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Optical Flow Computation 
U sing Extended Constraints 

Alberto Del Bimbo, Member, IEEE, Paolo Nesi, Member, IEEE, and Jorge L. C. Sanz, Senior Member, IEEE 

Abstract- Several approaches for optical flow estimation use 
partial differential equations to model changes in image bright­
ness throughout time. A commonly used equation is the so-called 
optical flow constraint (OFe), which assumes that the image 
brightness is stationary with respect to time. More recently, 
a different constraint referred to as the extended optical flow 
constraint (EOFC) has been introduced, which also contains 
the divergence of the flow field of image brightness. There is 
no agreement in the literature about which of these constraints 
provides the best estimation of the velocity field. In this paper, 
two new solutions for optical flow computation are proposed, 
which are based on an approximation of the constraint equations. 
The two techniques have been used with both EOFC and OFC 
constraint equations. Results achieved by using these solutions 
have been compared with several well-known computationaI 
methods for opticaI flow estimation in different motion conditions. 
Estimation errors have also been measured and compared for 
different types of motion. 

I. INTRODUCTION 

M OTION analysis from image sequences addresses the 
estimation of the relative movements between the ob­

jects in the scene and the TV camera. Interest in this research 
subject originates from the fields of 3-D object reconstmction 
[1], [2], object tracking [3]-[5], and robot navigation [6], [7]. 

BasicalIy, three approaches are considered in the literature 
for motion estimation: matching (correspondence), spatio­
temporal filtering, and the gradient-based approach. In the 
first approach, local matching techniques are used to evaluate 
the displacements in consecutive frames for selected elements 
(lines, corners, patterns, etc.) of the moving objects [8], 
[9]. Finding a sufficient number of point correspondences in 
consecutive frames alIows direct estimation of the 3-D motion 
of the object under observation [lO], [11]. In the second 
approach, the estimation of motion is obtained by filtering in 
both the temporal and frequency domains. Filtering is tuned in 
frequency and space in order to detect the motion components. 
TypicalIy, these techniques do not operate over the local 
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information but use alI the information contained in the whole 
image sequence [12]-[14]. In the gradient-based approach, the 
brightness changes in the image ftow are considered, thus 
leading to motion estimation [15]-[20]. The ftow field of these 
changes is commonly referred to as "optical ftow" or "image 
ftow." Generally speaking, the optical ftow differs from the 
perspective projection of the 3-D motion on the image pIane 
(commonly referred to as "velocity field" or "motion field") 
[21]-[24]. Nevertheless, in many applications, the optical ftow 
is a good approximation of the tme motion in the image 
sequence. 

Typically, optical ftow estimation techniques use partial 
derivative constraint equations that model changes in image 
brightness throughout time. A commonly used constraint is 
the so-called optical ftow constraint (OFC) , which is similar 
to the continuity equation of ftuid-dynamics and assumes that 
image brightness is stationary with respect to time. 

Two main approaches for the computation of optical 
ftow can be found in the literature: regularization- and 
multiconstraint-based approaches. 

In the regularization-based approach, the optical ftow field 
estimation is considered as an ill-posed problem in the sense 
of Hadamard [25], and solutions are obtained by minimizing 
a functional where a smoothness constraint is appropriately 
weighted to regularize the solution. Usually, methods based 
on this approach lead to iterative solutions, and the velocity 
is evaluated at every point in the image. Regularization-based 
approaches using the OFe have been presented in the literature 
[16], [17], [26]-[29]. Typically, these methods yield "dense" 
optical ftow fields in the sense that the estimation process 
evaluates the optical ftow field that is also inside the objects 
in motion and not only on the object contours. Drawbacks in 
the regularization-based approach are related to the fact that 
problems occur in the presence of object occlusions. In this 
case, the velocity exhibits discontinuities on the boundaries, 
and there is the undesirable effect that the optical ftow field 
of one object propagates inside the overlapped objects, where 
the depth of propagation depends on the number of iterations 
and on the weighting factor. The regularization processes in 
many cases lead to smooth very important information about 
the object shape [29]. Regularization-based techniques that 
evaluate the optical ftow only on the contours of the moving 
objects have been presented in [8] and [30]. 

The multiconstraint-based approach to optical ftow esti­
mation is based on the observation that the stationariness 
condition-assumed for the image brightness in the definition 
of the OFC--can also be made valid for any motion-invariant 

1057-7149/96$05.00 © 1996 IEEE 



DEL BIMBO et al.: OPTICAL FLOW COMPUTATION USINO EXTENDED CONSTRAINTS 721 

function F, where F may represent any function such as 
contrast, entropy, average, variance, curvature, gradient mag­
nitude, moments of local intensity, color spectrum, images 
obtained with different light sources, etc. By using a set of 
these constraints evaluated at the same point in the image, 
a solvable system of equations with optical tlow components 
as unknowns can be obtained [31], [32]. Other less generic 
methods adopt different constraints with second-order partial 
derivatives of the image brightness [18]-[20]. Multiconstraint­
based solutions are solved with traditional numerical methods 
for the inversion or pseudoinversion of the coefficient matrix. 
Results obtained with these techniques strongly depend on the 
choice of F functions used to build the set of constraints. 
Other researchers have assumed that the constraints evaluated 
in a set of neighboring pixels on the image represent the 
same velocity as a first approximation, provided that the 
optical tlow field under observation is very smooth. Therefore, 
a set of similar constraints in a neighborhood of a pixel 
yields an overdetermined system of equations for optical 
ftow estimation. This approach is usually called multipoint 
method [33]. Multipoint solutions were proposed in [34], 
where an error term was added and estimated together with the 
optical tlow field, and in [35], where a multipoint technique 
with a linearized version of the OFC was used in a large 
neighborhood of each image point. 

In the multiconstraint-based approaches, different methods 
are used to obtain smooth solutions: 

i) prefiltering to regularize the initial data (sequence of 
images) [34], [20], [31], 

ii) a large neighborhood, collecting a large number of 
constraints [35], 

iii) post-filtering on the estimated optical tlow fields [20]. 

Unfortunately, these operations also result in some imprecision 
in the measure of the moving object boundaries since a kind 
of diffusion occurs. 

More recent1y, a different constraint equation has been 
introduced, which also contains the divergence of the tlow 
field of the image brightness [36]. This was obtained on the 
basis of the work presented in [37], as widely discussed in 
[24]. In the following, this equation will be referred to as 
extended optical tlow constraint (EOFC). EOFC has been 
analyzed by a few authors [21], [23], [24]. As to the selection 
between these two constraint equations, there is no agreement 
in the literature about which of these two constraints provides 
the best estimation of the velocity field. Their analytical 
comparison has been carried out by the authors in [24]. To the 
best of our knowledge, no solutions for optical tlow estimation 
based on EOFC have been proposed. 

In this paper, two new techniques for the estimation of op­
tical tlow are discussed, which are based on an approximation 
of the partial differenti al equation modeling the changes in the 
image brightness. These two techniques have been used both 
with EOFC and OFC constraint equations. A comparison is 
carried out with gradient-based selected solutions previously 
presented in the literature under the most significant 3-D 
motion conditions. A comparison is also carried out with 
respect to the computational complexity. 

~ 
X 

Fig. 1. Camera geometry and apparent motion. 

This paper is organized as follows: Equations modeling the 
velocity field and the optical tlow are reviewed by using a 
unified notation in Section II as in [24]. In Section III, the 
new solutions for estimating optical tlow are presented. In 
Section IV, a comparison over a wide set of test images is 
carried out between the new solutions presented in this paper 
and selected solutions from the literature and, in many cases, 
estimating errors with respect to the true velocity fieid. FinalIy, 
conclusions are drawn in Section V. 

II. BASIC NOTIONS 

In this section, equations modeling the velocity fieid and op­
ticai tlow with their constraint equations are brietly reviewed. 

The Velocity Field: The velocity fieid is defined as the 
perspective projection on the image pIane of the real 3-D 
object velocity [38]. Given a point P in the 3-D space, 
identified by vector1 P = (X, Y, Z/, point p = (x, y, l)t 
is its perspective projection on the image pIane at focallength 
Z = l, where x, y, l are taken with reference to the system 
of coordinates centered in o' (see Fig. 1). Therefore, the 
following relationship holds: p = i P, and the projection 
of the 3-D motion on the image pIane can be obtained by 
taking derivatives. Considering that the 3-D motion of the 
generic point P can be modeled as comprised of transiational 
W = (Wl, W2 , W3 )t and rotational n = (01 , O2 , 03)t 
velocity components, two scalar equations are obtained for 
the two components of velocity fieid 

. lWl W3 yOl - X02 
Pl = Z - X z + m2 - y0 3 - x l (1) 

. lW2 W3 yOl - X02 
P2 = Z - yZ + X 0 3 - mI - y l (2) 

The Optical Flow Constraint: The change in 
brightness E(x(t), y(t), t) with respect to t is 

dE BE dx BE dy BE 
di = Bx dt + By dt + 8t' 

the image 

(3) 

If the image brightness of each point in the image is supposed 
to be stationary with respect to the time variabie (i.e., dE / dt = 
O), then ilie following expression holds: 

(4) 

where the abbreviation for partiai derivatives of the im­
age brightness has been introduced, and u, v correspond to 

1 For the sake of clarity in the notation, vectors will be referred to in boldface 
in the following discussion. 
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dx/dt, dy/dt, representing the components of the local ve­
locity vector V along the x and y directions, respectively. 
Equation (4) is usually called the "optical fiow constraint" 
(OFC), and its solutions are referred to as "optical fiow" or 
"image fiow," and, in generaI, represent only an approximation 
of the velo city field p [24]. 

The Extended Optical Flow Constraint: According to the 
observation that the OFC is very similar to the continuity 
equation of finid dynamics, a more generaI motion constraint 
equation (relating the density of the image brightness feature 
derivatives and the components of the local velocity vector 
and its derivatives) was early presented by Schunck in [37] 

where 

8E 
V' . (Ed) + - = O 

8t 

V'. (Ed) = d· V'E + EV'· d 

(5) 

(6) 

where d is a different optical fiow with respect to that defined 
with the OFC [24]. Since the image brightness is the limi t, for 
the vanishing of the ratio between the power received by an 
image pIane element and the size of this element [39], [40] 
(i.e., it is an energy density usually expressed in Wattlm2), in 
[36], a conceptually new constraint equation, with the above 
structure, was introduced and called the extended optical fiow 
constraint (EOFC) 

where the same notation of OFC has been used for the 
optical fiow field defined by this constraint equation. From 
the structural point of view, the EOFC equation (5) differs 
from the OFe equation (4) only in the term involving the 
divergence of the optical fiow field vector (EV' . V). If the 
EOFC is supposed to be the true expression of the optical 
fiow field, the OFC can be considered to be valid only in the 
region where the divergence of the optical fiow field V is 
equal to zero. It is worth noting that this term vanishes only 
for motions that are parallel to the image pIane. 

III. NEW TECHNIQUES BASED ON EOFC AND OFC 

In this section, two new solutions for optical fiow estima­
tion based on an approximation of the EOFC equation are 
presented. Two additional new OFC-based solutions are also 
derived by using the same approach, for comparison purposes. 
AlI of them belong to the class of the multiconstraint-based 
approaches. 

A. EOFC-Based Solutions 

Let p = (x, y) be the perspective projection on the image 
pIane of a point P in the 3-D space. Assume that the optical 
fiow changes following a law that is approximately linear with 
p. A linear approximation of the EOFC model around the point 
under consideration Po can be obtained by considering that the 
changes of every element of the EOFC equation have at most 
a linear dependence on dp in each location (Po + dp) at time 
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t. Therefore, the EOFC can be rewritten as 

Et(Po + dp, t) + V' E(po + dp, t) . V(Po + dp, t) 

+ E(po + dp, t)(ux(Po + dp, t) + vy(Po + dp, t)) = O. 

(8) 

By using the first-order approximation of every term and 
considering the components up to the second order in dx, dy, 
(8) can be written as 

(Et + Exu + Eyv + Eux + Evy) 

+ (Etx + Exxu + Eyxv + 2Exux + Eyvx 

+ Exvy + Euxx + EVyx)dx 

+ (Ety + Exyu + Eyyv + Eyux + Exuy 

+ 2Eyv y + Euxy + EVyy)dy = O. (9) 

Numerical solutions are obtained in the discrete domain 
since images are sampled on a fixed grid of points at regular 
time intervals. In the folIowing, an image will be considered 
to be the discrete collection of the irradi ance measures Ei,j,t 
for i = 1, ... ,M and j = 1,' .. ,M along the x and y axes, 
respectively. 

If the optical fiow folIows a law that is approximately linear 
in (x, y), a smoothed solution for optical fiow estimation can 
be obtained by using a linear approximation of the constraint 
in the N x N neighborhood of each point on the grido 
This assumption is valid only if the optical fiow field under 
observation is smooth. 

First-Order EOFC-Based Solution: A first-order solution 
is obtained, assuming that (9) vanishes for alI the dp 
components. This condition wilI be satisfied if the folIowing 
systems are verified: 

(IOa) 

Etx + Exxu + Eyxv + 2Exux + EiJx + Exvy 

+ Euxx + Evyx = O (lOb) 

Ety + Exyu + Eyyv + Eyux + Exuy + 2Eyvy 

+ Euxy + Evyy = O. (lOc) 

Neglecting the second-order derivati ves of the velocity field 
( Uxx , v yx , u xy , Vyy ), the folIowing system of equations for 
each pixel is obtained: 

Et + Exu + Eyv + Eux + Evy = O (lla) 

Etx + Exxu + Eyxv + 2Exux + Eyvx + Exvy = O (Ilb) 

Ety + Exyu + Eyyv + Eyux + Exuy + 2Eyv y = O. (Ile) 

These equations are used to build an overdetermined system of 
three (N x N) equations in six unknowns (u, v, u x , v y , u y , v x ). 
This system is formed by taking the folIowing equations for 
alI (i,j) in the N x N neighborhood of Po 

Et(i,j,t) + EX(i,j,t)U + EY(i,j,t) V 

+ E(i,j,t)Ux + E(i,j,t)Vy = O (I2a) 

EtX(i,j,t) + EXX(i,j,t)U + EYX(i,j,t)v 

+ 2Ex(i,j,t)Ux + EY(i,j,t)vX + EX(i,j,t)Vy = O (l2b) 

EtY(i,j,t) + EXY(i,j,t)U + EYY(i,j,t)v 

+ EY(i,j,t)uX + EX(i,j,t)Uy + 2EY(i,j,t)vy = O (I2c) 
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TABLE I 
ERROR COMPARISON OF TRE ESTIMATED OPTICAL FLOW FlELDS FOR TRE TRANSLATIONAL MOTION, TEST SEQUENCE WITH A SUPERIMPOSED 

PLAID PATTERN ON THE WHOLE IMAGE. THE PATTERN WAS MOVING AT 45° WITH VELOCITY COMPONENTS (1, 1) PIXEL PER FRAME 

N == 3 N==5 
algorithm Err1iVn VarErr"y Errcp VarErr. ErrnYn VarErr"y" Errcp VarErr. 

Zero-order EO FC-based 6.683 0.0013 0.037 0.0021 6.018 0.0001 0.004 0.0001 
First-order EOFC-based 10.846 0.0039 0.086 0.0032 7.265 0.0003 0.018 0.0002 
Zero-order OFC-based 5.695 0.0005 0.008 0.0008 5.680 0.0000 0.001 0.0001 
First-order OFC-based 5.653 0.0001 0.010 0.0002 5.696 0.0000 0.008 0.0000 

N -7 N -9 
algorithm ErrnYn VarErr"y" Errcp VarErr. ErrnYn VarErr"y" Errcp VarErr. 

Zero-order EOFC-based 5.732 0.0000 0.000 0.0000 5.651 0.0000 0.000 0.0000 
First-order EOFC-based 6.211 0.0000 0,000 0.0000 5.835 0.0000 0.000 0.0000 
Zero-order OFC-based 5.631 0.0000 0.000 0.0000 5.621 0.0000 0.000 0.0000 
First-order OFC-based 5.662 0.0000 0.002 0.0000 5.652 0.0000 0.001 0.0000 

without filtering with Gaussian post-filtering, N == 3 
algorithm ErrnVn VarErr V" Errcp VarErr<p ErrnYn VarErr"V Errcp VarErr<p 

Horn & Schunck, 12 It. 15.902 0.0044 0.967 0.0391 16.474 0.0023 0.986 0.0268 
Horn & Schunck, 24 It. 6.271 0.0006 0.422 0.0032 6.611 0.0005 0.423 0.0022 
Horn & Schunck, 36 It. 3.032 0.0001 0.163 0.0004 3,251 0.0002 0.267 0.0002 
Horn & Schunck, 99 It. 1.463 0.0000 0.042 0.0000 1.804 0.0002 0.040 0.0000 
Haralick & Lee 10.632 0.0035 0.167 0.0195 8.465 0.0032 0.012 0.0004 
Tretiak & Pastor 7.097 0.0183 0.462 0.0385 3.464 0.0035 0.030 0.0048 

with Gaussian post-filtering, N - 5 with Gaussian post-filtering, N - 7 
algorithm ErrnYn VarErr"y Errcp VarErr. ErrnYn VarErr"y" Errcp VarErr. 

Haralick & Lee 7.61 0.0029 0.011 0.0002 7.49 0.0005 0.009 0.0002 
Tretiak & Pastor 3.55 0.0034 0.034 0.0030 3.81 0.0012 0.062 0.0028 

1 9 
Fig. 2. Sequence of images where an object with a superimposed plaid pattern is moving at 45° witb respect to the X axis (first and nintb frame, 
128 x 128 image resolution). 

and solving for (u, v, u x , v y , u y , v x )' The overdetermined sys­
tem is solved by using the least-squares technique and LU 
decomposition. 

Zeroth-Order EOFC-Based Solution: Another multipoint 
solution based on the EOFC could be obtained by considering 
only the zeroth-order components of (9), thus yielding 

Et + Exu + Eyv + Eux + Evy = O. 

For the estimation of the velocity components at Po, an 
overdetermined system of N x N EOFC equations in four 

unknowns (u, v, u x , vy) can be built. Since, in the EOFC 
equation, the unknowns u x , and vy are linearly dependent 
on each other (having the same coefficient E), the constraint 
equation 

Et(i,j,t) + EX(i,j,t)U + EY(i,j,t)V + E(ì,j,t) \7. V = O (13) 

is used to build an overdetermined linear system of N x N 
equations in three unknowns (u, v, \7 . V) for all (i, j) in the 
N x N neighborhood of Po' This system is solved by using 
a least-squares technique. 
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Ca) (b) 

Ca') (b') 

Cc) 3 (c) 99 

Fig. 3. Optical flow estimation referred to the fifth frame of the sequence in Fig. 2 obtained with (a) zeroth-order EOFC-based solution, N = 3; (b) 
first-order EOFC-based solution, N = 3; (al) zeroth-order OFC-based solution, N = 3; (bi) first-order OFC-based solution, N = 3; (c) Horn and 
Schunck OFC-based solution (iterations: 3, 99), Oé = 0.6; (d) Haralick and Lee multiconstraint OFC-based solution, 3 X 3 post-filtering; (e) Tretiak and 
Pastor OFC-based direct solution, 3 x 3 post-filtering. 

B. OFC-Based Solutions 

The OFC-based solutions have been obtained by following 
the same approach adopted for the EOFC-based solutions. In 
this case, the constraint (9) takes the fonu 

(Et + Exu + Eyv) 

+ (Etx + Exxu + Eyxv + Exux + Eyvx)dx 

+ (Ety + Exyu + Eyyv + Exuy + Eyvy)dy = O, (14) 

First-Order OFC-Based Solution: The first-order OFC­
based solution is obtained by assuming that (14) vanishes 

for all the dp components. If this condition is satisfied, three 
constraint equations for each pixel will be defined 

Et + Exu + Eyv = O 

Etx + Exxu + Eyxv = O 

Ety + Exyu + Eyyv = O 

(l Sa) 

(lSb) 

(1Sc) 

where the first-order derivatives of the optical flow field 
(u x , u y , V x , vy ) have been neglected, These equations are used 
to define a multipoint solution of three (N x N) equations on 
two unknowns. 
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(d) (e) 

Fig. 3. (Continued). 

TABLE II 
MEASURES OF THE ESTIMATION ERRORS FOR A MOVING PLAID PATTERN WITH THE ADDITION OF A 20% GAUSSIAN NOISE. TRE PATTERN MOVES 

AT 45° WITH VELOCITY COMPONENTS (1,1) PIXEL PER FRAME. THE ESTIMATIONS BAVE BEEN OBTAINED IN EACH IMAGE 

POINT AND ASSUMING N == 5 FOR THE MULTIPOINT ALGORITHMS. THE GAUSSIAN FILTERING OF THE IMAGES (PREFILTERING) 

OR THE POSTFILTERING ON THE OPTICAL FLOW FIELDS BAVE BEEN PERFORMED BY USING A 5 x 5 OPERATOR WITH (7 == 1 

withQut filtering with Gaussian pre-filtering 
algorithm ErrllVII VarErrllVII Err", VarErr~ Err1iVii VarErr;,VII Err~ VarErr~ 

Zero-order EOFC-based 33.13 0.037 2.03 0.121 8.92 0.023 0.96 0.033 
First-order EOFC-based 63.43 0.024 14.32 0.449 13.80 0.D20 0.66 0.027 
Zero-order OFC-based 20.73 0.012 0.23 0.075 7.24 0.010 0.09 0.018 
First-order OFC-based 22.10 0.012 0.34 0.053 7.87 0.009 0.27 0.014 
Horn & Schunck, 12 It. 19.81 0.053 7.97 0.391 16.56 0.019 0.46 0.086 
Horn & Schunck, 24 It. 15.73 0.054 6.25 0.314 7.82 0.018 0.11 0.043 
Horn & Schunck, 36 It. 14.86 0.054 6.11 0.304 5.02 0.018 0.09 0.038 
Horn & Schunck, 99 It. 14.61 0.054 5.94 0.054 3.74 0.018 0.10 0.036 
Haralick & Lee 87.43 0.217 25.0 0.660 36.68 0.038 3.78 0.137 
Tretiak & Pastor 82.20 10.82 44.0 0.960 31.05 2.455 18.06 0.457 

with Gaussian post-filtering 
algorithm Err1ivii VarE rr::V 

Err~ VarErr{t 

Haralick & Lee 16.07 0.014 1.53 0.134 
Tretiak & Pastor 15.79 0.501 31.06 0.771 

1 5 
Fig. 4. Outdoor scene where a car moves in translational motion along the X-axis (first and fifth frarne, 128x 128image resolution). 

725 

This solution is similar to the second solution presented by 
Tretiak and Pastor in [19]. However, in the present approach, 
the three constraint equations are used in the neighborhood 

(N x N) of each pixel, thus defining a multipoint solution, 
whereas in [19], a system of three equations in two unknowns 
is solved for every pixel. 
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Fig. 5. Optical fiow estimation referred to the third frame of the sequence in Fig. 4 obtained with (a) zeroth-order EOFC-based solution, N = 3; (b) 
first-order EOFC-based solution, N = 3; (a') zeroth-order OFC-based solution, N = 3; (b') first-order OFC-based solution, N = 3; (c) Horn and 
Schunck OFC-based solution (iterations: 3, 99), a = 0.6; (d) Haralick and Lee multiconstraint OFC-based solution, 3x3 post-filtering; (e) Tretiak and 
Pastor OFC-based direct solution, 3 X 3 post-filtering. 

Zeroth-Order OFC-Based Solution: The zeroth-order 
OFC-based solution is obtained by considering only the 
zeroth-order components of (14) 

For estimating the optical fiow at Po, an overdeterrnined 
system of N X N equations in two unknowns is defined in the 
N x N neighborhood. This solution is similar to that presented 
by Campani and Verri [35], as discussed in the Introduction. 

In all the above techniques (both EOFC- and OFC-based), 
a large N will smooth the optical fiow estimations and lead 
to a resolution loss. 

IV. EXPERIMENTAL COMPARISONS 

In this section, a comparison of the new EOFC- and OFC­
based solutions with selected OFC-based approaches from the 
literature is carried out for different types of 3-D motion. The 
aperture problem [41]-[43] is not taken into account in this 
comparison. 
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Fig. 5. (Continued). 

1 8 
Fig. 6. Sequence of images where two objects with a superimposed plaid pattem move in opposite directions (180 and 45° with respect to the X -axis, 
respectively); first and eighth frame, 128 x 128 image resolution. 

In particular, the solutions proposed by Horn and Schunck 
[16], Haralick and Lee [18], and the first solution by Tretiak 
and Pastor [19] have been selected for the comparison. 

The solution of Horn and Schunck [16] is taken to represent 
the regularization-based techniques. The solution proposed by 
Haralick and Lee [18] is assumed to represent the class of 
multiconstraint-based approaches in which an overdetermined 
system with second-order partial derivatives of the image 
brightness is used, and solutions are obtained by using the 
pseudoinverse technique in every point in the image. This class 
also includes the second solution presented by Tretiak and 
Pastor in [19]. The first solution by Tretiak and Pastor [19] was 
taken as an instance of the multiconstraint approaches based 
on second-order partial derivatives of the image brightness, 
where the optical fiow estimation is obtained by using a direct 
solution (e.g., Verri et al. [20], Danielsson et al. [44]. 

The new EOFC- and OFC-based solutions presented in this 
paper estimate the optical fiow in each pixel by using the 
information coming from an N x N neighborhood. The algo­
rithm of Horn and Schunck obtains the solution iteratively, and 
thus, the optical fiow produced is due to a large neighborhood, 
which in turn depends on the number of iterations (i.e., at each 
iteration, a sort of 3 x 3 filtering is performed; see [16] and 

[29]). The solutions of Haralick and Lee, and that of Tretiak 
and Pastor, evaluate optical fiow directly for each pixel of 
the whole image. Therefore, solutions are evaluated only in 
those points in which the system of equations are solvable. 
These differences in behavior make the comparison difficult; 
therefore, as a first step, a study for identifying comparable 
operating conditions has been performed. 

The behavior of the algorithms for optical fiow estimation is 
analyzed by using sequences of both synthetic and real scenes. 
In synthetic sequences, objects with a superimposed pattern are 
adopted; in these cases, isotropic illumination and calibrated 
systems have been provided. Sequences of real environments 
include both indoor (in these cases, isotropic illumination and 
noncalibrated optical systems have been used) and outdoor 
scenes (in these cases, uniform illuminations and noncalibrated 
optical system have been considered). For each test sequence, 
the optical fiow fields are reported for the techniques being 
compared; although the optical fiow fields are estimated in 
each image pixel, a clearer presentation is obtained when 
presenting the velocity vectors obtained by subsampling the 
fields with a grid of 3 x 3. A measure of the estimation errors 
is performed when their computation is possible, i.e., when 
the true velocity field is known. 
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In the experiments, in order to highlight the robustness of 
each technique, solutions are obtained with no specific method 
to improve optical fiow quality and precision, such as the 
thresholding of the optical fiow field magnitude for removing 
vectors due to discontinuities. 

For the estimation of the image brightness partial deriva­
tives, the following operators derived from that of Prewitt 
have been used, i.e. 

EX(i,j,t) = (E(i+l,j-l,t) - E(i-l,j-l,t) + E(i+l,j,t) 

- E(i-l,j,t) + E(i+l,j+l,t) - E(i-l,j+l,t»)/6, 

EY(i,j,t) = (E(i-l,j+l,t) - E(i-l,j-l,t) + E(i,j+l,t) 

- E(i,j-l,t) + E(i+l,j+1,t) - E U+ 1,j-l,t»)/6, 

Et(i,j,t) = (E(i+l,j,t+l) - E(i+l,j,t-l) + È(i-l,j,t+1) 

- E(i-l,j,t-l) + E(i,j,t+l) - EU,j,t-l) 

+ E(i,j+l,t+l) - E(i,j+l,t-l) + EU,j-l,t+l) 

- E(i,j-l,t-l»)/lO. 

The results obtained by using these operators have been com­
pared with respect to other techniques (e.g., splines, B-splines, 
and classical interpolations) on several image sequences with 
known image pattem and, thus, the correct values of partial 
derivati ves. As a result, the operators adopted present a go od 
compromise between performance and precision and include 
a smoothing action since the derivatives are evaluated as 
the average of at least three centraI differences. Moreover, 
since the experiments have been drawn with the intention 
of comparison, it was observed that the adoption of more 
sophisticated methods for partial derivative estimation does not 
change sensib1y either i) the re1ationships among the technique 
behavior or ii) the trends with respect to the main parameters 
of the techniques being compared. 

A. Translational Motion 

As a first experiment, the response of the algorithms under 
consideration with respect to the neighborhood dimension has 
been analyzed. To this end, a test image sequence has been 
defined, where a plaid pattem was superimposed on the whole 
image.2 The plaid pattem has often been used in the literature 
for testing algorithms for optical fiow estimation; it has been 
obtained through the combination of two sinusoidal pattems 
with orthogonal directions. Thus, the image brightness of the 
moving pattern is 

I I . (7rX I

) . (7ryl
) Eobj(x,y)=Eb+Asm 2T sm 2T 

where 

Eb brightness of the background, 
A ampli tu de of the plaid pattem, 
T period in pixel, 
Xl, yl relative coordinates. 

2 This has been done in order to avoid the effects of the presence of 
discontinnities and propagation in the computation of errors. 
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The pattem was moving at 45° with ve10city components (1, 
l) pixel per frame (i.e., translational motion). 

The algorithms under comparison have been applied to 
the above-described image sequence in order to obtain the 
corresponding optical fiow fields. In Table I, the measured 
percentage average errors ofthe optical fiow modules (ErrllVll) 
and of the direction of motion (Err<p) with respect to the true 
velocity field are reported with their respective variances. In 
the first two tables, the behavior of the multipoint solutions 
with respect to the dimension of the neighborhood is reported 
for N equal to 3, 5, 7, and 9. From these tables, it can be 
observed that by increasing the neighborhood size, the errors 
decrease. In generaI, the errors tend to reach a limit close 
to the value estimated by using the zeroth-order OFC-based 
solution with a small value of N. On the contrary, increasing 
N 1eads to a loss in resolution. It should be noted that no 
strong differences exist in the results for N = 9, whether the 
OFC or the EOFC is employed. These results substantially 
agree with the considerations reported in [24], where it is 
affirmed that for translational motion, OFC and EOFC are 
affected by the same error in the estimation of the velo city 
field. 

The third part of Table I reports the results obtained by ap­
plying the multiconstraint- and regularization-based algorithms 
in two distinct conditions: a) simple estimations without any 
filtering (i.e., prefiltering of the images and/or postfiltering of 
the optical fiow) and b) estimation with postfiltering of the 
velocity field with a Gaussian filter of 5 x 5 and (J = L 

Considering the results obtained without postfiltering, the 
Horn and Schunck solution presents the lowest error after a 
considerable number of iterations, even with respect to the 
multipoint solutions. This is also made easier since the velocity 
field under estimation is uniform, and the regularization-based 
algorithms tend to obtain a uniform result with the increase 
in the iteration number. On the contrary, the multiconstraint­
based solutions present high error values. If these solutions are 
passed through a postfiltering with N = 3, an error decrease 
is observed. In this case, the solution of Tretiak and Pastor 
has a low error for the velocity module but presents a high 
value for the corresponding variance with respect to the other 
techniques. In these conditions, the solution obtained with the 
Horn and Schunck methods present a decrease in the variances 
at the expense of the module error. 

In the third and fourth parts of Table I, the behavior of the 
multiconstraint-based algorithms with respect to the increase 
in the neighborhood size is reported. A wider neighborhood 
leads to increase the error (Errllvll) for the solutions of Horn 
and Schunck and that of Tretiak and Pastor. As can be noted, 
N = 3 can be a good compromise between precision and 
computational complexity. In generaI, postfiltering increases 
the precision of the vector field orientation. 

For the multipoint-based solutions, the effects of the postfil­
tering have not been studied since these approaches present a 
sort of filtering for the fact that the solutions are obtained 
on the basis of the constraint equations coming from the 
neighboring pixels. It should be noted that since the images 
are synthetic without noise, the prefiltering technique does not 
improve the estimation precision. 
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(a) (b) 

(a') (b') 

(c) 3 (c) 99 
Fig. 7. Optical flow estimation referred to the fifth frame of the sequence in Fig. 6 obtained with (a) zeroth-order EOFC-based solution, N = 3; (b) 
first-order EOFC-based solution, N = 3; (a') zeroth-order OFC-based solution, N = 3; (b') first-order OFC-based solution, N = 3; (c) Horn and 
Schunck OFC-based solution (iterations: 3, 99), Cl< = 0.6; (d) Haralick and Lee multiconstraint OFC-based solution, 3 X 3 post-filtering; (e) Tretiak and 
Pastor OFC-based direct solution, 3 x 3 post-filtering. 

In general, by observing the above-mentioned tables, it can 
be noted that a comparison between the multipoint solutions 
and the other solutions can be performed by considering 
the multipoint solutions that have a neighborhood dimension 
equal to the dimension of Gaussian postfiltering adopted in 
the multiconstraint-based solutions. In this way, a compara­
ble computational effort is chosen, and the estimations are 
produced, considering the information coming at least from 
the same neighboring pixels. For these reasons, in most of 
the following experiments, the algorithms are compared by 

considering N x N neighboring pixels for the multipoint 
solutions and an N x N postfiltering for the others. Moreover, 
since the Horn and Schunck algorithm presents a smoothing 
at each iteration on the 3 x 3 neighborhood, N = 3 has often 
been used in the rest of the experiments. 

B. Discontinuities in Optical Flow 

The structure of the constraint equations and the presence of 
discontinuities make the problem of optical ftow estimation ill 
posed [25]. Discontinuities arise from the presence of noise, 
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(d) 

Fig. 7. (Continued). 

1 15 
Fig. 8. Sequence of images obtained by moving tbe camera toward the scene along the Z axis (first and 15th frame, 128 x 128 image resolution). 

TABLE III 
ROTATIONAL VELOCITIES AND ERRORS ESTIMATED FOR TRE SEQUENCE IN 

FIG. 12. TRE PATTERN WAS ROTATING AT 4.625° PER FRAME 

Il algorithm Il Il"hl I Errln I Il 3 

Zero-order EOFC-based 4.600 0.53 
First-order EOFC-based 4.711 1.87 
Zero-order OFC-based 4.609 0.33 
First-order OFC-based 4.487 2.97 
Horn & Schunck, 24th Iteration 3.910 15.44 
Horn & Schunck, 42th Iteration 4.861 5.10 
Horn & Schunck, 99th Iteration 4.864 5.18 
Haralick & Lee 4.347 5.99 
Tretiak & Pastor 4.914 6.25 

pattems on the moving object surfaces that are too crisp, oc­
clusions between moving objects or among the moving objects 
and the background, and object velocities with respect to the 
measurement system that are too fast. These difficulties can 
be overcome (or simply attenuated) by convolving the image 
with a 2-D or 3-D Gaussian smoothing operator. However, 
crisp pattems are also a useful feature to evaluate the optical 
flow. 

As a generaI consideration, the approaches based on second­
order derivatives of the image brightness (especially deriva-

tives with respect to time t) are very sensitive to discontinuities 
[18], [19]. The new solutions presented in this paper use 
an overdetermined system of equations to reduce the effects 
of discontinuities so that postfiltering is not needed. The 
smoothness of the solution can be improved by augmenting 
the size of the N x N neighborhood area, even at the expense 
of loss of resolution of object boundaries. Results presented 
in the following for different types of discontinuities have 
been obtained with N = 3 by using a postfiltering for the 
multiconstraint-based solutions. The new algorithms are less 
sensitive to the discontinuities than those used for comparison 
with the same neighborhood dimension N. 

Object Boundaries: The sequence in Fig. 2, where a rec­
tangle is moving with translational motion at 45° with respect 
to the X axis, is used to test the different solutions for 
translational motion and moving object boundaries. A plaid 
pattem was superimposed to the object. 

In Fig. 3, the results obtained with the techniques under 
analysis are shown by considering N = 3 for the multipoint 
solution and a postfiltering of the optical flow estimated with 
a Gaussian filter on a 3 x 3 area with (J" = l for the 
multiconstraint-based solutions. In all the solutions considered, 
due to the presence of the pattem on the moving object, the 
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(a) (b) 

(a') (b') 

(c) 3 (c) 99 
Fig. 9. Optical flow estimation referred to the fifth frame of the sequence in Fig. 8 obtained with (a) zeroth-order EOFC-based solution, N = 3; (b) 
first-order EOFC-based solution, N = 3; (a') zeroth-order OFC-based solution, N = 3; (b') first-order OFC-based solution, N = 3; (c) Horn and 
Schunck OFC-based solution (iterations: 3, 99), a = 0.6; (d) Haralick and Lee multiconstraint OFC-based solution, 3 x 3 post-filtering; (e) Tretiak and 
Pastor OFC-based direct solution, 3 x 3 post-filtering. 

optical flow field is also estimated inside the object boundaries. 
Fig. 3 shows that no appreciable difference exists among the 
solutions inside the moving objects. It should be noted that 
the approach by Horn and Schunck provides more satisfactory 
results with respect to the zeroth-order EOFC-based solution 
only after 40 iterations. 

Fig. 3 shows that the solution of Tretiak and Pastor presents 
a higher sensitivity to the discontinuities on the boundaries 
with respect to the other solutions. For the Horn and Schunck 
solution, it should be observed that the velocity vectors ob-

tained at the early iterations along the object boundaries are 
parallel to \7 E (see Fig. 3). On the other hand, observing the 
result at the 99th iteration, it can be noted that the iterative 
process has regularized the direction of flow at the expense 
of the object shape resolution. First-order EOFC- and OFC­
based solutions provide better results than the corresponding 
zeroth-order solutions due to the higher number of constraint 
equations per pixel that have been used. 

Noise: Sensitivity to noise was tested by using two image 
sequences: i) a sequence of frames in an outdoor environment, 
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(d) 

Fig. 9. 

where a car is moving by translational motion (see Fig. 4); 
and ii) the same image sequence of the first test (e.g., a 
moving plaid pattern covering the whole image) but with the 
addition of a 20% of Gaussian noise. Results for sequence 
i) are reported in Fig. 5. A lower sensitivity to noise for the 
first-order EOFC- and OFC-based solutions with respect to 
the zeroth-order solutions can be observed in Fig. 5. This is 
due to the higher number of constraints used in the first-order 
solutions, which also lead to smoother solutions. It can also be 
noted by observing the error variances obtained for sequence 
ii) in Table II. This also results in a greater robustness from 
the computational point of view. 

The approach of Tretiak and Pastor is the most sensitive 
to noise (see Fig. 5(e». In this approach, a final averaging 
(a particular kind of postfiltering) with a large window (for 
example, 30 x 30) could be performed, leading to a significant 
improvement in quality. However, this produces imprecision 
in the measurement of the moving object boundaries. In the 
regularization-based technique (see Fig. 5(c)), noise effects are 
reduced in the early iteration steps. On the other hand, as 
the number of iterations becomes large, the spurious velocity 
vectors due to noise are enhanced (see Fig. 5(c)), thus leading 
to incorrect velocity vectors. 

In Table II, the estimation error values are reported for 
noise analysis on the image sequence ii). Error percentages are 
derived by considering estimations without any filtering action 
for all the estimation techniques (ErrllVll' Err<p) , estimations 
after having applied a 2-D Gaussian filtering 5 x 5(0" = 1) 
to the sequence frames (i.e., prefiltering) (Errilvii' Err~), and 
estimations after a postfiltering (5 x 5,0" = 1,ErrIIVII,Err~) 
of estimated optical ftow fields. It should be observed that 
different noi se sensitivities are obtained for the cases. 

The solution by Horn and Schunck provides the best result 
but with a very large number of iterations (in addition, in this 
case, the uniformity of the field poses the regularization-based 
solution in good operating conditions). It can be observed 
that Gaussian prefiltering improves the quality of results and 
lowers the estimation errors. This is due to the fact that the 
test sequence has the same velocity values for each pixel in 
the image. It should be noted that the zeroth-order OFC-
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(Continued). 

based solution presents an error in the angle comparable 
with that obtained at the 99th iteration with the Horn and 
Schunck solution. This confirms that the zeroth-order OFC­
based solution produces optical ftow that is qualitatively 
correct with respect to the velocity field. For the solutions 
of Tretiak and Pastor and of Haralick and Lee, very high 
estimation errors are provided in the absence of filtering, 
whereas lower errors are present in the other cases, i.e., 
demonstrating a strong sensitivity to noise. In addition, in this 
case, by using a postfiltering, there exists an improvement of 
estimation quality only for the algorithms of Haralick and Lee 
and that of Tretiak and Pastor (which is reported in the second 
part of the Table II. These algorithms present an additional 
improvement by using both prefiltering and postfiltering, but 
it can be noted that the highest improvement is registered by 
applying the postfiltering. 

Occlusions: The synthetic sequence shown in Fig. 6, where 
two objects with a superimposed plaid pattern move in differ­
ent directions, was chosen to test the behavior of the solutions 
in the presence of discontinuities due to occIusions. The 
estimation results are shown in Fig. 7. For the new EOFC­
and OFC-based solutions, the presence of some optical ftow 
field irregularities on the object boundaries can be observed, 
even though object profiles are still maintained. The first-order 
EOFC-based solution provides a better estimation with respect 
to the other multiconstraint solutions. Approaches by Haralick 
and Lee and Tretiak and Pastor produce large estimation errors 
at the occIusion profiles. The approach by Horn and Schunck 
produces less satisfactory results due to the undesirable effect 
of optical ftow field propagation on the occIuded objects. 

C. Expansions and Contractions 

As was pointed out in Section II, the difference between 
the OFC and the EOFC equations consists of the divergence 
of the velocity field. This term is very useful in evaluating the 
time-to-collision [7], [6] as well as for 3-D motion estimation 
and 3-D object structure reconstruction [1], [45]-[47]. 

Effects of divergence motion were tested using a sequence 
(see Fig. 8) that incIudes frames obtained by moving the 
camera toward the scene along the Z axis. Results obtained 
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(a) (b) 

(a') 

(c) 40 

Fig. 10. Distribution of points PFOE for the sequence in Fig. 8 derived from the optical flow field presented in Fig. 9: (a) Zeroth-order EOFC-based solution; 
(b) first-order EOFC-based solution; (a') zeroth-order OFC-based solution; (bi) first-order OFC-based solution; (c) Horn and Schunck OFC-based solution (40th 
iteration); (d) Haralick and Lee multiconstraint OFC-based solution; (e) Tretiak and Pastor OFC-based direct solution. The cross identifies the actual FOE. 

with N = 3 are presented in Fig. 9. It should be noted that 
both OFC-based solutions provide the best estimation quality. 
Among the others, the Haralick and Lee solution also appears 
to produce good results. Comparing the multipoint techniques, 
the OFC-based solutions give better results in the centraI part 
of the image, whereas the EOFC-based techniques give better 
results in the outer parts of the image. An explanation of this 
behavior with respect to divergence motion is reported in [24]. 

The error analysis has been carried out by taking into 
account the distribution of the focus of expansion (FOE). The 

FOE is defined as the intersection point between the image 
pIane and the axis of the instantaneous object-observer relative 
translation 

( 
Wl/Z W2/Z )t 

PFOE = IW
3
/Z,IW

3
/Z,1 (16) 

Rotational and translational components of 3-D motion can 
be distinguished when determining the focus of expansion, 
and hence, the motion of the observer (ego-motion) can be 
estimated [38], [48]. 
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(d) (e) 

Fig. IO. (Continued). 

1 9 
Fig. 11. Sequence of images with a regu1ar pattern rotating around the Z -axis (first and ninth frame, 128 x 128 image resolution). 

Fig. lO shows the distribution of PFOE estimations. It can 
be observed that all the new solutions provide a more accurate 
estimation of the FOE. This can be recognized by observing a 
denser distribution of PFOE estimations in the proximity of the 
exact FOE (which is represented by a cross). The estimations 
of the FOE in Fig. lO are evaluated by using (16), where 
the 3-D motion components are obtained as the least-square 
solution of an overdetermined linear system of (1) and (2) in 
six unknowns (Wl/Z, W2/Z, W3/Z,SlI,Sl2,Sl3) in a 5 x 5 
grid of velocity fìeld values. 

D. Rotations 

Rotations have been analyzed by using two test sequences 
with rotations around the Z axis and the X and Y axes, 
respectively. 

Rotation Around the Z Axis: In the sequence of Fig. Il, a 
dense pattern placed on a planar patch parallel to the image 
pIane moves in rotational motion around the Z axis. The 
rotational velocity is so high that large displacements in the 
points far from the center of rotation are produced. According 
to this, the motion (i.e., pixel displacements) can be measured 
only in the proximity of the rotation center. A radius of lO 

pixels was assumed to identify the valid region. 
The optical fiow fìelds obtained for the analyzed solutions 

are presented in Fig. 12. Among the new solutions, results 
obtained (in the valid region) with EOFC are similar to those 
of OFe. This is in agreement with the conc1usions drawn in 
[24]. The Tretiak and Pastor solution in Fig. l2(e) presents 
less satisfactory results with respect to the other methods due 
to its sensitivity to noise. 

The averages of percentage errors of the absolute value 
of the angular velocity component Sl3 (Erri 0

3
1) estimated in 

the valid region are presented in Table III for the algorithms 
considered. The component Sl3 was estimated according to 

which was obtained from (1) and (2), where Wl = O, W 2 = 

O, W 3 = 0, Sll = 0, Sl2 = O were imposed. By observing 
Table III, it can be seen that a better estimation has been ob­
tained with the zeroth-order OFC- and EOFC-based solutions, 
whereas the solution of Horn and Schunck tends to smooth 
the fiow fìeld, giving less satisfactory estimations when the 
number of iterations is high. 
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(a) (b) 

(a') (b') 

(c) 3 

Fig. 12. Optical fiow estimation referred of the fifth frame of the sequence in Fig. Il obtained with (a) zeroth-order EOFC-based solution. N = 3; 
(b) first-order EOFC-based solution, N = 3; (a') zeroth-order EOFC-based solution, N = 3; (b') first-order EOFC-based solution, N = 3; (c) Horn 
and Schunck OFC-based solution (iterations: 3, 81), C> = 0.6; (d) Haralick and Lee multiconstraint OFC-based solution, 3x3 post-filtering; (e) Tretiak 
and Pastor OFC-based direct solution, 3 x 3 post-filtering. 

Rotation Around the X and Y Axes To test the behavior of 
the algorithms in the presence of rotation around the X and 
Y axes, a sequence where a cyIindrical body is moving under 
rotation around a transversai axis has been chosen. This axis 
of rotation is piaced in a pIane parallei to the image pIane 
and rotated 45° with respect to the X axis (see Fig. 13). The 
values of 0 1 and O2 were estimated by considering (1) and 
(2) with Wl = 0, W 2 = 0, W 3 = 0,03 = O. A system of 
two equations in two unknowns (the rotational components 

are 0 1 , O2 ) is obtained, which is solved at any point where 
the velocity fieid can be estimated. 

ResuIts and estimations errors are shown in Tabie IV. It 
should be noted that estimations are affected by very Iarge 
errors with respect to the other cases of motion. This is due 
to the fact that in these motion conditions, the opticai f10w 
fieid estimated by using the OFe is only an approximation of 
the velocity fieid [24]. A clockwise rotation is estimated in 
all approaches. In addition, in this case, the new zeroth-order 
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(d) 

Fig. 12. (Continued). 

l 9 
Fig. 13. Sequence of images with a pattem rotating around the X and Y axes (first and ninth frame, 128 x 128 image resolution). 

EOFC- and OFC-based solutions provide better results with 
respect to the other solutions. Using the EOFC, lower error 
values are introduced according to [24]. The Horn and Schunck 
solution provides underestimations in the early iterations and 
leads to overestimations as the number of iterations grows. 
This is due to the propagation of the optical ftow estimations. 

E. Complexity 

The explicit and asymptotical complexities for the compared 
solutions are reported in Table V. The following symbols are 
used for the parameters of interest: 

M x M size of the image, 
N x N size of the neighborhood, 
G distance between consecutive optical ftow vectors 

expressed in pixels in both directions x, y, 
Q number of constraint equations for each pixel, 
F dimension of neighborhood in the case of a final 

optical ftow field averaging, 
n number of unknowns, 
00 asymptotical complexity, 
S c scale factor of O () , 

TABLE IV 
ROTATIONAL VELOCITY COMPONENTS AROUND THE X AND Y 
AxEs AND ESTIMATION ERRORS (IIQII = 1.482° PER FRAME) 

Il algorithm 

Zero-order EOFC-based 0.916 -1.029 1.377 7.00 
First-order EOFC-based 0.798 -0.958 1.247 15.84 
Zero-order OFC-based 0.992 -1.115 1.493 7.73 
First-order OFC-based 0.921 -1.019 1.361 8.14 
Horn & Schunck, 24th Iteration 0.809 -1.056 1.330 10.21 
Horn & Schunck, 42th Iteration 1.125 -1.463 1.846 24.56 
Horn & Schunck, 99th Iteration 1.127 -1.465 1.848 24.74 
Haralick & Lee 0.900 -0.978 1.329 10.27 
Tretiak & Pastor 0.532 -0.891 1.038 29.95 

It number of iterations (which is present only for the 
Horn and Schunck solution). 

In Table V, if N = G = F, the asymptotical complexity is 
equal to M 2 for all the solutions, except for the solution of 
Horn and Schunck, where M 2 is multiplied by the number of 
the iterations h If the distance among the estimation points 
is equal to 1 (i.e., G = 1), the solution of Horn and Schunck 
does not require a final averaging step, and its complexity is 
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TABLE V 
COMPLEXITY AND PERFORMANCE COMPARISON. TIME Is TRE ELAPSED CPU TIME EXPRESSED IN SECONDS 

OBTAINED ON AN 80386/80387 MACHINE AT 20 MRZ., WITH N = G = F = 3, M = 128 

~ algorithm Il Explieit Complexity Il Q I n Il Se I 00 Time 

Zero-order EO FC M 2 Q+~Qn2+ ~ 1 3 9 M'N' 30 ± 1 ----or-
First-order EOFC M 2 Q+*Qn2 + ~ 3 6 81 M'N' 340 ± lO ----or-
Zero-order OFC M 2 Q+*Qn2+~ 1 2 5 M'N' 18 ± 1 ----or-
First-order OFC M 2 N' 2 n3 

Q + (FQn + (p 3 2 15 M'N' 117 ± 1 ----or-
Horn & Sehunek M 2 (Q + Itn:r) 1 2 8 M'IIt It(14 ± 1) 
Haraliek & Lee M2 Q + Qn2 + n3 + nG) 4 2 2 M 2 (14+G) 146 ± 10 

Tretiak & Pastor M 2 Q +n3 + nG) 
-

ItM2, whereas for the other solutions, this is equal to M 2 N 2 , 

Since most techniques have the same asymptotical complexity, 
for the sake of comparison, the table contains also a column 
that reports a scale factor Se, 

The last column of Table V shows the CPU time elapsed 
as obtained with N = 3, G = 3, F = 3, and M = 128, as 
measured on an 80386/80387 INTEL (20 MHz), 

If the estimation quality is considered, it can be noted that 
results approximately similar to those obtained with the new 
techniques with G = N = 3 are obtained (although with a 
certain resolution lloss in the moving object boundaries) with 
the same Gand the following: 

i) F = 3 for the Haralick and Lee solution 
ii) F > 7 for Tretiak and Pastor solution 
iii) It > 40 for the solution of Horn and Schunck. 

In this case, zeroth-order OFC- and EOFC-based techniques 
present the lowest complexity with respect to the other tech­
niques. 

V. CONCLUSION 

In this paper, two new techniques for the estimation of 
optical ftow have been proposed. Both techniques are based 
on an approximation (zero- and first-order, respectively) of 
the parti al differential equations modeling the changes in 
the image brightness and belong to the class of multicon­
straintlmultipoint approaches. These two techniques have been 
used with two distinct constraints. On the one hand, the 
classical optical Jlow constraint equation (OFC) has been 
employed. On the other hand, a constraint equation including 
the divergence of the optical fiow field, referred to as extended 
optical Jlow constraint (EOFC) has been adopted. Results 
achieved in these four cases have been compared with selected 
solutions available in the literature for alI the cases of 3-D 
motion. 

As was shown, the proposed techniques produce solutions 
that are better ranked with respect to the other selected 
solutions in almost all motions analyzed. In the presence of 
discontinuities due to occlusions or object boundaries, a high 
insensitivity has been verified for the new techniques, whereas 
the other approaches have different undesirable effects such as 
estimation spreading (Horn and Schunck) or estimation errors 
(Haralick and Lee and Tretiak and Pastor). 

2 2 2 M2 (5+ G) 75 ± 2 

Differences in the behavior of the analyzed solutions have 
been observed in the case of discontinuities due to noise. The 
analysis using synthetic image sequences showed better results 
with the Horn and Schunck technique, mainly due to the fact 
that a uniform plaid pattern was used in the test sequence. 
On the other hand, using an outdoor image sequence, the four 
multipoint solutions still appear to be better ranked. Among 
the new techniques, first-order solutions achieve qualitatively 
better results (mainly due to the higher number of constraint 
equations used per pixel) with respect to zeroth-order solutions 
that are more precize in estimating the velocity field but a little 
bit more sensitive to discontinuities. 

No appreciable differences among the various techniques 
have been found in the presence of translational motion 
parallei to the image pIane. On the other hand, expansion 
and contraction motions were better detected with the new 
techniques than with the others. In these cases, similar results 
are also achieved with the Haralick and Lee approach, whereas 
a spreading effect was observed with the Horn and Schunck 
solution. Results have been confirmed with error analysis. 
Zeroth-order solutions provide more satisfactory estimations 
for rotations around the Z axis. Several problems are encoun­
tered in this case with the other approaches, such as spreading 
(Horn and Schunck) and irregularities in the solutions (Tre­
tiak and Pastor). Zeroth-order solutions are also definitely 
better ranked in the case of rotations around the X and Y 
axes. 

Several differences have been observed between the solu­
tions using EOFC and those using OFC. First-order solutions 
appear to be more robust in the presence of discontinuities. 
For expansion and contraction motions, OFC-based solutions 
provide better estimations in the region close to the image 
center, whereas EOFC-based solutions give better results in 
the outer parts of the image. No appreciable differences were 
observed in the other cases. 

FinalIy, both zeroth-order solutions proposed in this paper 
are ranked higher as far as the computational complexity is 
concerned. 
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