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The speci�cation of reactive and real�time systems must be supported by formal� mathematically�
founded methods to be satisfactory and reliable� Temporal logics have been used to this end
for several years� Temporal logics allow the speci�cation of system behavior in terms of logical
formulae � including temporal constraints� events� and the relationships between the two� In the
last �� years� temporal logics have reached a high degree of expressiveness� Most of the temporal
logics proposed in the last few years can be used for specifying of reactive systems� although not
all are suitable for specifying real�time systems� In this paper� we present a series of criteria
for assessing the capabilities of temporal logics for the speci�cation� validation� and veri�cation
of real�time systems� Among the criteria are the logic�s expressiveness� the logic�s order� the
presence of a metric for time� the type of temporal operators� the fundamental time entity� and
the structure of time� We examine a selection of temporal logics proposed in the literature� To
make the comparison clearer a set of typical speci�cations has been identi�ed and used with most
of the temporal logics considered� thus presenting the reader with a number of real examples�
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�� INTRODUCTION

In the last few years� several techniques� tools� and models for the formal speci�ca�
tion of real�time systems have been proposed� Typical applications can be found in
avionics� robotics� process control� and healthcare� For real�time applications� the
meeting of temporal constraints are mandatory� A system speci�cation must for�
malize system behavior �including temporal constraints� and� thus� the model must
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be supported by mechanisms that verify conformity with requirements� Behav�
ior is typically expressed by giving a set of relationships enumerating the temporal
constraints among events and actions� such as invariants� precedence among events�
periodicity� liveness and safety conditions� etc� � �Bucci et al� �		
�� �Stoyenko �		���
�Stankovic �	�� �Stankovic and Ramamritham �		��� The speci�cation techniques
must be formal enough to verify and validate the speci�cation with respect to sys�
tem requirements by using theorem provers or model checking techniques�

To this end� many researchers have proposed logical languages integrating tem�
poral logics � e�g�� �Pnueli �	���� �Jahanian and Mok �	��� �Schwartz et al� �	���
�Gotzhein �		��� �Vila �		��� �Orgun and Ma �		��� These languages� together with
several algebraic languages augmented with time �Z��� VDM��� Object Z� etc��
� e�g�� �Zave �	��� �Lano �		��� �Lano and Haughton �		��� �Carrington et al� �		���
�D�urr and vanKatwijk �		�� � provide the most abstract approaches to require�
ment speci�cation and real�time system analysis �Ostro� �		��� �Bucci et al� �		
��
Only in a few cases� logic speci�cations can be used for real implementation of the
system�

The temporal logics proposed in the literature di�er from each other with regard
to expressiveness� availability of support tools for executability� veri�ability� etc�
In most cases� these temporal logics have been de�ned to satisfy speci�c needs�
In recent years� the structure and capabilities of temporal logics has grown� In
some cases� simple temporal logics are preferable to more complex and powerful
ones� since the �rst are more satisfactorily adopted in certain applications� In
order to clarify the di�erences among the several temporal logics� we reviewed
a selection of the most representative temporal logics� Our review was based on
building a taxonomy that classi�es temporal logics in terms of order� time structure�
decidability� executability� and expressiveness�

This paper reviews a number of well�known temporal logics designed for the
speci�cation of both reactive and�or real�time systems� taking into account their
evolution in the last years and their expressiveness� The main features of tempo�
ral logics are discussed in view of their adoption for the speci�cation of real�time
systems� The features chosen for discussion include aspects of logic theory and
applicability as speci�cation languages� The above and other aspects are discussed
in the paper together with several examples� Where possible� the same example
has been used with several formalisms�

Classi�cation criterion have been one of the major concerns of this paper� The
world of temporal logics is surely far from stable� and we may have overlooked some
relevant issues� Thus� we do not claim that this paper is an exhaustive review of
temporal logics for the speci�cation of real�time systems� rather it presents a useful
taxonomy for classifying and identifying the capabilities of temporal logics� and can
be used to classify even those temporal logics that may be proposed in the next
years�

This paper is organized as follows� Section � discusses classical logics in order to
highlight their limitations in expressing temporal properties� Section � highlights
the most important features that characterize the temporal logics and presents
some examples� Section � brie�y describes the temporal logics selected and their
suitability for the speci�cation of real�time systems� Section 
 reports on the main
features of the temporal logics considered� Conclusions are drawn in Section ��
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�� FROM CLASSICAL TO TEMPORAL LOGICS

The primary feature of a logic theory is its order� which de�nes the domain of all
formulas described by the logic� �i� propositional� �ii� �rst order� �ii� higher order�

Formulae in propositional logic are built on the basis of a set of elementary facts
�i�e�� atomic formulae� by using a set of logic operators ��� �� �� �� ��� Their
semantics can be de�ned in terms of truth tables or by inductive rules on the
structure of the formula itself� Each formula can assume a logical value true ���
or false ����

The First Order Logic� FOL� adds several extensions to the propositional logic�

�There exists a domain of elements� D� on the basis of which the logical formulae
are built�

�n�ary Ri relationships on D can be de�ned� as subsets of Dn�

�A n�ary predicate pi is associated with each n�ary Ri relationship� The predicate
is a function that for each element of Dn gives a value �� if it belongs to an n�ary
Ri relationship� otherwise the value � is assumed�

�The operators of FOL are those of propositional logic plus the universal quanti�er
� �for all�� and the existential quanti�er � �exists��

In FOL quanti�ed variables must be elements of D and not full predicates� The
presence of quanti�cation increases the expressiveness of the logic� allowing the
description of existential and generalization relationships�

The Higher Order Logic� HOL� extends the domain modeled by FOL by allowing
the adoption of predicates as quanti�cation variables� For example� the following
HOL formula�

�P��x�P �x��

cannot be written in FOL since it contains a quanti�er varying over a predicate P �
The higher expressiveness of HOL makes it suitable for formally describing lower
order logics�

��� Deductive Systems

Classical logics can formalize the deductive process� given a set of true propositions�
it is possible to verify if other propositions are a logical consequence of the early
set�

Proving theorems by using formal logic is a process quite di�erent from the human
deductive process� Deductive systems are based on a formalized theory by means of
a set of axioms and deduction rules� This makes possible to de�ne a purely syntax�
deductive system without adopting the concepts of validity and satis�ability� which
are typical of the human deductive process�

In order to pro�tably adopt a deductive system for proving theorems it is manda�
tory to demonstrate that it is complete �i�e�� it is possible the construction of a
demonstration for all theorems of the theory�� and sound �i�e�� each theorem that
can be demonstrable with the logic is a theorem of the logic� �Davis et al� �		��
�Abramsky et al� �		��� �Ben�Ari �		��� �Andrews �	���

Deductive systems tend to be minimal� as the set of axioms and deductive laws
selected are usually just those strictly needed to describe the logic� Therefore�
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the process required to prove other theorems can be complex and long� On the
other hand� it is often possible to use the deductive system to demonstrate new
deduction laws and theorems that� in turn� can be used in other proof processes as
the minimum initial set� In this way� a system of deduction laws that makes the
process of proof easier can be built�

��� Classical Logic and Time

In general� assertions can be classi�ed as either static or dynamic� Static assertions
have a �xed and time�independent truth value� while the truth value of dynamic
assertions is in some way time�dependent� For example� the proposition � � � is
always true� whereas the logical value of the proposition�

it is raining

is time�varying� sometimes it may be true while at others it may be false� Since
the state of real system changes over time� logic predicates describing the behavior
must provide propositions whose values vary over time� Classical logic can express
only atemporal �non�time dependent� formulas whose validity and satis�ability do
not depend on the instant in which they are evaluated� In other words� time has no
role in classical logic� when a proposition presents a value that changes over time�
the time must be modeled as an explicit variable� For example� if a proposition P

has to be true in interval �t � 
� t� ��� we have to write the formula as

�x 	 �t� 
� t� ����P �x��

This approach makes the writing of time�dependent propositions quite complex� In
order to model the behavior of domains in which the logical value of propositions
may vary� modal and temporal logics were introduced as extensions of classical
logic� These approaches facilitate the speci�cation of temporal relationships�

��� Modal Logic

In modal logic� the concepts of truth and falsity are not static and immutable� but
are� on the contrary� relative and variable �Hughes and Cresswell �	��� In modal
logic� the classical concept of interpretation of a formula is extended� in the sense
that every modal logic theory has associated with it� not just a single interpretation�
but a set of interpretations called worlds� In each world� a truth value is assigned
to the formulas� similarly to the interpretation of a formula in classical logic�

A modal logic system is de�ned by � W�R� V � where� W is the set of worlds�
R 
 W �W is the reachability relationship between worlds� and V is the evaluation
function for formulas�

V � F �W � f���g�

where F is the set of the formulas of the modal theory� V assigns a truth value to
every formula in F in every world in W �

The forms of W and V depend on other characteristics of the logic� for example�
whether it is propositional or a FOL� Besides the operators and symbols of classical
logic� modal logic introduces operators L �necessary� and M �possibly�� These
express the concept of the necessity and possibility of formulas in the set of worlds
reachable from the world in which the main formula is evaluated�
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The semantics of a modal logic can be formally given on the basis of an evaluation
function V � which is inductively de�ned over the structure of the formula to be
evaluated� Omitting the de�nition of the part about classical logic� V is de�ned
over the modal operators L and M as follows�

�V �Mf� w� � � i� �v 	 W�wRv� V �f� v��

�V �Lf� w� � � i� �v 	W�wRv� V �f� v��

In other words� formula Mf is true in a world w if and only if there exists a
world v reachable from w� where subformula f is true� formula Lf is true in w if
and only if in all worlds reachable from w subformula f is true� Modal operators L
and M have a simple interpretation as quanti�ers de�ned over the set of reachable
worlds from the current world� namely� M is an existential quanti�er� while L is
a universal quanti�er� It is easy to see that the following relation holds between
operators L and M �

Lf � �M�f�

The features of a modal logic � W�R� V � are strictly connected to the relation�
ship that determines the structure of the set of worlds� The interpretations of
relationship R may be several� R can represent how a set of classical theories are
correlated� for example� in a non�monotonic logic the elementary truth and the
deducible facts can change dynamically� In the context of temporal logics the most
interesting interpretation for relationship R is the relation next instant� In this way�
the worlds are the set of con�gurations that the system modeled may assume in
successive time instants� In this case� the modal logic can be quite pro�tably used
for the study of temporal properties of systems� and for this reason takes the name
temporal logic�

��� Temporal Logic

Temporal logics are particular modal logics where the set of worlds W is interpreted
as the set of all possible instants T of a temporal domain�

Usually temporal logics are built as extensions of classical logic by adding a set of
new operators that hide quanti�cation over the temporal domain� Temporal logics
presented in the literature are principally obtained by extending propositional or
FOL� rarely has the extension started with HOL�

As in modal logic� where the world in which the formula is evaluated is referenced�
in temporal logic the evaluation instant of a formula is used� The value of a formula
is a dynamic concept� Therefore� the concept of formula satis�ability must be
modi�ed to consider both the interpretation of a formula and the instant of the
evaluation�

Generally temporal logics add four new operators with respect to classical logics
�Prior �	����

�G� always in the future�

�F � eventually in the future�

�H� always in the past�

�P � eventually in the past�
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These can be formally de�ned�

�V �Gf� t� � � i� �s 	 T�t � s� V �f� s��

�V �Hf� t� � � i� �s 	 T�s � t� V �f� s��

�Ff  �G�f �

�P f  �H�f �

These operators can express the concepts of necessity �G� H� and possibility �F �
P � in the future and in the past� respectively� Often in temporal logics these oper�
ators are represented by other symbols� �always� denotes G and �eventually�
denotes F � For past operators �if they are present�� symbol denotes H and
denotes P �

If relation � is transitive and non�re�exive� it is possible to introduce two other
binary operators�

�until �in some cases represented with U�� with ��until �� that is true if �� will
be true in the future and until that instant �� will be always true�

�since �in some cases represented with S�� with ��since �� that is true if �� was
true in the past and since that instant �� has been true�

The semantic of these operators can be formally de�ned as follow�

�V �f�untilf�� t� � � i� �s 	 T�t � s � V �f�� s� � �u 	 T�t � u � s� V �f�� u��

�V �f�sincef�� t� � � i� �s 	 T�s � t � V �f�� s� � �u 	 T�s � u � t� V �f�� u��

Note that operator until �since� does not include the present instant in the future
�past�� The introduction of operators until and since is relevant since these oper�
ators can express concepts that cannot be expressed with the operators G� H� F
and P � On the contrary� these last operators can be de�ned in terms of until and
since�

�F�  �until��

�P�  �since��

and

�G�  �F���

�H�  �P���

If the temporal logic has the begin property �e�g�� stating that the temporal domain
is bounded in the past as discussed in the sequel�� the operator until is enough to
complete the logic expressiveness� when the past is limited the operator since is
not necessary� Relationships among events in the past can be expressed by using
until starting from the beginning of time �from a �xed reference time instant��

Other common operators are next and prev� represented with and � respec�
tively� These operators are unary and can be de�ned in term of until and since
operators�

� �  �until�

� �  �since�
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These two operators assume di�erent meanings depending on the time structure �
e�g�� discrete or continuous � or whether the logic is event�based�

The presence of distinct operators for past and future simpli�es the speci�cation
model� since with their use formulas can be easily written � for instance� evaluating
the past and describing the future� On the other hand� this distinction is only a
convention� since in most temporal logics formulas can be easily shifted to the past
or to the future�

�� MAIN CHARACTERISTICS OF TEMPORAL LOGICS

This section presents the evaluation criteria used to compare the temporal logics
discussed in the following sections� We provide a taxonomy to classify and evaluate
the suitability of temporal logics used for specifying real�time systems� Temporal
logics are typically used in the phases of requirements analysis� advanced analysis�
speci�cation� and more recently� even for execution� They focus on modeling system
behavior rather that functional or structural aspects �Bucci et al� �		
�� Structural
aspect refers to system decomposition into subsystems �modular temporal logics��
Functional aspect deals with the data transformation of the system� Behavior refers
to the system reaction to external stimuli and internal events� a critical aspect of
reactive and real�time systems�

To use temporal logics for real�time system speci�cation� it is necessary to eval�
uate their expressiveness in modeling the typical requirements of such systems and
of the constraints needed to express the speci�cation� Typical temporal constraints
can be divided in two main categories� �i� events and event orderings� �ii� quanti�
tative temporal constraints�

The following paragraphs discuss the most important features of temporal logics
and the criteria used to identify their general characteristics and properties�

��� Order of Temporal Logic

The order of a temporal logic is the order of classical logic on which the tempo�
ral logics is constructed� This characteristic dictates the set of formulas that the
temporal logic can express� A higher order implies greater expressiveness but more
complex formulas� and frequently� the logic itself is less complete and decidable� For
instance� propositional temporal logics are less expressive than higher order logics�
but often propositional temporal logics are decidable and their decision procedures
have a tractable complexity� whereas higher order logics are more expressive but
much more complex� First order temporal logics usually permit one to write quite
expressive formulas without overly increasing the complexity of the logic�

��� Temporal Domain Structure

As stated in Section ���� the main properties of a modal logic� and then of a
temporal logic� are related to the properties of relation R� the next section will
show the structure of temporal domains derived from properties of relationship R�
For temporal logics relation R is called a precedence relation and is denoted by ��
Properties that bear on the temporal domain structure are�
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transitivity �xyz�x � y � y � z � x � z

non�re�exivity �x��x � x

linearity �xy�x � y � x � y � y � x

left linearity �xyz�y � x � z � x� y � z � y � z � z � y

right linearity �xyz�x � y � x � z � y � z � y � z � z � y

begin �x���y�y � x

end �x���y�x � y

predecessor �x��y�y � x

successor �x��y�x � y

density �xy�x � y � �z�x � z � y

discreteness ��xy�x � y � �z�x � z � ��u�x � u � z��
��xy�x � y � �z�z � y � ��u�z � u � y�

Usually � is a transitive and non�re�exive relationship� hence it is a partial ordering
on time instants�

The property begin �end� states that the temporal domain is bounded in the past
�future� �Halpern et al� �	��� �MelliarSmith �	��� whereas the property predecessor
�successor� shows that the temporal domain is unlimited in the past �future�� In
fact� the following equivalencies hold�

��x���y�y � x� � ���x��y�y � x�
��x���y�x � y� � ���x��y�x � y�

A temporal domain is dense with respect to relationship � if between two instants
there is always a third� On the contrary� the temporal domain is discrete if there
exist two instants between which a third cannot be determined�

Fig� �� Representation of linear temporal domains�

If the precedence relation is linear then we have a linear temporal structure that
corresponds to the intuitive notion of time� This is the simplest type of temporal
structure� In this case� the precedence relation is a total order on time instants�
Figure � shows the temporal domain for a linear temporal structure with a unlimited
past and future� with only a unlimited future and with only an unlimited past� If
the time structure is linear and discrete� a state of the system can be associated with
each time instant� If the time is dense� the logic must be event�based to support a
state�based semantics�

When the precedence relation� �� is only linear on the left� the temporal structure
is more complex� branches can exist in the future �in other words� more than one
future can exist for each instant�� but there exists only one past �see Figure ��� If
the time is discrete and its structure is branched a next state exists but it cannot
be unequivocally determined�

Temporal structures with branches in the past are also possible� If no hypotheses
are made about linearity� branches in the future and in the past are possible�
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Fig� �� A non linear structure in the future�

The order relation of the structure is usually transitive and non�re�exive� The
temporal domain may be limited in the past and�or in the future or unlimited�
and it may be dense or discrete� Thus� the temporal structure may be linear or
branched in the past and�or in the future� These properties have implications for
the decidability of the logic� its executability� and the style used to write formulas�

��� Fundamental Entity of the Logic

A basic way to characterize temporal logics is whether points or intervals are used
to model time� This also in�uences the expressiveness of the logic�

Point�based temporal logics express relationships among events in terms of points�
Point�based logics de�ne intervals as connected set of points� In point�based log�
ics it is more di�cult to express relationships between intervals in which certain
events are veri�ed� Time durations are expressed by using quanti�cations over time�
Logics based on time points �Manna and Pnueli �	��� �Rosner and Pnueli �	��
specify system behavior with respect to certain reference points in time� points
are determined by a speci�c state of the system and by the occurrence of events
marking state transition� In order to describe temporal relationships� the operators

�henceforth� and �eventually� are usually adopted to specify necessity and
possibility� respectively�

Interval�based temporal logics �interval logics� are more expressive since they
are capable of describing events in time intervals and a single time instant is repre�
sented with a time interval of one� Usually interval�based logics permit one to write
formulas with a greater level of abstraction and so are more concise and easy to un�
derstand than point�based temporal logics� In the case of time intervals �Schwartz
and Melliar�Smith �	��� �Schwartz et al� �	��� �Moszkowski �	��� �Halpern et al�
�	��� �Halpern and Shoham �	��� �Ladkin �	��� �MelliarSmith �	�� �Razouk
and Gorlick �		�� formul� specify the temporal relationships among facts� events�
and intervals� thus allowing a higher level of abstraction for system speci�cation�
Interval�based logics usually present speci�c operators to express the relationships
between intervals �meet� before� after �Allen �	���� and�or operators for combining
intervals �e�g�� the chop operator �Rosner and Pnueli �	���� or operators to specify
the interval boundaries on the basis of the truth of predicates �MelliarSmith �	���

The qualitative relationships that may hold between intervals as classi�ed by
Allen in �Allen and Ferguson �		�� are represented in Figure ��

The relationships among time points or intervals are typically qualitative� but
quantitative temporal logics are preferable for the speci�cation of real�time systems
�e�g�� RTL �Jahanian and Mok �	��� MTL �Koymans �		�� and TRIO �Ghezzi et al�
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Fig� �� Possible relationships between two intervals�

�		��� TILCO �Mattolini and Nesi �		����

��� A Metric for Time and Quantitative Temporal Constraints

The presence of a metric for time determines the possibility of expressing temporal
constraints in a quantitative form in the logic formulas� without a metric for time
only temporal�order relations can be expressed �qualitative temporal logics��

The temporal operators presented in Section ��� are qualitative since it is not
possible to give an exact measure �i�e�� duration� timeout� for events and among
events� Temporal logics without a metric for time adopt a time model for which the
events are those that describe the system evolution �event�based temporal logics��
Each formula expresses what the system does at each event� events are referred to
other events� and so on� this results in specifying relationships of precedence and
cause�e�ect among events�

Temporal logics with a metric for time allow the de�nition of quantitative tem�
poral relationships� � such as distance among events and durations of events� in
time units� The expression of quantitative temporal constraints is fundamental for
real�time systems speci�cation� It is necessary to have a metric for time if the
temporal logic has to be used to express the behavior of hard or non�hard real�time
systems� A typical way for adding a metric for time is to allow the de�nition of
bounded operators � for example�

�����A

for stating that A is eventually true from � to � time instants from the current time�
or ��A which means that A is eventually true within 
 time units� A di�erent
method is based on the explicit adoption of a general system clock in the formulas
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�see section �����
A di�erent way to manage time quantitatively is to adopt the freeze quanti�er

�Alur �		��� which allows only references to times that are associated with states�
This means that freeze quanti�er �x�� di�ers from the FOL quanti�cation over
time� For instance�

x�
�
p� y� �q � y � x � ��

�

This means that in every state with time x� if p holds� then there is a future
state with time y such that q holds and y is at most x � �� Logics allowing freeze
quanti�cation are called half�order logics�

In specifying of real�time systems� the general behavior of the system is typically
expressed by means of quantitative temporal constraints� The correct behavior of
the system depends on the satis�ability of these temporal constrains�

In �Koymans �		��� a classi�cation of temporal constraints with respect to event
occurrences has been proposed� In particular� we can specify constraints for estab�
lishing relationships between the occurrence of

��� an event and a corresponding reaction �reaction time�� Typical cases are�
�maximum distance between event and reaction �e�g�� timeout��
�exact distance between event and reaction �e�g�� delay��

��� the same event �period�� Typical cases are�
�minimum distance between two occurrences of an event�
�exact distance between occurrences of an event�

This classi�cation can be simpli�ed by reducing the types of temporal constraints
to only two elementary constraints�

�universal temporal quanti�er iA� that means that A is true in all time instants
of interval i�

�existential temporal quanti�er iA� that means that A is true in at least one
time instant in interval i�

t

t

i

i

A

A

Fig� 	� Quantitative temporal constraints�

where A is a temporal logic formula and i is an interval that can be either a set
of points or a fundamental entity whose extremes are expressed quantitatively �see
Figure ��� By using these two elementary operators most of the possible temporal
requirements of real�time systems can be expressed� For example�
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�when A happens� B must happen within t time units� A� ���t�B

�when A happens� B must happen after t time units� A� �t�t�B

�the distance between two occurrences of event A is at least t time units� A �

	��t��A

�the distance between two occurrences of event A is always equal to t time units�

A� � 	��t��A� � � �t�t�A�

where intervals are speci�ed using the usual mathematical notation� with round
and squared brackets used for excluding and including bounds� respectively� The
intervals are de�ned relative to the instant in which formulas are evaluated� so the
time is implicit�

The above two elementary temporal operators are su�cient for expressing safe�
ness or liveness� For example� the classical safety conditions� such as iA �where
A is a positive property� must be satis�ed by the system speci�cation� where the
interval i can be extended to the speci�cation temporal domain� as well as to only
a part of it� Liveness conditions� such as iA �A will be satis�ed within i� or
deadlock�free conditions� such as j� i�A� can also be speci�ed�

If unbounded intervals are allowed operators � � and can be de�ned as�

� �  	��
����

� �  	��
����

� �  	�������

� �  	�������

Certain temporal logics also provide bounded versions of the operators since and
until� These versions can be easily obtained from the unbounded operators since
and until and the bounded operators henceforth and always�

Some other temporal logics are much more oriented towards presenting the be�
havior of predicates intended as signals� These logics have been frequently used for
modeling digital signals and are typically based on intervals� In order to relate the
de�nition of an interval for bounding predicates with the evolution of other predi�
cates a special operator for capturing the time instant related to events is needed�
This special function from Predicate � T ime is frequently introduced by using
special operators�

��� Events and Ordering of Events

Typical relationships of cause�e�ect can be speci�ed by using the simple operators
imply ��� and co�imply ���� Moreover� the simpler operators of temporal logic
�i�e�� and � can be pro�tably used for describing facts and rules� A fact is a
predicate that is true at least for a time �e�g�� presence of an event�� while a rule
is a predicate that is true in all time instants� These operators are unsuitable for
specifying relationships of ordering among events� such as�

�a�� A precedes B�

�b�� A follows B�

�c�� A will be true until B will become true for the next time�

�d�� A has been true since the last time that B was true for the last time�
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Fig� �� Constraints about the ordering between events�

where A and B are temporal logic formulas� In Figure 
 graphical representations
of �a� through �d� are shown� where T represents the instant in which formulas are
evaluated� Constraints �c� and �d� may be described by using operators until and
since� respectively� The precedence relation in the future �past� may be de�ned
with operator until �since�� as is shown by Manna in �Manna and Pnueli �	���
de�ning operators precede and follow�

A precede B  ����A�untilB�

A follow B  ����A�sinceB��

Therefore� in order to express the ordering between events the temporal logic has
to provide the operators until and since�

In e�ect� several versions of until and since operators exist� The typical de�nition
of the until�since operator is the �weak� de�nition�

�A untilw B � is true if B will become true and until that instant A will be true�
or if B will stay always false and A always true�

�A sincew B � is true if B has been true since the instant in which A became
true� or if B has been always false and A always true�

The strong version of these operators assumes the occurrence of the change of status
for B� Therefore� they can be de�ned in terms of the above operators as follows�

�A until B  B �A untilw B

�A since B  B �A sincew B

Di�erent versions can be de�ned� and the current time can also be included in the
evaluation range of the operators� In this case� the so�called � version of the weak
version of the operators can be de�ned as follows�

�A untilw� B  B � �A �A untilw B�

�A sincew� B  B � �A �A sincew B�
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Other versions can be de�ned for combinations of the basic versions stated above�

��� Time Implicit� Explicit� Absolute

Time in temporal logics can be de�ned in an implicit or explicit manner� A time
model is implicit when the meaning of formulas depends on the evaluation time�
and this is left implicit in the formula� For instance� A means that�

�t 	 �T�����A�t�

where T� is the evaluation time �the so�called current time instant�� When time is
implicit� the formalism is able to represent the temporal ordering of events� Each
formula represents what happens in the evaluation time �e�g�� in the past or in the
future of the evaluation time�� which is the implicit current time�

�����A

means that A will be eventually true in the future for an interval of � to 
 time
units later with respect to the evaluation time� If time is treated implicitly� the
possibility of referring the speci�cation to an absolute value of time is usually lost�
Temporal logics with time implicit may or may not allow the quanti�cation over
time �e�g�� TRIO allows quanti�cation over time and adopts a implicit model of
time��

On the contrary� when the time is explicit the language represents the time
through a variable� In this way� it is possible to express any useful property of
real�time� The explicit speci�cation of time allows the speci�cation of expressions
that have no sense in the time domain � e�g�� the activation of a predicate when
the time is even�

The reference to time can be absolute or relative� It is considered absolute when
the value of the current time is referenced to a general system clock �the clock is
idealized in the sense that no drift is supposed�� It is frequently represented with
T � for example� in the following formula an absolute explicit model of time is used�

�t� �E � T � t� � �A � T � t � ��ms�

where E is an event� When time is expressed in absolute form� time durations and
deadlines are given directly in seconds or milliseconds �i�e�� the absolute time on
the clock�� Therefore� the meeting of timing constraints depends on the context
�machine type� number of processes� workload� etc���

The formula that follows has a relative explicit model of time�

�t� �E � T � t� � �A � T � t � ���

Frequently� time is expressed in a relative manner � that is� time durations and
deadlines are given in time units� In this case� the relationship between these time
units and the absolute measure of time expressed in seconds �or milliseconds� is left
until the implementation phase� However� the validation of speci�cations becomes
almost implementation independent� A di�erent de�nition for absolute and relative
time has been reported in �Koymans �		���
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��� Logic Decidability

The decidability of a temporal logic is related to the concepts of validity and sat�
is�ability� A formula is satis�able if there exists an interpretation for the symbols
in the formula for which the formula is true� whereas a formula is valid if for every
interpretation the formula is true� This feature is strongly related to the order
of the logic� First�order �discrete time� temporal logic is incomplete� and validity
and satis�ability problems are undecidable in the general case� This is mainly due
to the quanti�cation of time dependent variables� The prohibition of this kind of
quanti�cation has often been shown to be a necessary condition for the existence of
feasible automated veri�cation mechanisms such as in TPTL �Alur and Henzinger
�		���

Satis�ability �validity� is a decidable problem for a logic if there exists a decision
procedure for the satis�ability �validity� of every formula of the logic� If one of
these problems is decidable for the logic then the proof of theorems may be auto�
matic� This property is highly desirable because it increases the logic s usability�
since automatic instruments to verify and validate speci�cations can be built� This
property is much more useful for temporal logics that are based on property proofs
for the veri�cation and validation of system properties� The adoption of a theorem
prover confers an absolute certainty about the behavior of the system�

Other temporal logics have a semantics de�ned in terms of state evolution� This
makes their application much more operational than descriptive �Bucci et al� �		
��
For these models� veri�cation and validation activities are typically performed by
using model�checking techniques� Unfortunately� for real systems� the veri�cation
of the system behavior in all its states can be infeasible because it is too complex
and time consuming� even using symbolic model�checking algorithms� A semantics
based on state is frequently associated with the presence of an event�based temporal
logic or of a discrete linear model of time� In both these cases� the de�nition of an
operational semantics for the temporal logic is quite simple�

��	 Deductive System sound and complete

As expressed in Section ���� a deductive system is a formalization of the deduction
process that is usually used to make proofs manually� A deductive system permits
one to build proofs manually in simpler way and provides the basis for automating
some simple rewriting of formulas� These mechanisms are typically used in auto�
matic and semiautomatic theorem provers� Naturally it must be proved that this
deductive system is sound� so that all proofs built are correct�

Another desirable but less �necessary� property� is the completeness of the de�
ductive system� that is� the capacity to build a proof for every theorem true for
the logic� It should be noted that it is never possible to build a complete deduc�
tive system� for example� the theory of natural numbers on FOL is sound but not
complete� that is� there are non�provable true formulas �Davis �		��

��
 Logic Speci�cation Executability

The problem of executability of speci�cations given by means of temporal logics
has often been misunderstood� This mainly depends on the meaning assigned to
executability �Fisher and Owens �		
�� �Moszkowski �	��� �Barringer et al� �		���
There are at least three di�erent de�nitions of executability� as follows�



�� � P� Bellini� R� Mattolini� P� Nesi

�i�� Speci�cation models are considered to be executable if they have a semantics
de�ning an e�ective procedure� capable of determining for any formula of the logic
theory� whether or not that formula is a theorem of the theory �Moszkowski �	���
In e�ect� this property corresponds to that of decidability of the validity problem
rather than to that of system speci�cation executability�

�ii�� A second meaning refers to the possibility of generating a model for a given
speci�cation �Felder and Morzenti �		��� A detailed version of this concept leads
to verifying if an o��line generated temporal evolution of inputs and outputs is
compatible with the speci�cation� This operation is usually called history checking�

�iii�� The last meaning for executability consists of using the system speci�cation
itself as a prototype or implementation of the real�time system� thus allowing� in
each time instant� the on�line generation of system outputs on the basis of present
inputs and its internal state and past history� When this is possible� the speci�cation
can be directly executed instead of traducing it in a programming language�

In the literature� there exist only few executable temporal logics that can be used
to build a system prototype according to meaning �iii� of executability� In general�
the execution or simulation of logic speci�cations with the intent of producing
system outputs in the correct time order by meeting the temporal constraints is
a quite di�cult problem� The di�culty mainly depends on the computational
complexity of the algorithms proposed�

Moreover� while executing propositional temporal logics is a complex task� ex�
ecuting �rst order temporal logics is undecidable and highly complex �Fisher and
Owens �		
�� �Merz �		
�� A solution for executing propositional temporal logics
could be �a� to restrict the logic and providing an execution algorithm for the re�
maining part� or �b� to execute the complete logic by using speci�c inferential rules
and�or backtracking techniques� For �rst order temporal logics the solution can be
to apply the same approaches used for propositional temporal logics or to try to
build a model for the formula as in �i� and �ii� above�

If a temporal logic is executable the system can be simulated and�or executed�
Thus� it is possible to validate system behavior through simulation and to use the
system speci�cation as a prototype or as an implementation if the execution speed
is high enough to satisfy temporal constraints of the system�

�� A SELECTION OF TEMPORAL LOGICS

This section presents a selection of the most interesting types of temporal logics for
the speci�cation of real time systems� There are many other temporal logics in the
literature� but most of them can be regarded as generalizations or specializations
of those discussed here in�

The order in which the logics are presented is quite close to the chronological�
from the earliest to the latest� from the simplest to its more complex evolutions �if
present�� Several examples are given in order to make the comparisons among the
temporal logics presented possible� The section concludes with a brief discussion of
the logics and a table for comparison purposes�
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��� PTL� Propositional Temporal Logic

The Propositional Temporal Logic �PTL� introduced by Pnueli �Pnueli �	���� �Pnueli
�	��� �Pnueli �	�� �see also �Ben�Ari �		���� extends the propositional logic in�
troducing temporal operators � � � and U � The propositions of PTL describe
temporal relationships between states that characterize the temporal evolution of
the system� PTL is an event�based logic and does not provide a metric for time�

System requirements are speci�ed by describing a set of constraints on the event
sequences that occur in the system modifying its state� Time consists of a sequence
of instants corresponding with the sequence of states of the system� In a certain
sense� the fundamental entity of the logic is the instant in which the state of the
system changes� For these reasons it is particularly suitable for integration in
operational models such as state machines �Bucci et al� �		
��

The temporal structure of PTL is linear� bounded in the past �an initial instant
exists�� unbounded in the future �an in�nite sequence of future states exists� and
discrete �i�e�� the set of instants is modeled with the set of natural numbers�� For this
reason� only temporal operators in the future are present� The temporal operators

� and U correspond to the operators G� F and until described in Section
���� The formula � is a valid formula if the formula � is true in the next state�
Operator until in PTL is equivalent to until� presented in Section ��
� Since PTL
provides the operator until it is possible to specify real�time system requirements
about the order of events in the future� The asymmetry of the logic �due to the
boundary in the past� and the absence of the operator since does not permit
speci�cation of requirements about the order of events in the past� Moreover� the
absence of a metric for time does not allow speci�cation of any type of quantitative
temporal constraint� Therefore� PTL is much more suitable for use with reactive
and concurrent systems than with real�time systems� Reactive systems are typically
event�driven and do not present quantitative temporal constraints such as timeouts
or deadlines�

PTL is decidable �for example using a decision procedure based on the semantic
tables method� and it is possible to build a sound and complete deductive system
for the logic� In the literature� methods or instruments for executing PTL formulas
have not been presented and� in general� these formulas are not executable�

In �Manna and Pnueli �		��� Manna and Pnueli proved that for an extension of
PTL built adding symmetric operators in the past for � � and S it is possible
to transform formulas of a particular class in �nite state machines� thus permitting
the execution of some formulas of this extension of PTL�

Table � shows some examples of the extended version of PTL� The table also
shows a set of speci�cations that cannot be expressed by using this temporal logic�
In the next subsections� similar tables are provided to allow comparison of the
several temporal logics on the basis of a collection of equivalent speci�cations�

In �Barringer et al� �		�� �Barringer et al� �		��� �Finger et al� �		��� METAMEM
is presented� METATEM includes an executable model and algorithm and can be
considered to be based on an extended version of PTL�
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Table �� Some speci�cations in extended PTL�

meaning PTL

Always A in the Past A

Always A in the Future A

Always A A � A

A Since Weak B �ASB � A�

A Until Weak B �AUB � A�

Lasts A up to t� �
Lasted A from �t� �
A Within �t� in the Past �
A Within t� in the Future �

A Within ��t�� t�� �
A Was true in ��t���t�� �
A Will be true in �t�� t�� �
A Could be true in �t�� t�� �

A Since B during ��t���t�� �
A Until B during �t�� t�� �

��� Choppy Logic

The Choppy Logic presented by Rosner and Pnueli �Rosner and Pnueli �	�� is
an extension of PTL obtained by adding operator C� �chop�� This logic has all
characteristics of PTL and enhances its expressiveness with operator C�� that permits
one to concatenate state sequences� In the �rst approximation� the Chop operator
can be regarded as an operator for dividing time intervals� In particular� a state
sequence � is a model for formula � C�� if it can be divided in two sequences �� and
��� such that� �� is a model for �� and ��� is a model for �� This logic has a greater
expressiveness than PTL� but a more complex decision procedure is required� Thus�
the Choppy Logic maintains all merits and problems of PTL�

��� BTTL� Branching Time Temporal Logic

The Branching Time Temporal Logic �BTTL� introduced by Ben�Ari� Pnueli and
Manna �Ben�Ari et al� �	�� is an extension of PTL� It has a temporal structure
with branches in the future� and thus could be used for describing the behavior
of non�deterministic systems� PTL operators are enhanced to deal with branches�
Four operators have been de�ned to quantify both on di�erent evolution traces and
states that are present on the selected traces�

�� � for all traces � and for all states s 	 ��

�� � for at least one trace � and for all states s 	 ��

�� � for all traces � and at least one state s 	 ��

�� � for at least one trace � and for at least one state s 	 ��

In several aspects BTTL is practically equivalent to PTL� Moreover� it adopts a
temporal structure branched in the future� BTTL also presents a complete axiom�
atization� it is decidable� and the satis�ability of formulas can be determined by
using a method based on semantic tables that also produces models for the BTTL
formulas� The models for the formulas are �nite and could be used to build �nite
state machines corresponding to the formulas� This makes the model operationally
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executable� Even with this improvement of PTL it is not possible to specify quan�
titative temporal constraints� Thus� this logic is also not suitable for real�time
systems speci�cation�

��� ITL� Interval Temporal Logic

The Interval Temporal Logic �ITL� introduced by Halpern� Manna and Moszkowski
�Halpern et al� �	�� and used�further studied by Moszkowski in �Moszkowski and
Manna �	��� �Moszkowski �	
�� �Moszkowski �	�� can be considered as an exten�
sion of PTL� ITL is a propositional logic with a temporal structure that is bounded
in the past� unbounded in the future� discrete and linear� The fundamental entity
of ITL is the interval made of a sequence of states� The length of an interval is
de�ned as the number of states in the sequence� ITL does not provide a metric for
time and can be considered an event�based logic� It has been applied for modeling
the evolution of digital signals� ITL extends the propositional logic with the opera�
tors �next�� � and ��� �chop� analogous to operator C� of Choppy Logic�� The
semantics of all these operators is de�ned in terms of intervals rather then of states
as in PTL� From the above basic operators a set of derived operators has been
de�ned� The presence of operator chop makes the satis�ability of ITL formulas
undecidable� nevertheless� the satis�ability is decidable for a particular subclass of
ITL formulas� It is possible to build a sound deductive system for ITL�

In �Moszkowski �	�� Tempura is presented� It is a subset of ITL formulas with
some syntactic properties� for which the problem of building an execution for for�
mula is tractable� even if unsolvable in the general case� In ITL only order properties
showing qualitative relationships among the order of events can be speci�ed� This
makes this logic less powerful for specifying real�time systems� To specify order
properties the operator chop must be used since ITL does not have operator until�
As a surrogate of the metric for time a special operator Len�n� is used to count
the number of states in a sequence� This allows one to specify the exact duration
in terms of number of transitions among events�

��� PMLTI� Propositional Modal Logic of Time Intervals

The Propositional Modal Logic of Time Intervals �PMLTI� presented by Halpern
and Shoham �Halpern and Shoham �	�� is a temporal logic that extends the propo�
sitional logic� The fundamental temporal entity is the interval and the temporal
operators can express the possible relationships between intervals� as reported in
Figure �� The temporal structure requires only the total order of the points in
the intervals� With this limitation� the time structure can be linear or branched�
bounded or unbounded� dense or discrete� PMLTI does not provide an explicit
metric for time� The selection of a speci�c temporal structure leads to implications
about the complexity of the decision procedure for demonstrating the validity of
formulas� The problem of validity and satis�ability of PMLTI formulas may be
decidable or undecidable depending on the temporal structure chosen�

PMLTI uses a method of translating temporal logic formulas in FOL formulas of
a speci�c deductive system to proof theorems of the logic� This approach enables
application of all the techniques which are available for �rst order logic� To date�
the problem of formula executability has not been addressed� The presence of
operators for the speci�cation of relationships between intervals permits one to



� � P� Bellini� R� Mattolini� P� Nesi

easily express event order constraints� However� the absence of a metric for time
makes the expression of quantitative temporal constraints impossible�

��� CTL� Computational Tree Logic

The Computational Tree Logic �CTL� presented by Clarke� Emerson and Sistla
�Clarke et al� �	��� �Clarke and Grumberg �	��� �Stirling �	�� is a propositional
branching time temporal logic� The fundamental temporal entity is the point and
presents speci�c operators for reasoning about the system behavior in terms of sev�
eral futures� called sequences� It is very similar to BTTL� CTL does not provide an
explicit metric for time� For verifying CTL speci�cation a model�checking approach
is typically used since the speci�cation can be modeled as a state machine �Clarke
et al� �	��� In �Emerson and Halpern �	��� �Emerson et al� �		� a real�time
extension of CTL has been presented� RTCTL� presenting a metric for time� The
satis�ability problem for this logic is doubly exponential� The model�checking has
a polynomial time algorithm� �Ostro� �		��� In �Josko �	��� a modular version of
CTL has been presented� MCTL�

��� IL� Interval Logic

The Interval Logic �IL� presented by Schwartz� Melliar�Smith and Vogt �Schwartz
et al� �	��� �Schwartz and Melliar�Smith �	�� is based on time interval and propo�
sitional logic� The temporal structure is linear� bounded in the past and unbounded
in the future� IL does not present an explicit metric for time� Time intervals are
bounded by events and by the changes of system state described by the formulas�
Therefore� IL is an event�based logic� A typical IL formula is in the following form�

�I���

where � is a formula and I is the interval that is the context of which formula
� has to be veri�ed� This formula means that the next time the interval can be
built then the formula � will hold in it� The most interesting feature of IL is the
set of instruments that can be used for the determination and construction of time
intervals� It presents bounded versions of operators and � The bound is de�ned
by means of the interval� �I� � means that � can be true in I� The interval
bounds can be de�ned by occurrence of events� Given an interval the initial and
�nal intervals can be extracted� Moreover� the existence of an interval with certain
characteristics is an event� Finally� to describe system behavior operators at� in
and after have been de�ned� these specify the truth at the start� during and at
the end of the interval� respectively� They may be used as events for construction
of intervals� For instance� A � as interval means that the interval starts when A

starts and ends at the end of the context�
Results for testing the executability of IL do not exist� This is because IL has

been introduced as a speci�cation language and is veri�ed by means of automatic
instruments� without taking into consideration the possibility of simulating or exe�
cuting the speci�cations�

IL permits one to easily write constraints about the order of events using the
instruments for the construction of context intervals� but it cannot be used to specify
quantitative temporal constraints� as can the extensions discussed in subsections
�� and ��	 below�
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Fig� �� One example for several temporal logics�

��	 EIL� Extended Interval Logic

Extended Interval Logic �EIL� was introduced by Melliar�Smith �MelliarSmith �	���
It extends IL by adding the possibility of specifying some types of quantitative
temporal constraints� These extensions have been introduced to eliminate the in�
capacity of IL to express the typical requirements of real�time systems� The �rst
extension is the possibility of de�ning an event from another event at a constant
temporal distance �positive or negative�� if E is an event then E � �sec is also an
event� The second extension is the possibility of limiting the length of intervals�
For example� formula � �sec is true if the interval in which it is evaluated has
a duration of less than � seconds� while � ��min is true if the interval has a du�
ration greater than �� minutes� The extensions introduced add the capability of
expressing some of the quantitative temporal constraints that are needed to specify
real�time systems� For instance�

�E � �endA��� te � �startA�

means that for each occurrence of event E predicates startA and endA �marking an
interval in which A is true� hold and this interval is included from the occurrence
of the E and te �see Figure �� in which t� is time instant in which E occurs�� In the
above formula operator � can be read as exists an occurrence of� while � means
that the left bound of the interval is de�ned by the occurrence of event E�

��
 RTIL� RealTime Interval Logic

The Real�Time Interval Logic �RTIL� presented by Razouk and Gorlick �Razouk
and Gorlick �		� is another extension of IL� In this case the goal was to permit
the speci�cation of real�time systems with the speci�c intention of verifying the
consistency between the execution traces and the system speci�cation itself� RTIL
extends IL by introducing a metric for time� It can assign a temporal value to
the extremes of the intervals and can construct intervals by assigning numerical
values at interval bounds� not only by using events and state changes� Moreover�
it is possible to measure the interval duration� This characteristic makes RTIL
interesting for the speci�cation of real�time systems� For example� the speci�cation
described in Figure � can be written as�

� E 	� te� � � startA� endA�

In this case� operator � has to be read as exists a subinterval� The special operator
A extracts the time instant in which A becomes true� endA and startA have

the same meanings as in EIL� Instants can be speci�ed absolutely or relative to
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the beginning of the current context� RTIL also permits quanti�cation over �nite
domains� This feature does not enhance the expressiveness of the logic but simpli�es
the writing of complex and repetitive formulas�

���� LTI� Logic of Time Intervals

The Logic of Time Intervals �LTI� of Allen �Allen and Ferguson �		�� is an interval
temporal logic of the second order� It is also called Interval Time Logic �acronym
ITL�� To avoid confusion with the ITL presented it will be referred to in this paper
as LTI� Intervals can be divided in subintervals� Intervals that cannot be further
divided into subintervals constitute moments� The logic permits quanti�cation of
temporal intervals� The temporal structure is linear� without any further limita�
tions � even the model of time can be either discrete or dense� LTI does not provide
an explicit metric for time� Temporal propositions are made by declaring the order
relationships between intervals �see Figure ��� In �Ladkin �	��� it has been shown
that LTI theory is incomplete and proposes a way to make it complete� Further�
more� it is shown that both the theories� the new and complete� and the early and
incomplete versions� are decidable� An axiomatic system is provided for both� al�
though there are not known results about logic executability� LTI does not present
problems for ordering constraints regarding the expression of the typical temporal
constraints of real�time systems� Speci�cation of quantitative temporal constraints
is impossible since the measure of the length of intervals is missing�

���� RTTL� RealTime Temporal Logic

The Real�Time Temporal Logic �RTTL� presented by Ostro� and Wonham �Ostro�
and Wonham �	��� �Ostro� �		�� �Ostro� and Wonham �		��� �Ostro� �		��
extends PTL with proof rules for real�time properties� The temporal structure is
linear and discrete� the fundamental entity is the point� Time is limited in the past
and unlimited in the future� Time is de�ned with both a sequence of state and a
sequence of temporal instants� The presence of a state�based model makes RTTL
particularly suitable for model�checking techniques� thus it can be used as a model
to verify small systems� A natural number is associated with each time instant� thus�
RTTL is based on an explicit model of time� The clock of the system is periodically
incremented and it is accessible for writing formulas� State changes can occur� �i�
corresponding with the changes of time of system� or �ii� between two successive
instants� In the case in which more events occur between two successive instants�
these events are distinguishable only for the order in which they occur� and not for
the temporal instant associated with the occurrences� For this reason� the metric
for time is only partial� non�simultaneous events that occur for the same value of
the system clock may exist� Operator until of PTL and operator until of RTTL
are equivalent to until� presented in Section ��
� In RTTL� quanti�cation of rigid
variables is allowed� Rigid variables are variable in the set of possible executions
but are constant for each execution� RTTL is a �rst order logic� For RTTL it is
essential that the system clock �T � value be referenced in formulas to express some
types of concepts� such as to establish relationships between di�erent temporal
contexts� Table � shows some RTTL speci�cations� no speci�cations involving the
past are shown since RTTL presents only the future�

All global variables �e�g�� t in the table� in formulas are assumed to be universally
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Table �� Some speci�cations in RTTL�

meaning RTTL

Always A in the Past �

Always A in the Future A

Always A �
A Since Weak B �

A Until Weak B �AUB�� A

Lasts A up to t� t � T � ��t � T � T � t� t��� A�
Lasted A from �t� �
A Within �t� in the Past �

A Within t� in the Future t � T � ��t � T � T � t� t�� �A�

A Within ��t�� t�� �
A Was true in ��t���t�� �
A Will be true in �t�� t�� t � T � ��t� t� � T � T � t� t��� A�

A Could be true in �t�� t�� t � T � ��t� t� � T � T � t� t��� A�

A Since B during ��t���t�� �
A Until B during �t�� t�� t � T � AU�B � t� t� � T � T � t� t��

quanti�ed �Ostro� �		��� The logic also presents next operator � �Lasts A up
to t�� can be also written in a more concise notation 	��t��A while �A Until B
during �t�� t��� can be speci�ed as AU	t��t��B� The situation described in Figure �
can be speci�ed by using�

�
E �

�
� �te endA� � ���startA U endA�

��

considering predicates startA and endA as above� Note the adoption of bounded
operator � The possibility of adopting �i� an explicit reference to the system clock
value� and �ii� indirect quanti�cations on values assumed by the clock leads to the
ability to write every type of ordering and quantitative constraints �the above exam�
ple is implicitly quanti�ed on t�� This is extremely interesting for the speci�cation
of real�time systems� However� this �exibility leads to the production of formulas
that are quite di�cult to understand and manipulate with respect to other temporal
logics that avoid quanti�cation over time�dependent variables� A sound deductive
system has been built for RTTL �extending a deductive system of PTL�� but the
satis�ability problem is undecidable� The suitability of RTTL for model checking
and the presence of a deductive system makes RTTL a dual model according to
the classi�cation reported in �Bucci et al� �		
�� No results about the executability
of RTTL speci�cation are available� TTM�RTTL is a dual approach obtained by
the integration of a state machine model and RTTL �Ostro� and Wonham �	���
�Ostro� �		�� �Ostro� and Wonham �		��� TTM is an operational model based on
communicating �nite state machines in which variables with arbitrary domains are
used� The operations allowed are variable assignment� send� and�or receive� The
state machine follows a Mealy model in which conditions on transitions between
states are equivalent to logic formulae on state variables� while the output is an
assignment to state variables�

���� TPTL� Timed Propositional Temporal Logic

In �Alur and Henzinger �		�� Alur and Henzinger presented the Timed Proposi�
tional Temporal Logic �TPTL� and in �Alur and Henzinger �		�� they have shown
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the expressiveness and complexity of this logic� TPTL is an extension of PTL�
Like PTL� TPTL is a propositional logic� where the instant is the fundamental
temporal entity and the time is linear� discrete� limited in the past� unlimited in
the future� An extension with respect to PTL is the presence of a metric for time�
every instant corresponds to a natural number and a monotone function associates
a temporal value with each state of the system� thus making timed state sequences
possible� The presence of operator until permits one to specify order constraints�
The possibility of specifying quantitative temporal constraints is one of the fun�
damental characteristics of the logic� For these reasons� this logic is suitable for
specifying real�time systems requirements� Its theoretic bases that facilitate re�
quirement veri�cation and validation� Table � shows some speci�cations in TPTL�
No speci�cations in the past are shown since TPTL presents only the future� TPTL
adopts the freeze operator� thus x and y represent time instants� The speci�cations
are quite similar to RTTL� Adoption of freeze operator can be very interesting to
model system in which more than a real�time clock is present� A typical application
is the speci�cation of communicating systems in which distinct speci�cations have
to be synchronized �see APTL in �Wang et al� �		����

Table �� Some speci�cations in TPTL�

meaning TPTL

Always A in the Past �

Always A in the Future A

Always A �
A Since Weak B �

A Until Weak B �UBA � A�

Lasts A up to t� x� y��x � y � x� t��� A

Lasted A from �t� �
A Within �t� in the Past �

A Within t� in the Future x� y��x � y � x� t�� �A

A Within ��t�� t�� �
A Was true in ��t���t�� �
A Will be true in �t�� t�� x� y��x� t� � y � x� t��� A

A Could be true in �t�� t�� x� y��x� t� � y � x� t�� �A

A Since B during ��t���t�� �

A Until B during �t�� t�� x� U �y�B � �x� t� � y � x� t���A

The situation described in Figure � is speci�ed in TPTL by using�

x�E � � y� endA � y � x � te� � ��U endA �startA�

considering predicates startA and endA as above� In �Alur and Henzinger �		���
it has been proven that the choice of the set of natural numbers for a temporal
domain is essential to obtaining a temporal logic for which the satis�ability prob�
lem is decidable� In fact� for every temporal domain with a more complex structure
than natural numbers� the problem of satis�ability is undecidable� PTL s deductive
systems can be extended and transformed for TPTL by retaining the properties of
soundness and completeness� Moreover� a decision procedure based on the semantic
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table algorithm and a model�checking algorithm has been presented� This facili�
tates the use of this logic for the speci�cation and veri�cation of real�time systems
requirements�

���� RTL� RealTime Logic

The Real�Time Logic of Jahanian and Mok �Jahanian and Mok �	�� is a logic
that extends the �rst�order logic with a set of elements for the speci�cation of real�
time systems requirements� RTL proposes a logic approach for the speci�cation of
real�time systems� but is not a temporal logic in the classical meaning� It presents
an absolute clock to measure time progression� The value of this clock can be
referenced in the formulas� function �!� permits one to assign a temporal value
�execution instant� to an event occurrence� The temporal domain is the set of
natural numbers� and is linear� discrete limited in the past� unlimited in the future�
and totally ordered� The fundamental entity is the time instant� In RTL� there
are no problems in specifying ordering and quantitative temporal constraints� since
it is possible to make explicit reference to time even through quanti�cation� The
main problem with RTL is the fact that absolute system time is referenced� with a
low level of abstraction� leading to very complex formulas required to describe the
system� The example of Figure � is speci�ed in RTL by using�

�t��i�!�"E� i� � t� ��j��t � !�� A� j�� � �!�� A� j� � t � te��

Operator "E states the occurrence of external event E� � A the turning true from
false of predicate�signal A� � A the becoming false from true of A� i and j are the
occurrences of the events marked with operator !� t is the time� Note the need of
a quanti�cation over time to specify the example� In �Alur and Henzinger �		���
it has been shown that RTL is undecidable even when the syntax is restricted� In
�Jahanian and Mok �	�� a procedure to demonstrate the consistency of safeness
assertions relative to real�time system speci�cation is proposed� A deductive system
for RTL has not been presented� but it seems to be feasible by extending a system
for FOL with laws for the new operators� There are no known results regarding the
executability of RTL� In �Armstrong and Barroca �		�� an approach based on RTL
and Statechart was presented� In that case� the formal veri�cation was provided
by using a theorem prover�

���� TRIO� Tempo Reale ImplicitO

TRIO is a logic language for real�time system speci�cation �Tempo Reale ImplicitO
� Implicit Real Time�� It has been presented by Ghezzi� Mandrioli and Morzenti
�Ghezzi et al� �		��� �Felder and Morzenti �		��� TRIO extends FOL with speci�c
predicates for real�time system speci�cation� The temporal structure is linear and
totally ordered� possible temporal domains are the natural numbers� the integers�
the real numbers� or an interval of one of these set� The fundamental temporal
entity is the point and a metric for time is available� On that basis� it is possible
to measure the distance of two points and the length of an interval� Since TRIO
is an extension of FOL� which is undecidable� then TRIO is also an undecidable
logic� TRIO presents only two temporal operators� Futr�A� t� and Past�A� t� for
specifying that A occurs at time instant t in the future and past� respectively
�more recently it has been demonstrated that both these operators can be de�ned
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in terms of a unique operator�� Moreover� in TRIO� based on these operators�
several other operators can be de�ned as parametric predicates� This is frequently
allowed by many temporal logics � e�g�� TILCO� MTL� The temporal operators
introduced by TRIO� with the possibility of quanti�cation on temporal variables
without any restriction� permit the expression of order and quantitative temporal
constraints as needed for real�time systems speci�cation� It is necessary to use
quanti�cation over the time domain� so formulas are often complex and di�cult to
read and manipulate� Table � shows some speci�cations in TRIO� the table presents
three columns� The middle column shows the speci�cation written on the basis of
TRIO s elementary operators� while the column on the right shows the version of
the speci�cation in a derived form� This derived form can be obtained by de�ning
a new temporal operator �special parameterized predicate� with the speci�cation
reported in the middle column or by using already de�ned operators� It is possible
to de�ne new �temporal operators� by means of special functions� on the one hand�
this keeps the size of formulas low� but on the other hand� it makes the language
harder to understand� A large number of operators can create confusion during the
speci�cation process� especially when these speci�cations have to be understood by
other analysts who do not know the de�nitions of the same predicates implementing
complex temporal operators�

Table 	� Some TRIO simple temporal speci�cations�

meaning TRIO TRIO derived

Always Past �t�t � �� Past�A� t�� AlwP�A�
Always Future �t�t � �� Futr�A� t�� AlwF�A�
Always �t�t � �� Futr�A� t���A � �t�t � �� Past�A� t�� Alw�A�
Since Weak �t���t�� � �� Past�A� t�����

�t�t � ��Past�B� t�� �t��� � t� � t� Past�A� t��� Sincew�B�A�
Until Weak �t���t�� � �� Futr�A� t�����

�t�t � �� Futr�B� t�� �t��� � t� � t� Futr�A� t��� Untilw�B�A�

Lasts �t��� � t� � t� Futr�A� t��� Lasts�A� t�
Lasted �t��� � t� � t� Past�A� t��� Lasted�A�t�
Within Past �t��� � t� � t�Past�A� t��� WithinP�A�t�
Within Future �t��� � t� � t� Futr�A� t��� WithinF�A�t�

Within �t��� � t� � t� �Past�A� t���� A �

�t���� � t�� � t� �Futr�A� t
���� Within�A�t�� t��

Was Past��t��� � t� � t� � t� � Futr�A� t���� t�� Past�Lasts�A�t� � t��� t��
Will be Futr��t��� � t� � t� � t� � Futr�A� t���� t�� Futr�Lasts�A�t� � t��� t��
Could be Futr���t��� � t� � t� � t� � Futr��A� t���� t�� Futr��Lasts��A�t� � t��� t��

A Since B �t��� t� � t � t���Past�B�t��
during ��t���t�� �t��� � t� � t� Past�A� t��� SinceB�B�A� t�� t��

A Until B �t��� t� � t � t��� Futr�B� t��
during �t�� t�� �t��� � t� � t� Futr�A� t��� UntilB�B�A� t�� t��

For TRIO� the example of Figure � is obtained by using�

Alw �E � �t ��� � t � te� �Futr�endA� t� �WithinF �startA� t���

In this case� the speci�cation has been obtained by using a user�de�ned operator
WithinF ��� its de�nition is provided in Table �� Even in this case quanti�cation
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over time is needed� The same speci�cation could be given by using operator until
without the adoption of the quanti�cation over time�

Alw �E � WithinF �endA� te� � �Until�endA��startA��

A deductive system for TRIO has been presented� This system has been used to
prove theorems for TRIO and to build a deductive system for Timed Petri Nets�
TRIO has been used mainly for the validation and veri�cation of system require�
ments through testing activity �history checking� and not by means of the proof
of system properties� TRIO has been described as an executable logic language in
the general sense� It can be used to build a model of the system under speci�ca�
tion as TRIO formulas� Histories of system variables can be checked against the
speci�cation in order to verify whether they satisfy the speci�cation� Therefore�
TRIO must be considered a speci�c case of model checking and not a full execution
according to the classi�cation of �Fisher and Owens �		
��

���� MTL� Metric Temporal Logic

In �Koymans �		�� Koymans presented Metric Temporal Logic �MTL� that extends
FOL with temporal operators from modal logic�G�F �H� P � MTL includes a metric
for time according to some properties that describe the structure of the temporal
domain� One of these properties states that the order of the temporal structure has
to be total� thus leading to a linear temporal structure� The fundamental entity
of the logic is the temporal point� The presence of the metric for time permits
one to modify the temporal operators making temporal versions of most of the
above�discussed temporal operators� G� F � H� P � This allows one to reduce the
needs of using quanti�cations on temporal domain� The operators until and since

can be obtained on the basis of the other operators as depicted in Table 
� These
provide support for avoiding the adoption of quanti�cation over time� In Table 

some MTL speci�cations are given� MTL presents both past and future operators�
The three columns in Table 
 have the same meaning as the table presented for
TRIO �see Table ���

The example shown in Figure � for MTL can be obtained by using�

E � �t �� t te �FtendA � F�tstartA�

The same speci�cation could be written without the adoption of the quanti�cation
over time

E � F�teendA � � ��startA until endA�

As stated in �Alur and Henzinger �		�� MTL is undecidable� but a deductive
system is available� The MTL operators permit one to specify constraints on event
order �until� since� and quantitative temporal constraints �G� F � H� P �� The
executability of MTL has not been discussed in the literature�

���� TILCO� Time Interval Logic with Compositional Operators

In �Mattolini �		��� �Mattolini and Nesi �			�� and �Mattolini and Nesi �		��� Mat�
tolini and Nesi presented TILCO �Time Interval Logic with Compositional Opera�
tors�� a temporal logic for real�time system speci�cation� TILCO extends the FOL
and uses as a fundamental temporal entity the interval even if the interval is de�ned
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Table �� Some speci�cations in MTL�

meaning MTL MTL Derived

Always A in the Past HA

Always A in the Future GA

Always A HA � A �GA

A Since Weak B HA � �t�t ��PtB �H�tA� A since B

A Until Weak B GA � �t�t �� FtB �G�tA� A until B

Lasts A up to t G�tA

Lasted A from �t H�tA

A Within �t in the Past P�tA

A Within t in the Future F�tA

A Within ��t�� t�� P�t�A � A �F�t�A

A Was true in ��t���t�� Pt��H��t��t��A�
A Will be true in �t�� t�� Ft��G��t��t��A�

A Could be true in �t�� t�� Gt��F��t��t��A�

A Since B during ��t� ��t�� �t�t� t t� �PtB �H�tA� Pt��A since��t��t�� B��H�t�A

A Until B during �t�� t�� �t�t� t t� �FtB �G�tA� Ft��A until��t��t�� B��G�t�A

in terms of a couple of time instants� The temporal structure is linear and presents
a metric for time that associates an integer number to every temporal instant� no
explicit temporal quanti�cation is allowed� In TILCO� the same formalism used for
system speci�cation is employed for describing high�level properties that should be
satis�ed by the system itself� These must be proven on the basis of the speci�cation
in the phase of system validation� Since TILCO operators quantify over intervals�
instead of using time points� TILCO is more concise in expressing temporal con�
straints with time bounds� as is needed in specifying real�time systems� The basic
temporal operators of TILCO are the existential and universal temporal quanti�ers
�� and �� respectively�� and operators until and since�� These operators per�
mit a concise speci�cation of temporal requirements� relationships of ordering and
quantitative distance among events� thus TILCO fully supports the speci�cation of
real�time systems� TILCO is also characterized by its compositional operators that
work with intervals� comma ���� which corresponds to �� and semicolon ���� which
corresponds to �� between intervals� Compositional operators ��� and ��� assume
di�erent meanings if they are associated with operators ��� or ����

A�i� j  �A�i� � �A�j��
A�i� j  �A�i� � �A�j��
A�i� j  �A�i� � �A�j��
A�i� j  �A�i� � �A�j��

Other operators among intervals� such as intersection� ���� and union� ���� have
been de�ned by considering time intervals as sets� Table � shows some speci�cations
in TILCO� In this case� the table has only two columns� even in TILCO� special
functions can be easily written for de�ning new temporal operators� such as in TRIO
and MTL� However� in TILCO this is less necessary since TILCO speci�cations are
quite concise� as can be noted by comparing Tables �� 
� and ��

For TILCO� the condition depicted in Figure � can be speci�ed by using�

E � endA���� te� � �until�endA��startA�
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Table �� Some speci�cations in TILCO�

meaning TILCO

Always A in the Past A����� ��
Always A in the Future A������
Always A A�������
A Since Weak B since�B�A�
A Until Weak B until�B�A�

Lasts A up to t A���� t�
Lasted A from �t A���t� ��
A Within �t in the Past A���t� ��
A Within t in the Future A���� t�

A Within ��t�� t�� A���t�� t��
A Was true in ��t� ��t�� A���t���t��
A Will be true in �t�� t�� A��t�� t��
A Could be true in �t�� t�� A��t�� t��

A Since B during ��t���t�� B���t� ��t��� since�B�A��
�t���t�� �A�
�t����
A Until B during �t�� t�� B��t�� t��� until�B�A��
t�� t�� �A���� t��

In �Mattolini �		�� and �Mattolini and Nesi �			� a sound deductive system for
TILCO has been presented� This system is used in the context of the general
theorem prover Isabelle �Paulson �		�� to provide an assisted support for proving
TILCO formulas� Using this formalization� a set of fundamental theorems has
been proven and a set of tactics has been built for supporting the semi�automatic
demonstration of properties of TILCO speci�cations� Causal TILCO speci�cations
are also executable by using a modi�ed version of the Tableaux algorithm� Since
TILCO has aspects typical of both descriptive and operational semantics� it can
be considered a dual approach following the classi�cation reported in �Bucci et al�
�		
�� Since TILCO extends FOL� it is undecidable in the general case� However�
the subset of formulas that presents only quanti�cations on �nite sets is decidable�
Causal TILCO speci�cations can be executed with a modi�ed version of a tableaux
algorithm�

�� DISCUSSION

In Table �� the main characteristics of the temporal logics reviewed in the previous
sections have been collected� The following discussion considers two main aspects
of the logics� the intrinsic power of expressiveness in terms of logic order and
quanti�cation over time variable� and the readability� understandability of the
logics�

The temporal logics discussed can be divided into two main categories� tem�
poral logics without a metric for time and those with a metric for time� PTL�
Choppy Logic� BTTL� ITL� PMLTI� IL� CTL and LTI belong to the �rst category�
These logics are less satisfactory for the speci�cation of real�time systems since
quantitative temporal constraints cannot be speci�ed� In the second category� lie
the following temporal logics� EIL� RTIL� RTTL� TPTL� RTL� TRIO� MTL� and
TILCO� Some of these logics are characterized by the fact that they permit explicit
quanti�cation on the variable time� whereas for the others it is not permitted� In
�Alur and Henzinger �		�� it has been observed that not permitting explicit quan�
ti�cation on time brings about a more natural speci�cation style� Moreover� in
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Table �� Comparative table regarding the features of the temporal logics examined�

Logic Logic

order�

Fundamental

time entity�

Temporal

structure�

Metric for

time��

Quantitative

temporal

constraints�

Logic

decidability�

Deductive

system�

Logic

execut�

ability�

Ordering

events�

Implicit�

Explicit�

PTL P P L N Y Y Y Y I

Choppy P P L N Y �Y� �Y� Y I

BTTL P P B N Y Y Y Y I

ITL P I L N �Y� �Y� �Y� Y I

PMLTI P I L�B N �Y� NA NA Y I

CTL P P B N Y NA NA Y I

IL P I L N Y NA NA Y I

EIL P I L Y Y NA NA Y I

RTIL P I L Y Y NA NA Y �I�

LTI �nd I L N Y Y NA Y �I�

RTTL �st P L �Y� N Y NA Y E

TPTL P P L Y Y Y NA Y �E�

RTL �st I L Y N NA NA Y E

TRIO �st P L Y N Y �Y� Y I

MTL �st P L Y �N� �Y� NA Y I

TILCO �st I L Y �Y� Y �Y� Y I

� P� propositional� �st � �rst order� �nd � second order
� P� point� I� interval
� L� linear� B� branching
� N� no� �N��no in the general case� Y� yes� �Y��yes in some speci�c case� NA� not available
� I� implicit� E� esplicit�

�Alur and Henzinger �		�� the impossibility of explicit quanti�cation on time was
demonstrated to be a necessary condition for the existence of a practically usable
veri�cation method� such as the techniques based on tableaux� In fact� a logic that
allows quanti�cation over time has the expressive power of FOL and is undecid�
able� For this reason� in many cases� logics as EIL� RTIL� TPTL� and TILCO�
are typically preferable to RTTL� RTL� TRIO� and MTL that permit quanti�ca�
tions over time� When a temporal logic allows the possibility of quanti�cation on
non�temporal variables �even with some limitations� it can be considered a �rst
order temporal logic� This is a great advantage since it leads to a more expres�
sive speci�cation language and has a greater power of abstraction� Among the
logics examined� only RTIL� RTL� TRIO� MTL� and TILCO permit quanti�cation
on non�time dependent variables� More speci�cally� only RTIL and TILCO seem
to present the most complete collection of interesting characteristics for real�time
systems speci�cation �metric for time� expression of quantitative and events order
temporal constraints� no quanti�cation over time�� Both of these logics do not per�
mit quanti�cation on time but permit the quanti�cation on non�time dependent
variables with �nite domains� RTIL permits one only to reference the absolute
time� and then only indirectly in a relative manner� Moreover� the order of events
is not complete� since events having a relationship of successor or predecessor can
occur for the same value of the system clock� TILCO does not have these problems
and has a sound deductive system that supports the assisted proof of theorems and
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execution of formulas�

From the point of view of readability and understandability of the temporal logic
it is highly relevant to evaluate two aspects� the number of elementary operators�
and the structure of the syntax� The �rst of these aspects is quite objective� since
a lower number of temporal operators is typically preferred� Temporal logics that
have a high number of operators are� like programming languages� typically hard
to learn and hard to understand� Their expressiveness can be high� since a wide
collection of operators or temporal predicates can be very useful for specifying com�
plex systems� but ease of learning and readability are low� It has been previously
shown that all the most useful speci�cations can be expressed by using a very low
number of temporal operators� If these operators support a metric for time� their
expressiveness is even higher� As a case limit� all the operators can be de�ned in
terms of a measuring operator or modeled with delay� On the other hand� having
too low a number of temporal operators can produce the same e�ects� since complex
speci�cations have to be built by using elementary operators even for very simple
speci�cations� This means that a balance between the power of the temporal logic
and its number of temporal operators is needed� The number of operators also
in�uences the syntax of the temporal logic� In some cases� the verbosity of tem�
poral logic depends on the presence of a neat distinction between past and future
� e�g�� extended PTL� TRIO� MTL� This distinction typically leads to duplication
of the number of operators in order to have speci�c operators for past and future�
When this distinction is not made� time can considered only in the future � e�g��
RTTL� TPTL � or more general and �exible operators capable of working continu�
ously from past to future are de�ned � e�g�� TILCO� In evaluating temporal logics�
other interesting features can be the availability of �i� a graphical representation
for the visual speci�cation� �ii� a support for structuring communicating processes�
The visual representation of temporal speci�cations has frequently been addressed
by researchers who have neglected the capabilities of temporal logics� Visual rep�
resentation may make the readability of the speci�cations easier� but their real
expressiveness is given by the above�mentioned features of the temporal logics� An
interesting integrated approach can be seen in �Dillon et al� �		��� �Moser et al�
�		��� The second aspect has been only marginally considered in this survey since�
for many of the temporal logics presented� several researchers have discussed the
possibility of specifying process�subsystem communication� These cases should be
considered very carefully since the concept of communication directly implies the
de�nition of a theory for supporting processes�modules� These can be processes
�behavioral decomposition� or objects �structure decomposition�� In any case� the
complexity of these aspects cannot be described in few pages�

�� CONCLUSIONS

In this article� a series of criteria for assessing the capabilities of temporal logics
for the speci�cation� validation and veri�cation of real�time systems have been pre�
sented� On the basis of the adopted criteria� most of the temporal logics examined
have been found to be not�fully satisfactory for the speci�cation of real�time sys�
tems� The criteria proposed delineate some essential characteristics that an �ideal�
temporal logic should have to be pro�tably adopted for the speci�cation of real�time
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systems� This does not mean that temporal logics that do not have these features
cannot be used for that purpose� but only that their adoption makes the speci��
cation of some temporal constraints hard and sometimes impossible� Frequently it
happens that if a temporal constraint cannot be speci�ed as imagined by the anal�
ysis� it may be speci�ed in some other way by using di�erent constructs� According
to our point of view and to the trend of the temporal logics in recent years� the
following features should be available to build a temporal logic strongly suitable
for the speci�cation of real�time systems� �i� based on FOL� �ii� prohibition of the
quanti�cation on time variables� �iii� presence of a metric for time� �iv� interval
as fundamental time entity since the interval can be view as a generalization of
the point� �v� relative time model and not absolute� �vi� a limited number of basic
operators and the possibility of building special functions�
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