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RETIMAC: REal-TIme Motion Analysis Chip

Paolo Nesi,Member, IEEE Fabrizio Innocenti, and Paolo Pezzati

Abstract—Motion estimation is relevant for applications of both and dynamic scene analysisf computer vision [3], [9]. In
motion-compensated image sequence processing and dynamigarticular, examples of the first area are coding, noise reduc-
scene analysis of computer vision. Different approaches and i, ang image interpolation; while examples of the second
solutions have been proposed for these two applicative fields. In - o . .
some cases, parallel architectures and dedicated chips for motion farea a_re robot V'S!(_m’ scene mo,”'to””g’ °9190t tracking, mov-
estimation in real-time have been developed. In this paper, a ing object recognition, 3-D motion estimation, 3-D structure
low-cost REal-TIme Motion Analysis Chip, RETIMAC, is pre-  reconstruction of moving scene/objects, model-based image
sented, Whli_Chti_S SU“?I_%'_G fOL_dyf‘amiC scene ]?”a?(Sisti_” Com?_ut?f sequence coding, autonomous navigation, obstacle avoidance,
vision applications. This chip is capable of estimating optica ; : :
flow fielgs in real-time, and IDhas begn especially devglopgd for etc. Fpr motlon-clompen_sate.d image sequgnce processing, the
project OFCOMP (Optical Flow for COunting Moving People) ~ Precision of motion estimation and the difference between
DIM 45 ESPRIT Il MEPI. It can be profitably used also for ~ the optical flow estimated and the true velocity field are not
autonomous navigation, tracking, surveillance, counting moving very important, since the motion estimated is used for coding
objects, measuring velocity, etc., and for several computer vision changes produced on the image plane. For many applications

applications which require as a first processing step the estimation - . .. . . .
of the apparent velocity of each pixel in the image plane (e.g., of dynamic scene analysis, the precision of motion estimation

optical flow, velocity field). RETIMAC implements a gradient- !s really. relevant since small errors can produce severe errors
based solution which has been demonstrated to be more reliable in the final result; for example, in the cases of: 3-D shape

and precise with respect to several solutions proposed in the reconstruction of moving objects, 3-D motion estimation and
literature. understanding, object tracking in 3-D, obstacle avoidance, and
Index Terms—ASIC, computer vision, motion estimation, opti- where it is important to obtain a true velocity field.

cal flow estimation, real-time implementation. For these reasonsjotion-compensated image sequence pro-
cessinganddynamic scene analysapplications have adopted
[. INTRODUCTION different estimation techniques and architectures. Most of

N IMAGE-BASED systems, the moving objects in the obthe above-me_ntioned a_pplicqtions of_ both cat_egories_ ne(_ad to
I served scene project their three-dimensional (3-D) velocigPnsume optical flow fields in real-time. Motion estimation
on the image plane (i.e., apparent velocity). This is usualfjust be performed in real-time, especially for image sequence
called “velocity field” or “motion field” [1]-[3]. Most of coding and robot vision. The |mp_lementat|on qf parallel argh|-
the techniques adopted for evaluating velocity fields consid&€tures and/or specific VLSI chips are techniques to achieve
changes in the image brightness features/areas. For this readip 9oal. In the literature, there exist several motion estimation
the fields obtained are normally called “optical flow” or “imagerchitectures for image sequence coding in real-time, e.g.,
flow” field. Generally, optical flow field differs from the [10]-{13], while only few are capable of producing suitable
velocity field, which is a pure geometric concept. The lattdesults for dynamic scene analysis in real-time, e.g., [14]-[16].
is equal to the optical flow field only under specific physical In this paper, the mathematical bases and the implementa-
conditions of illumination, reflectance, moving object texturdion of RETIMAC (REal-TIme Motion Analysis) chip for the
etc. [2]. As stated many times, the motion estimation is irgal-time production of optical flow fields suitable for dynamic
general an ill-posed problem [4]; its feasibility depends ofcene analysis are presented. This paper is organized as
the additional constraints which are usually added to allofllows. Before presenting the approach selected, a discussion
the definition of specific solutions [5]. For these reasons, ti@out the motion estimation techniques and related parallel
optical flow precision with respect to the true velocity field@rchitectures is reported in Section Il. Section Ill reports the
also depends on the estimation technique adopted [6]. On krasic notions for the optical flow estimation used in RETIMAC
other hand, the estimations of an approximated velocity fiefgllowing the approach proposed in [6] and [14] by one of the
can be enough for many applications. authors. An overview of the environment in which RETIMAC

Optical flow estimation is very useful in two importantis usually operating is reported in Section IV. In Section V, the
areasmotion-compensated image sequence proce$gngp], functional description of RETIMAC is provided; in Section V-

Manuscript received June 24, 1996; revised February 13, 1997. Tho‘is the _datapat_h and the final p_erformance of t_he Chlp are,
work was supported by SED s.r.l. of Certaldo, Florence, ltaly, the mali@spectively, discussed. Conclusions are drawn in Section VI.

contractor of Project OFCOMP DIM45 ESPRIT Il MEPI. This paper was

recommended by Associate Editor O. K. Ersoy. II. MOTION ESTIMATION APPROACHES
P. Nesi is with the Department of Systems and Informatics,

University of Florence, ltaly (e-mail: nesi@ingfil.ing.unifiit, www: This section reports the rationale that led us to build the

http://www.dsi.unifi.it/"nesi). _ _ RETIMAC (REal-TIme Motion Analysis) chip. The main
F. Innocenti and P. Pezzati are with the Hi-Tech Agency CESVIT s.p.a. . . . .

Microelectronics Center, Florence, Italy. requirement was the implementation aflow-cost chip for
Publisher Item Identifier S 1057-7130(98)00776-9. optical flow estimation in real-time, suitable for dynamic scene

1057-7130/98$10.001 1998 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 9, 2008 at 13:19 from IEEE Xplore. Restrictions apply.



362 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998

analysis applicationsThe first reference application was theTherefore, in the following, the approaches are reviewed in
counting of passing people getting on/off public buses, i.e., thee light of the dynamic scene analysis application field,
estimation and recognition of nonrigid moving object behaviaonsidering their potentiality about the computational effort
[16], and optical flow estimations and spatio-temporal analysieeded, estimation precision, and reliability. Additional de-
of these fields. The implementation of the RETIMAC chip hakailed reviews can be found in [3], [6], [7], [9], [18], [19].
been considered as the way to reduce costs and dimensions

of an expensive DSP-based embedded system reported in ) o

[16]. This was built for the same purpose and, in generd); Spatiotemporal Filtering-Based Approaches (FBA's)

for computer vision applications based on optical flow field The FBA's treat the complete image sequence with a set of

estimation. filters in the temporal and/or the spatial frequency domain.
Therefore, according to the applicative context, such a chfiltering is tuned in frequency/time and space in order to
had to provide the following. detect the components of the motion. This theory is derived

1) Precise optical flow vectors suitable for computer visiofiom the analysis of vision systems in animals. This class of
applications such as obstacle avoidance, motion undgtethods can be divided in two fundamental approaches: the
standing, nonrigid object tracking, etc., where “preciseSPatiotemporal and the spatiotemporal frequency approach.
means at least 0.1 pixels by grabbing the scene onThe first approach uses a set of 3-D bandpass filters tuned
25 x 25 image (higher resolutions can be obtained f&" the same spatial frequency, but with different spatial
compositions). This means that, theoretically, 1 pixé]rientations and temporal frequencies. Filters such as 3-D
of resolution could be enough for extracting Vebcitpaus'slan convolution are normally used. Van Santerj and
vectors on images of 256 250 pixels of the same Sperling have presented an approach that uses spatial and
scene. temporal filters, expanding Reichardt's model [20]. Adelson

2) Velocity vectors having components less than.5 and Bergen [21] have proposed an energy model in which the
pixels per frame on a 25 25 image. This means thatmotion is estimated by integrating in time the output of a set of
with a 250 x 250 image, a range of15 pixels is filters oriented in space—time and tuned in spatial-frequency.
needed. ' Heeger has used a collection of spatiotemporal bandpass

3) Optical flow fields with a regular grid of 25 25 Gabor-_ener_gy filters, which can be seen as a pair of 3-D
vectors per image, thus producing 625 velocity vectofgaussian filters [22]. .
per image. These can be estimated on ax2®5 or The second class of solutions works on the frequency
bigger imége In the first case, a dense optical flow flomain. These methods are based on the fact that a translation
obtained. where “dense” mean,s a velocity vector per d/or rotation of an object in the frequency domain can
pixel in t,he whole image easily be detected, e.g., the translation is seen in the frequency

4) At least 10 optical flow .fields per second, thus 62560main as a shift, and the rotation is considered as a local
velocity vectors per second ’ translation. Watson and Ahumada have used a set of spatiofre-

y ) guency tuned filters to extract the velocity field considering

A low- hi havi 7 is- . ) ;
5) ow-cost architecture having, at most, 70000 tranSI%)nly translational movements [23]. Another point of view for

tors and a reduced r?“mber of /O S st_rongly mdependetrr]]tls approach can be found in Jacobson and Wechler [24].
of other external chips for preparing input data, etc.

) ) . Typically, with FBA'’s, small displacements are estimated,
Moreover, the algorithm selected for optical flow estimatiof, ;s these are unsuitable for motion-compensated image se-
must be robust with respect to the major drawbacks of Opti‘iﬁhence processing. For FBA’s, the estimation precision is
flow estimation techniques—discontinuities and the problegical since it depends on the dimension of the filters and
of aperture [3], [17]. on the mathematical approach for detecting peaks. The range
In the literature, four main approaches for motion estimatingpendS on the dimension of the area in which the peaks are
in a regular grid of the image can be identified: spatiotedaarched. To obtain the required precision, the optical flow
poral filtering-based approaches (FBA's), block-matching age|d grid has to be much bigger than 1; a reasonable number
proaches (BMA'’s), pel-recursive approaches (PRA’s), an@n be 10.
gradient-based approaches (GBA's). Please note that since oyf|gorithms based on FBA’s do not operate on local infor-
goal was to estimate regular optical flow fields, then featurgation, but use the global information contained in the whole
based motion estimation techniques (e.g., corner tracking, |Im%ge sequence. Although this approach is computationally
tracking, etc.) have been neglected. complex, it fits well a pyramidal architecture, where a mul-
A comparison among the above approaches is really diffictilesolution set of images from the scene under observation
since each of them has been developed for different purpogas be easily obtained and analyzed [22], [25], [26]. At
and produces different results. For the same reasons, aseh level of the pyramid, the information related to one
from the computational point of view, the approaches can kgatial-frequency band is extracted. Unfortunately, the cost
compared with difficulty since the effort needed for producingf pyramidal architectures makes this approach somewhat
optical flow fields in real-time is strongly influenced by thémpractical for hardware implementation.
approach selected and, thus, by the estimation algorithm The typical asymptotical complexity can be @M2B3F),
data dependency, type of operations, etc., and by algoritiwhere A1 is the optical flow field dimension in pixels (equal
implementation on sequential and/or parallel architecturde. the image dimension if the grid is equal to B, is the
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dimension of the 3-D filter (typically from 7 to 15)" the and storage, high definition TV, etc. [27]. According to
number of filters applied (typically 4-12, but at least 24 fathese standards, many architectures [28]-[32], and hardware
the required precision). Considering = 25, FBA's need implementations [10]-[12], [33]-[36] have been proposed.
from 51.4 to 506 MOPS (millions of operations per secondjhese hardware implementations are based on pipelined or
to evaluate 10 optical fields per second. Please note that mmsttolic architectures since they have regular data access. Some
of these operations must be performed by considering tbethese architectures include an interpolator for increasing
fractional part. In this case, to better evaluate the algorithtine estimation resolution.
complexity, a scale factor from 10 to 20 should be consideredNon-FBMA's (NFBMA's) reduce the computational cost by
with respect to approaches presenting only operations on snatreasing the number of candidate blocks during matching,
integers, but this depends on the specific hardware adoptedccepting suboptimal solutions. Among these algorithms, there
The above number of operations per second, as thage: the Hierarchical BMA's (HBMA's); the two-dimensional
evaluated in the following, represents obviously a coarsegarithmic search-based algorithms; the three-steps search
estimation of the effort needed to obtain the results. Theakgorithms; and the conjugate direction search algorithms, etc.
estimations can be useful for evaluating the scale of tfi&7], [37]-[41]. The adoption of HBMA allows us to reduce
computational effort needed. some problems of classical BMA, such as those produced by
For our purpose and for many computer vision applicationtie presence of blocks with more than one moving object;
this approach is unsuitable, since precise estimations canbog the problems related to estimation precision have not been
obtained only at the expense of a huge complexity. solved yet at low cost.
As regards parallel implementations for computer vision,
a matching-based approach has been utilized in [42] as a
B. Block-Matching Approaches (BMA's) first step for defining an algorithm for motion estimation
BMA's divide the image in blocks of size® x B and ©on a Connection Machine in close-to-real-time. In [43], the
produce a velocity vector for each block. The pattern of tHBatching approach has been implemented on a pyramidal
image block around the point under tracking at the previo@chitecture. The process starts at the coarsest level where the
time instant is used as the reference pattern for searchifigplacement components are shorter than one pixel, and then
the displacement and, thus, the velocity of pattern center [itjpasses to a finer level by using a matching-based algorithm.
Each motion vector can be reliably obtained only on the badi§is architecture can avoid the convergence to local minima.
of the large block matching (typically, 16& 16, 32x 32). According to our requirements, to have a 325 velocity
Too small a block size can lead to instability due to the ilvector with 0.1 pixels of resolution and a rangedel.5 pixels,
posedness of the motion estimation problem [3], [5]. TH&e BMA's could be theoretically applied on a 125125
block-matching technique is also sensitive with respect t@age (considering a half-pixel of resolution) asidmust be
noise and discontinuities. This problem is strongly attenuatéél least 15 pixels (increasing the image dimensions implies
by augmenting the dimensions of the reference block. Lar§ireasing the input bandwidth and frequently the compu-
blocks can produce wrong estimations when a block presefgonal complexity). Reliable matchings are obtained only
different motions due to deformations, rotations, presence \hen B > 16. Then consideringl/ = 25, for estimating
object boundaries, presence of more than one moving objdgtoptical flow fields per second (three operations per pixel),
with different motions, etc. BMA's are usually quite imprecisd 080 MOPS are needed. BMA's are strongly regular in data,
since most of them produce results with a resolution equal e operations to be performed are very simple (only additions,
1 pixel. A better resolution can be obtained by interpolatingiibtractions and comparisons) and, thus, they are highly
results at the expense of computational cost, thus obtaininf@allelizable, as many times demonstrated. Usually, in BMA
precision of 0.5 or 0.25 pixels, or by increasing the numb@garallel implementations, the flow of the input data (images)
of pixels of the scene since BMA's are very suitable fopas to be organized (especially for systolic architectures);
estimating large displacements. while in some pipelined architectures there is a module for
BMA’s can be classified in two main categories: fullgenerating addresses for reading images from memory.
search and nonfull search algorithms. The full search BMA’s, As a conclusion, BMA's could be used as a basis for
FBMA's, are optimal in the sense that they are capable #ynamic scene analysis applications by increasing their estima-
finding the optimal solution among the possible ones. FBMA0oN precision and robustness. To this end, several techniques
search the best match of tHe x B reference block in all have been proposed in the literature, but they are computation-
points of theS x § search area; thus, the computational codlly very expensive: postregularization, hierarchical searching,
is an O(M2B25?), where typicallyS > B. This complexity prediction/correction, nondense optical flow fields estimation,
is addressed by evaluating a velocity vector by executi®§C. (see [3], [13], [42], [44]).
differences between pixel values and other operations in
parallel for all/many pixels of the block. The regularity of the . ,
algorithm and the simplicity of mathematical operations hae Pel-Recursive Approaches (PRA's)
allowed the implementation of several VLSI architectures. PRA’s have been proposed for the first time by Netravali
BMA’s have been used for many applications in real-timand Robbins [45]. PRA’s are based on an iterative process
video coding systems such as H.261 standard for videophdaoe finding the minimum of a frame difference function.
and videoconferencing, MPEG for video communicatiomhe iterative process is a descendent technique in which
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the step is usually constant. This approach is capable asfd RRA'’s architectures are more reliable and complex than
estimating dense optical flow fields. PRA’s are more suitabidassical PRA's to be used for building a low-cost chip for
for estimating small displacements; this makes PRA’s moeastimating optical flow fields in real-time.
suitable for dynamic scene analysis rather than for motion- ]
compensated image sequence processing, since PRA partigiiycradient-Based Approaches (GBA's)
solves the problems of BMA’s when different movements GBA'’s provide a solution to motion estimation from the
are included in the same block. On the other hand, subpixsiservation of brightness changes in the image plane, thus
resolution is obtained by interpolating the estimation of theading to motion estimation of image brightness features [2],
image brightness and of its gradient. In PRA's, the estimati¢@], [17], [49], [50]. GBA’s are very suitable for producing
of velocity vectors with 1/10 pixel of resolution needs severalense optical flow fields and can be regarded as the general-
iterations (depending on the dimension of the step). Therefoigation of PRA’s. Gradient-based solutions consist of solving a
to obtain precise results, it is mandatory to evaluate precigertial differential equation based on the gradient of the image
interpolations which are usually computationally intensivébrightness. The algorithms produce solutions by using discrete
Otherwise, in order to improve precision, the image dimeuiifferentiations; for this reason, they are suitable for working
sions can be increased, increasing in this way the numlggr small displacements between consecutive frames, from 0 to
of iterations if the step of the iterative process is constarsf.pixels. In this range, a high precision and conformance with
Moreover, large displacements to be measured also incretige respect to the velocity field can be obtained depending
the probability of finding a local minima between the startingn the model used, the precision of selected algorithms is
point and the optimal solution. higher than 0.1 pixels [2], [6]. For this reason, GBA's are
PRA'’s are very sensitive to noise which usually produces Iprofitably adopted as the basis of many dynamic scene analysis
cal minima in which the descendent technique can erroneouslgborations.
converge. For these problems, the PRA has been considereh general, GBA's are suitable for parallel implementation,
to be not reliable enough for estimating optical flow fields fasince they require us to access only local image information.
computer vision. On the other hand, the early solutions to GBA'’s such as [17],
From the computational point of view, the dominant opef49], [51] were too computationally intensive to be profitably
ation is the interpolation; therefore, PRA asymptotical comused for building VLSI chips. An example of this is the fully
plexity is anO(M?21, PI,,), where:M denotes the dimensionspyramidal implementation presented by Enkelmann in [52].
of the image in pixels,/; the number of iterationsf” the As a first step, a pyramid of images of different resolutions
number of pixel values on the basis of which the gradient & obtained by using a Gaussian filter. Then, starting from
the image brightness is estimated (typically 4),the number the lowest resolution images, processing moves to higher
of operations for interpolating the image brightness (typicallesolutions, thus improving the optical flow estimation at each
12). By considering! = 25, andl; = 15, the classical PRA step. More recently, faster solutions have been defined, see
algorithm can need approximately 4.5 MOPS. Most of the$8], [14] for comparisons. A parallel implementation on the
operations must be performed by considering the fraction@bnnection Machine-2 architecture of the algorithm presented
part. The adoption of a step based on a 1/16, 1/8, etc., of pikgl Tretiak and Pastor in [49] has been presented by Tistarelli
is a way to reduce the computational effort. in [53], providing quasireal-time estimations. A faster parallel
PRA's present an intricate data dependency graph to be iimplementation on Connection Machine-2 of the algorithm
plemented by means of systolic architectures; for this reas@noposed by Del Bimbo, Nesi, and Sanz in [6] has been
they have been rarely considered for defining VLSI chips aquesented by Del Bimbo and Nesi in [14]. In [14], the parallel
parallel architectures for real-time motion estimation—e.gmplementations of the algorithm of Horn and Schunck [17]
Kim and Lee in [46] proposed a pipelined architecture impleand that of Tretiak and Pastor [49] were also shown for the
menting the iterative process. PRA was also extended to sake of comparison. This last solution presents more severe
gions producing the block recursive algorithm (BRA) [45], foproblems with respect to the behavior of the algorithm of Del
improving its robustness with respect to noise. In this case, tBambo and Nesi, as demonstrated in [14] paper. From this
interpolation is made by using the information coming fronsomparison, the solution of Del Bimbo, Nesi, and Sanz [6]
the image block. A more complex approach has been used fias determined to be the fastest and the most reliable. As
defining a linear array of processors by Frimettal. [47]. discussed in the following, after additional experiments, this
Region Recursive Approaches (RRA's) are a sort of BRA isolution has been used for implementing RETIMAC.
which the motion is estimated for regions which are identified A hardware implementation of Tretiak and Pastors’ algo-
after a phase of segmentation [48]. It is very difficult to modelthm [49] was proposed by Danielssen al. in [15], where
the motion of a region with a unique velocity vector; thusan SIMD machine comprised of 512 processors is proposed
the motion is modeled in terms of invariants: translationalp estimate optical flow fields (51% 512) 10 to 15 times
rotational, and divergence components. This fact makes ther second. The architecture needs 4 input images executing
computational complexity higher than that of classical BMA’'s136 MOPS; thus, this architecture is also too expensive to be
but increases the precision of the estimated motion in the cgsefitably used in real applications. Each processor must be
of rigid objects. capable of estimating several products and two divisions.
As a result, PRA’s are very sensitive to noise and local The asymptotical complexity of GBA’s can be from an
minima to be suitable used for dynamic scene analysis. BRAK M?21,G) or an O(M?*N?@), depending on the solutions
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selected (iterative and direct solutions, respectively), whe@®C is derived from the observation that changes in image
I, is the number of iterations (from 10 to 10Q)\ is the brightnessE[z(¢), y(t), t] of each point in the image are
dimension of the image block from which the solution adoptexlipposed to be stationary with respect to the time variable
extracts the image brightness values (typically from 5 to 15),e., dE/dt = VE -V + E, = 0)

G is the number of operations performed for each pixel of

the block (typically from 5 to 50 depending on the solution Lz(z,v,t)U(z,y,t) T Ey(e,y, )V, y,t) T Lty 1) = 0 (1)

?rgcrftgdgé '?gc%d'I\r)l%gjsth_?_k:g'tmg{fqigigfnntiériif‘:i:eteﬁ% which the abbreviation for partial derivatives of image
' ' P rightness has been introduced;. , +), ¥(z,y,¢) COrrespond

fact that most of these operations must be performed a/da:/dt, dy/dt, and represent the components of the local

considering the fractional part or by using at least integer, L
. . velocity vector , along thex and v directions on the
variables with 32 b. y Vi, g hex Yy

image plane at the time instant respectively. Images are
) ) ] sampled on a fixed grid of points at a regular time interval,
E. Approach Comparison and Discussion an image at time is the collection of the irradiance measures
Among the approaches discussed, it can be observed thgt; ;) fori = 1,-.., M, andj = 1, ---, M along thez-
FBA’'s and PRA’s are not capable of producing optical flovand y-axes, respectively.
fields with the required precision and robustness with respect
to noise and local minima at low cost. Reliable versions @ Optical Flow Estimation Problems

these approaches are computationally intensive to be ConS'dI'n general, optical flow estimations present two main prob-
ered for implementing low-cost hardware.

BMA’s (and some PRA reduced solutions) have been us!éaﬁ";il'g?se&zg‘izm'y of the approach used among those previ-

for image sequence coding in real-time since they are suitab CThe first is the presence of discontinuities in the optical flow

Iﬁr codmgds'ch(terr]nes bastedtondcooflnﬁﬂérggsgorr&éggrz) aﬁgd. These are due to image brightness discontinuities which
ose used In he recent standards o o originated by the presence of noise, too-crisp patterns on

H.261 .[27]' Fo_r this purpose, GBA's have not _beer_1 Chos?ﬁ'e moving object surfaces, occlusions between moving ob-
up until now since they are not capable of estimating Iar%%:S

displ ts. Thi bl Id be ci ted by addi ts, and object velocities which are too fast for the measuring
ISplacements. 1his problem could be circumvented by addilg e, Generally speaking, the presence of discontinuities can
special hardware for reducing the image resolution or

iring the i tal luti e overcome (or at least attenuated) by filtering the image with
acqumr?g € Image scene at a lower resolution. a.two-dimensional (2-D) or 3-D Gaussian smoothing operator
GBA's are those which guarantee the best estimation Pregkihe expense of the computational effort [3], [6]

sion of the optical flow with respect to the velocity field [3], The second problem is the so-called “problem of aperture,”

[.6]' This is mandatory for severa! compu_ter vision appllC‘%/'vhich also exists in human vision, and derives from the
tions—such as the measure of time to impact for obsta

. . . . (ﬂﬁpossibility to recover the direction of motion univocally if
avci{dance(,j 3'% obiectd.reco?struct_lor&, tg.e ?'D ;’not::on e‘:'i‘ﬁe object is observed through an aperture that is smaller than
mation and understanding o no,nr|g| ODJECLS, €tc. From rt\'r‘?e object size. In this context, the references of the object
point of view of complexity, GBA’s have been considered foB

o be t lex to be adopted. This iustifi tnder observation (such as textures, e.g., patterns) are not
many years fo be 100 complexto be adopted. This Justities ﬁfﬁidem to detect the transversal component of the object

lack of VLSI architectures based on that approach. In gener. otion, and only the component of apparent velocity which
GBA's are computationally intensive since the algorithms use pare{IIeI to VE can be detected [5], [18], [55]. This is

many floating point operatlons. So.me new .algorlthm.s for tr&%herent with human perception which is not able to detect the
GBA are capable of estimating reliable optical flow fields %%ue direction of the velocity of an object if it does not have

sequential machines in less time than the classical MBA, gﬁough references, such as a pattern or an edge curvature. The

demonstrated in [3] and_ [14]. . _ radient-based model can be useful to model this problem. In
Therefore, on the basis of the presented considerations g

h ly th f th locity field which i
experiments, the GBA was selected as a basis for identifyiB%ralIgﬁgs’t’hgns)é;ﬂ;nggg;;nEt of the velocity field which is
the suitable estimation algorithm for the RETIMAC chip.

v E,  VE @
L= —Torr o
Ill. GRADIENT-BASED OPTICAL FLOW ESTIMATION IVE| [VE]
Gradient-based techniques provide a solution for the motican be estimated and perceived, whetE/dt = 0 and

estimation problem starting from the observation of brightnef& E|| # 0 are assumed.

changes in the image plane [2], [5], [17], [49], [50], [54]. The In the literature, two main approaches for gradient-based

optical flow is the field of the image brightness feature velocoptical flow estimation can be identified: tmegularizatiorr

ties and, therefore, it can differ from the perspective projecti@nd themulticonstraint-basedpproaches [3].

of 3-D motion on the image plane (i.e., the velocity field) The regularization-basedapproaches estimate the optical

depending on image acquisition conditions and on motion [Tlow field by minimizing a functional where a smoothness

[2], [54]. constraint is appropriately weighted to regularize the solution.
Most of the GBA's described in the literature are based drhe functional is minimized by using calculus of variations,

the so-called Optical Flow Constraint (OFC) equation. Thend leads us to define iterative solutions [5], [17].
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Themulticonstraint-basedpproaches for estimating opticalfor the estimation of velocity components for the pixel under
flow fields are based on the fact that it is usually possible tmnsideration, an overdetermined systemVok N constraint
define more than one constraint equation [56]. They can bguations in two unknowns, is defined as
used to define an overdetermined system of equationswith
andv as unknowns evaluated at the same point in the imagEx(i,j,t—l)u(ac,y, o+ By, g t-1)Vz, g, 0) T B, j,e-1) =0
[49], [50], or by considering that all the constraint equatio C . L .
which can be defined in the neighborhood of the estimati ?}zall (¢, j) in anVx N neighborhood of the estimation point,
point represent the same optical flow field [6], [51], [57]. The _ereN.|s thg dimension of the mage §egment side of the
latter approach is commonly referred to as a “multipointr’je'ghbc_)rlng pixels, and’ > 2._Inth|s techr_nqug, alarge value
approach. The overdetermined system of equations can% will lead to smooth optical flow estimations, and a loss

solved by using the least-squares technique or by other meghgesolutlon n the est|mat|on of velocity vectors. .It Sh.OUId
[6]-[58], [60]. e noted that using central differences for the estimation of

Ei, j, v, the knowledge of the,, , ;—1) and E, , ¢+11) IS
needed; thus, the coefficient of (1) can be evaluated only one
B. Motion Estimation Technique time instant later with respect to the current time.
The overdetermined system of equations is solved by using

; least-squares technique. In particular, after the estimation
were made. In most cases, the comparison was made

adiusti : ; 9 image brightness partial derivatives in each pixel, an

justing algorithm parameters in order to get comparable X . !

results in terms of precision and reliability. From these Corr?yerdeterm_|ned _system aV x N OFC equations in two
. . . . nknowns is defined as

parisons, the solution by Del Bimbo, Nesi, and Sanz [

presents the most interesting compromise among precision, AV+K =0

reliability, and complexity. Its robustness with respect to noise

and behavior has been demonstrated in [6] by comparing vthereV is the optical flow vector with componenis v; A €

results to the corresponding results obtained by using othRy-,, matrix of coefficients, witha, ¢ = E,, anda, ; =

well-known techniques. The consistency of the solution with, ; and K € Ry= vector with known termsk, = E,

respect to the conditions of aperture has been discussed in [6d], » = 1, ---, N2. An increase inN, the neighborhood

demonstrating that its behavior is coherent with human visiogize considered, leads to a significant increase in memory

For these reasons, such a solution was tested with an eagdyuirements to store the matrix and vector elements (for
DSP-based prototype [16], and then selected as a basis ifgtance, with¥V = 7147 memory locations are required for
implementing RETIMAC chip [62]. storing the coefficients of matrix and vectorK above).

In [16], a DSP version of a system for counting moving The solution of the overdetermined system of equations by
people has been described. In that system, the optical flaveans of the least-squares technique is obtained by using the
estimation phase was performed by an ADSP 21020 (Analpgeudoinverse technique, which transforms the above system
Device, 100 MFLOPS) instead of the ASIC discussed in thig equations into a determined system of equations
paper. In that system, the DSP estimated the optical flow fields . .
while a low power microprocessor executed the reasoning AV+K =0 3)

in time for detecting, tracking, and counting passing people; N T N T T
DSP utilization was about 95%, considering also the codidiered = A" A andK = A" K (i.e., A" is the transpose of

of loading, saving, copying, images, and optical flow. In thab)- This system of equations can be solved by using traditional

architecture, the main reasons for demanding the estimati§fniques such as LU decomposition, Gauss Jordan, etc. It
of the optical flow fields to a VLSI chip for optical flow should be noted that the coefficients of the mattiand those

estimation are the reduction in costs and dimensions of tAbthe vectorK are estimated by using

In [3], [6], [14], and [19] several comparisons among GBA’s

equipment. Also the DSP-based architecture was used in the N2 N2
approach discussed in Section V-B for estimating optical flow b = Z of a, ;= Z G iy
fields with a reduction in the computational cost. D A S

Therefore, RETIMAC implements the multipoint-based N2 N2
technique for optical flow estimation proposed by Del Bimbo, = Z ol k, = Z ar ik,
Nesi, and Sanz [6]. Thisnultipoint approach is based on = =

the fact that, by considering that the optical flow changes .

following a law which is approximately linear, a smoothed he estimation of th&; ; andk; (fori =0, 1; j =0, 1) can

solution for optical flow estimation can be obtained from he performed by accumulating one term at a time, from the

linear approximation of the OFC equation in the neighborhoath neighboring OFC equation (fer= 1, ---, N2), to obtain

of the point under consideration [6] (this assumption is validhe final sum and thereby avoiding the need to store the entire

only if the optical flow field under observation is smooth)set of N> OFC coefficients.

Consequently, a set of similar constraints in the neighborhoodAmong the collectedv? OFC equations, those which have

of a pixel yields an overdetermined system of equations. the £, under a chosen threshold are ignored and considered
A multipoint solution based on the OFC equation (1) ias insignificant constraints since no difference in the image

obtained in the discrete domain at the finite differences. Thusjghtness is registered. Moreover, the constraint equations
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Fig. 1. Typical sequence of images where people are getting on a bus (frames: 2, 10, 18, 26, 34, 42, with resolutien3@j.32

which have values too large fdi, and E, are also neglected, andv = V/div, where
hypothesizing that there is a high probability that such large
values are originated by noise.

In our case, system (3) is composed of two equations in
two unknowns, and the direct solution is used= U/div, div =ao,001,1 — o, 140, 1-

U =a9,1k1 — kol1,1

V =ao,1ko — k10,0
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Fig. 2. Optical flow fields estimated from the image sequence reported Wits 5 (frames: 6, 18, 30, and 42).

1) A Simple Examplein order to test the robustness of theare moving atdifferent velocitiesin intensity and direction.
optical flow estimation technique used, several experimer@bviously, optical flow estimation cannot solve the problems
were performed [6]. Since the chip has been especially implelated to all moving object behaviors, as required by a system
mented for counting moving people, particular attention wabkat performs people counting. These problems can only be
devoted to testing algorithm responses with respect to changessed by long-term analysis interpreting optical flow fields
in illumination and weather, deformations due to nonrigiditgequences in a temporal window. To this end, RETIMAC is
of moving objects, and critical effects due to the out-of-focusapable of storing eight consecutive optical flow fields into
and the incomplete vision of the moving object shape in th& output memory. This allows spatiotemporal reasoning on
viewing area [16]. optical flow fields. Flow of people is further interpreted as a

Fig. 2 shows optical flow fields estimated by using th#tow of elementary moving particles (each of which has its own
method proposed on the image sequence of Fig. 1. The etical flow vector) and not as a sequence of single passages
perimental results refer to the case of a person getting on/efflarge objects [16].

a public bus. The image acquisition system is placed at the2) Computational ComplexityThe explicit complexity of
entrance of the bus over the stair steps, thus observing peapte solution proposed for estimating an optical flow field on
from above. an M x M image for a sequential machine is

As can be seen, the shape of the moving person is not
immediately detectable from the optical flow fields. This is  C() =36 (M —2)* + (58 +5@)N*[M — dJ
mainly due to the fact that the body m®ncompletely focused + (6@ +36 +20)[M — dJ? (4)
and includedin the viewing area of the image acquisition
system. In addition, the moving objectrisnrigid and its parts whered = 2[1 4+ (N — 1/2)] is due to the image boundaries.
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by reusing partial results, the actual power can be reduced as

(N+2)x(N+2)
= discussed in Section V-B.

IV. RETIMAC ENVIRONMENT

At gitt)) On the basis of the above algorithm, the low-cost RETIMAC
e divit) chip has been designed, implemented, and tested. This chip

is capable of estimating dense optical flow fields in real-
time, i.e., 10 times per second; in particular, producihd”
and div at 32 bits from which the velocity componenisy
can be simply obtained. RETIMAC operates on images of

Ett-D

T
B

32 x 32 pixels; but if these dimensions are not sufficient,

Fig. 3. Relationships and data transformations for estimating the optical fl
vector corresponding to the dark square.

A" composition of RETIMAC’s can be adopted for covering

the size required, thus defining a parallel architecture having

the maximum of resolution equal to that of the sensor chip.

i i . i ~ RETIMAC is capable of grabbing images, estimating optical

_ The first term is due to the estimation of the partial derivayg,y vector, and storing results in parallel. Being capable of
tives of image brightness, which are obtained by using Ce”t@timating optical flow fields, RETIMAC can be used as a

differences

By t—1) = By, 4, -1 — Ea—1,j,e-1)]/2
By g t—1) =BG, j41,0-1) — Eg,j—1,1-1)]/2

Eii -1 =Eu, 50 — Ea, j,e-2)]/2. 1)

where, in order to simplify the estimations the division by 2
can be omitted, since it appears in each OFC term.

The second additive term of (4) is due to the least-squares
technique for calculating coefficients ; andk; (for i =0, 1,
and j = 0, 1), where the distance between two spatially
consecutive estimation points has been assumed equal to one
pixel (dense optical flow), andz] is the greatest integer
number lower thane.

The third term is determined by the method for solving
the final system of (3). In this phase, two divisions are also
used for estimating: and v optical flow vector components
from U, V and div which can be estimated by using integer
mathematics. It should be noted that the magnitude of the
optical flow components is from 0 to 2; thus, the divisions 2)
can be performed in fixed point only if a strong expansion
of the scale is performed. Therefore, in order to simplify the
RETIMAC chip, it has been decided to produce, as precise
results, component¥, V' and div.

As can be seen from (4), the asymptotical complexity of the
solution proposed is aW(M32N?).

In Fig. 3, the relationships and data transformations among
the phases of optical flow vector estimation, corresponding to
the dark square, are reported. The algorithm implementation
has been performed by using = 5; hence, the estimation
of each velocity vector needs an area ok 77 pixels coming
from three imagesN = 5 has been used since this value
represents a good compromise between estimation quality,
noise robustness, and computational cost.

The computational cost in terms of the number of operations
is equal to 0.178 MOP, withV = 5, M = 32 [where for
the boundaries onlyM — 6)? velocity vectors are estimated].
From these values, the number of operations per second can be
easily obtained, e.g., if 10 estimations per second Witk= 32
are taken, a power of 1.78 MOPS is needed. On the other hand,

basis for several applications of dynamic scene analysis where
a real-time motion estimation is needed.

RETIMAC has been designed for operating in a well-
defined environment (see Fig. 4) comprised of the following.

An Image Acquisition Sensor called Polifemdt con-
sists of an array of 12& 128 photodiodes [63], which

is capable of capturing gray level images with 8 bits of
resolution per pixel. This chip presents several options
such as the possibility of selecting the window of interest
(in our case a window of 32 32 is selected); and setting
the integration time and, thus, the grabbing rate. If a
set of RETIMAC chips is used for covering the whole
image, different image windows should be selected
(possibly partially covered) for considering boundary
conditions. By using Polifemo, it is possible to regulate
sensor sensitivity simply by changing the integration
time. This is particularly useful for implementing an
automatic regulation of sensor sensitivity directly on the
microprocessor.

4 Dual-Port SRAM’s (1Kbyte per 8 bits):It is used

for storing 32 x 32 image data at 8 bits from the
Polifemo sensor. These banks are the input memories
of RETIMAC. This kind of architecture has been used
for allowing the estimation of optical flow fields in
parallel, with respect to the image acquisition. When
RETIMAC transfers the image at time+ 1 into the
dual-port RAMO with /CSBOA, at the same time it
uses the other three chips of dual-ports for reading
the images at time,¢t — 1, and ¢ — 2. By using this
information, RETIMAC estimates the optical flow field
corresponding to timeé— 1. At the next time instant, the
dual-port containing the image at time- 2 (the oldest)

is assigned to the image acquisition interface and, thus,
RETIMAC estimates the next optical flow field by using
the images at time + 1,¢, and¢ — 1. In this way, the
transfer of data between different image memories is
avoided, since the shifting of images is only performed
by the dynamic addressing of the dual-port chip selects
(/CSBOB-/CSB3B, /CSBOA-/CSB3A), with a savings in
computational effort. It should be noted that port A of

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 9, 2008 at 13:19 from IEEE Xplore. Restrictions apply.



370 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998
CEa DualPort /CElojg— CSMEM_WRB /CEa DualPort /CE N
@—0Ea  RAMO  /OEK R E T :[ M A @-{/0Ea /06
R/Wa R/ WP R/Wa R/W
P1/0¢7:0a  1/0¢710dbi OUT S0 ———/0(1S10>a 1/0¢1510)
PAB(9I0)a  AB(I0 b COUNT2_MEM(14:0) P1AB(14100a  AB(14:0)
/CSBOB-/CSB3B /UP_CS |«
CEa DualPort /CEhleg DB_INC710) UP_DB(7:0) |
@—y0Ea  RAML /DEblg— — AB_MEM(9:0 UP_AB(3:0) ¢
Lo Ay
P07 00 1/ Dbl iR r
AB(SI0da  AB(IDbieg EOL > >
POLIFEMO /CSADB-/CSA3B 4 A'Ei .l
/RD POLIF_RD Vpp I
D0-D7 $ POLIF_DB(7:0> Vssig———
AD-A2 POLIF_AB<2:0) BIST_TEST/(¢—————
/CS POLIF_CS BIST_MUL9X9|——— P>
/WR POLIF_WR  BIST_MUL22X22}———— P
LE i LE BIST RAMI—
CSLUX
/RESET /
~[:/CE(1 DuatPort /CElleg
D—yOEa  RAM2 /OEbrg Interface to
R/Wa R/Vb? an 8 or 16 bits
P1/07:0a 1707100k microprocessor
PAB(3I0)a  AB(IID e
/CEa  DualPort /CEiokg—
@Y/DEa  RAM3 /OFolg—!
R/Wa R/WirD
P1/0¢7:00a  1/0¢7:0 0 —
—PAB(310%a  ABCI0)bid——

Fig. 4. Architecture of a system based on RETIMAC grabbing the images with the Polifemo chip.

3)

4)

input memories is always used for writing, while port B
is only for reading the stored images.

A Dual-Port Memory for the RETIMAC ResultsThis
bank has been designed to be read/written at 16 bits and
is called the output memory of RETIMAC. In particular,
the bank is written by the RETIMAC chip, while the
same memory is accessed from the external CPU to read
the results produced by RETIMAC, i.e., the optical flow
vector components at 32 bits. In particular, the 32k

16 bits output memory stores 32 bits results (16 bits at
a time) in subsequent cells. It contains eight complete
fields of 26 x 26 (26 and not 32 for the boundaries)
U, V, div results. This allows the reasoning in time on
the evolution of optical flow fields, without spending
time to copy optical flow fields from the RETIMAC
output memory on the microprocessor memory. The
components of each single vector are stored with the
following format as shown at the bottom of the page.

A Microprocessor: The microprocessor can read the
results produced by RETIMAC directly on port B of
the output memory (dual-port). As already pointed out,
the results are the valuég V' anddiv, from which the
components of the actual optical flow vectors can be
easily obtained. Moreover, the microprocessor can set
and reset Polifemo and RETIMAC configurations. For

to impose the operating modes. In addition, the micro-
processor can perform higher-level processing on the
optical flow fields estimated, e.g., interpreting the optical
flow in time for counting moving people such as in our
main application [16], identifying moving objects, etc.
Usually, this processing is much less complex and costly
than the optical flow estimation; thus, the microprocessor
can even have low power.

In the following, the typical sequence of the main
phases for optical flow processing and sensor setup are
reported:

ARS;

SENSOR SET-UP 1;
START O.F.Estimation 1;
WAIT;

SENSOR SET-UP 2;
RESET;

START O.F.Estimation 2.

If the microprocessor needs to modify the sensor setup,
it can keep RETIMAC in a wait mode for changing the
contents of Polifemo internal registers and then reset
and restart the optical flow estimation processing with a
new configuration.

these operations, it must write into the Polifemo internal Table | shows the RETIMAC timing performance related to
registers (resolution, frame size, integration time, wathe estimation of optical flow and the range for the integration
time, start, etc.) and into the RETIMAC control registetime of Polifemo.

div(31:16)

div(15:0)

U(31:16)

V(31:16)
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RETIMAC PERFORMANCE

MEMIN
—Pp1 DECOD AB,MEMZ(%))—I
SEQUENCER )
— |1 EOK MEM_ROT
0L
CSAOB
DECOD CSAIB
Pt DECOD  CSAZB
CSA3B
CSBoB UP_INTERFACE
CSB1B
CSB2B
CSB3B ARS POLIF_AB(2:0)
UP_AB(3:0) POLIF_DB(7:0)
UP_DB(7:0) POLIF_CS
UP_WR POLIF_RD
POLIF UP_RD POLIF_WR
UP_CS
P A MEM20:0)  AB_MEM(9:0) [l — pECOD
Pt DECOD POL_RD POL._RD
POL_WR POL._WR
POL_AB(2:0) POL_AB(2:()
POL_DB(7:0) POL_DB(7:0)
MEM_OUT
COUNT2_MEM(14:0)
DECOD CSMIIM_WRB
RAM_INT
’ RAM_INB(I17:0)  RAM_OUTA(I70) |
Ly BIST_TEST BIST_RAM -*
DECOD
GEN_DATA
RAM_INA(I17:0) RAM_OUTB(17:0)
_’ BIST_TEST OUT(15:0)
bt DECOD BIST_MULYx9
ﬁ DB_IN(7:0) BIST_MUL22x22
Fig. 5. RETIMAC block diagram.
TABLE | ¢ MEM_ROT performs the dynamic selection (“rotation

technique”) of input memories at the end of each frame.

RETIMAC system clock

Fmar =10MHz

OF row processing time

Trowor = 189.9us

OF processing time for a frame of 32 x 32

TOF/rame = 6.076ms

Min integration time for a row

Tirowmin = 191ps

Max integration time for a row to perform 10frame/s | Trrowmar = 3.117ms

V. RETIMAC FUNCTIONAL DESCRIPTION
RETIMAC is a digital CMOS ASIC (1zm ECPD10 ES2

« SEQUENCER is comprised of three parts: a state gen-
erator, a state decoder, and a control generator for data
path. The sequencer constitutes the state machine which
manages all the sequential operations of the device.
MEMIN is the interface toward the 4 dual-ports input °
memories. It generates a special addressing (“cross” ad-
dressing) to get directly samples of % 7 pixels of
submatrix, that is, the basic data for the algorithm for
optical flow estimation. The sequence of addresses is
strongly simplified by the fact that four dual-ports are
used instead of a single one.

At the same time, the fourth memory is configured for
copying the image from the Polifemo chip. The mech-
anism implemented has been described in the previous
section.

POLIF consists of the interface between RETIMAC
and Polifemo optical sensor. This block is capable of
transferring image segments from the Polifemo chip to
input memories line by line, 32 lines per frame.

. ~~ __» MEM_OUT is the interface toward 32k 16 bits mem-
technology) that acts as a coprocessor dedicated to estimating -

optical flow fields by using the previously presented algorithm.

Internally, it is comprised of 8 main subsystems as shown
in Fig. 5. The subsystems, with their respective roles, are as
follows.

ory for the output of results. This block also manages
the rotation of optical flow fields position in the output
memory. Each optical flow needs 26ells of 6 bytes,
that is, 4056 bytes; thus, every 4096 bytes, an optical
flow field is stored.

UP_INTERFACE is the interface with respect to the
microprocessor. It allows the chip reset and the accessing
to the internal register of RETIMAC (see Section V-A).

RAM_INT is a 125x 18 bits internal RAM, which is
used to perform read—modify—write operations on inter-
mediate resultéE?, E2, E. E,, E, E,, E, E,) for estimat-

ing coefficients of matrix4A and vectorK, during the
optical flow estimation. This memory allows us to achieve
a special data path architecture that calculates the velocity
vectors very quickly, as discussed in the following.
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Fig. 6. The main blocks of RETIMAC data path.
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TABLE I
CoNTROL ReGISTER DECODING AND OPERATING MODES

up_db(1:0) [ Control Register (Write only) decoding

00 RESET MODE
01 START Optical Flow Estimation MODE 22 div, U, V related to
10 WAIT MODE central pixel
[~
Al
00 v
%301 subltraction of stored
Al 44 “cross” multiplications of
kg1 U.V.div first column (1° 5x5 pixel
EO%OI 32 sub-matrix) A
81 o0
B A N
“01%01

right close column
“cross” multiplications and

\‘dccumulations

2° 5x5 pixel sub-matrix

Fig. 7. Technique for estimating the next velocity vector by using

* GEN_DATA is the data path with a pipeline structure that

leads to the estimation of the optical flow vectors (see in
Section V-B for details).

A. Operating Modes

RETIMAC presents some operating modes which are set by
selecting the RETIMAC internal control register that is written
by the microprocessor using addregs ab(3:0) = 8 data bus
up_db(7:0)and write signalup_wr, Table Il shows control
register decoding, while in the following a brief discussion
of each operating mode is reported. The operating modes of
RETIMAC are not limited to those reported in the table; the 3) WAIT and RESET: When RETIMAC is in one of these
complete set is discussed in the following, together with the
operating modes of a system based on RETIMAC.

1) SENSOR SETUP:Before performing other operations,

2)

the microprocessor must take control of the sensor
to begin its setup: to this end, the micro must reset
RETIMAC by activating the asynchronous reset ARS or

by writing the RESET MODE code into the RETIMAC  4)

internal control register, so that this releases the control
of the sensor to the microprocessor. The sensor setup can
consist of imposing the image window to be grabbed, as
well as setting the integration time and/or other registers
[63].

START Optical Flow Estimation MODE:After sensor

read—-modify—write operation of internal RAM.

to be grabbed by addressing a specific regisder;
the same time

e Optical flow estimation processinghe chip exe-
cutes the optical flow estimation algorithm getting
data from the other three input RAM’s by means
of their ports B.

« End of line and end of frameat the end of line
processing RETIMAC activates the EOL signal;
after 32 EOL’s, the EOF (end of frame) signal goes
low indicating that a complete set of frame results
is ready in the output memory.

states, as well as when RETIMAC is between EOF and
the next LE, the microprocessor can directly manage
the Polifemo sensor. The microprocessor can write the
internal registers of Polifemo and/or directly read the
grabbed image. This allows the adoption of more than
one RETIMAC chip on the same Polifemo chip.
TESTING MODE: The BIST_TEST pin is capable of
starting a built-in testing mode on silicon compiled
macrocells (MUI9x9 and MUL22x22 internal mul-
tipliers, and RAM25x 18 internal memory): note the
characteristic signature of testing structure at the three
dedicated outputs: BIST_MUIx9, BIST_MUL22x22,
BIST_RAM.

setgp, the micropr"ocessor writes ‘,‘START Optical Flow gnce the silicon compiled macrocells are tested, the chip
Estimation MODE" (see Table II) into RETIMAC con- pepayior can be tested by using a set of test vectors including
trol register. As a consequence, RETIMAC waits thgeqyences of images and generated optical flow fields. To this

line ready, LE (synchronism signal), from Polifemo andapyg quring the first task of project OFCOMP, a simulator of
then, it begins the optical flow field estimation througleTimAaC chip has been implemented [62].

digital processing in four phases.

B. Data Path Description

¢ Input memory loadingRETIMAC stores 8-bit sen-
sor data of an image line (32 samples) into thﬁ0
selected port A of the assigned input dual-porg
memory.

It is very interesting to analyze in detail the complete data
w and technique used to estimate optical flow vectors row
y row (see Fig. 6). The algorithm is mainly contained inside
block GEN_DATA.

e Asking for the next row and optical flow estimation The first operation consists of calculating partial derivatives
processingthe chip writes to Polifemo the next rowof the image brightnes&,., E,, E;) for each element of the
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Fig. 8. RETIMAC chip layout.

first 5 x 5 pixels submatrix. Each partial derivative is passed fire obtained taking the 32 LSB’s. This can be done since the
a comparator. According to Section IlI-A, the OFC equatiorsubtraction makes a strong reduction in magnitude.
which have 1)E, = 0 or 2) |E,| and |E,| larger than a fixed It should be noted that for calculating the first vector com-
threshold are neglected. Thus, if the comparator producepanentsl, V, div of an optical flow field, a scan by column
negative result, the corresponding constraint equation is rdtthe first 5 columns is needed. Then, proceeding to the next
considered; this allows us to eliminate unsuitable OFC’s. Thiéxel, only the next column on the right must be processed
also avoids overflow in the last multiplicator, and is the reasam order to estimate partial derivatives and their corresponding
why only the first 32 bits of/, V' and div are saved into the multiplications (see Fig. 7). In particular, before collecting that
output memory instead of 44 bits. After several experimentdata, the coefficientéog, do1, G11, I%O, kv represent the data
we have fixed the threshold to 180. relative to the previous pixel. For estimating the new set of
The second step is to execute multiplications among theefficients, it is enough to subtract from these values the
partial derivatives of the image brightnesg?( E2, E,E,, multiplications of the image brightness (5 for each pixel, 25
E.E,, E,E,) associated with each element of the submger column) relative to the oldest column on the left of the
trix. These results are accumulated in the internal memangighborhood, and to add the new multiplications of the new
(RAM_INT) of 5 x 5 x 5 elements of 18 bits each. At thecolumn on the right (5 for each pixel, 25 per column). This
same time, these values are used for estimating coefficiemtschanism is repeated for each element of the new column:
Goo, Qo1, 011, I%O, ke by accumulating those of each pixel ofestimating multiplications of the image brightness, extracting
the neighborhood according to the above-reported equatidhs old value from the memory, subtracting its value from the
(this is done by using registdr as reported in Fig. 6. On the corresponding coefficient, adding the new multiplications to
basis of these coefficients, the solution of the system of twe coefficients; these are also stored in the memory once they
equation in two unknowns can be obtained by estimating thee produced.
multiplications (with a 44 bits output) between coefficients In this way, it is sufficient to calculate 25 accumulations
and, thus, estimating the differences. These results are poo- the right column close to the first submatrix in order
duced on 45 bits, from which the componeiisl” anddiv to obtain the next vector, by removing at the same time
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25 accumulations related to the first calculated column witlni]
a read—modify—write operation on internal memory. This is
performed by using the direct connection of the output gfy
block sub/add to one of its inputs as reported in Fig. 6. This
mechanism reduces the computational effort to 0.067 MO
and thus RETIMAC executes 0.67 MOPS, without considering

the time for grabbing images, loading image pixel values,
saving optical flow fields, etc. [14]
[15]

VI. DIScUSSION AND CONCLUSIONS

RETIMAC has been implemented with ;im CMOS
ECPD10 ES2 process, has 28 inputs, 61 outputs, 8 tristate1@
NC. It presents 77 602 transistors, for about 19400 equivalent
gates, and a silicon area equal to 32.715%{84%.453 mm
with 1504:m margin for die cut). The layout of RETIMAC is [17]
shown in Fig. 8, where the area on top right is thex222 (18]
multiplicator, and that on the top left the 3818 multiplicator,
while the area in the center is the memory of 125 registelS!
of 18 bits each. [20]

The RETIMAC chip is capable of estimating optical flow
fields in real-time and has been developed for project OFz'l]
COMP (Optical Flow for COunting Moving People) DIM 45
ESPRIT Ill MEPI [62]. A system based on RETIMAC for
counting people is an improvement of a preliminary systelLﬁ2
in which a high performance DSP was used for the samms;)
purpose [16].

It should be noted that the counting of people getting infolft"
of a bus is only one of the various real-time applications in
which RETIMAC could be used, e.g., autonomous navigatiof>!
surveillance, tracking of moving objects, etc. Therefore, the
adoption of RETIMAC could allow the implementation of[26]
low-cost real-time systems with a stage of optical flow field es-
timation, and particularly suitable for the applications in whickp7]
the spatiotemporal reasoning about flow fields is mandatory.

[28]
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