
Ontology Construction and Knowledge Base

Feeding and Cleaning for Smart-city Services

Pierfrancesco Bellini, Paolo Nesi, Nadia Rauch
DISIT Lab, Dep. of Information Engineering, University of Florence, Italy

http://www.disit.dinfo.unifi.it, {pierfrancesco.bellini, paolo.nesi, nadia.rauch}@unifi.it

Abstract— Presently a very large number of public and

private data sets are available around the local governments. In

most cases, they are not semantically interoperable and a huge

human effort is needed to create integrated ontologies and

knowledge base for smart city. Smart City ontology are not yet

standardized, and a lot of research work is needed to identify

models that can easily support the data reconciliation and the

management of the complexity. In this paper, a system for the

ingestion of data for smart city related aspects as road graph,

services available on the roads, traffic sensors etc., is proposed.

The system allows to manage a big volume of data coming from a

variety of sources considering both static and dynamic data, this

data is then mapped to a smart-city and mobility ontology and

stored into an RDF-Store where this data are available for

applications via SPARQL queries to provide new services to the

users. The paper presents the process adopted to produce the

ontology and the knowledge base and the mechanisms adopted

for the verification, reconciliation and validation. Some examples

about the possible usage of the coherent knowledge base

produced are also offered and are accessible from the RDF-Store.

Keywords— Smart city, knowledge base construction,

reconciliation, validation and verirication of knowledge base,

linked open graph.

I. INTRODUCTION

Despite to the large work performed by Public

Administrations, PAs, on producing open data they are not

typically semantically interoperable and neither with the many

private data. Open data coming from PA contains typically

statistic information about the city (such as data on the

population, accidents, flooding, votes, administrations, etc.),

location of point of interests on the territory (including,

museums, tourism attractions, restaurants, shops, hotels, etc.),

major GOV services, ambient data, weather status and

forecast, changes in traffic rules for maintenance

interventions, etc. Moreover, a relevant role is covered in city

by private data coming from mobility and transport such as

those created by Intelligent Transportation Systems, ITS, for

bus management, and solutions for managing and controlling

parking areas, car and bike sharing, car flow, delivering

organizations, accesses on Restricted Traffic Zone, RTZ, etc.

They can include real time data such as the traffic flow

measure, position of vehicles (buses, car/bike sharing, taxi,

garbage collectors, delivering services, etc.), railway and train

status, park areas status, and Bluetooth tracking systems for

monitoring movements of cellular phones, ambient and

weather sensors, and TV cameras streams for security. Both

PAs and mobility operators have large difficulties in

elaborating and aggregating these data to provide new

services, even if they could have a strong relevance in

improving the citizens’ quality of life. Therefore, our cities are

not so smart as they could be by exploiting a semantically

interoperable knowledge base founded on these data. This

condition is also present in highly active cities on open data

publication such as Firenze, that is considered one of the top

cities on Open Data.

Moreover, present smart city tool providers such as IBM,

Thales, Cisco, Siemens, etc., offer solutions for creating a

smart city integrated services, and adopt specific and

proprietary knowledge models [1]. These proposed Smart City

solutions are very expensive and limited to the implementation

of specific business cases as ticketing, reduction of energy

consumption, etc., and thus, they integrate only a very small

number of data sets. An example can be the ontological model

proposed by IBM connected to the Watson project
1
.

 Several additional use scenarios could take advantage by

the integration of the above mentioned public and private data.

Moreover, most of the unexploited valuable data in the city are

real time data such as: position of vehicles, position of people

contributing with some app, etc. Therefore, the variability,

complexity, variety, and size of these data make the data

process of ingestion and exploitation a big data problem as

addressed in [2], [3]. The variety and variability of data can be

due to the presence of different formats, and to scarce (or non-

existing) interoperability among semantics of the single fields

and of the several data sets. In order to reduce the ingestion

and integration cost, by optimizing services and exploiting

integrated information, a better interoperability and integration

among systems is required [1], [2]. This problem can be

partially solved by using specific reconciliation processes to

make these data interoperable with other ingested and

harvested data. The velocity of data is related to the frequency

of data update. In some cases, data are updated every minute

or more (in this cases we can call them real time data with

respect to the time of the city), while a large range of data may

change once per year/month. When these data models are

analyzed and then processed to become semantically

interoperable, they can be used to create a common knowledge

base that can be feed by corresponding data instances (with

static, quasi-static and real time data). This process may lead

to create a large interoperable knowledge base that can be

used to make queries for producing suggestions as well as,

predictions, deductions, in the navigation or in the service

access and usage.

This scenario enables the creation of new services exploiting

the accumulated knowledge for: delivering service predictions

1
 http://researcher.watson.ibm.com/researcher/view_project.php?id=2505

http://www.disit.dinfo.unifi.it/
http://researcher.watson.ibm.com/researcher/view_project.php?id=2505

and tuning, deducing and predicting critical conditions,

towards different actors: public administrations, mobility

operators, commercials and point of interests and citizens.

In this paper, the above mentioned complex process of

knowledge base construction is described from: ontology

creation to the data ingestion and knowledge base production

and validation. The mentioned process also include, processes

of data analysis for ontology modeling, data mining, formal

verification of inconsistencies and incompleteness to perform

data reconciliation and integration. Among the several

process, the most critical aspects are related to the ontology

construction that can enable deduction and reasoning, and on

the verification and validation of the obtained model and

knowledge base.
The paper is organized as follows. In Section II, the

overview of the proposed ontology is present together with the
main problems underlined its construction, and the main macro
classes. Section III describes the details associated to each
macroclass of the proposed smart city ontology and the
integration with other vocabulary. In Section IV, the general
architecture adopted for processing Open Data and the
motivations that constrained its definition are reported. Section
V presents the verification and validation process adopted to
produce and verify the knowledge base. In the same section,
two services are presented that allow to navigate in the
knowledge and can be used by non-data engineers to inspect
and navigate into the knowledge base. Conclusions are drawn
in Section VI.

II. ONTOLOGY MAIN ELEMENTS

In order to create an ontology for Smart City services, a

large number of data sets have been analyzed to see in detail

each single data elements of each single data set with the aim

of modeling and establishing the needed relationships among

element, thus making a general data set semantically

interoperable (e.g., associating the street names with

toponimous coding, resolving ambiguities, ..). The work

performed started from the data sets available in the Florence

and Tuscany area. They are produced by several

municipalities in Tuscany Region: Florence, Pisa, Lucca,

Prato, Pistoia, etc., and the province of Florence, Prato, etc. In

total the whole data sets are more than 800 data sets. At

regional level, Tuscany Region also provided a set of open

data into the MIIC (Mobility Integration Information Center of

the Tuscany Region), and provide also integrated and detailed

geographic information reporting each single street in Tuscany

(about 137.745), and the location of a large part of civic

numbers, for a total of 1.432.223 (a wider integration could be

performed integrating also Google maps and Yellow/white

pages). From the MIIC it is possible to recover information

regarding streets, parkings, traffic flow, bus timeline, etc.

While from Florence municipality real time data about the

RTZ, tram lines on the maps, bus stops, bus tickets, accidents,

ordinances and resolutions, numbers of arrivals in the city,

number of vehicles per year, etc. From the other open data

points of interest can be recovered as position and information

related to: museums, monuments, theaters, libraries, banks,

express couriers, police, firefighters, restaurants, pubs, bars,

pharmacies, airports, schools, universities, sports facilities,

hospitals, emergency rooms, doctors' offices, government

offices, hotels and many other categories, including weather

forecast by Lamma consortium (updated twice per day). In

addition to these data sets, those coming from the mobility and

transport operators have been collected as well.

 The analysis of the above mentioned data sets allowed us to

create an integrated ontological model presenting 6 main areas

of macroclasses as depicted in Figure 1.

Temporal
Macroclass

Point of
Interest

Macroclass

Sensors
Macroclass

Local public
transport

Macroclass

Administratio
n

Macroclass

Street-guide
Macroclass

Figure 1 - Ontology Macro-Classes and their

Administration: includes the classes related to the

structuring of the general public administrations, namely PA,

and its specifications, Municipality, Province and Region; also

includes the class Resolution, which represents the ordinance

resolutions issued by each administration that may change the

viability.

Street-guide: formed by entities as Road, Node,

RoadElement, AdminidtrativeRoad, Milestone, StreetNumber,

RoadLink, Junction, Entry, and EntryRule Maneuver, is used

to represent the entire road system of region, including the

permitted maneuvers and the rules of access to the limited

traffic zones. The street model is very complex since it may

model from single streets to areas, different kinds of crosses

and superhighways, etc. In this case, OTN vocabulary has

been exploited to model traffic [4] that is more or less a direct

encoding of GDF (Geographic Data Files) in OWL. OTN

includes the concepts expressed in the 5 main macro classes,

attributes composites (where there are classes like TimeTable,

Accident, House_Number_Range, Validity_Period, Maximum

_Height_Allowed), relationships (in which we find the

Manoeuvre), transfer points (macroclass which includes

classes such as Road, Road_Element, Building, and others),

geometry (i.e., classes Edge and Face Node), and features

(which contains classes such as Railways, Service,

Road_and_Ferry_Feature, Public_Transport).

Point of Interest: includes all services, activities,

which may be useful to the citizen and who may have the need

to search for and to arrive at. The classification of individual

services and activities is based on main and secondary

categories planned at regional level. In addition, this macro

segment of the ontology may take advantage of reusing Good

Relation model of the commercial offers
2
.

2
 http://www.heppnetz.de/projects/goodrelations/

http://www.heppnetz.de/projects/goodrelations/

Local public transport: includes the data related to

major TPL (Transport Public Local) companies scheduled

times, the rail graph, and data relating to real time passage at

bus stops. Therefore this macroclass is formed by classes

TPLLine, Ride, Route, AVMRecord, RouteSection,

BusStopForeast, Lot, BusStop, RouteLink, TPLJunction.

Sensors: macroclass concerns data from sensors:

ambient, weather, traffic flow, pollution, etc. Currently, data

collected by various sensors installed along some streets of

Florence and surrounding areas, and those relating to free

places in the main car parks of the region, have been

integrated in the ontology. On this regards, there are many

ontologies related to sensor networks, such as the

SemanticSensorNetwork Ontology
3
, which provides elements

for the description of sensors and their observations and FIPA

Ontology which is more focused on the description of the

devices and their properties both HW and SW aspects.

Temporal: macroclass that puts concepts related to

time (time intervals and instants) into the ontology, so that

associate a timeline to the events recorded and is possible to

make forecasts. It may take advantage from time ontologies

such as OWL-Time [5].

The ontology reuses the following vocabularies: dcterms: set

of properties and classes maintained by the Dublin Core

Metadata Initiative; foaf: dedicated to the description of the

relations between people or groups; vCard: for a description of

people and organizations; wgs84_pos: vocabulary representing

latitude and longitude, with the WGS84 Datum, of geo-

objects. Once the ontology is created, the single data instances

can be harvested and included into the knowledge base. The

instances, and in particular the museums, the streets, the points

of interest, etc., may refer to VIP (Very Important Person)

names that can be detected and related to some Open Data or

LOD (such as dbPedia) to establish a connection with the

definition of VIP name. This process can be performed with a

simple NLP, algorithms [6].

III. SMART-CITY ONTOLOGY DETAILS

A. Administration Macroclasss

The main class of the Administration Macroclasss is PA,

which has been defined as a subclass of foaf:Organization,

link that helps to assign a clear meaning to this class. The

three subclasses of PA are automatically defined according to

the restriction on some ObjectProperties: for example, the

class Region is defined as a restriction of the class PA on

ObjectProperty hasProvince, so that only the PA that possess

provinces, can be classified as Regions. Another example: to

define the PA elements that make up the class Municipality, a

restriction on ObjectProperty isPartOfProvince was instead

used, therefore, if a PA is not assigned to a province, it cannot

be considered a municipality/city.

The class PA is connected to the Resolution class through the

ObjectProperty hasApproved: each instance, of this last named

3
 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

class, are represented by the resolutions passed by the various

PA, indeed. The ObjectProperty hasApproved has its inverse

property, that is, approvedBy.

The last class in this macroclass is StatisticalData: given the

large amount of statistical data related to both the various

municipalities in the region, and to each street, that class is

shared by both Administration and Street Guide macroclasses.

As we will see in the next subsection, the class StatisticalData

is connected to both classes Pa and Road through the

ObjectProperty hasStatistic.

B. Street-guide Macroclass

The main class, in the middle of Street Guide macroclass, is

RoadElement, which is defined as a subclass of the

corresponding element in the OTN Ontology (see Figure 2),

that is Road_Element. Each road element is delimited by a

start node and an end node, detectable by the ObjectProperties

starts and ends, which connect elements of the class in

question to the class Node. Some restrictions have been

specified in the class RoadElement definition, related to the

class Node: a road element must have both starts and ends

ObjectProperties, because by definition, a RoadElement

cannot exist without a beginning or ending node.

otn:Geometri
c

otn:Node

otn:Edge

subClassOf

Road RoadElement

isComposed

isPartOf
Node

starts

ends

subClassOf

otn:Road

subClassOf

Milestone

situated

subClassOf

contains

forming

Administrativ
eRoad

otn:Road_Ele
ment

subClassOf

Junction

RoadLink

startingending

subClassOf

hasSegment

subClassOf

Maneuver

EntryRule accessTo

hasRule

isDescribed

hasFirstElemhasSecondElem
hasThirdElem

concerning

otn:Maneuve
r

subClassOf

StreetNumeb
er

hasStreetNumberbelongTo

Entry

hasInternalAccess
hasEsternalAccess

placedIn

coincideWith

Figure 2 - The Street-guide Macro class

One or more road elements are modeled by class Road which

is defined as a subclass of the corresponding class in the OTN

Ontology, i.e., the homonymous class Road, with a cardinality

restriction on the ObjectProperty contains, since a road that

does not contain at least one road element, cannot exist. Also

the class AdministrativeRoad, which represents the

administrative division of the roads, is connected to class

RoadElement through two inverse ObjectProperties

isComposed and forming, while it is connected with only one

ObjectProperty, coincideWith, to the class Road. In order to

better clarify the relationship that exists between classes Road,

AdministrativeRoad and RoadElement: a Road's instance can

be connected to multiple instances of class

AdministrativeRoad (e.g., if a road crosses the border between

two provinces), but the opposite is also true (e.g., when a road

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

crosses a provincial town center and it assumes different

names), i.e., there is a N:M relationship between these two

classes. On each road element, it is possible to define access

restrictions, identified by the class EntryRule, which is

connected to the class RoadElement through 2 inverse

ObjectProperties, i.e., hasRule and accessTo. Access rules

allow to define uniquely a permit or a limitation access, both

on road elements (for example due to the presence of a

restricted traffic area) as just seen, but also on maneuvers; for

this reason, the class Manoeuvre and the class EntryRule are

connected by the ObjectProperty isDescribed. The term

maneuver refers primarily to mandatory turning maneuvers,

priority or forbidden, which are described by indicating the

order of road elements involving. By analyzing the data from

the Florence’ street graph, it was verified that only in rare

cases maneuvers involving three different road elements and

then to represent the relationship between classes Maneuvre

and RoadElement, three ObjectProperties were defined:

hasFirstElem, hasSecondElem and hasThirdElem, in addition

to the ObjectProperty that binds a maneuver to the junction

that is interested, that is, concerning (because a maneuver

takes place always in proximity of a node).

As mentioned in the previous subsection, each road element is

delimited by two nodes (or junctions), the starting one and the

ending one. It was then defined class Node, subclass of the

same name class OTN:Node, belonging to ontology OTN. The

class Node has been defined with a restriction on DataProperty

geo:lat and geo:long, two properties inherited from the

definition of the class Node as subclass of geo:SpatialThing

belonging to ontology Geo wgs84 [7]: in fact, each node can

be associated with only one pair of coordinates in space, and

cannot exist a node without these values.

The class Milestone represents the kilometer stones that are

placed along the administrative roads, that is, the elements that

identify the precise value of the mileage at that point, or the

advanced of the route from the starting point. A milestone

must be associated with a single instance of

AdministrativeRoad, and it is therefore defined a cardinality

restriction equal to 1, associated to the ObjectProperty

placedIn. Also the class Milestone is defined as subclass of

geo:SpatialThing, but this time the presence of coordinates is

not mandatory.

The street number is used to define an address, and it is always

logically related to at least one access, in fact every street

number always corresponds to a single external access, which

can be direct or indirect; sometimes it can also corresponds to

an internal access. Looking at this relationship from the street

number point of view, you can say that each of these is

logically connected to at least one access. Were then defined

the classes StreetNumber and Entry.

With the owned data, the connection of StreetNumber class to

the class RoadElement and to the class Road, is possible

respectively through the ObjectProperties standsIn and

belongTo. The relationship between the classes Entry and

StreetNumber, is defined by two ObjectProperties,

hasInternalAccess and hasExternalAccess, on which have

been defined cardinality restrictions, since, as mentioned

earlier, a street number will always have only one external

access, but could also have an internal access. The class Entry

is also defined as a subclass of geo:SpatialThing, and it is

possible to associate a maximum of one pair of coordinates

geo:lat and geo:long to each instance.

The Street-guide macroclass is connected to the

Administration macroclass through two different

ObjectProperties, i.e. OwnerAuthority and managingAuthority,

which as the name suggests, clearly represent respectively the

public administration which owns an AdministrativeRoad, or

public administration that manages a RoadElement.

From a cartographic point of view, however, each road

element is not a straight line, but a broken line, which will

follow the actual course of the road. To represent this

situation, the classes RoadLink and Junction have been added:

thanks to the processing of KMZ files, is possible to retrieve

the set of coordinates that define each RoadElement, and each

of these points will be added to the ontology as an instance of

class Junction (defined as a subclass of geo:SpatialThing, with

compulsory single pair of coordinates). Each small segment

between two instances of Junction class is instead an instance

of the class RoadLink, which is defined by a restriction on the

ObjectProperties ending and starting, which connect the two

mentioned classes. RoadLink and Juctions are additional 20

millions of triples.

C. Point of Interest Macroclass

In this macroclass, a generic class Service and some its

subclasses identified by the value assigned to the

ObjectProperty serviceCategory, inherited from the categories

defined by the Tuscany Region, have been defined.

We have also defined the DataProperty ATECOcode, i.e. the

ISTAT code for classification of economic activities, which

could be used in future as a filter to define the various services

subclasses, in place of the categories proposed by the Tuscany

Region, in order to make more precise research of the various

types of services. The objectProperty serviceCategory

associates to each service, an individual belonging to the class

ServiceCategory (formed by exactly the individuals that have

been found on the data of Tuscany Region). All areas of

interest have not yet been defined, since we have not yet

provided a list of all services that will be included, but for now

in fact, relying on a small list of POI recovered from the site

of the MIIC
4
 and from Open Data portal of the Tuscan region

5
,

the following classes have been identified: Accommodation,

GovernmentOffice, TourismService, TransferService,

CulturalActivity, FinancialService, Shopping, Healthcare,

Education, Entertainment, Emergency and WineAndFood.

The class Accommodation for example, was defined as a

restriction of the class Service on the ObjectProperty

serviceCategory, that must take one of the following values:

villaggio_vacanze, albergo_hotel, casa_per_vacanze,

casa_di_riposo, casa_per_ferie, bed_and_breakfast, hostel,

residenza_turistica_alberghiera, farmhouse,

4
 http://www.iternet.fi.eng.it/SigmaPortal2

5
 http://dati.toscana.it/

http://www.iternet.fi.eng.it/SigmaPortal2
http://dati.toscana.it/

residence_di_villeggiatura, centri_accoglienza_

e_case_alloggio, camping, residenze_epoca, rifugio_alpino.

Thanks to the class Service the macroclasses Point of Interest

and Street guides can be connected by exploiting the

ObjectProperty hasAccess, with which a service can be

connected to only one external access, corresponding to the

road and the street number of the service location. If this

association is not possible (because of lack of information,

missing street number, etc..), the connection between the

same two macroclasses listed above, is realized through the

ObjectProperty isIn, that connects an instance of the class

Service to an instance of the class Road. In order to use at least

one of these two ObjectProperty to connect the macroclasses

Point of Interest and Street Guides, an intense reconciliation

phase is necessary, as described in section IV.

D. Local Public Transport Macroclass

Into the LPT macroclass (see Figure 3), each LPT lot,

represented by the class Lot, is composed of a number of

bus/tram lines (class TPLLine), and this relationship is

represented by the ObjectProperty isPartOfLot, which

connects each instance of TPLLine to the corresponding

instance of Lot. The class TPLLine is defined as a subclass of

OTN:Line, and each line includes at least two ride (the first in

ascendant direction, and the second one in descendant

direction), identified through a code provided by the LPT

company; the class TPLLine was in fact connected to the class

Ride through the ObjectProperty scheduledOn, which is also

defined as a limitation of cardinality exactly equal to 1,

because each stroke may be associated to a single line.

Each ride follows exactly one path, and the paths can be in a

variable number even if referring to a same line: in most cases

are 2, as previously mentioned, but sometimes they become 3

or more, according to possible extensions of paths deviations

or maybe rides performed only in specific times.

otn:Node

TPLLine

Route

RouteSection

BusStop

RouteLink

allows

hasFirstSection

is
M

ad
eU

p

en
d

sA
t

st
ar

ts
A

t

beginsAt

finishesAt
TPLJunction

otn:Line
subClassOf

otn:Route subClassOf

otn:RouteSec
tion

subClassOf

subClassOf

otn:StopPoin
t

subClassOf

hasSection

ha
sF

ir
st

St
o

p

Ride

scheduledOn

on

Lot
isPartOfLot

is
Pa

rt
O

fL
ot

Figure 3 - Local Public Transport Macroclass

Each path is considered as consisting of a series of road

segments delimited by subsequent stops: to model this

situation, it was decided to define two ObjectProperty linking

the classes Route and RouteSection, i.e. hasFirstSection and

hasSection, since, from a cartographic point of view, wanting

to represent the path that follows a certain bus; knowing the

first segment and the stop of departure, it is possible to obtain

all the other segments that make up the complete path and,

starting from the second bus stop, that is identified as the

different stop from the first stop, but that it is also contained in

the first segment, we are able to reconstruct the exact sequence

of the bus stops, and then the segments, which constitute the

entire path. For this purpose also the ObjectProperty

hasFirstStop has been defined, which connects the classes

Route and BusStop .

Applying the same type of modeling used for road elements,

two ObjectProperty have been defined: endsAt and startsAt,

which connect each instance of RouteSection to two instances

of the class BusStop, class in turn defined as a subclass of

OTN:StopPoint. Each stop is also connected to the class Lot,

through the ObjectProperty isPartOfLot, with a 1:N relation,

because there are stops shared by urban and suburban lines so

they belong to two different lots.

Possessing also the coordinates of each stop, the class BusStop

was defined as a subclass of geo:SpatialThing, and was also

termed a cardinality equal to 1 for the two DataProperty

geo:lat and geo:long.

Wishing then to represent to a cartographic point of view the

path of a bus, i.e., a Route instance, we need to represent the

broken line that composes each stretch of road crossed by the

means of transport itself and to do so, the previously used

modeling has been reused to the road elements: we can see

each path as a set of small segments, each of which delimited

by two junctions: were then defined the classes RouteLink and

TPLJunction, and the ObjectProperty beginsAt and

finischesAt. The class Route is connected to the class

RouteLink through isMadeUp ObjectProperty.

E. Sensors Macroclass

Sensors Macroclass has not yet been completed, but for now it

consists of four parts respectively relating to the car parks

sensors, to the weather sensors, to the sensors installed along

roads/rails and to the AVM systems.

The first part is focused on the real-time data related to

parking. The class TransferService, in fact, is connected to the

class CarParkSensor, which represents the sensor installed in

a given parking and which will be linked to instances of the

class SituationRecord, which represent the state of a certain

parking at a certain instant; the first link, i.e. the one between

the classes TransferService and CarParkSensor, is realized

through two inverse ObjectProperty, observe and

isObservedBy, while the connection between the classes

CarParkSensor and SituationRecord, is performed via the

reverse ObjectProperty, relatedTo and hasRecord. The class

SituationRecord allows to store information about the number

of free and occupied parking spaces, in a given moment (also

recorded) for the main car parks in Tuscany Region.

The second part of the received real-time data, concerns the

weather forecast, available for different areas (and thus

connected to the respectively instance of class Municipality),

thanks to LAMMA. This consortium will update each

municipality report once or twice a day and every report

contains forecast of five days divided into range, which have a

greater precision (and a higher number) for the nearest days

until you get to a single daily forecast for the 4th and 5th day.

This situation is in fact represented by the class

WeatherReport connected to the class WeatherPrediction via

the ObjectProperty isComposedOf. The class Municipality is

instead connected to a report by two reverse ObjectProperty:

RefersTo and has.

Figure 4 - Sensors Macroclass (a portion)

The third part of the real-time data concerns the sensors placed

along the roads of the region, which allow to make different

detection related to traffic situation. Unfortunately, the

location of these sensors is not very precise, it is not possible

to place them in a unique point thanks to coordinate, but only

to place them within a toponym, which for long-distance roads

such as FI- PI-LI road, it represents a range of many miles.

Sensors are divided into groups, each group is represented by

the class SensorSiteTable and each instance of the class

SensorSite (that represent a single sensor) is connects to its

group through the ObjectProperty forms and, as mentioned

earlier, each instance of the class SensorSite can be connected

only to the class Road (through the ObjectProperty

installedOn) (see Figure 4). Each sensor produces

observations, which are represented by instance of class

Observation and these observations can belong to four types,

i.e., they can be related to the average velocity (TrafficSpeed

subclass), or related to the car flow passing in front of the

sensor (TrafficFlow subclass), related to traffic concentration

(TrafficConcentration subclass), and finally related to the

traffic density (TrafficHeadway subclass). The classes

Observation and Sensor are connected via a pair of reverse

ObjectProeprty, hasProduced and measuredBy.

The last part of RealTime macroclass concerns the AVM

(Authomatic Vehicle Monitoring) systems installed on most of

ATAF busses, and it is mainly represented by two classes,

AVMRecord and BusStopForecast: the first class mentioned

represents a record sent by the AVM system, in which, as well

as information on the last stop done (represented by the

ObjectProperty lastStop that connects the class AVMrecord to

BusStop), GPS coordinates of the vehicle position, and the

identifiers of vehicle and line, we also find a list of upcoming

stops with the planned passage time; this list have a variable

length and it represents instances of the class

BusStopForecast. This latter class is linked to the class

BusStop through atThe ObjectProperty so as to be able to

recover the list of possible lines provided on a certain stop (the

class AVMRecord is in fact also connected to the class Line via

the ObjectProperty concern).

F. Temporal Macroclass

Finally, the last macroclass, called Temporal Macroclass, is

now only "sketchy" within the ontology, and it is based on the

Time ontology [5] as it has been used into OSIM ontology [8].

It requires the integration of the concept of time as it will be of

paramount importance to be able to calculate differences

between time instants, and the Time ontology comes to help us

in this task. We define fictitious URI #instantForecast,

#instantAVM, #instantParking, #instantWreport,

#instantObserv to following associate them to the identifier

URI of a resource referred to the time parameter, i.e.

respectively BusStopForecast, AVMRecord, SituationRecord,

WheatherReport and finally Observation. The fictitious URI

#instant<category>, will be formed as concatenation of two

strings: for example, in the case of BusStopForecast instances,

it will be concatenate the stop code string (which allows us to

uniquely identify them) and the time instant in the most

appropriate format. Is necessary to create a fictitious URI that

links a time instant to each resource, to not create ambiguity,

because identical time instants associated with different

resources may be present (although the format in which a time

instant is expressed has a fine scale). Time Ontology is used to

define precise moments as temporal information, and to use

them as extreme for intervals and durations definition, a

feature very useful to increase expressiveness.

Pairs of ObjectProperties have also been defined for each class

that needs to be connected to the class Instant: between classes

Instant and SituationRecord were defined the inverse

ObjectProperties instantParking and observationTime,

between classes WeatherReport and Instant, the

ObjectProperties instantWReport and updateTime have been

defined; between classes Observation and Time there are the

reverse ObjectProperties measuredTime and instantObserv,

between BusStopForecast and Time we can find

hasExpectedTime and instantForecast ObjectProperties, and

finally, between AVMRecord and Time, there are the reverse

ObjectProperties hasLastStopTime and instantAVM.

The domain of all ObjectProperties with instant<category>

name is defined by elements Time:temporalEntity, so as to be

able to expand the defined properties not only to time instant,

but also to time intervals.

IV. DATA ENGINEERING ARCHITECTURE

In this section, the description of the data engineering

architecture is proposed in Figure 5. From the Figure, it is

clear that the entire process can be divided into four phases:

Data Ingestions, knowledge Mapping, and interoperable

knowledge Validation and Access / exploitation from

services. The set of ingestion processes is managed by a

Process Scheduler that allocates these processes, as well as

those of the next phase of mapping on a parallel and

distributed architecture composed by several servers. To

allow the regular update of ingested data the scheduler

regularly retrieves data and check for updates. The ingested

data are transcoded and then mapped in the DISIT Ontology

for Smart City. After that, they are made available to

applications on an RDF Store (OWLIM-SE) using a SPARQL

Endpoint. Applications can use the geo-referenced data to

provide advanced services to the city citizens, such as the

present solution for knowledge base browsing via Linked

Open Data (http://log.disit.org) and the Service Map

(Http://servicemap.disit.org), described in the following.

Figure 5 - Architecture Overview

A. Data Ingestion

For the data ingestion, the problems are related to the

management of the several format and of the several data sets

that may find allocation on different segments and areas of the

Smart City Ontology. The solution has to allow ingesting and

harvesting a wide range of public and private data, coming as

static, semi-static and real time data as mentioned in the

previous sections. For the case of Florence area, we are

addressing about 150 different sources of the 564 available.

Static and semi-static data include points of interests, geo-

referenced services, maps, accidents statistic, etc. This

information is typically accessible as public files in several

formats, such as: SHP, KML, CVS, ZIP, XML, etc. The most

cases, the static and semi-static data sources are ingested using

specific data transformation processes (one for each data

source). Each Open Data ingestion process retrieves

information and produce records in a noSQL Hbase for

bigdata [9], logging all the information acquired to trace back

and versioning the data ingestion. Data are then completed,

other columns are updated dynamically with other process

steps, and finally data obtained are placed on an HBase table.

Real time data includes data coming from sensors (e.g.,

parking, weather conditions, pollution measures, busses, etc.)

that are typically acquired from Web Services as well as more

static data as road graph description, etc. For example

ingestion of data relating to traffic sensors consists of a Job

that invoke the web service via HTTP Post, retrieve the XML

data and extract the data fields as measurementSiteReference,

measurementTimeDefault, concentration, occupancy,

vehicleFlow, averageDistanceHeadway, averageVehicleSpeed

, measurementSiteTableReference, supplierIdentification and

publicationTime. In most cases, the real-time data are directly

pushed in the mapping process to feed the temporary SQL

store. They are typically streamed into the traditional SQL

store and then converted into triples in the RDF final store.

In almost all cases, each single data set is ingested by means

of a different ETL process defined by using Pentaho Kettle

formalism [10]. Among the several solutions we decided to

adopt this formalism and tool since it is quite diffused and

general enough. When the Kettle language presented

limitation, external processes in Java have been adopted.

B. Data Mapping

The Mapping Phase deals with the transport of information,

previously saved into HBase database, into an RDF datastore,

in our case managed by Owlim-SE [11]. The first part of this

procedure retrieves information from HBase to put them on a

temporary MySQL database (required to use the Data

Integration tool chosen), while in the second part data are

translated into triples. Transformation is needed to map the

traditional structured into RDF triples, based on information

contained in a well-defined ontology (DISIT Ontology for

Smart City) and all ontologies reused (dcterms, foaf, vCard,

etc.). This process may be performed ad-hoc programs that

have to take into account the mapping from linear model to

RDF structures. This two steps process allowed us to test and

validate several different solutions for mapping traditional

information into RDF triples and ontology. The ontological

model has been several times updated and thus the full RDF

storage has been regenerated from scratch reloading the

definition (all the other vocabularies, selecting the testing

RDF Store,
Knowledge

base

BigData Store
Dati Statici

ETL
Transfor
mation

ETL
Transfor
mation

ETL
Transfor
mation

ETL
Transfor
mation

Mapping
processe

s

Temp
Store

Triple
Generati

on

Data
Integrati
on Tool

DISIT
Ontology

for
Smart City

R2RML
Model

Reconciliation consolleProcess
Scheduler

Ingestion

Temp
Store

SQL Store

NoSQL Store

BigData Store
Dati Real Time

SQL Store

ETL
Transfor
mation

Validation

Query
SPARQL

Linked Open Graph
Log.disit.org

ServiceMap
servicemap.disit.org

Mapping

SP
A

RQ
L

en
d

 p
oi

nt

Access

Server

http://log.disit.org/
http://servicemap.disit.org/

several different solutions) and the instance triples according

to the new model under test. Once the model has been

generated, triples can be automatically inserted.

The first essential step is to specify semantic types of the data

set, i.e., it is necessary to establish the relationship between

the columns of the SQL tables and properties of ontology

classes. The second step consists in defining the Object

Properties among the classes, or the relationships between the

classes of the ontology. When dataset has 2 columns that have

the same semantic type but which correspond to different

entities, thus multiple instances of the same class have to be

defined, associate each column to the correct one.

The process responsible to perform the mapping

transformation, passing from Hbase to SQL database has been

produced as a corresponding ETL Kettle associated with each

specific ingestion procedure for each data set. The second

phase, of performing the mapping from SQL to RDF, has been

realized by using a mapping model. Thus Karma Data

Integration tool [12] was selected, which generates a R2RML

model, representing the mapping for transport from MySQL to

RDF and then it is uploaded in a OWLIM-SE RDF Store

instance [11]. Karma initialization phase involves loading the

primary reference ontology and connecting dataset containing

the data to be mapped.

This process allowed the production of the knowledge base

that may present a large set of problems due to inconsistencies

and incompleteness that may be due to lack of relationships

among different data sets, etc. For example to join services

with the road map using the street address names that are

written in different ways (e.g., “Via XXVII Aprile” and “VIA

VENTISETTE APRILE”) producing ‘owl:sameAs’ triples to

link them. These problems may lead to the impossibility of

making deductions and reasoning on the knowledge base, and

thus on reducing the effectiveness of the model constructed.

These problems have to be solved by using a validation phase

via specific tools and the support of human supervisors. The

validation process is performed by defining a set of SPARQL

queries that verify the knowledge base conditions with the aim

of detecting inconsistencies and incompleteness, and verifying

the correct status of the model. These queries have to be

periodically executed in order to perform a regression testing

every time a new update of data process ingestion is

performed. So that, processes for ingestion and mapping have

to be connected to validation processes that have to be re-

executed. The validation process may lead to identify changes

in the ingested data sets that may implies to apply changes into

the ontological model or in the above mentioned processes. So

that, an iterative and workflow process is defined.

C. Data Reconciliation

To connect services to the Street Guide in the repository a

reconciliation phase in more steps, has been required, because

the notation used by the Tuscany region in some Open Data

within the Street Guide, does not always coincide with those

used inside Open Data relating to different points of interest.

In substance, different public administration are publishing

Open Data that are not semantically interoperable.

Furthermore, there are different types of inconsistencies

within the various integrated dataset, such as:

• typos;

• missing street number, or replacement with values "0" or

"SNC";

• Municipalities with no official name (e.g.

Vicchio/Vicchio del Mugello);

• street names with strange characters (-, /, ° ? , Ang., ,);

• street numbers with strange characters (-, /, ° ? , Ang., , (,

,);

• road name with words in a different order from the usual (

e.g. Via Petrarca Francesco, exchange of name and

surname);

• red street numbers (in some cities, street numbers may

have a color. So that a street may have 4/Black and 4/Red,

red is the numbering system for shops);

• presence/absence of proper names in road name (e.g. via

Camillo Benso di Cavour /via Cavour);

• number wrongly written (e.g. 34/AB, 403D, 36INT.1);

• Roman numerals in the road name (e.g., via Papa

Giovanni XXIII).
Thanks to how the ontology was created, is possible to

perform services reconciliation at street number level, i.e.

connecting an instance of class Service to an external access

that uniquely identifies a street number on a road, or only at

street-level, with less precision (lack that can be compensated

thanks to geolocation of the service).

The methodology used in this reconciliation phase consists of

first try to connect each service at street number-level, and

then, perform the reconciliation at street-level.

The first reconciliation step performed consists of an exact

search of the street name associated to each service integrated.

For example, to reconciliate the service located at "VIA

DELLA VIGNA NUOVA 40/R-42/R, FIRENZE", a SPARQL

query is necessary, to searche for all elements of Road class

connected to the municipality of "FIRENZE" (via the

ObjectProperty inMunicipalityOf), which have a name that

exactly corresponds to "VIA DELLA VIGNA NUOVA"

(checking both fields: official name, alternative name). The

query results has to be filtered again, imposing that an instance

of StreetNumber class exists and it corresponds to civic

number "40" or "42", with the R class code Red.

From this first reconciliation step, the services for which was

identified a single instance of the class Entry has been

selected, and the related reconciliation triples at street number-

level, have been created.

A very frequent problem for exact search, is the existence of

multiple ways to express toponym qualifiers, that is dug (e.g.

Piazza and P.zza) or parts of the proper name of the street

(such as Santa, or S. or S or S.ta): thanks to support tables,

inside which the possible change of notation for each

individual case identified are inserted, a second reconciliation

step was performed, based on exact search of the street name,

which has allowed to increase the number of reconciled

services at street number-level.

The third reconciliation step is based on the research of the

last word inside the field v:Street-Address of each instance of

the Service class, because, statistically, for a high percentage

of street names, this word is the key to uniquely identify a

match.

These first three reconciliation steps have been also carried out

without taking into account the street number, and so in order

to obtain a reconciliation at street-level of each individual

service.

The fourth reconciliation step is realizing thanks to Google

Geocoding API
6
, through which different services, not yet

connected to the Street Guide macroclass at street number-

level, were searched again.

The next reconciliation step used automated methods to

remove strange characters, inside the street number field, or

the address field, but unfortunately at this point it is becoming

increasingly difficult to obtain unique results in the search for

correspondences between instances of the class Entry and

instances of the class Service.

The last reconciliation step implemented, trying to reconcile

all those services in which the name of the town is incorrectly

used or it is expressed in a not official notation; even in this

case it is difficult to get great results from every single

reconciliation step.

At present, all services that present typos, street number equal

to "0" or to string "SNC", still need to be managed; moreover

services with strange char in the street name, are partially

managed.

As a summary, the whole knowledge base created at

the first day has been of more than 81 Millions, when it grows

of 2.5 Millions per month. A part of them can be discharged

when statistical values are estimated and punctual value

discharged. For the validation, a total amount of

services/points of interest inserted into the repository has been

of 30182 instances. Among these, 13185 have been reconciled

at street number-level, while the number of elements

reconciled at street-level has been 21207. There are also 149

services associated to a coordinate pair, for which

reconciliation did not return any results, yet for the lack of

references into the knowledge base (some streets and civic

numbers are still missing or incomplete). Table 1 shows a

summary of the results obtained in all the reconciliation steps

performed. The first two columns help to identify the

reconciliation' step to which data relates, among those

described above. After the first step, a large number of triples

have been created, i.e. 5627 triples that have hasAccess

predicate, and 8329 triples that have isIn predicate. To clarify,

each step was performed only on services that did not get

result in previous steps. In the second step, other 1698

hasAccess triples and 6971 isIn triples were generated, thanks

to the support table. The last word search leds to the creation

of 5160 new hasAccess triples and 5415 new isIn triples;

unfortunately in this step, during the reconciliation at street-

level, some services (421 to be more precise) have produced

duplicate results, thus generating 934 isIn triples (also

included into the 5627). Thanks to Google Geocoding API

another small part of services have been reconciled: 552

6
 https://developers.google.com/maps/documentation/geocoding/

services reconciliated at street number-level and 492 services

reconciliated at street-level. Other 43 hasAccess triple were

included in the data store after eliminating strange char into

street number field; clearly this step of reconciliation had no

effect on the total number of isIn triples. The last two steps of

reconciliation have helped to create a hundred new triple for

each type considered.

No. Step Method No. hasAccess

Triple created

No. isIn Triple

created

1st Step Exact Search 5.627 8.329

2nd Step Exact Search 1.698 6.971

3rd Step Last Word Search 5.160 5.415 (duplicate)

4th Step Google GeoCoding API 552 492

5th Step Street number with strange

char

43 0

6th Step Street name with strange

char

47 47

7th Step Wrong municipality name 58 58

Total Reconciliated Services 13.185 21.207

Table 1 - Reconciliation results

V. VERIFICATION AND VALIDATION

In order to validate the ingestion performed a set of SPARQL

queries were used. During validation there were cases like the

Weather forecast where no connection among the data were

present due to different encoding of the name of the

municipality, for this reason to support the reconciliation

process a table containing the ISTAT code of each

municipality was created, and each time new weather data are

available, they are automatically completed with the correct

ISTAT code, thus supporting the search for the instance of the

PA class to which connect the weather forecasts. Another

reconciliation activity was done to associate the name of the

street of a service (e.g., museum, pharmacy, hotel) with the

corresponding street on the road graph, in this case, first the

street number is deleted from the string of the service street

address and than a SPARQL query is performed to search for

such road and for its municipality within the graph.

For all those cases where the street names are written in a

different way, a query must be carried out to identify the street

names more 'close to that to be found. It is therefore necessary

to manually select the corresponding value and then create a

new instance of the road class, which will have as code name,

the street name written in that particular way; that instance

will also be connected with a triple owl: sameAs to the

toponym code of the instance that was manually selected.

The system has been used to ingest the data coming from the

Municipality of Florence, the Tuscany Region and MIIC.

Considering only files related to the daily weather forecast of

all the available municipalities, we have 286 files updated

twice a day, each of which, containing also 16 lines of weather

prediction for the week, we obtain an increase of

approximately 270,000 HBase lines per month that, in terms

of triples, corresponds to a monthly increase of about 4 million

triples.

Moreover, in order to explore the data being ingested and their

relationships a tool for data visualization and exploration was

used, that allows exploring the semantic graph of the relations

among the entities (see Figure 6), this Linked Open Graph is

available for applications developers to explore and

understand better the data available in the ontology.

Figure 6 - Linked Open Graph (http://log.disit.org)

A second tool called ServiceMap to perform geographic

queries (for example to get points of interests close to a bus

station, to get the street number close to a give point on the

map, etc.) has been realized (http://servicemap.disit.org see

Figure 7). The service map, for example, allows to (i) get bus

stops and from them to access at the status line of the bus,

providing the time to wait for the next bus, (ii) finding parking

and getting in real time the number of empty places, etc. From

each pin, it is possible to pass from the entity identified to its

model in terms of relationships on the LOG graph.

Figure 7 - Service Map (http://servicemap.disit.org)

VI. CONCLUSIONS

In this paper, a system for the ingestion of public and private

data for smart city with related aspects as road graph, services

available on the roads, traffic sensors etc., has been proposed.

The system includes both open data from public

administration and private data coming from transport systems

integrated mangers, thus addressing and providing real time

data of transport system, i.e., the busses, parking, traffic flows,

etc. The system allows managing a big volume of data coming

from a variety of sources considering both static and dynamic

data, this data is then mapped to a smart-city and mobility

ontology and stored into an RDF-Store where this data are

available for applications via SPARQL queries to provide new

services to the users. The derived ontology has been obtained

by means of an incremental process performed analyzing,

integrating and validating each added data set. Thus the

resulting ontology is a strong generalization of a large set of

data modeling problems. In addition, a process of verification

and validation have been deeply performed allowing to

identify the set of triples to improve and enrich the model and

the correction to be performed in order to enable the

exploitation of the deductive capabilities of the final model.

Finally, the system proposed also provides a visualization and

exploration tool to explore the data available in the RDF-

Store.

ACKNOWLEDGMENT

A sincere thanks to the public administrations that provided
the huge data collected and to the Ministry to provide the
funding for Sii-Mobility Smart City Project, a warm thanks to
Lapo Bicchielli, Giovanni Ortolani, Francesco Tuveri.

REFERENCES

[1] Caragliu, A., Del Bo, C., Nijkamp, P. (2009), Smart cities in Europe, 3rd
Central European Conference in Regional Science – CERS, Kosice (sk),
7-9 ottobre 2009.

[2] Bellini P., Di Claudio M., Nesi P., Rauch N., "Tassonomy and Review
of Big Data Solutions Navigation", Big Data Computing To Be
Published 26th July 2013 by Chapman and Hall/CRC

[3] Vilajosana, I. ; Llosa, J. ; Martinez, B. ; Domingo-Prieto, M. ; Angles,
A., "Bootstrapping smart cities through a self-sustainable model based
on big data flows", Communications Magazine, IEEE, Vol.51, n.6, 2013

[4] Ontology of Trasportation Networks, Deliverable A1-D4, Project
REWERSE, 2005 http://rewerse.net/deliverables/m18/a1-d4.pdf

[5] Pan, Feng, and Jerry R. Hobbs. "Temporal Aggregates in OWL-Time."
In FLAIRS Conference, vol. 5, pp. 560-565. 2005.

[6] Embley, David W., Douglas M. Campbell, Yuan S. Jiang, Stephen W.
Liddle, Deryle W. Lonsdale, Y-K. Ng, and Randy D. Smith.
"Conceptual-model-based data extraction from multiple-record Web
pages." Data & Knowledge Engineering 31, no. 3 (1999): 227-251.

[7] Auer, Sören, Jens Lehmann, and Sebastian Hellmann. "Linkedgeodata:
Adding a spatial dimension to the web of data." In The Semantic Web-
ISWC 2009, pp. 731-746. Springer Berlin Heidelberg, 2009.

[8] Andrea Bellandi, Pierfrancesco Bellini, Antonio Cappuccio, Paolo Nesi,
Gianni Pantaleo, Nadia Rauch, ASSISTED KNOWLEDGE BASE
GENERATION, MANAGEMENT AND COMPETENCE
RETRIEVAL, International Journal of Software Engineering and
Knowledge Engineering, Vol.22, n.8, 2012

[9] Apache HBase: A Distributed Database for Large Datasets. The Apache
Software Foundation, Los Angeles, CA. URL http://hbase.apache.org.

[10] Pentaho Data Integration, http://www.pentaho.com/product/data-
integration

[11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, Ruslan Velkov, “OWLIM: A family of scalable
semantic repositories”, Semantic Web Journal, Volume 2, Number 1 /
2011.

[12] S.Gupta, P.Szekely, C.Knoblock, A.Goel, M.Taheriyan, M.Muslea,
"Karma: A System for Mapping Structured Sources into the Semantic
Web", 9th Extended Semantic Web Conference (ESWC2012), May
2012.

http://log.disit.org/
http://servicemap.disit.org/
http://servicemap.disit.org/
http://www.worldscientific.com/doi/abs/10.1142/S021819401240013X
http://www.worldscientific.com/doi/abs/10.1142/S021819401240013X
http://www.worldscientific.com/doi/abs/10.1142/S021819401240013X
http://hbase.apache.org/
http://www.pentaho.com/product/data-integration
http://www.pentaho.com/product/data-integration

