
DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE3.1.2.2.5

Specification of
External Editors, Viewers, and Players

first update of DE3.1.2 part B
Version: 2.3
Date: 21-08-2006
Responsible: DSI (EPFL up to the July 2006 meeting)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes
Deliverable Number: DE3.1.2.2.5
Contractual Date of Delivery: M18
Actual Date of Delivery: 21-08-2006
Title of Deliverable: Specification of External AXMEDIS Editors/Viewers and Players, first update
of DE3.1.2 part B
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, EPFL, SEJER, ILABS, TISCALI

Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area including External AXMEDIS Editors/Viewers and Players

Keyword List: External Editor/Viewer Activation Manager, AXMEDIS PC player, AXMEDIS
PDA player, AXMEDIS Mobile player, AXMEDIS Tablet PC Player, Active X Control, plug in.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.AXMEDIS.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.AXMEDIS.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 6

1.1 THIS DOCUMENT CONCERN ... 7
1.2 LIST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THIS DOCUMENT .. 7

2 GENERAL USE CASES AND SCENARIOS.. 9
2.1 USE CASE ACTIVATE EXTERNAL EDITORS AND PLAYERS... 9
2.2 USE CASE ACTIVATE DIFFERENT PLATFORM BASED AXMEDIS PLAYERS .. 9

3 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED........... 10
3.1 PLUG INS IN OTHER PLAYERS (DSI, EPFL, UNIVLEEDS) .. 12

3.1.1 General Plug-in Aim and Support ... 12
3.2 AXMEDIS PLAYERS (EPFL, DSI) ... 13

4 MODULE - EXTERNAL EDITOR/VIEWER ACTIVATION MANAGER, EXEVAM, (DSI)..................... 16
4.1 GENERAL DESCRIPTION OF THE MODULE... 17

4.1.1 ActiveX Server... 18
4.1.2 EXEVAM on the AXMEDIS Editor... 19
4.1.3 AXMEDIS Object Handler as Plug-in for external Editor XX .. 20
4.1.4 Communication and localization of plug-in counter-parts ... 21
4.1.5 Security level negotiation .. 22

5 MODULE - AXMEDIS ACTIVEX CONTROL (DSI).. 23
5.1 GENERAL DESCRIPTION OF THE MODULE... 24
5.2 MODULE DESIGN IN TERMS OF CLASSES .. 26
5.3 USER INTERFACE DESCRIPTION ... 27
5.4 TECHNICAL AND INSTALLATION INFORMATION ... 29
5.5 DRAFT USER MANUAL.. 30

5.5.1 Basic Interface.. 30
5.5.2 Visual Control Interface... 31
5.5.3 Time Control Interface... 32
5.5.4 Generic Command Interface.. 33

5.6 EXAMPLES OF USAGE .. 35
5.7 INTEGRATION AND COMPILATION ISSUES.. 35

6 MODULE - AXMEDIS PLUG-IN INTO MOZILLA (SEJER) .. 35
6.1 GENERAL DESCRIPTION OF THE MODULE... 37

6.1.1 The Mozilla Plug-in Technology... 38
6.1.2 Authentication.. 39
6.1.3 Architecture.. 40

6.2 MODULE DESIGN IN TERMS OF CLASSES .. 40
6.3 USER INTERFACE DESCRIPTION ... 42
6.4 TECHNICAL AND INSTALLATION INFORMATION ... 42
6.5 DRAFT USER MANUAL.. 43
6.6 EXAMPLES OF USAGE .. 44
6.7 INTEGRATION AND COMPILATION ISSUES.. 45

7 MODULE - AXMEDIS PLUGIN INTO MULTIMEDIA PLAYERS... 45
7.1 GENERAL DESCRIPTION OF THE MODULE... 47

7.1.1 Possible AXMEDIS plug-in into Multimedia Players .. 48
7.1.2 Analyzed plug-in technologies .. 48

8 EXECUTABLE TOOL – AXMEDIS PC PLAYER (DSI)... 52
8.1 GENERAL DESCRIPTION OF THE MODULE... 53
8.2 MODULE DESIGN IN TERMS OF CLASSES .. 54
8.3 USER INTERFACE DESCRIPTION ... 54

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

5

8.4 TECHNICAL AND INSTALLATION INFORMATION ... 54
8.5 DRAFT USER MANUAL.. 55
8.6 EXAMPLES OF USAGE .. 57
8.7 INTEGRATION AND COMPILATION ISSUES.. 57
8.8 CONFIGURATION PARAMETERS... 57
8.9 ERRORS REPORTED AND THAT MAY OCCUR .. 57

9 EXECUTABLE TOOL – AXMEDIS PDA PLAYER (TISCALI) .. 58
9.1 GENERAL DESCRIPTION OF THE MODULE... 59
9.2 MODULE DESIGN IN TERMS OF CLASSES .. 60

9.2.1 Porting of the AXOM on PDA (DSI).. 61
9.2.2 Opening a SMIL component inside an AXMEDIS object ... 62
9.2.3 SMIL player for PDA (same as AMBULANT).. 63
9.2.4 SMIL Player Ambulant and integration with AXOM (TISCALI) ... 63
9.2.5 OSMO MPEG4 player on PDA (TISCALI) ... 64
9.2.6 OSMO and integration with AXOM AXMEDIS (TISCALI) .. 65
9.2.7 AXMEDIS PDA player user interface .. 66

9.3 USER INTERFACE DESCRIPTION ... 67
9.4 TECHNICAL AND INSTALLATION INFORMATION ... 67
9.5 DRAFT USER MANUAL.. 68
9.6 EXAMPLES OF USAGE .. 69
9.7 INTEGRATION AND COMPILATION ISSUES.. 69

10 EXECUTABLE TOOL – AXMEDIS MOBILE PLAYER (DSI, ILABS)... 70

11 EXECUTABLE TOOL – AXMEDIS TABLET PC PLAYER FOR SCHOOL BAG ON MOZILLA
(SEJER) ... 72

11.1 GENERAL DESCRIPTION OF THE MODULE... 73
11.2 MODULE DESIGN IN TERMS OF CLASSES .. 74
11.3 USER INTERFACE DESCRIPTION ... 74
11.4 TECHNICAL AND INSTALLATION INFORMATION ... 77
11.5 DRAFT USER MANUAL.. 79
11.6 INTEGRATION AND COMPILATION ISSUES.. 79

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

6

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE
number

Deliverable title respons
ible

DE3.1.2.2.1 Specification of General Aspects of AXMEDIS framework, first update of DE3.1.2 part A

AXMEDIS-DE3-1-2-2-1-Spec-of-AX-Gen-Asp-of-AXMEDIS-framework-upA-v1-0.doc

DSI

DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B

AXMEDIS- DE3-1-2-2-2-Spec-of-AX-Cmd-Man-upB-v1-0.doc

DSI

DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-3-Spec-of-AXOM-and-ProtProc-upB-v1-0.doc

DSI

DE3.1.2.2.4 Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-4-Spec-of-AX-Editors-and-Viewers-upB-v1-0.doc

DSI

DE3.1.2.2.5 Specification of External AXMEDIS Editors/Viewers and Players, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-5-Spec-of-External-Editors-Viewers-Players-upB-v1-0.doc

EPFL

DE3.1.2.2.6 Specification of AXMEDIS Content Processing, first update of DE3.1.2 part C

AXMEDIS-DE3-1-2-2-6-Spec-of-AX-Content-Processing-upC-v1-0.doc

DSI

DE3.1.2.2.7 Specification of AXMEDIS External Processing Algorithms

AXMEDIS-DE3-1-2-2-7-Spec-of-AX-External-Processing-Algorithms-v1-0.doc

FHGIGD

DE3.1.2.2.8 Specification of AXMEDIS CMS Crawling Capabilities, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-8-Spec-of-AX-CMS-Crawling-Capab-v1-0.doc

DSI

DE3.1.2.2.9 Specification of AXMEDIS database and query support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-9-Spec-of-AX-database-and-query-support-v1-0.doc

EXITEC
H

DE3.1.2.2.10 Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-10-Spec-of-AXEPTool-and-AXMEDIA-tools-v1-0.doc

DSI with
its
subcontra
ctor

DE3.1.2.2.11 Specification of AXMEDIS Programme and Publication tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-11-Spec-of-AX-Progr-and-Pub-tool-v1-0.doc

UNIVLE
EDS

DE3.1.2.2.12 Specification of AXMEDIS Workflow Tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-12-Spec-of-AX-Workflow-Tools-v1-0.doc

IRC

DE3.1.2.2.13 Specification of AXMEDIS Certifier and Supervisor and networks of AXCS, first update of part of
DE3.1.2

AXMEDIS-DE3-1-2-2-13-Spec-of-AXCS-and-networks-v1-0.doc

DSI

DE3.1.2.2.14 Specification of AXMEDIS Protection Support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-14-Spec-of-AX-Protection-Support-v1-0.doc

FUPF

DE3.1.2.2.15 Specification of AXMEDIS accounting and reporting, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-15-Spec-of-AX-Accounting-and-Reporting-v1-0.doc

EXITEC
H

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

7

1.1 This document concern

DE3.1.2.2.5 Specification of External AXMEDIS Editors/Viewers and Players, first update of
DE3.1.2 part B

This document includes the specification of a set of players and tools of AXMEDIS and in particular of:

• EXEVAM: a system and tools for activating external players and viewers in connection with the
AXMEDIS Editor. The connection is with a specific protocol. The mechanism also includes the
presence of an AXMEDIS plug in into the external Player to guarantee the DRM aspects.

• AXMEDIS player based on Active X, it includes AXOM and all the other internal players of
AXMEDIS and the PMS client. This permits the realization of AXMEDIS player based on Internet
Explorer and other tools such as those of Macromedia: Authorware, etc.

• AXMEDIS plug in of Mozilla, it includes AXOM and all the other internal players of AXMEDIS
and the PMS client. This permits the realization of AXMEDIS player based on Mozilla Browser.

• AXMEDIS Plug in into Multimedia Players: an plug in of AXMEDIS including AXOM, and PMS
client to allow enforcing DRM aspects into third party Players.

• AXMEDIS PDA player. A player capable of playing quite complex AXMEDIS objects based on
video, audio, images, documents, etc., and also with MPEG-4 and SMIL inside. Please note that both
OSMO MPEG-4 player and SMIL AMBULANT player will be used for realizing this player porting
them in the Pocket Pc 2003 platform. For the support of AXMEDIS model the AXOM library and
related tools will be ported, to this end, a reduction of functionalities is foreseen.

• AXMEDIS Mobile player: An AXMEDIS player with low foot print for mobiles phone capable of
playing simple resources, mainly single Video or single Audio files with related metadata. For the
support of AXMEDIS model the AXOM library and related tools will be ported, to this end, a
reduction of functionalities is foreseen.

• AXMEDIS player for Tablet PC: an AXMEDIS player based on AXMEDIS Mozilla Plug in
presented before.

This deliverable, initially in charge of EPFL (up to July 2006), has been taken in charge of the DSI
(coordinator) to solve some pending aspects and reallocating some of the activities among them: the
specification and the realization of the AXMEDIS players for PDA with the related profiling and thus of
porting of libraries.

1.2 List of Modules or Executable Tools Specified in this document
A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDIS based solutions.
The modules/tools have to include effective components and/or tools and also testing components and tools.

Module/tool
Name

Module/Tool Description and purpose, state also in
which other AXMEDIS area is used

Standards exploited
if any

External
Editor/Viewer
Activation
Manager,
EXEVAM

enables AXMEDIS Editors the capability of
viewing/modifying resources by using external application
which have not ActiveX/COM interface;

AXMEDIS ActiveX
Control

enables the plug of an AXMEDIS player inside any compliant
executable

AXMEDIS plug-in
into Mozilla

enable to rendering of AXMEDIS content inside Mozilla’s
web browser and let the user interact with it.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

8

AXMEDIS plugin
into Multimedia
Player

Enable to direct rendering the resource of AXMEDIS content
by other multimedia players

AXMEDIS PC
Player

enable to rendering of AXMEDIS content on PC and let the
user interact with it.

W3C XML
MPEG21 DIDL
W3C SMIL 2.0
MPEG-4 Systems, MPEG-4
IPMPX

AXMEDIS PDA
Player

enable to rendering of AXMEDIS content on PDA and let
the user interact with it.

W3C XML
MPEG21 DIDL
W3C SMIL 2.0
MPEG-4 Systems, MPEG-4
IPMPX

AXMEDIS Mobile
Player

enable to rendering of AXMEDIS content on Mobile
Devices and let the user interact with it.

W3C XML
MPEG21 DIDL
W3C SMIL 2.0
MPEG-4 Systems, MPEG-4
IPMPX

AXMEDIS Tablet
PC Player for
School Bag on
MozillA

enable to rendering of AXMEDIS content on Tablet PC
Player and let the user interact with it.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

9

2 General Use Cases and scenarios

2.1 Use Case Activate external editors and players

2.2 Use Case Activate different platform based AXMEDIS players

PDA
Player

PC
Player

Mobile
Player

AXMEDIS Players
1. load AxObject

2. Play AxObject

3. Stop Ax Object

AXMEDIS
Database

Tablelet PC
Player

External
Editors

Activation
Manager

ActiveX
Control

AXMEDIS External Editors & Players

Plugins calling

AXMEDIS
Database

Interact AxObject

Resources calls

Resources

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

10

3 General architecture and relationships among the modules produced

This document concerns with the scenario for the interoperability of the AXMEDIS Editor with other
commonly used tools for content production; in the External Editor/Viewer AXMEDIS plug-ins the
capability of activating other tools directly from the AXMEDIS Editor is specified. The specification details
how the AXMEDIS editor can master the communication with the external tools and how the DRM and the
security requirements are preserved in the data transfer.
The plug-in analysis is also carried out in other scenario about inserting AXMEDIS in the common tool for
the end-user: AXMEDIS ActiveX control is specified together with AXMEDIS Plug-in for Mozilla. Other
plug-in for the multimedia players (e.g. Windows Media Player) are specified considering general issues.
The AXMEDIS player provided by the AXMEDIS framework is specified in different versions: for PC, for
PDA and for mobile devices.

AXMEDIS Plug In including
AXOM

AXMEDIS Other Players/Editors/Viewers

Content Player/Editor/Viewer XX

Plug In Interface

AXMEDIS Plug-In Interface For
XX Tools

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Editor::ActiveX Manager
for Editor/Viewer

COM Interface Frame Client to
be hosted

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

AXMEDIS Plug-In Interface for XX Tools module has to be realized for each Editor and Viewer in which
we would like to insert an AXMEDIS plug-in. AXMEDIS editor for images could be realized in this manner
into third party editors (such as XX above) if some DRM control is present via Plug In Interface in the those
tools. Some of the XX editor viewers can be available as ActiveX objects (such as ACROBAT reader). The

Actor

Editing via Editing via
internal internal

viewers/editorsviewers/editors

Editing via Editing via
external external

viewers/editorsviewers/editors

AXMEDIS AXMEDIS
Editor and its Editor and its

viewview

ActorActor

Editing via Editing via
internal internal

viewers/editorsviewers/editors

Editing via Editing via
external external

viewers/editorsviewers/editors

AXMEDIS AXMEDIS
Editor and its Editor and its

viewview

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

11

Content Editor/Viewer XX can be controlled even via ACTIVE X Manager for Editor/Viewer of AXMEDIS.
In these cases, the frame of the XX application can be hosted into the AXMEDIS Media Player User
Interface and Windows Support.
The AXMEDIS plug-in for each device has to respect basic control features on the target external
player/editor/viewer.Since the plug-in need to control the external player/editor/viewer in order to maintain
the same security level. It is not acceptable to lost the protected assets just to be edited in specific tools.

AXMEDIS Editor
Calling External

Player

AXMEDIS External Editor/Players Interface

Content
Player/Editor/
Viewer XX

Commands

Data / Resources

Inhibitions of actions

Actions Logs AXMEDIS Plug In
including AXOM

AXMEDIS Plug-In
Interface For XX Tools

AXMEDIS
Editor::AXMEDIS
Object Manager

AXMEDIS
Editor::External Editor/

Viewer Activation
Manager

AXMEDIS
Editor::ActiveX

Manager for Editor/
Viewer

Content Player/
Editor/viewer XX
ACTIVE X client

IF ANY

Top Package::Final userTop Package::Object Builder

AXMEDIS Client Player::AXMEDIS Media Player User Interface and Window
Support

End19

End20

The EXEVAM uses a table to identify the accessible External Players, Editors and viewers with their profile
if any, in alternative it can use the MIME if the resource is not protected
The EXEVAM is responsible of verifying if the External Editor is a secure environment according to the
actions allowed by the license of the object under editing/playing, etc. If the external editor is not trusted the
demand is not possible.

The communication from the EXEVAM and the AXMEDIS Plug in Interface for XX Tool is performed by
means of a P2P communication layer with Discovery mechanism. This allows to see if a specific Editor is
Open to do a given activity.

The AXMEDIS Plug in for some XX Editor/Viewer has to be developed on the basis of:

• AXMEDIS Development Tool Kit for External Players
• Software Development Tool Kit of the External Content Player/Editor XX

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

12

3.1 Plug ins in other Players (DSI, EPFL, UNIVLEEDS)

3.1.1 General Plug-in Aim and Support

AXMEDIS Plug-In module has to be realized for each Player in which we would like to insert the capability
of processing content packaged in AXMEDIS objects.

It is reasonable that AXMEDIS players could add value to the AXMEDIS content if they are pluggable in:

• browsers like IE, Mozilla etc,
• multimedia players like WindowsMedia technology etc…

The different plug-in share the common feature that they has to manage AXMEDIS content; in some case
they must also provide the ability to render the content, in other cases they just have to extract from the
object and redirect to the target media format.

Three main architecture has been identified that cover most of the plug-in scenario of required integrated
players:

1. AXMEDIS ActiveX
2. AXMEDIS Plug-in for Mozilla
3. AXMEDIS Plug-in for Multimedia Players

In the following section the AXMEDIS client software architecture is tailored to fit these three different
utilization of AXMEDIS technology.

AXMEDIS Plug In including
AXOM

Content Player XX

AXMEDIS Plug In For
XX Player

AXMEDIS Editor::AXMEDIS
Object Manager

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

13

3.2 AXMEDIS Players (EPFL, DSI)
Although AXMEDIS focuses on content production, a reduced number of players (and MPEG-21 terminals)
will be implemented in order to provide to the AXMEDIS Framework tools to be downloaded by end users
to play back AXMEDIS Objects. This may be required in cases when the target user is a consumer (B2C)
and especially when target platforms are such kind of devices that an Editor or other kind of sophisticated
tool is not supported or envisaged due to either computational, or functional or display
capabilities/limitations: such kind of tools may include PDAs, Mobiles, devices with embedded Multimedia
DSP processors, etc. In the following tool specifications for PC and similar platforms are reported (first
phase); then, specifications for a few mobile or lightweight devices which may be selected for the second
phase (WP 4.1.4) will be briefly discussed, keeping in mind that a precise description of some of these
aspects are rather difficult to define without the above mentioned selection of the devices themselves.

AXMEDIS
Client Player Software

Architecture

AXMEDIS
ActiveX

AXMEDIS
Plug-in for Mozilla

AXMEDIS
Plug-in for
Multimedia Player

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

14

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Editor::External
Editor/ Viewer Activation

Manager

AXMEDIS Editor::ActiveX
Manager for Editor/Viewer

AXMEDIS Editor::Internal
AXMEDIS Resource

Viewers

AXMEDIS
Editor::Other Plug In

AXMEDIS Editor::AXMEDIS
Editor Configuration

Manager

anObject : AXMEDIS Editor::AXMEDIS Object

Top Package::File
System

AXMEDIS Client Player

Fingerprint /Descriptor Extractors
Area::Fingerprint / Descriptor

Estimation Tools as
API for AXMEDIS Clients

«subsystem»
AXMEDIS Data Base Area::AXMEDIS Database Manager

AXMEDIS
Editor ::Protection
Manager Support

Client

AXMEDIS Editor::AXOM
Content Processing

AXMEDIS Editor::Plug
In Manager

Top Package::Object Builder

Top Package::Final user
AXMEDIS Media Player User

Interface and WindowSupport

Hierarchy
Viewer/Player

Metadata
Viewer

«uses»

AXMEDIS Editor::AXMEDIS
Content Tools Error

Manager

«uses»

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

15

AXMEDIS Client Player Software Architecture

AXMEDIS Internal
Viewers

AXOM

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Configurat
ion

Manager

Error and Configuration Manager

External
Editor/
Viewer

Activation
Manager

 External
 Viewers

Adaptation & Fingerprint Algorithms

AXMEDIS Media Player User Interface and
Window Support

File System

Active X
Manager

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

16

4 Module - External Editor/Viewer Activation Manager, EXEVAM, (DSI)

Module/Tool Profile
External Editor/Viewer Activation Manager, EXEVAM

Responsible Name Rogai
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single Thread
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

17

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

4.1 General Description of the Module
main purpose and description, major functionalities, etc.

External Editor/View Activation Manager and relative external application plug-ins – gives, to
AXMEDIS Editor, the capability of viewing/modifying resources by using external application which have
not ActiveX/COM interface;
The following figure depicts how the activation proceeds:

1. Once the AXMEDIS Editor receive a request by the user to open a give resource in the external
editor; it can run a system command to launch the proper executable (External Editor) eg. Word to
edit document, Photoshop to edit images

2. The external application installed the AXMEDIS Object Handler Plug-in; as soon as it is instantiated
by the application it activates a communication channel to receive requests or to report
notification/errors or to give back results.

3. The AXMEDIS Editor after the invocation it scan the local network interface in order to discover the
Object Handler Plug-in communication channel (more than one at time can be activated).

4. When the AXMEDIS Editor contact the plug-in the initialization process is commenced in this phase
several checks can be performed in order to assess the security level of the counter part plug-in in
performing specific operations.

5. If the security requirements are fulfilled by the External editor Object Handler plug-in capabilities,
than the object content is passed from the AXOM in the AXMEDIS Editor to the AXOM counter
part in the plug-in.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

18

The same utilization scenario can be adopted on the ActiveX external editor/viewer/players; the basic
functionalities are replicated for this architecture that simplifies the communication mechanism, as the latter
reuses the COM features to interoperate with the ActiveX object. The behaviour of the ActiveX has to
expose the same guaranties concerning security.

4.1.1 ActiveX Server
To host ActiveX controls inside wxWidgets applications a wrapper class is provided in a library called
wxActiveX (http://sourceforge.net/projects/wxactivex).
It provides functionalities to:

• construct an ActiveX inside a wxWindow using the ProgId (e.g.
“ShockwaveFlash.ShockwaveFlash”) or the ClsId (e.g. CLSID_WebBrowser) and giving the id,
position, size, style and name of the ActiveX Control.

• access to properties of the ActiveX
• call methods of the ActiveX
• receive and manage events generated from the ActiveX
• inspect properties, methods and events published by the ActiveX

The communication channel is not a strong assumption: it is possible to arrange different solutions in order
to make data available on both sides. The security does not depend on the communication channel, but is
maintained at the required level with the communication between the two AXOM instances.

External Application DLL

External Editor/View
AXMEDIS Plug-in

COM commands

Extra commands
and data transfer

AXMEDIS Editor

C
O

M
 In

te
rf

ac
e

AXMEDIS Object Handler

External Application

AXMEDIS Object
handler as a Plug-in

Communication via internal
TCP/IP

AXMEDIS Editor

Ex
te

rn
al

 V
ie

w
er

s
A

ct
iv

at
io

n

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

19

4.1.2 EXEVAM on the AXMEDIS Editor
A specific group of classes inside AXMEDIS editor provides different services in order to:

1. store a list of association between well-known mime-type and external editors (like what is provided
by an operating system; in such a list every mime-type is related to a group of external
player/viewer/editors descriptors: this descriptors collects relevant information about the related tool
like executable location in the file system, command line parameters…

2. manage the AXMEDIS Editor event of “Open this resource with…” triggered by the proper gui.
3. activate a communication able object in order to discover the plug-in counter part in the external

editor.

+getExternalHandlers(in mimetype : string) : ExternalHandlerDescription*
+activate(in handlerID : string)

MimeTypeManager

+onOpenResourceWithExternal()

AnyAXMEDISView

+activate()
+setExecutionParams()
+deactivate()

ExecutableActivator

+activate()
+setExecutionParams()
+deactivate()

ActiveXActivator

+activate()
+setExecutionParams()
+deactivate()

«interface»
Activator

ExternalHandlerDescription

+initialize()
+getSecurityProfile()
+writeAXObject()
+readAXObject()

PluginAXOMProxy

1

*1

1

From any view in the AXMEDIS editor a resource of an AXMEDIS object could be opened with an external
“handler” (with handler both cases of independent executable processes and ActiveX controls have been
modelled).
The MimeTypeManager class is a support entity to select the proper external handler and it operates in two
phases:

1. it allows to get a list of registered external handlers that can be activated for a specific resource
mime type;

2. it acts as the gateway of the activation since it associates on the basis of the description the proper
activator to invoke the external handler (Activator interface)

The MimeTypeManager exposes the interface to previously register the associations between mime type e by
a suitable configuration GUI.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

20

The detailed description of the external handlers is stored on a ExternalHandlerDescription.
Two different types of activators are conceived respectively with the aim to invoke the proper entity:

• basically the ExecutableActivator realizes the Activator interface to implement a console command
activation of the desired executable a class has been conceived in order to support different
platforms;

• the ActiveXActivator implements the activation via COM mechanism and host the ActiveX control
inside the AXMEDIS editor executable (which acts as a COM server). It is based on the
wxAutomationObject which provides functionalities to interact with OLE objects.

It is possible that, after the object manipulation in an external handler, that acts as a slave with respect to the
invoker (AXMEDIS editor), the handler is terminated by the AXMEDIS editor automatically; this is an
optional feature that should be managed by the activators.
Please note that the external editor (as an executable) could be already opened, when it is requested to
activate in order to run as a AXMEDIS Editor slave. In this case it is possible to proceed in two manners:

• do not open a new instance of the external editor and try to discover the plug-in activated in the
already opened

• open a new instance of the same external handler and discover the plug-in discovered in the new
instance just opened.

4.1.3 AXMEDIS Object Handler as Plug-in for external Editor XX
On the external handler side another Object Handler has been conceived to act as the protection counter part
in the secure architecture. In fact the security is based on the same protection mechanism of the AXMEDIS
Object: the AXOM and its ProtectionProcessor are hosted in the Object Handler Plug-in and the protected
object and its content are opened only inside the external handler memory context.
Ideally the plug-in should have the structure depicted in the figure below.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

21

The dashed lines represent the normal flow of the information for content handling.
The solid lines represent how the AXMEDIS plug-in can check the authorization of every action performed
by the user when it operates with the familiar external handler GUI.
The interception of the actions has the main role of enforcing only the rights licensed to the operating user;
according to the different operations that the external editor GUI can initiate, the plug-in has to redirect all of
them to the suitable “DRM-compliant” operation:

• an action can be directly inhibited, because is not bounded to any right described by a license
• an action can be realized by the instantiation of the required commands executable by the AXOM

module.
Please note that new commands can be added to the basic set provided by the AXOM library itself. Actually
it is the best way to include in the AXOM processing the specific content processing features that the
external handler exposes.

The commands to be implemented for the plug-in are the basic blocks of the secure manipulation of contents:
they must declare the required rights before the execution. The certification of plug-in is strongly based on
the well definition of such rights.

After the content encapsulated by the AXOM has been changed the rendering phase is needed in order to
feedback to the user what he has changed in the content. In the above diagram two different solution have
been depicted:

1. the content is extracted from the model and rendered by the plug-in (hard-coding solution, but
decoupled from external editor limitations)

2. the content is extracted from the model in the plug-in to update the usual model for content
modelling of the external editor; in this way the way of rendering the content model is totally reused.

Another strategy could be to simply instantiate a “empty” command which has only the purpouse of
exercising the right against the Authorization Support. Than the usual editor action can be commanded
without violating the resource license.

4.1.4 Communication and localization of plug-in counter-parts
Some basic functionalities are included in the transport mean of information regarding security, content,
commands, synchronization. A SOAP protocol can be used to allow AxEditor and AXMEDIS Plug-in of an

Plug-in features

 Rendering

External Editor GUI

Content Processing features

Interception of actions

AXOM

AXMEDIS
Content
Model

XX Format
Content
Model

1

2

AXMEDIS Commands

inhibitions

2

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

22

editor to communicate. A list of well-known port exposed by the plug-in for different editors can be
produced. The AxEditor can acquire such information form an external repository or the configuration can
be changed at installation time of a certain plug-in.

Since basically resources or object subparts will be passed to external editor. The protected content can be
passed via file, packaging it in the present protection status. Since AXOM is present in both applications,

4.1.5 Security level negotiation
In some cases the supposed architecture depicted in the above diagram cannot be provided by the plug-in
technology of the hosting program. If not all the user operation can be “handled” in the sense of avoided or
redirected to the secure command execution, this limitation could compromise the security framework built
on controlled content manipulation.
Once the content (e.g. an image or a video) has reached the non-secure program the user can perform un-
authorized actions in an easy manner (e.g. save the content on the disk in another format).

Some incomplete secure architecture have to be declared by the plug-in and managed by the security
framework. The decision to transfer a content or not must be taken on the basis of matching the security
requirements of a particular content manipulation.
For example: An user has granted by a specific license the editing/adapting of a resource, but not to save it
on the disc in an unprotected form; he wants to edit outside of AXMEDIS editor that resource. If the external
editor cannot inhibit the save actions on its GUI, it has to be considered that the resource cannot be
transferred in the external editor, because this transfer compromises the DRM enforcement on the resource.

The decision can be taken automatically by a preference settings or asked to the used (resource editor).
A profile of the plug-in is needed for any external editor plug-in. The secure profile of any plug-in must be
certified, since it declares which action are (are not) inhibited by the plug-in development.
A policy has to be define in order to manage the rights/actions matching.

Collection of user rights
on a specific resource

(licence gathering)

User rights

Collection of plug-in
capabilities w.r.t. the

external editor

“Not-Secured”
actions

Requirements
fulfilment?

(set inclusion)

Content transfer
decision

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

23

5 Module - AXMEDIS ActiveX Control (DSI)

Module/Tool Profile
AXMEDIS ActiveX Control

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

DLL library (OCX)

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/Applications/axactivex

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.AXMEDIS.org/repos/Apllications/axactivex/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

24

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

5.1 General Description of the Module
The ActiveX technologies allows the plug of an AXMEDIS player inside any compliant executable. First of
all the AXMEDIS content can be viewed in the most common interface, which is the Microsoft Internet
Explorer browser.
Several products designed for the windows platform have the capability of hosting ActiveX controls:
Microsoft Office Suite, Macromedia Tools, Authorware, ToolBook.

In the main client view of the target application the AXMEDIS ActiveX can be rendered in a specific
bounded client area. The control takes the responsibility of render information and manage user interactions
regarding such an area.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

25

Since the AXMEDIS ActiveX has to render itself on the screen portion it needs:

• some of the AXMEDIS viewers to be able to show hierarchy and metadata about content
• all the internal resource viewers (audio, video, image, document…)

Any hosting application

AXActiveX
- hierarchy
- metadata
- resource play

AXActiveX.dll

bounded
Client Area

AXMEDIS Active X

AXMEDIS Internal
Resource Viewers

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Config.

Error and Configuration Manager

Adaptation & Fingerprint Algorithms

ActiveX Interface

Manager

AXMEDIS
Object Viewers

File System

 Software Architecture

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

26

5.2 Module Design in terms of Classes

+Load(in url : string)
+ViewHierarchy(in view : bool)
+OpenContent(in n : int)
+GetContentCount() : int
+Play()
+Stop()

CAxmedisViewerCtrl

COleControl

AxViewerPanel

1 1

wxPanel axeditorlib::AxOpenView

axeditorlib::AxHierarchyViewer

axeditorlib::AxMediaPlayerPanel

1 1
1

1

axom::AxObjectManager

metadataeditorviewer::AxMetadataView

1

1

1

1
drmeditorviewer::AxDRMViewer

1

1

Has the AxViewerPanel
registered as the openView

The CAXMEDISViewerCtrl class (generated using the MSVisualStudio automation) represents the activeX
interface, it uses the AxViewerPanel class which implements the real user interface and hosts the
AxObjectManager which is used to access to the AXMEDIS object to be shown.
The AxViewerPanel uses:

• the AxHierarchyViewer class to display the hierarchy of the object,
• the AxMediaPlayerPanel class to display the resources inside the object,
• the AxMetadataView class to display the metadata of the object
• the AxDRMViewer class to display the license owned on the object

The IDL file defining the ActiveX is:

#include <olectl.h>
#include <idispids.h>

[uuid(C3003391-36FC-4C85-A7FD-3CE0D86E1CF7), version(1.0),
 helpfile("axactivex.hlp"),
 helpstring("Control module for ActiveX axactivex"),
 control]
library axactivexLib
{
 importlib(STDOLE_TLB);

 // Dispatch interface for CAXMEDISViewerCtrl

 [uuid(159FAE48-7BC3-4C10-8F27-772426A51DB2),
 helpstring("Dispatch interface for AXMEDISViewer Control")]
 dispinterface _Daxactivex
 {
 properties:
 [id(5), helpstring("property ViewHierarchy")] VARIANT_BOOL ViewHierarchy;
 [id(6), helpstring("property ContentCount")] SHORT ContentCount;
 [id(10), helpstring("property BackgroudColor")] BSTR BackgroudColor;
 [id(11), helpstring("property Src")] BSTR Src;
 [id(27), helpstring("property SupportTimeControl")] VARIANT_BOOL SupportTimeControl;
 [id(13), helpstring("property IsPlaying")] VARIANT_BOOL IsPlaying;
 [id(15), helpstring("property CurrentTime")] ULONG CurrentTime;
 [id(16), helpstring("property Duration")] ULONG Duration;
 [id(17), helpstring("property StartTime")] ULONG StartTime;
 [id(18), helpstring("property EndTime")] ULONG EndTime;
 [id(28), helpstring("property SupportVisualControl")] VARIANT_BOOL SupportVisualControl;
 [id(22), helpstring("property FullScreen")] VARIANT_BOOL FullScreen;
 [id(25), helpstring("property Zoom")] DOUBLE Zoom;
 [id(26), helpstring("property AutoFit")] VARIANT_BOOL AutoFit;
 [id(30), helpstring("property NeedsLicense")] VARIANT_BOOL NeedsLicense;
 [id(31), helpstring("property HaveLicense")] VARIANT_BOOL HaveLicense;
 methods:
 [id(DISPID_ABOUTBOX)] void AboutBox();
 [id(1), helpstring("method Load")] SHORT Load(BSTR filename);
 [id(4), helpstring("method GetContentType")] BSTR GetContentType(SHORT contentRef);
 [id(34), helpstring("method GetContentMimeType")] BSTR GetContentMimeType(SHORT
contentRef);

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

27

 [id(7), helpstring("method OpenContent")] void OpenContent(SHORT contentRef);
 [id(8), helpstring("method Play")] void Play(void);
 [id(9), helpstring("method Stop")] void Stop(void);
 [id(12), helpstring("method Pause")] void Pause(void);
 [id(14), helpstring("method JumpToTime")] void JumpToTime(ULONG time);
 [id(19), helpstring("method Fit")] void Fit(DOUBLE width, DOUBLE height);
 [id(24), helpstring("method FitToWindow")] void FitToWindow(void);
 [id(20), helpstring("method ZoomIn")] void ZoomIn(DOUBLE ratio);
 [id(21), helpstring("method ZoomOut")] void ZoomOut(DOUBLE ratio);
 [id(23), helpstring("method Print")] void Print(void);
 [id(29), helpstring("method ShowLicense")] void ShowLicense(void);
 [id(32), helpstring("method AcquireLicense")] VARIANT_BOOL AcquireLicense(BSTR licID);
 [id(33), helpstring("method ShowMetadata")] void ShowMetadata(void);
 [id(35), helpstring("method execCommand")] HRESULT execCommand(BSTR cmdID, VARIANT_BOOL
showUI, VARIANT value, VARIANT_BOOL* pfRet);
 [id(36), helpstring("method queryCommandEnabled")] HRESULT queryCommandEnabled(BSTR
cmdID, VARIANT_BOOL* pfRet);
 [id(37), helpstring("method queryCommandIndeterm")] HRESULT queryCommandIndeterm(BSTR
cmdID, VARIANT_BOOL* pfRet);
 [id(38), helpstring("method queryCommandStatus")] HRESULT queryCommandStatus(BSTR cmdID,
VARIANT_BOOL* pfRet);
 [id(39), helpstring("method queryCommandSupported")] HRESULT queryCommandSupported(BSTR
cmdID, VARIANT_BOOL* pfRet);
 [id(40), helpstring("method queryCommandValue")] HRESULT queryCommandValue(BSTR cmdID,
VARIANT* pCmdValue);
 };

 // Events dispatch interface for CAXMEDISViewerCtrl

 [uuid(D87580AA-D50A-4CF5-8086-67BA99A92859),
 helpstring("Events interface for AXMEDISViewer Control")]
 dispinterface _DaxactivexEvents
 {
 properties:
 // L'interfaccia eventi non ha proprietà

 methods:
 [id(DISPID_CLICK)] void Click(void);
 };

 // Informations on class CAXMEDISViewerCtrl

 [uuid(B30B789D-2378-45BD-A1B5-AFC0B43919D3),
 helpstring("AXMEDISViewer Control"), control]
 coclass axactivex
 {
 [default] dispinterface _Daxactivex;
 [default, source] dispinterface _DaxactivexEvents;
 };

};

5.3 User interface description
The following pictures show the use of the AXMEDIS ActiveX inside a Visual Basic Application
implementing a basic player. The ActiveX user interface does not present any button controls to allow the
customization of the user interface, the visual area is used to display the resources.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

28

The Left and Right arrow buttons (defined in the VB application) use the OpenContent(n) method of the
ActiveX to open a specific content stored in the AXMEDIS object, the Hierarchy button use the
ViewHierarchy property to view/hide the AXMEDIS Hierarchy, the Play/Stop button use the Play/Stop
methods to control the execution of Audio/Video resources.

For example clicking on the Right arrow the second resource is shown (the movie plot):

and clicking on the Hierarchy Button the hierarchy is shown:

AXMEDIS ActiveX

Visual Basic .NET
Application

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

29

Double clicking on the Dublin Core element the Metadata is shown:

5.4 Technical and Installation information

References to other major
components needed

AXMEDIS Object Manager
AXMEDIS Internal Players
AXMEDIS Hierarchy Editor & Viewer
AXMEDIS Metadata Editor & Viewer
AXMEDIS DRM Editor & Viewer
AXMEDIS Object Editor & Viewer

Problems not solved •

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

30

Configuration and execution
context

5.5 Draft User Manual
AXMEDISViewerCtrl
5.5.1 Basic Interface

Method Load
short Load(string url)
Description Loads and AXMEDIS object from an URL or from file system, it tries to open the first SMIL

resource available or otherwise the first Resource/AXObject available
Input
parameters

• string url – the url or file to be opened (e.g. "http://AXMEDIS.org/demo/demo1.axm",
"c:\AXMEDIS-objects\test.axm"), protocols supported will be http and ftp,

Return value returns 0 if the object can be successfully loaded, 1 if the object cannot be loaded, 2 if the
content cannot be opened (missing license)

Remarks In case of load failure an empty object is present
Property Src (read write)
string Src
Description the URL of the object loaded, when set the object is loaded (not opening content if the object

is protected)
DefaultValue ""
Property ContentCount (read only)
short ContentCount
Description number of content elements (resources/axobjects) at the first level
DefaultValue 0
Property BackgroudColor (read write)
string BackgroundColor
Description the color to be used as background (e.g. "#ffffff" for white)
DefaultValue "#ffffff"
Property ViewHierarchy (read write)
bool ViewHierarchy
Description indicates if the AXMEDIS Hierarchy view has to be shown or not.
DefaultValue false
Method GetContentType
string GetContentType(short contentPos)
Description allows to get which kind of content is present at a specific position (1..ContentCount)
Input
parameters

• short contentPos – position of the content to be analyzed

Return value returns "RESOURCE" or "AXOBJECT"
Remarks In case of invalid position returns ""
Method GetContentMimeType
string GetContentMimeType(short contentPos)
Description allows to get the mimetype of content at a specific position (1..ContentCount)
Input
parameters

• short contentPos – position of the content to be analyzed (1..ContentCount)

Return value returns a mimetype for a resource and the mimetype of the resource really played in case of an
embedded AXMEDIS object (e.g. it can return "application/smil" if the object contains a
SMIL resource)

Remarks In case of invalid position returns ""
Method OpenContent

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

31

void OpenContent(short contentPos)
Description allows to open a content at a specific position (0..ContentCount), position 0 means the object

itself. If the content to be opened is an AXMEDIS object it opens the first SMIL resource
present otherwise it opens the first resource present

Input
parameters

• short contentPos – position of the content to be opened (0..ContentCount)

Return value none
Remarks none
Method ShowMetadata
void ShowMetadata()
Description allows to show the metadata of the whole object (using Dublin Core information)
Input
parameters

none

Return value none
Remarks none
Method ShowLicense
void ShowLicense()
Description allows to show the license available on the object
Input
parameters

none

Return value none
Remarks none
Property NeedLicense (read only)
bool NeedLicense
Description Indicates if a license is needed to view the object
DefaultValue false
Property HaveLicense (read only)
bool HaveLicense
Description Indicates if is available a license to view the object
DefaultValue false
Method AcquireLicense
void AcquireLicense(string licenseID)
Description allows to acquire locally a license given the license ID (if it is allowed)
Input
parameters

• string licenseID – contains the license identification code

Return value none
Remarks The method is used to preload in the local cache the license allowing to use it offline even

using the AXMEDIS Player. The license could be even for another AXMEDIS Object not for
the one shown in the ActiveX (which can be a preview version)

5.5.2 Visual Control Interface
Property SupportVisualControl (read only)
bool SupportVisualControl
Description indicates if for the currently opened content the visual control methods can be used
DefaultValue false
Property Zoom (read write)
double Zoom
Description is the zoom factor to be applied (1 = 100%)
DefaultValue false
Remark if the zoom factor is changed the AutoFit property is set to false
Property AutoFit (read write)

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

32

bool AutoFit
Description when true indicates to resize the visual content to be fitted inside the window
DefaultValue true
Remark none
Method Fit
void Fit(double width, double height)
Description fits the zoom factor to display the image at the desired size (keeping aspect ratio)
Input
parameters

• double width, height - the image size in pixels

Return value none
Remarks the AutoFit property is set to false
Method FitToWindow
void FitToWindow()
Description fits the visual content to the size of the image
Input
parameters

none

Return value none
Remarks the AutoFit property is manteined
Method ZoomIn
void ZoomIn(double perc)
Description Increments the zoom factor of the given percentage
Input
parameters

• double perc – the percentage used to increment the zoom factor (e.g. 10 for 10%)

Return value none
Remarks the AutoFit property is set to false
Method ZoomOut
void ZoomOut(double perc)
Description Decrements the zoom factor of the given percentage
Input
parameters

• double perc – the percentage used to decrement the zoom factor (e.g. 10 for 10%)

Return value none
Remarks the AutoFit property is set to false
Property FullScreen (read write)
bool FullScreen
Description when true switch to full screen mode
DefaultValue false
Remark none
Method Print
void Print()
Description Prints the visual content
Input
parameters

none

Return value none
Remarks none

5.5.3 Time Control Interface
Property SupportTimeControl (read only)
bool SupportTimeControl
Description indicates if for the currently opened content the time control methods can be used
DefaultValue false

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

33

Method Play
void Play()
Description Starts playing the content or continue in case of pause
Input
parameters

none

Return value none
Remarks has no effect if it is already playing
Method Pause
void Pause()
Description Pause the execution or continue execution
Input
parameters

none

Return value none
Remarks none
Method Stop
void Stop()
Description Stops execution
Input
parameters

none

Return value none
Remarks none
Method JumpToTime
void JumpToTime(ulong time)
Description Set the execution time in milliseconds
Input
parameters

• ulong time – the time at which jump the execution

Return value none
Remarks none
Property IsPlaying (read only)
bool IsPlaying
Description indicates if the content is being played
DefaultValue false
Property Duration (read only)
ulong Duration
Description indicates duration in milliseconds
DefaultValue 0
Property CurrentTime (read only)
ulong CurrentTime
Description indicates current execution time in milliseconds
DefaultValue 0
Property StartTime (read write)
ulong StartTime
Description indicates the time in milliseconds where to start
DefaultValue 0
Property EndTime (read write)
ulong EndTime
Description indicates the time in milliseconds where to end execution
DefaultValue Duration

5.5.4 Generic Command Interface
This interface allows to execute commands giving a commad identifier. The command identifier are:

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

34

Command ID Value
"Load" string with the URL
"Src" string
"OpenContent" content position
"ContentCount"
"BackgroundColor" string
"ShowMetadata" none
"ShowLicense" none
"NeedLicense" bool
"HaveLicense" bool

"Zoom" double
"ZoomIn" double
"ZoomOut" double
"AutoFit"
"Fit" string "w,h" (e.g. "100, 400")
"FullScreen" bool
"Print" none

"Play" none
"Stop" none
"Pause" none
"IsPlaying" bool
"CurrentTime" ulong (read only)
"Duration" ulong (read only)
"StartTime" ulong
"EndTime" ulong

Method execCommand
HRESULT execCommand(string cmdID, bool showUI, variant value, bool* ret)
Description executes the command described in cmdID, with an optional argument contained in value
Input
parameters

• string cmdID – command to be done
• bool showUI – indicates if UI update is needed
• variant value – the argument for the command
• bool* ret – contains if the command has been executed or not

Return value S_OK if ok
Remarks none
Method queryCommandEnabled
HRESULT queryCommandEnabled(string cmdID, bool* ret)
Description looks if the specified command can be successfully executed in the current context
Input
parameters

• string cmdID – command to be checked
• bool* ret – contains the result (true if the command is enabled)

Return value S_OK if ok
Remarks none
Method queryCommandIndeterm
HRESULT queryCommandIndeterm(string cmdID, bool* ret)
Description looks if the specified command is in the indeterminate state
Input
parameters

• string cmdID – command to be checked
• bool* ret – contains the result (true if the command is in the indeterminate state)

Return value S_OK if ok
Remarks none
Method queryCommandStatus

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

35

HRESULT queryCommandStatus(string cmdID, bool* ret)
Description indicates if the specified command has been executed on the object or not
Input
parameters

• string cmdID – command to be checked
• bool* ret – contains the result

Return value S_OK if ok
Remarks none
Method queryCommandSupported
HRESULT queryCommandSupported(string cmdID, bool* ret)
Description looks if the specified command is supported
Input
parameters

• string cmdID – command to be checked
• bool* ret – contains the result (true if the command is supported)

Return value S_OK if ok
Remarks none
Method queryCommandValue
HRESULT queryCommandValue(string cmdID, variant* ret)
Description returns the current value for a command
Input
parameters

• string cmdID – command
• variant* value – contains value

Return value S_OK if ok
Remarks none

5.6 Examples of usage
The following is an example of use of the activex to make a preview of an AXMEDIS object:

axactivex=new AXMEDISViewerCtrl();
axactivex.BackgroudColor="#ffffff";

//open the object downloading it from an URL
axactivex.Load(http://AXMEDIS.org/demo/metropolis.axm);

//show the metadata of the whole object
axactivex.ShowMetadata();

//look for a license and if not present acquire it
if(axactivex.NeedsLicense && !axactivex.HaveLicense)
 axactivex.AcquireLicense(licenseID);
else
 axactivex.ShowLicense();

// open all content elements inside the object and make a preview for 10s each
for(int i=1; i<=axactivex.ContentCount; i++)
{
 axactivex.OpenContent(i);

 //if currently opened content is image/video/document fit it to 100x100 preview
 if(axactivex.SupportVisualControl)
 axactivex.fit(100,100);

 //if currently opened content is audio/video preview it for 10s other wise wait for 10s
 if(axactivex.SupportTimeControl)
 axactivex.EndTime=10000; //10s preview
 else
 wait(10000); //wait 10s
}

5.7 Integration and compilation issues
None

6 Module - AXMEDIS plug-in into Mozilla (SEJER)

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

36

Module/Tool Profile
AXMEDIS plug-in into Mozilla

Responsible Name Vincent JACQUET
Responsible Partner SEJER
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Win32
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/Applications/axmozillaplugin

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.
AXMEDIS.org/repos/Applications/axmozillaplugin/doc/configuration-
deployment

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

N/A

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements Specification of the interface the plugin should expose to the
javascript.This interface must be identical to the interface the ActiveX
exposes.

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

37

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

6.1 General Description of the Module
main purpose and description, major functionalities, etc.
The purpose of this module is to enable to rendering of AXMEDIS content inside Mozilla’s web browser and
let the user interact with it.
Generally speaking, a plug-in for mozilla is a external library exposing specific methods that is dynamically
loaded by Mozilla. When embedded inside an HTML page, the web browser delegates the rendering and the
event handling to this library.
Thus the AXMEDIS player is considered as being able to render the AXMEDIS content into its own
window, which, in case of the Mozilla plug-in, .is owned by the web browser.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

38

A Mozilla plug-in is a dynamic code module that is native to the specific platform on which the Mozilla
browser is running. It is a code library, rather than an application or an applet, and runs only from the
browser.

The AXMEDIS plug-in may have to render many kind of content type (video, audio, text etc.). Some times,
it may be necessary for the plug-in to render a GUI allowing the user to manipulate the AXMEDIS content
(ala Acrobat Reader), sometimes it may be desirable to only display the AXMEDIS content without anything
around so that it integrates himself seamlessly into the hosting content. Thus, depending on the parameters
provided on the <embed> tag calling for the plug-in, the pug-in may choose to:

• display the whole AXMEDIS Player GUI,
• display a lightweight, plug-in specific version of the Player GUI,
• display the content without any kind of GUI;

6.1.1 The Mozilla Plug-in Technology

With the Mozilla Plug-in API, one can create dynamically loaded plug-ins that can:

• register one or more MIME types
• draw into a part of a browser window
• receive keyboard and mouse events
• obtain data from the network using URLs
• post data to URLs
• add hyperlinks or hotspots that link to new URLs
• draw into sections on an HTML page
• communicate with Javascript/DOM from native code

The Mozilla Plug-in API has two levels. The first level is constituted by the basic, old Netscape Plug-in API
named NPAPI, which comes from the first ages of the Netscape browser and is recognized by practically
every browser on the market. Even MS Internet Explorer prior 5.5 understands this API, and for latter
version, after SP2 in which Microsoft has removed support for Netscape Plug-ins, there is a work around.

Thus the AXMEDIS Player plug-in implements this API. With some care the plug-in should then be able to
run into a valid Opera Browser, Safari Browser and others plug-in, depending and the platforms the Player
can be compiled to.

Mozilla Browser

AXMozillaPlugIn
- hierarchy
- metadata
- resource play

AXMozPlugin
Library

<embed> tags to
include plug-in
rendering

Full Player GUI

Basic Player GUI Only specific resources player

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

39

At a second level, this API has been improved, in collaboration with Opera software, Sun, Apple, Adobe etc.
to extended interaction capacities between the plug-in and the hosting browser, that is:

 allowing the hosting browser to call some methods the plug-in exposes to him, that is making the
plug-in scriptable,

 allowing the plug-in to access the DOM of the hosting Window to manipulate it;

The implementation status (stable or unstable) of this API is not clear for now but it should become stable
rapidly from now and it seems safe to rely on it, as it is said that the API is close to being frozen..

The API allows defining windowless or windowed plug-in, which mean respectively: plug-in that draw
themselves directly into the window of the hosting page, or plug-in that draws themselves in their own
window within the hosting web page. The second solution is used for the AXMEDIS plug-in, because, it is
safer.

Also, the id of the plug-in, which is an URI following a specific format to ensure uniqueness, must be in the
form: @Domain/ProductName,version=[?versionInfo&versioninfo=],*[ModuleIdentifier. @domain,
ProductName and Version are mandatory.
See http://www.mozilla.org/projects/plugins/plugin-identifier.html for further details.
A possible identifier could be “@AXMEDIS.org/axmozilla,version=0.1”

Last, but not least, an “ACTIVEX Control for Hosting Netscape plug-ins in IE” project can be found on the
Mozilla web site at http://www.mozilla.org/projects/plugins/plugin-host-control.html. This control is able to
embed a Mozilla Plug-in to make it available to IE. This feature could be used to not do twice the same
coding effort at least for an initial validation of plug-in concept.

6.1.2 Authentication
For the plug-in to be able to manipulate AXMEDIS object and react to user requests through the browser &
player GUI, the user must be authenticated. When being instantiated, the plug-in:

• It pops up a dialog box asking the user to authenticate himself and request authentication through the
AXOM

• If authentication fails, display a message instead of the content
• If authentication succeeds, start processing the requested AXMEDIS content
• After a successful identification all the user license are at disposal to consume the requested content.

Any other application

ActiveX Mozilla
Container

AXMozPlugin
Library

AXMozilla
PlugIn

ActiveXMozill
aContainer.dll

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

40

6.1.3 Architecture

Mozilla documentation & API is available at http://www.mozilla.org/projects/plugins/

The Mozilla plug-in is constructed on top of the AXMEDIS framework and it exposes the interfaces required
by Mozilla in order to embed the player functionnalities inside Mozilla.

The code of the plug-in is specific to the platform on which the Mozilla browser is running. It is a code
library, rather than an application or an applet, and runs only from the browser. As the AXMEDIS editor is
cross-platform, having several build should not add a major overhead.

6.2 Module Design in terms of Classes

As most extensible architecture written in C/C++, the dynamic library export C methods to interface the
application and the plugin: NP_Initialize to initialize the library, NP_Shutdown to free the resources and
NP_GetEntryPoints to retrieve the address of functions needed for the management of the plugin.
The functions name are listed below:

• NPP_New;
• NPP_Destroy;
• NPP_SetWindow;
• NPP_NewStream;
• NPP_DestroyStream;

• NPP_StreamAsFile;
• NPP_WriteReady;
• NPP_Write;
• NPP_Print;
• NPP_HandleEvent;

AXMEDIS Mozilla Plug-in

AXMEDIS Internal
Resource Viewers

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Config.

Error and Configuration Manager

Adaptation & Fingerprint Algorithms

Mozilla plug-in Interface

Manager

AXMEDIS
Object Viewers

File System

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

41

• NPP_URLNotify;
• NPP_GetValue;

• NPP_SetValue;

From an architectural point of view, these functions can be considered as methods and properties of an
object, as each and every one of theme have “NPP instance” as first parameter.

The NPP_New method initialize a creation structure which is passed as parameter to the
NS_NewPluginInstance method. This method is the factory of plug-in for the library, as the requested
mime type is one of the parameter. Therefore the same library can be used to created different plugs-in.
This method instantiates the plug-in and returns the abstract base class for it, so that the other functions will
be able to delegate their calls to the plug-in object.

The Mozilla plug-in also expose the interface nsIAxMozillaPlugin to become scriptable through JavaScript
in the browser. This interface is implemented in nsAxMozillaPlugin.

(note: nsScriptablePeer has been renamed as nsAxMozillaPlugin)

The initialization and cleanup of AXMEDIS component is done in the NP_ Initialize and NP_Shutdown
methods.
The initialization of the plug-in window is done in the nsPluginInstanc::init method, which register the
windows procedure for the player.
Then, all the methods of the scriptable peer, used for scriptability, invoke AXMEDIS internal methods.

The idl of the interface exposed to the browser is:
[scriptable, uuid(a59a052c-3ebe-48f2-8e96-a99896ba46cf)]
interface nsIAxMozillaPlugin : nsISupports {

 /* behaviour methods and attributes */
 attribute boolean viewHierarchy;
 attribute string backgroundColor;

 /* loading and content methods and attributes */

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

42

 readonly attribute short contentCount;
 attribute string src;

 short load(in string filename);
 string getContentType(in short contentRef);
 void openContent(in short contentRef);

 void play();

 /* navigation methods and attributes */
 void goNext();
 void goPrev();

 /* media time control methods and attributes */
 void stop();
 void pause();
 readonly attribute boolean isPlaying;
 void jumpToTime(in long time);
 readonly attribute long currentTime;
 readonly attribute long duration;
 attribute long startTime;
 attribute long endTime;

 /* media visual control methods and attributes */
 void fit(in double width, in double height);
 void zoomIn(in double ratio);
 void zoomOut(in double ratio);
 attribute boolean fullScreen;
 void print();
 void scale();
 attribute double zoom;
 attribute boolean autoFit;
};

6.3 User interface description

The user interface of the player is the one of the basic AXMEDIS Player, as it is embedded in a rectangle in
the display area of the web browser. Still, the scriptable capabilities allow the designer of the HTML page to
add buttons and other commands that can invoke methods of the player itself.

6.4 Technical and Installation information

The installation can be automated using the XPI mechanism. It consist basically to define an zip archive
containing the files to be installed in the Mozilla plug-in directory and a javascript –install.js -customizing
the installation process. To be recognize by mozilla as n installation package, the extension must be .xpi.

The installation script declares, among other things:

- The component file describing the interface exposed by the plugin: nsIAxMozillaPlugin.xpt
- the plugin file: npaxmozilla.dll
- the required files: "xerces-c_2_6D.dll", "libcurl.dll", "msvcp71d.dll", "msvcr71d.dll"
- the extension of the file : axm
- the mime-type: application/AXMEDIS-object

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

43

- the version of the plugin.

The script copies the plugin’s file, the required files and the component file in the Mozilla’s plugins
subdirectory.
It also creates the following keys in the registry
[HKEY_CURRENT_USER\Software\MozillaPlugins\@AXMEDIS.org/axmozilla,version=0.1]
"Path"="C:\\Program Files\\Mozilla Firefox\\plugins\\npaxmozilla.dll"
"XPTPath"="C:\\Program Files\\Mozilla Firefox\\plugins\\nsIAxMozillaPlugin.xpt"
"ProductName"="AXMEDIS Mozilla plugin"
"Vendor"="AXMEDIS"
"Description"="Plugin for playing AXMEDIS Objects"
"Version"="0.1.0.0"

[HKEY_CURRENT_USER\Software\MozillaPlugins\@AXMEDIS.org/axmozilla,version=0.1\MimeTypes]

[HKEY_CURRENT_USER\Software\MozillaPlugins\@AXMEDIS.org/axmozilla,version=0.1\MimeTypes\
application/AXMEDIS-object]
"Description"="AXMEDIS Objects"
"Suffixes"="axm"

[HKEY_CURRENT_USER\Software\MozillaPlugins\@AXMEDIS.org/axmozilla,version=0.1\Suffixes]
"ax"="axm"
"axm"=""

The script do not create the following keys, as they are part of the editor/activeX.
[HKEY_CLASSES_ROOT\.axm]
@="AXMEDIS-object"
"Content Type"="application/AXMEDIS-object"

[HKEY_CLASSES_ROOT\MIME\Database\Content Type\application/AXMEDIS-object]
"Extension"=".axm"

These registry entries allow firefox top open .axm files direclty, without to download the file to the hard-
drive or without embedding it in an HTML page.
Basically, the axm files will behave like pdf and swf files.

References to other major
components needed

The same as the AXMEDIS player and ActiveX control.

Problems not solved •
Configuration and execution
context

This plug-in is executed inside of the Mozilla web browser. An XPI
installation program can be defined to ease the installation process of
the plug-in it-slef.
The installation of all the part of AXMEDIS players is still to be
defined.

6.5 Draft User Manual

The following sample of code shows how to declare the player in a cross-browser way. Mozilla will use the
plug-in and Internet will use the ActiveX.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

44

The code below shows how to retrieve the plug-in defined in the previous example and how to invoke some
of its methods.

6.6 Examples of usage

The two examples presented below demonstrate that the plug-in can be used as a component, with the tree
view and tool bar, or as a “still image”, decorating the text.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

45

And the same page can be displayed in both Internet Explorer and Mozilla:

6.7 Integration and compilation issues

The plug-in is at the end of the development chain. Therefore, it is very sensitive to changes in other
projects.

7 Module - AXMEDIS plugin into Multimedia Players

Module/Tool Profile
AXMEDIS plugin into Multimedia Players

Responsible Name Rogai
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

46

accession information (user and
Passwd) if any
Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

47

7.1 General Description of the Module
The main difference among AXMEDIS ActiveX/Mozilla Plug-in and AXMEDIS Plug-in for Multimedia
players is the rendering capabilities. The first manages all the client area assigned to it, full of controls,
scrollbars, options, tabs… etc. In the Plug-in for Multimedia the most important part is rendering of the
content. Since the content in AXMEDIS is a composition of most used multimedia formats, the resource can
directly be rendered by other multimedia players (i.e. Windows Media Player). Two important issues have to
be managed:

1. Adaptation capabilities of AXOM can play a great role inside other players as the plug-in capability
of play a content in a preferred player also if it was not designed explicitly for it

2. consumers’ world; the DRM has to be considered with much attention.

 Since the
plug-in of AXMEDIS in other player can really increase the AXMEDIS utilization in the

The AXOM module and its protection processor grants the proper manipulation of content with respect to
the user licence. When this secure environment collides with external plug-in technology such a warranty
can only be treated at level of certification.
The best solution is that the plug-in acts as certified viewer/player of the AXMEDIS content.

AXOM
user rights

based handling

prot.
AXObj

Pl
ug

-in

In
te

rf
ac

e Player XX
content

handling

adaptation
algorithms

Resources
extraction

Resources
rendering

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

48

7.1.1 Possible AXMEDIS plug-in into Multimedia Players

• AXMEDIS plug-in into
• Adobe Photoshop (DSI)
• Adobe Acrobat Reader (DSI)
• AXMEDIS plug-in into Macromedia tools (ILABS)

7.1.2 Analyzed plug-in technologies
Niagara (EPFL)
Niagara Streaming Systems is a component set that enables for the live video capturing and streaming over
the Internet. The system consists of a hardware card and an associated software package. The card captures
the audio and video and can perform real-time encoding. The software controls the hardware and allows the
internet broadcasting. The system is integrated with the RealNetworks and the Microsoft Media encoding
softwares and is compatible with common streaming formats.
Since AXMEDIS does not focus on streaming this system does not fit the best with the AXMEDIS
architecture. In addition it seems rather impossible to develop suitable plug-ins through which it may be
possible to send/receive specific commands and or data, especially because functionality is rather
implemented in hardware. Additional tools for video acquisition/manipulation may be investigated if needed,
fitting better into the overall AXMEDIS concept.

Adobe Premiere for video capture, editing (EPFL)
Adobe Premiere is a video editing tool. Premiere is used by video producers to manipulate video content.
Premiere is a tool oriented to professional users in contrast to Windows Movie Maker. This software is
designed to allow the use of third-party plug-ins. These plug-ins are used to enlarge Premiere capabilities.
The different plug-ins that Premiere allows are: filters for processing, transition schemes, additional file-
format supports, device controls (reduced capability), titling, or VST Audio plug-ins.

AXMEDIS Multimedia Player Plug-in

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Config.

Error and Configuration Manager

Adaptation & Fingerprint Algorithms

plug-in Interface for Player XX

Manager

File System

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

49

For the AXMEDIS project, first it is important to have file-format support plug-ins. An AXMEDIS plug-in
can be developed to use an AXMEDIS Objects inside Adobe Premiere. In Adobe terminology, this is an
importing plug-in. The plug-in may use the AXMEDIS blocks to extract and decrypt multimedia content that
can be used by Premiere –audio, video, and images-. The extracted and decrypted material would be
conveyed to the Premiere tool, etc. The complementary of the importing plug-in would be the exporting
plug-in. The exporting plug-in would allow e.g. saving the edited movie in AXMEDIS format.
The Premiere plug-in technology does not provide full control over the software (in AXMEDIS it would be
desirable to have full control over Premiere to ensure that the AXMEDIS Object and the resources it contains
are used according to the rights of the user). However, in the MS Windows version of Adobe Premiere it is
possible to apply some external control and to monitor over the tool by intercepting user commands. For
instance, it is possible to intercept a “Save as” user command and report it to the AXMEDIS OM. The plug-
in can be able to look up the user rights through the AXMEDIS OM and PMS and decide if the user is
allowed or not to do a “Save as”.

The Adobe Premiere Pro software development kit (SDK) contains examples of plug-in implementations.
The documentation recommends writing new plug-ins by modifying a sample plug-in. To program an
importing plug-in one can start by modifiying the sample named SDK_File_Import. This sample consists of
a few source code files and a project file for VisualC++ .NET. The output of this project is a dll library
renamed as prm. This prm file has to be copied to the plug-in directory of Adobe Premiere; the software
loads all the plug-ins located in this directory when the application is started. The software calls the function
xImportEntry to communicate with the plug-in. See the declaration of xImportEntry:

xImportEntry (
 int selector,
 imStdParms *stdParms,
 long param1,
 long param2)

The selector variable is the action Premiere wants the importer plug-in to perform.
stdParams provides callbacks to obtain additional information from Premiere or to have Premiere perform
tasks.
Parameters param1 and param2 vary with the selector; they may contain a specific value or a pointer to a
structure.
Some examples of the selector variable are:

• imInit: Sent during application startup.
• imImportAudio: the plug-in has to give Premiere the specified amount of audio data in the format

specified.
• imImportImage: the plug-in has to give Premiere a frame of video by populating a buffer.

A simplified xImportEntry implementation would look like this:

DllExport xImportEntry (int selector, ...)
{
 switch (selector)
 {
 case imInit:
 //initialization of the plug-in
 break;
 case imImportImage:
 //decode image file and write raw output to a buffer
 break;
 case imImportAudio:
 //decode audio file and write raw output to buffer
 break;
 case imOpenFile:
 //open file and return handle
 break;

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

50

 case imCloseFile:
 break;
 }
 return OK;
}

When the user clicks on the menus of Premiere Windows messages are sent to the application. These
messages are processed by a window procedure. These messages can be intercepted by subclassing the
Premiere window or, what is the same, by changing the window procedure. The following snipped of code
shows how to do window subclassing.

//old window proc
long g_oldWndPrc = 0;
//window handle
HWND g_hWnd = 0;

//find window handle of Premiere window
g_hWnd = FindWindow(PREMIERE_MAIN_WINDOW, NULL);

//substitute Premiere window proc by our window proc
g_oldWndPrc = SetWindowLong(g_hWnd, GWL_WNDPROC, (long)WindowProc);

//our window proc
LRESULT CALLBACK WindowProc(
 HWND hwnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(uMsg == BUTTON_MENU)

{
 //intercept only a few messages

if(wParam == SAVE || wParam == SAVE_A_COPY || wParam == SAVE_AS)
 {

MessageBox(g_hWnd, "Save Message Intercepted", "", MB_OK);
 return 0;
 }
 }
 //let the other messages to be processed normally

return CallWindowProc((WNDPROC)g_oldWndPrc, g_hWnd, uMsg, wParam, lParam);
}

Interaction with Adobe Premiere

Sending commands for content processing NO
Sending inhibitions, controls of DRM In Windows, when the user clicks on a menu, a message is

sent to the application. This message can be intercepted by
using “windows sublcassing” as explained above. One
way of doing inhibition is by intercepting and not
releasing the desired windows messages.

Sending data, receiving back processed data NO
Receiving logs (event reporting) Some events can be logged by using the same “windows

subclassing” method explained above. When, for instance,
the user clicks on the Open File menu, a message is sent to
the application. This message can be intercepted and
logged and then released.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

51

Microsoft Windows Media Encoder (EPFL)
The Windows Media Encoder Software Developer Kit is a set of libraries compiled as automation servers.
This SDK can be used to encode multimedia content –mostly audio and video- in Windows compatible
formats. The SDK is designed to be usable by script languages like Visual Basic Script or high level
languages like C++. It also provides support for streaming and DRM management.
Rather than a plug-in technology, the Windows Media Encoder SDK is a library used by the AXMEDIS
Editor. The Windows Media Encoder 9 Series SDK can be used by the AXMEDIS Editor to encode
multimedia content in Windows compatible formats in form of internal components.

Windows Movie Maker (EPFL)
Windows Movie Maker is a simple video editing tool for home/end users. It is free and it is delivered so far
together with Windows XP operating system. The tool allows the user to perform all the basic video editing
operations: import a video into the tool, create scene transitions, add subtitles, add credits, cut scenes, and
save the resulting video in windows compatible formats. The same functions are available for the sound-
track of the film.
Up to the last version 5.1, that has been investigated, the Windows Movie Maker does not allow the creation
of a plug-in to communicate with AXMEDIS other blocks. Plug-ins can be developed only for additional
effects, transitions etc. (simple processing functions).
Windows Movie Maker is not an automation server and thus it cannot be controlled by another application
through an ActiveX interface. This means that Movie Maker cannot receive commands for processing,
cannot receive inhibitions, and cannot report event logs.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

52

8 Executable Tool – AXMEDIS PC Player (DSI)

Module/Tool Profile
AXMEDIS PC Player

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved) approved
Implemented/not implemented Implemented
Status of the implementation 50%
Executable or Library/module
(Support)

Executable

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/Applications/axplayer

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.AXMEDIS.org/repos/Applications/axplayer

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

53

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL

8.1 General Description of the Module
The AXMEDIS Player for PC platform has a strong architectural relationship with the AXMEDIS Editor, in
the sense that, being the Editor mainly targeted at WindowsOS and MacOS for their established platforms
and tools, the Player functionality may be seen as a subset of the Editor functionality; this subset only allows
playback according to DRM AXMEDIS rules and interaction according to the same rules and to the rules
embedded in the multimedia composited scenes. The Player may nevertheless allow, for his limited
capabilities (in comparison to the Editor), a simpler porting to other platforms like e.g. Linux OS. At the
same time, the Player may support additional media formats for which playback-only code or libraries are
available. The AXMEDIS Player for PC is in relationship with the content distribution on PC (over the
internet). Exact requirements, issues, specifications for this are also expected by discussion with Tiscali at
the meeting.

The AXMEDIS Player user interface should work through usual devices such as screen, mouse, joystick,
while the usage of the keyboard should be limited to a minimum; it should also work through touch screens,
if these are available. Interaction is needed when this is specifically described and coded in interactive
multimedia scenes such as those implemented by MPEG-4, VRML, Flash and the like.
The AXMEDIS Player contains an XML-parsing block able to parse AXMEDIS Objects and selects
additional tools necessary for the protection management and playback of the different media components.
The AXMEDIS Player shall respect the protection of AXMEDIS objects, by means of the Protection Support
module.
The AXMEDIS Player shall allow Digital Content playback for several formats (WAV, MP3, MPEG-2/4,
AVC, AVI, PDF, etc…); this will be mainly accomplished through decoders and media players available as
source code and/or precompiled libraries and SDKs: media decoders which are not already available are to
be considered outside the scope of AXMEDIS. Then, the AXMEDIS Player shall use external

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

54

applications/ActiveX for Digital Content playback or it will provide interfacing mechanisms for
communicating with external applications in form of API.
The AXMEDIS Player also contains a module to communicate item adaptation requests to the media
provider, whenever this may be necessary for terminal limitations or overloading conditions.

8.2 Module Design in terms of Classes

8.3 User interface description
The AXMEDIS Player GUI for PC may look like the picture below. The user will be able to select among
the different views: Hierachy View, Annotations View, and Metadata View. These views will show the
Hierachy Editor, the Annotations Editor, and the Metadata Editor. However, these editors will not permit the
user to modify the AXMEDIS object, only to view it. This is because the AXMEDIS Player is meant to play
AXMEDIS objects while the AXMEDIS Editor is used to edit AXMEDIS objects.
To open an AXMEDIS object the user will click the File menu and then Open or he will drag and drop the
AXMEDIS file.
The Configuration menu will be used to tune the behavior of the Player according to the user preferences.
The user will be able to specify the default view to use when an AXMEDIS object is loaded, default volume,
the types of content allowed to reproduce –for instance disallowing the reproduction of content rated as
Restricted- etc
The AXMEDIS player will use the AXMEDIS internal Players to render the different types of content –
audio, video, text, and SMIL presentations.
If a single AXMEDIS object contains multiple media contents the user will have to use the Hierarchy Viewer
to select which content to reproduce.

See the Draft User Manual for some examples.

8.4 Technical and Installation information

References to other major
components needed

AXMEDIS Object Manager
AXMEDIS Internal Players
AXMEDIS Hierarchy Editor & Viewer
AXMEDIS Metadata Editor & Viewer
AXMEDIS DRM Editor & Viewer
AXMEDIS Object Editor & Viewer

Problems not solved •
Configuration and execution
context

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

55

8.5 Draft User Manual
When the player is started an AXMEDIS object may be loaded using the File/Open… menu or using the
button on the toolbar

When the file is opened the first resource inside is opened:

The content of the AXMEDIS object may be browsed using the arrows in the toolbar or using the hierarchy
view (opened using the button in toolbar)

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

56

The metadata of the object may be view double clicking on the Dublin Core element in the hierarchy view:

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

57

8.6 Examples of usage
See Draft User Manual

8.7 Integration and compilation issues
None

8.8 Configuration Parameters
Config

parameter
Possible values

8.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

58

9 Executable Tool – AXMEDIS PDA Player (TISCALI)

Module/Tool Profile
AXMEDIS PDA Player

Responsible Name ………………
Responsible Partner TISCALI
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows Pocket PC
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

59

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

9.1 General Description of the Module
The AXMEDIS Player may be partially ported on at least one of the most widespread PDA device with well
supported OS and platform. The functions of Playing SMIL and MP4 will be supported.

In the case of PDAs, many of the existing and well supported devices are running on PalmOS or Windows
(WindowsCE and PocketPC) operating systems. Whereas Palm usually stress on application design (most
Palm applications are designed specifically and exclusively for the mobile use, in order to provide best fit for
user needs) WindowsCE derives huge Windows application base, concentrating on conversion of existing
applications. In the case of AXMEDIS, since the first platform and version of the Player will be developed
during the first phase for WindowsOS, the choice will most probably be a limited porting of the Player
software to a PocketPC device; some of the AXMEDIS partners are for instance familiar with the iPaq
device. The players for SMIL and MP4 on WindowsCE are proposed.

As mentioned, in terms of development the most characterizing issue is the limitation of resources due to
device constraints. A second additional issue is adaptation of the functionality to a rather different interface
and interaction devices.

It is difficult at this time to provide an exact specification for the AXMEDIS Player in PDA, but in fact some
guidelines can be stressed since now. In terms of platform features, current off-the-shelf PDAs (PocketPCs)
can be characterized as follows:

• Operating system: PalmOS or Windows Mobile

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

60

• Processor: 320 to 624 MHz clock speed (Intel, StrongARM…)
• Display: from CIF 64k colors to 4" Transflective type VGA 64K colors,
• Memory: 64MB to 192 MB total memory (ROM and SDRAM in different ratios)
• Audio: Integrated microphone, speaker and one 3.5 mm stereo headphone/headset jack, MP3 stereo

through audio jack and speaker, sometimes 5-band equalizer for playback through audio jack
• Other typical features: 4 shortcut programmable buttons, vavigation Touch-pad, touch-sensitive display

for stylus or fingertip, voice record button.

In terms of Player functionality and user interaction, it appears that the most limiting factors will be for the
overall processing power and screen size and resolution. The second issue partially or mainly masks limits
due to the first as it is hardly conceivable to play multiple audiovisual objects at the same time in a CIF or
VGA screen. Implementation of Player views may also be limited by graphic aspects. Nevertheless the
AXMEDIS Player will allow digital content playback for several audiovisual formats (AAC, MP3, MPEG-
1/4, AVC, AVI, etc…) at the most convenient profiles and levels, including scalable codecs and as far as
possible computational graceful degradation for complex bitstreams. In addition to already existing or
announced codecs and tools, PocketPC allows fast creation of some applications, because it supports
converting existing Windows applications to pocket platform. PocketPC development requires Microsoft
tools: the most important Windows APIs are available for Windows CE/PocketPC, sometimes in limited
form. For this, regular MSDN library is used for reference. For each API or feature, MSDN articles explain
differences or limitations on Windows CE/PocketPC, so portability issues can be considered already under
development of the PC Player.

For development, Windows CE edition of the Visual Studio package is needed. The package allows
compiling an application for Windows CE/PocketPC and testing it on PC in emulated environment (it is not
an emulation of the device, it is instead another compiler for PC with APIs redirected).Portability of the
AMBULANT or equivalent SMIL Player to PDA platform will be investigated in a successive phase. Indeed
some porting is announced under development already, as it is the case for the MPEG-4 Player.

The internal SMIL player will support to play SMIL objects inside AXMEDIS object. A SMIL player has to
be able to render different kinds of media objects (text, audio, images, video...). Currently the SMIL player
delegates the rendering of images, video, or audio to third-party specialized libraries. In case we wanted the
SMIL player to be able to use the AXMEDIS internal MPEG-4 player. The MPEG-4 player would have to
implement the playable interface. The internal SMIL player will be controlled through the player interface.
The player interface –see C++ abstract class below- is the one used by embedding programs that want to
control the SMIL player. In AXMEDIS, all the players have to implement the axMediaPlayer interface. We
use AMBULANT SMIL player for the internal SMIL player. The AMBULANT player does not implement
this interface but it implements the player interface instead. To use the AMBULANT player in AXMEDIS
the player interface will have to be extended until it matches the axMediaPlayer interface.

The SMIL Player should directly extract the SMIL resource from AXMEDIS object without need to saving it
as a temporary file on the disk.

How to play a SMIL component directly from AXMEDIS object?
This section attempts to explain the basic structure of the internal SMIL Player by loosely explaining what
happens when you run it and play an AXMEDIS object. The main mechanism and process are based on
those of AMBULANT SMIL player. We modify the section of generating data source to get it integrated
with AXMEDIS editor. If you want to have a better knowledge of this mechanism, please check
AMBULANT website and it will definitely help you to understand our method here.

9.2 Module Design in terms of Classes

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

61

AxPDAPlayerAPP AxPDAPlayerFrame

AxPDAPlayerLib::SMILPlayer

AxPDAPlayerLib::OSMOPlayer

-End1

1

-End2

*

-End3

*
-End4

*

AxPDAObjectManager

1

*

AxPDAObjectViewer

1

*

Opens an AXMEDIS file
function openFile()

Gets the player
function getInternalPlayer()
For each player it at least contains the following functions:

Calls the play, pause and stop commands on the player
function play()
function pause()
function stop()

9.2.1 Porting of the AXOM on PDA (DSI)
In order to achieve a working version of the AXOM on PDA platforms a reference architecture has to be
chosen. Pocket PC 2003 with Windows CE version 4.20 (WCE420) has been chosen as main testing
platform. It is not the last version of Microsoft mobile operative system but it is quite new therefore it is
widespread and provides a good set of basic functionalities. Moreover, it is compatible with new version of
Microsoft OS for mobiles.
For the first tests, Microsoft eMbedded Visual C++ 4.0 (eVC4) has been chosen as reference development
environment since it provides a quite new C++ compiler and it can be enriched with a wide set of Standard
Development Kit for different OSs and hardware platforms.

The porting of AXOM libraries over PDA platforms requires the porting and usage of the following well-
known libraries:

• STLPort version 5.0.1 or greater. This is an open source implementation of the C++ Standard
Template Library (STL). It has already been ported for eVC4 and WCE platforms. In that way,
AXOM code, which relies on STL classes, should not be changed during the porting.

• Xerces-C++ version 2.7.0. Some effort has to be done to port this library on PDA platform since
Xerces community does not provide any hint for doing that port. Only general guidelines are available.

• OpenSSL version 0.9.8a or greater. It already provides means to be ported on PDAs. The main issue in
doing that is the introduction of a support library (WCECompat version 1.2) which provides to

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

62

OpenSSL some feature of the C Runtime Library which are missed in the eVC4 libraries. In order to
avoid complicated integration among STLPort, WCECompat and standard eVC4 CRT it is suitable to
use OpenSSL as dynamic library on PDA.

•
The porting of the above libraries is sufficient in order to obtain a working version of the AXOM library with
basic functionalities, i.e. loading and managing of AXMEDIS and MPEG-21 objects. AXDB related features
are excluded from this “mobile” version since they are not useful in this context. In order to enable net
protocols such as HTTP, FTP etc, also libcurl has to be ported. However, this is not essential in order to have
a first working release.

All AXOM related libraries, such as PMS Client etc, have to be re-compiled using the development
environment and the libraries described above.

9.2.2 Opening a SMIL component inside an AXMEDIS object
When the user selects Open (or double-clicks) we need to get the data of the SMIL component from
AXMEDIS object. It generates the decompressed stream and gives it to the Player. There is an XML parser
as a third party library to parse the stream into a DOM tree and create a player to play that DOM tree. In
addition, we need to tell the player how it can obtain media data, create windows and more, because the
media data are described as “AxIndex” and the content of media data are stored in the AXMEDIS object.

Most player implementations (the Windows player is an exception) have a class with a name like mainloop
to handle this. Such a mainloop is created per SMIL component. This mainloop object will first create the
various factories and populate them:

• A window factory is usually implemented by the main program itself. The player will call this when it

needs a window. Usually the first request to create a window will actually return the document window
(after resizing to the appropriate size).

• A global playable factory is created. This is the object the player will use to create renderers for the
various media types. The global factory is filled with the various renderers this ambulant player supports.
In effect, this is the step where you get to decide how various media are rendered.

• A datasource factory is created and filled with the factory functions that will create datasources for audio,
video or other, raw, data such as text. The factory functions that are added to the datasource factory
partially determine how data is retrieved over the net, which protocols and formats are supported and such.
Partially, because some media items (audio and video, notably) may be rendered by simply passing the
URL to some underlying media infrastructure such as DirectX or QuickTime.

 Note, since we will directly retrieve the resource through “AxIndex” instead of using original URL,
we will modify the code here. i.e., to generate the data source or data stream from “AxIndex”.

Next the factories are put together in a factories struct, and if the architecture supports dynamically loadable
plugins we get the plugin engine singleton object and ask it to load the plugins. This will search the plugin
directories for dynamic objects with the correct naming convention, load them, and call their initialize
routine. The factories object is passed to the initialize routine, so the plugin itself can register any factories it
wants.

The next step is to create the DOM tree.
One way to do this is to use to “axom::getAxObjectElement(*resourceIndex)” to read the SMIL component
from the AXMEDIS object, and then pass this data to document::create from string. This will return a
document object. This object contains the DOM tree itself (implemented by the node object) and some
context information.
Note: In AMBULANT SMIL Player, The context information are XML namespace information,
original URL for resolving relative URLs used in the document, a mapping from XML IDs to node
objects. Since we will directly retrieve the resource through “AxIndex” instead of using original URL
and resolved relative URLs, we have to modify the code here.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

63

The final step is to create a player object. This is done through create smil2 player, passing the document, the
factories and one final object, embedder. This object is again implemented by the main program, and
implements a small number of auxiliary functions, such as opening an external webbrowser or opening a new
SMIL component.

9.2.3 SMIL player for PDA (same as AMBULANT)
When the SMIL player object is created it gets the document, factories and embedder arguments. It now
needs to create its internal data structures to facilitate playback later on:

• A timer and event processor are created. The timer is the master clock for the presentation, and the event

processor is a runqueue object that is used for low-level scheduling. Whenever the high-level scheduler
wants some code to be executed it will add an event to the event processor, possibly with a timeout and a
priority. The event processor runs in a separate thread, waits for events in it runqueue to become eligible
and then runs them. This mechanism is the underlying engine that makes the whole player work, anything
that needs to wait doesn’t do so inline but uses the event processor to get a callback at a later stage: the
scheduler, renderers needing input data, etc.

• A layout manager is created, which will be used to find where media items should be displayed. The
SMIL layout manager reads the <layout> section of the DOM tree and builds a parallel layout tree (which
also contains information on some of the body media nodes, the ones that have layout information
themselves) of region node objects. Then this tree of region node objects is converted into a tree of surface
template objects. To create top-level windows the new topsurface method of the window factory is used,
and subregions are created using the new subsurface method of their parent surface template. The layout
manager also contains mappings to be able to get from a node to the corresponding region node to the
surface template, and this will be used during playback to play media items in the correct location.

• A timegraph is created. This is the internal representation of the <body> part of the DOM tree that will be
used to play back the document. In addition a scheduler is created, which will interpret the data in the
timegraph.

When the user selects Play we call the start method of the player object. This will invoke start on the
scheduler. This will start playing the root node of the tree. The scheduler will now do all the SMIL 2 magic,
whereby events such as the root node being played causes other nodes to become playable, etc. At some
point a media item needs to be rendered. The scheduler calls the new playable method from the global
playable factory. This will pass the DOM node to the various factories until one signals that it can create a
playable for the object. In addition, if the playable has a renderer (which is true for most media objects, but
not for things like SMIL animations) we also obtain the surface on which the media item should be rendered,
through the layout manager. We then tell the renderer which surface to use. Soon afterwards the start method
of the playable is called to start playback.
An average renderer will need to obtain data from AxIndex (note, originally, AMBULANT obtains
from URL). It will do this by creating a datasource for the document through the datasource factory
object.
Every time the renderer wants more data it calls the start method of the datasource passing a callback routine.
Whenever data is available the datasource will schedule a call to the callback routine, through the event
processor. When the renderer has enough information to start drawing it will not actually draw immediately,
but it will send a need redraw call to its surface. This will percolate up the surface hierarchy, to the GUI code,
and eventually come back down as a redraw call all the way to the renderer (assuming it is not obscured by
other media items, etc). At this point the bits finally get drawn on the screen. Whenever anything
“interesting” happens in the renderer (the media item stopped playing, the user clicked the mouse, etc) it
invokes a corresponding method on its playable notification. This interface is implemented by the scheduler,
and these notifications are how the scheduler gets informed that it can start scheduling new things, etc.

The bottom line is that we have to modify the datasource interface: to generate media data from AxIndex instead
of URL.

9.2.4 SMIL Player Ambulant and integration with AXOM (TISCALI)

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

64

Starting from the consideration done in the previous paragraph and analyzing the Ambulant player
architecture (overall block diagram is shown in the figure below), components and interfaces, it’s
easy to identify in the Datasource interface one of the main points where performs changes to avoid
integration with the AXMEDIS objects.

The Datasource interface is designed to implement URL retrieval schemes or file I/O and get external data
to media handlers and other modules requiring data access.
The general interface is that a datasource is acquired through a datasource factory interface, which passes
the URL to the various implementations until one is found that can handle it and returns a datasource object.
The client then calls the start method on this object, passing a callback routine, and the datasource will
arrange for the callback to be called as soon as data is available. No new callbacks will be done until a new
call to start() is made, and the datasource has a buffer that can be limited, so this design allows for flow
control over the net, if required.
There are specialised datasource interfaces for audio and video, that can handle extra things like converting
audio from mp3 format to linear samples, or demultiplexing an audio/video stream.

The integration will be done extending the Datasource interface to manage AXMEDIS objects through the
AXOM.
Main changes will regards the URL retrieval schemes and the file I/O that will be replaced with the rights
AXOM function calls to retrieve the requested AXMEDIS object resource.

9.2.5 OSMO MPEG4 player on PDA (TISCALI)

The MPEG-4 internal player constitutes a slightly different case of Media Player for AXMEDIS. In fact
MPEG-4 itself not only support media content in terms of different media files or streams, but it satisfies a
much more relevant number of requirements providing tools to multiplex and synchronize all the elementary
media streams even in the wider context of a rich multimedia scene (including user navigation, user

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

65

interaction, inherent behavior of the scene and presentation of natural and synthetic sounds and media). All
this is included in a compliant MPEG-4 Player, so that any kind of control description or rule is normally
coded inside the mp4 file or systems specific stream. The overall architecture of the Player in accordance to
the MPEG-4 specification is reported in the following picture (control flow in dotted lines):

Management of specific protection rules is also possible in relevant points of the above diagram according to
the MPEG IPMPX specification.

For all these reasons including the MPEG-4 Player into the internal AXMEDIS resources may result rather
straightforward as only a very reduces number of commands are transmitted from the current Player user
interface to the underlying architecture (executive control).

The overall player interface can be based on the abstract class axMediaPlayer (see previous sections above),
through the specialized class axMPEG4Player. The functionality that is implemented by this class is rather
reduced in terms of operations, given the complex architecture of the player itself and associated content
described above.
Currently the MPEG-4 Player can allow two working modes:
• Network Channel (DMIF): in this modality the only possible command is open of a network address

After this is done by validation of the rights through the AXOM, all the streaming content is received
and rendered including audiovisual objects and scene/interaction. Connection is closed when a new one
is open or the Player is closed.

• File (MP4): in this modality and under the AXOM control load of a file is possible and content is
available as for the network modality. In any case this mode may allow the implementation of simple
axMedia functions like start/stop/pause since file is available and no indeterminate buffering is
necessary. All more than this may be really complex as it will interact with the decoding process of all
built-in MPEG-4 decoders. More complex behavior for multiple media in AXMEDIS can be
implemented in single objects linked through SMIL in the main AXMEDIS Player (and Editor).

The MPEG-4 Player can directly extract the mp-4 resource from AXMEDIS object without need to saving it
as a temporary file on the disk.

Once open or load are allowed, user activity can be monitored by built-in tracing capabilities and possibly
reported: it is in any case MPEG-4 activity in terms of operation on the MPEG-4 content by built-in sensors
and controls.

9.2.6 OSMO and integration with AXOM AXMEDIS (TISCALI)

control user
interact

scene

video

audio

nodes

pictures

frames

video
render

audio
render

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

66

OSMO4 player integration will follow the same strategy adopted for the Ambulant player
integration. So main changes need to be done in the input resource handler of OSMO4 player that
needs to be adapted to interact with AXOM module.

AXOM will be the access point to AXMEDIS objects, and it will provide to the axOSMO4 module, through
the axCommand.Execute() function, an MPEG-4 bit stream to be played.

As for the Ambulant player integration, even the OSMO4 event manager need some changes to manage in
the right way events like stop, pause, etc that need to be passed and managed in the AXOM too.

9.2.7 AXMEDIS PDA player user interface
The AXMEDIS Player user interface should work almost exclusively through touch devices limiting to the
minimum interaction via keys or other interfaces. This will require a certain reworking in comparison to the
PC Player. A typical GUI for a PocketPC viewer is in the following picture

AXMEDIS PDA Player

AXOM

AXMEDIS
Object

MPEG4
Player

(OSMO4)

SMIL Player
(Ambulant)

Resource
extraction

Resource
rendering

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

67

The AXMEDIS Player will be also capable to respect the playback protection of AXMEDIS objects, as
contained the content and decoded and dealt with through the MPEG-21/AXMEDIS client terminal.

9.3 User interface description

Missing description of GUI functionalities

9.4 Technical and Installation information

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

68

References to other major
components needed

Problems not solved • Compilation of Ambulant and OSMO player on Windows CE
Configuration and execution
context

9.5 Draft User Manual

The AXMEDIS PDA player looks like a standard application, with a menu. The commands available so far
are as follows:

File > Open Opens a new AXMEDIS object
File > Play Play an AXMEDIS object
File > Pause Pause to play an AXMEDIS object
File > Stop Stop an AXMEDIS object during the play
File > Exit Closes the application
View > Toolbar check to show the tool bar, unchecked to hide the tool bar
Help > About Displays the about box

When the player is started an AXMEDIS object may be loaded using the File/Open… menu or using the
button on the toolbar

When the player is started an AXMEDIS object can be played/paused/stopped using the File/Play
File/Pause, File/Stop or using the button on the toolbar

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

69

9.6 Examples of usage
See Draft User Manual

9.7 Integration and compilation issues
• Description of the interoperability specification aspects related to the adoption of the software module in

different operating systems and to be integrated in different contexts,
o conditional compilations,
o different behaviors in different context,
o profiling,
o configuration aspects,
o etc.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

70

10 Executable Tool – AXMEDIS Mobile Player (DSI, ILABS)

Module/Tool Profile
AXMEDIS Mobile Player

Responsible Name …….
Responsible Partner DSI
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

71

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

The specification of this part was in charge to EPFL until the July 2005. Not it has bee reallocated to other
partners, see new DOW M25 M42.
A light version of the AXMEDIS player for Mobile will be realized in pure Java.
A simple mock up for symbim with capabilities of media streaming has been realized by DSI, demonstrating
that the cost of developing a C++ AXOM based application could be too difficult and non portable on the
many different mobile devices.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

72

11 Executable Tool – AXMEDIS Tablet PC Player for School Bag on
Mozilla (SEJER)

Module/Tool Profile
AXMEDIS Tablet PC Player for School Bag on Mozilla

Responsible Name Vincent JACQUET
Responsible Partner SEJER
Status (proposed/approved)
Implemented/not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development C++, XUL, JavaScript
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.AXMEDIS.org/repos/ Applications/axmozillaplayer

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs. AXMEDIS.org/repos/ Applications/axmozillaplayer

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements Specification of the interface the plugin should expose to the
javascript.This interface must be identical to the interface the ActiveX
exposes.

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

73

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

11.1 General Description of the Module

The AXMEDIS player based on Mozilla technology can run on Tablet as well as on PC. The main idea is to
build a XUL application, using Mozilla XULRunner, around the AXMEDIS Plug-in for Mozilla.

This architecture is based on:

• XUL files, for describing the user interface in an XML format, with tags such as <button>,
<menuitem>, etc,

• Javascript, to implement the actions from the user interface
• The AXMEDIS Mozilla plug-in, to manage the rendering of AXMEDIS objects
• XPCOM to interface C++ and Javascript.

By design, the application is localizable and skin-able, and, if the C++ code and the plug-in are cross-
platform, then the application is also cross-platform.

The player should provide user interface for the methods and properties exposed by the plug-in.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

74

11.2 Module Design in terms of Classes
Each window of the module is defined by a XUL file, and, eventually a javascript file.

The main window, defined in axmozillaplayer.xul, also includes “content.html” which is the HTML page
using the plug-in.

The “about box” is defined in “about.xul”.

The window.js file contains the window related commands:
function doClose()
function doMinimize()
function doMaximize()
function doRestore()
function toggleMaximizedNormal()

The axmozillaplayere.js file contains the functions related to the management of the player.
Displays the about box:
function about()

Handles the display of the toolbar and the status bar
function toggleViewToolbar()
function toggleViewStatusbar()

Opens an AXMEDIS file
function openFile()

Gets the player
function getInternalPlayer()

Calls the play, pause and stop commands on the player
function play()
function pause()
function stop()

Calls the goNext, goPrev commands on the player
function goNext()
function goPrev()

Shows the hierarchy when hidden otherwise hides it
function toggleViewHierarchy()

11.3 User interface description
The player may look like the picture below, with standard menus, toolbars, and status, with the plug-in in the
center of the application.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

75

For instance, File > Open will open the standard “File Open” dialog box, filtering files using AXMEDIS
objects extension.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

76

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

77

The player is skin-able and localizable:

11.4 Technical and Installation information

The installation is pretty straightforward as copying the whole AxMozillaPlayer directory is enough. Still, it
is possible to create an XPI script for helping through the installation process.

The hierarchy of files must be as described below:

The application.ini file is required by XULrunner to define the name of the application, its vendor, its
version number and the minimal and maximal version of gecko that is required for the application to run.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

78

The defaults\preferences folder contains the axmozillaplayer-prefs.js file which specifies the starting URL of
the application.

The Chrome directory contains the XUL files, the javascript files, the icons and the skins and localizable
files.
The chrome.manifest file specifies where is located the content, which file to use for locale and which skin to
use.

content axmozillaplayer file:content/axmozillaplayer/
locale axmozillaplayer en-US file:locale/en-US/axmozillaplayer/
skin axmozillaplayer ec3 file:skin/ec3/axmozillaplayer/

The XUL files looks like:
<?xml version="1.0" ?>
<!DOCTYPE window SYSTEM "chrome://AxMozillaPlayer/locale/AxMozillaPlayer.dtd" [
<!ENTITY % skin SYSTEM "chrome://AxMozillaPlayer/skin/entities.ent">
 %skin;
]>
<?xml-stylesheet href="chrome://AxMozillaPlayer/skin/global.css"
type="text/css"?>
<?xul-overlay href="commands-overlay.xul" ?>
<?xul-overlay href="caption-overlay.xul" ?>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
 id="axmozillaplayer"
 title="&application.title;"
 width="640"
 height="480"
 hidechrome="&application.hidechrome;"
 orient="vertical"
 persist="width height screenX screenY"
 debug="true"
>
<script src="axmozillaplayer.js" />
<script src="io.js"/>
<script src="window.js"/>
<commandset id="windows-commands" />
<keyset>
 <key id="open-key" modifiers="accel" key="O" oncommand="openFile();"/>
 <key id="about-key" keycode="VK_F1" oncommand="about();"/>
 <key id="hierarchy-key" modifiers="accel" key="H"
oncommand="toggleViewHierarchy();"/>
</keyset>
<vbox id="application-caption" />
<toolbox>
 <menubar id="application-menubar">
 <!-- definition of the menu -->
 </menubar>
 <toolbar id="application-toolbar">
 <!-- definition of the toolbar -->
 </toolbar>
</toolbox>
<box flex="1">
 <iframe flex="1" name="player" src="content.html" />
</box>
<statusbar align="start" id="application-statusbar">
 <!-- definition of the statusbar -->
</statusbar>
</window>

The code of the command is defined in the associated javascript file.

DE3.1.2.2.5 – Specification of External Editors, Viewers, Players

AXMEDIS Project

79

The doctype specify the DTD in chrome://AxMozillaPlayer/locale/AxMozillaPlayer.dtd
directory and therefore it uses the settings from the chrome.manifest.
All the elements localizable should be defined as entities in this DTD, like:
<!ENTITY win.minimize "Minimize">
<!ENTITY win.maximize "Maximize">
<!ENTITY win.restore "Restore">
<!ENTITY win.close "Close">

<!ENTITY application.title "AxMozillaPlayer">
<!ENTITY application.back "Back">
<!ENTITY application.forward "Forward">
<!ENTITY application.reload "Reload">
<!ENTITY application.stop "Stop">
<!ENTITY application.go "Go">
<!ENTITY application.console "Console">

The skin is defined in the css files of the skin folder, along with the associated pictures. As choosing whether
to display the standard frame of the window or not, the entity &application.hidechrome; is defined in
chrome://AxMozillaPlayer/skin/entities.ent.

References to other major
components needed

AXMEDIS Plug-in for Mozilla

Problems not solved • When changing the skin, xulrunner do not detect that the
entities.ent file is different, therefore the file must be touched to
have the hidechrome value refreshed.

Configuration and execution
context

11.5 Draft User Manual

The player looks like a standard application, with a menu. The commands available so far are:
File > Open Opens a new AXMEDIS object
File > Exit Closes the application

View > Toolbar Shows/hides the main toolbar
View > Status Shows/hides the status bar
View > Hierarchy Shows/hides the hierarchy tree

Help > About Displays the about box

11.6 Integration and compilation issues

There is no compilation issues as:
• XUL is interpreted
• Javascript is interpreted
• The AXMEDIS Mozilla’s plug-in is compiled
• XUL runner is compiled

