AV + [{ = 0, 

where V is the optical flow vector with components u, 
v; A E nN'X2 matrix of coefficients, with ar,l ::: Exr 

and ar,2 = EYr; and [{ E nN2 vector with known terms 
kr ::: E tr for r = 1, .. , N 2 . An increase in N, the neigh­
bourhood size considered, leads to a significant increase 
in memory requirements to store t_he matrix and vector 
elements at each PE (for instance, with N::: 7, 147 mem­
ory locations are required for storing the coefficients of 
matrix A and vector [{ above). 

The solution of the over-determined system of equa­
tions by using the least-squares technique consists of 
minimizing the norm: 

This is performed by using the pseudo-inverse technique 
transforming the above system of equations into a square 
matrix of coefficients À: 

(7) 

where À ::: AT A, and k ::: AT [{ (i.e., AT is the trans­
pose of A). This system of equations can be solved by 



using traditional techniques such as LU decomposition, 
Gauss Jordan, etc .. In our case the system (7) is com­
posed of 2 equations in 2 unknowns, and the direct so­
lution was adopted. In particular, the coefficients of the 
matrix À and of the vector f{ are estimated by using: 

N 2 N 2 

ai,j = L aT,rar,j = L ar,;ar,j, 
r=l r=l 

N 2 N" , "'T ,'" k; = L..J a;,r kr = L.J ar,;kr · (8) 
r=l r=l 

The estimation of the a;,j and kj (for ì = 1,2 ; j = 
1,2) can be performed by accumulating one term at a 
time, from the r-th neighbouring OFC equation (for r = 
1, .. , N 2), to obtain the final sum, thereby avoiding the 
need to store the entire set of N2 OFC coefficients at 
each PE's memory. 
In the process of accumulation an OFC which has an Et 
less than a chosen threshold is ignored as an insignificant 
constraint equation. Aiso the constraints which have too 
large values for Ex and Ey are neglected. 

4.2 Multipoint-based: complexity 

The explicit complexity for the presented multipoint 
solution on a sequential machine to estimate a velo c­
ity vector for each pixel in an M x M image is CO = 
3M2 + 3M2 N 2 + 8M2, where the first term corresponds 
to the estimation of the partial derivati ves of the image 
brightness; the second term is due to the least-squares 
technique for calculating a;,j and k; (for i = 1,2, and 
j = 1,2); and the third is due to the method for solving 
the final system of equations (7). As can be seen observ­
ing the expresion of CO, the asymptotical complexity 
of the multipoint solution on a sequential machine is of 
O (M 2N 2). 

On a parallel architecture, such as the Connection 
Machine-2, with one PE per ima~e pixel, the asymp­
totical complexity is reduced to O ,N2), obtaining a re­
spective Speed-U p of about M 2 • Table 2 presents the 
dependence of the execution time of the algorithm on 
N, the neighbourhood size considered. The number of 
floating point operations requiredl do es not depend on 
the dimension of the image. For N = 5 about 270 FLOP 
(floating point operations) are made by each PE in es­
timating the optical flow value. Tb estimate the optical 
flow at video rate (25 times per second) the calculations 
should be completed within 40msec., demanding a ca­
pability of 6750 FLOPS from each PE for a real-time 
implementation. 

5 Experirn.ental Corn.parisons 

In this section a performance evaluation for the three 
algorithms discussed in previous sections is provided. 
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" algorithm 

Il Time in msec. I 45 I 122 I 268 I 469 Il 

Table 2: Execution time expressed in milliseconds and 
number of operations for the multipoint algorithm de­
pending on the dimension of the neighborhood area di­
mension N, with vp ratio 1 :4. 

8 
Figure 1: Sequence of images where two synthetic ob-
jects with superimposed plaid pattern move in opposite 
directions, (180 and 45 degrees with respect to the X­
axis, respectively), (1st and 8th frame, with 128 x 128 
image resolution). 

Qualitative comparison of the results obtained by the 
three algorithms when applied to the test images is of­
fered for selected test cases, along with a comparison of 
their complexity and the efficiency of their parallel im­
plementation on the Connection Machine-2. 

The first test sequence is that of two synthetic objects 
with a superimposed plaid pattern, which are moving in 
opposite directions. The plaid pattern consists in the 
combination of two sinusoidal patterns with orthogonal 
directions. This sequence was design ed to test the per­
formance in the case of occlusion (see Fig.l). 

The second test sequence, grabbed from a real envi­
ronment, presents two moving objects which are moving 
of translational motion in opposite directions (e.g., the 
toy dog and the little parallelepipedos). This test se­
quence has been chosen to test the performance in the 
case of noisy images (see Fig.2). 

The multiconstraint-based solution ofTretiak and Pas­
tor [11]' whose parallel implementation has been pre­
sented (see Section 3), is highly sensitive to noise, us­
ing the second-order derivatives of the image brightness. 
This is clearly demonstrated in Fig.3. The optical flow 
estimation obtained with this algorithm is inaccurate at 
the objects' boundaries, particularly at the boundary be­
tween the occluding objects. 

The regularization-based solution of Horn and Schunck 
[8], in its parallel implementation presented in Section 
4, may produce a smooth optical flow estimation in the 
presence of noise by increasing the number of iterations, 
or the a value (see Fig.4). However, doing so has a neg­
ative effect at objects boundaries, which are obtained 



2 12 
Figure 2: Sequence of images where real objects are mov-
ing in different directions (2nd, and 12th frame, with 
128 x 128 image resolution). 

7 

Figure 3: Result obtained by means of the Tretiak and 
Pastor algorithm (i.e., multiconstraint-based) with re­
spect to the first test case (7th frame), (F = 9). 
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(50) 7 

Figure 4: Result obtained by means of the Horn and 
Schunck algorithm with respect to the second test case 
(50 iterations, a = 2.0), (7th frame). 

diffused and with erroneous optical flow estimation (see 
Fig.5). 

For the test case of Fig.2, the multipoini-based tech­
nique produces an accurate segmentation of the moving 
objects (sharp boundaries) in image areas where signal 
to noise ratio is high (see Fig.6). 

A smoother solution can be obtained with the mul­
tipoint algorithm by augmenting the dimension of the 
neighborhood around each pixel used in the estima­
tion. However, this is also the cause of a loss in res­
olution at the objects boundaries, and an increase in 
the computational complexity (see Fig.7). This tech­
nique is less sensitive to discontinuities with respect to 
the multiconstraint-based approach. In the presence of 
occlusion, at the border between two moving objects, the 
two objects contribute conflicting velocities, and taking 
the least-squares estimation yields an inaccurate optical 
flow estimation, deviating from both. 

Table 3 provides a comparison of the algorithms in 
terms of complexity and efficiency of implementation. 
For the multipoint-based algorithm real-time perfor­
mance is obtained, and the complexity is of N 2 , with 
N the dimension of image segment used in the optical 
flow estilllation. The optical flow estilllation with Tre­
tiak and Pastor algorithm is obtained in real-time, but 
overall efficiency is degraded by the need to filter the im­
ages with a large Gaussian filter. By using the algorithm 
ofTretiak and Pastor, it is needed to use large values of F 
to produce qualitatively comparable results with respect 
to those obtainable by means of the proposed multipoint 
algorithm (N = 5, F = 9). The complexity of Horn and 
Schunck algorithm is proportional to the number of iter­
ations required to achieve a stable estimation, which is 
normally of the order of 100 (larger than N 2 ). 



(100) 5 

Figure 5: Result obtained by means of the Horn and 
Schunck algorithm with respect to the first test case (100 
iterations, a = 2.0), (5th frame). 

Figure 6: Result obtained by means of the multipoint­
based algorithm with respect to the second test sequence 
with N = 7 (5th frame). 
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7 

Figure 7: Result obtained by means of the multipoint­
based algorithm with respect to the first test sequence 
with N = 5 (7th frame). 

Il I 00 I E_T Time I FLOP /PE I MFLOPS Il 
M. P. N~ 120 30 136 19.4 
T&P F' 130 32.5 108 13.6 
H&S lt 15lt 3.751t 6 + 49lt 53.5 

Table 3: A comparison of the presented algorithms, in 
terms of complexity and execution time, E_T - elapsed 
time (in millisecond) on the Connection Machine-2 with 
vp-ratio 1:4 (i.e., 4096 PE). The Time column provides 
the elapsed PE time that could be obtained having one 
PE per pixel. Parameters used for: the multipoint-based 
algorithm (M.P.) N = 5 and G = 3; Tretiak and Pastor 
algorithm (T & P) F = 9. 

Referring to the other entries of Table 3, the best per­
formance in terms of number of computations involved 
(floating point operations - FLOP) is obtained by Tre­
tiak and Pastor algorithm, in its parallel implementa­
tion. The Horn and Schunck algorithm requires few 
FLOPs/PE per iteration, but generally the number of 
iterations required is large (e.g., lt = 100). The best 
rate of computations (MFLOPS) is obtained by Horn 
and Schunck algorithm. 

With images produced at a video rate (i.e., 25 frames 
per second, or 0.04 sec. per frame), real-time perfor­
mance entails the calculation of optical flow estimation 
each 40msec. On the Connection Machine-2 this target 
is met by the multipoint-based with least-squares estima­
tion algorithm, and by the Tretiak and Pastor algorithm 
(in the latter, when only the optical flow estimation and 
a light filtering are considered). 



6 Conclusions 

A multipoint-based approach for optical flow estima­
tion has been presented together with its parallel im­
plementation. Moreover, parallel implementation of two 
representative algorithms ofthe gradient-based approach 
for optical flow estimation have been presented. Ali 
three parallel implementations have been profitably im­
plemented on the SIMD architecture of the Connection 
Machine-2. Real-time performance has been obtained 
for the proposed multipoint-based algorithm and for the 
multiconstraint-based algorithm of Tretiak and Pastor. 
In terms of qualitative results, it has been found that the 
multipoint-based is less susceptible to object occlusion 
and noise than the other algorithms discussed, while the 
multiconstraint-based algorithm of Tretiak and Pastor 
has been found the most susceptible to these difficulties. 
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