Communicating TILCO for Real-Time System Specification

Pierfrancesco Bellini, Paolo Nesi Dipartimento Sistemi e Informatica, University of Florence Via S.Marta, 3 50139, Firenze - Italy +39-0554796523, nesi@dsi.unifi.it, http://www.dsi.unifi.it/~nesi

January 25, 2001

ABSTRACT

Formal techniques for the specification of real-time systems must be capable of describing a set of relationships expressing the temporal constraints among events and actions: properties of invariance, precedence, periodicity, liveness and safety conditions, etc. This paper describes CTILCO, an extension of TILCO, Temporal Interval Logic with Compositional Operators. CTILCO introduces the communication among components specified in TILCO and allows the adoption of decomposition/composition mechanisms. TILCO has been expressly designed for the specification of real-time systems. CTILCO is based on time intervals and can concisely express temporal constraints with time bounds, such as those needed to specify real-time systems. It can be used to verify the completeness and consistency of specifications, as well as to validate system behavior against its requirements and general properties. CTILCO has been formalized by using the theorem prover Isabelle/HOL. CTILCO specifications satisfying certain properties are executable. CTILCO is defined in terms of theorems and allows the system specification and the formal proof of properties including composition/decomposition with communications. An example of system specification and validation has been also included.

0.1 Keywords

formal specification language, first order logic, temporal interval logic, verification and validation, real-time systems.

1 INTRODUCTION

Applications of avionics, robotics, process control, patient monitoring, etc., frequently must meet temporal constraints for avoiding critical or degenerative conditions. These applications are typically modeled as real-time systems by using suitable specification techniques. For their specification a set of relationships expressing temporal constraints among events must be used – e.g., [1], [2] – for example, properties of invariance, precedence among events, periodicity, liveness and safety conditions, etc. The specification correctness in meeting the temporal constraints has to be demonstrated by using verification and validation techniques.

For these reasons, formal specification techniques are presently considered the best tools for the specification of real-time systems (see [1] for a survey). Most of the formal methods allow the verification and validation of the specification with respect to system requirements and/or to real stimuli by using classical and symbolic model-checking techniques. These approaches, allow the verification of the most critical aspects and use-cases in limited time. To guarantee the absolute reliability of the specifications is still an open problem since the costs of exhaustive verification and validation with model-checking techniques are often unmanageable. For these cases, a solution is to demonstrate the satisfactory of specific system properties and behavior by using theorem prover approaches [3],[4].

Composition/decomposition techniques are mechanisms to cope with the general system complexity. Most of software development methodologies address the structural composition/decomposition of the systems. A composite object is defined in terms of its sub-object/components and their relationships. Object-based and object-oriented approaches include and formalize composition/decomposition concepts. Different communication mecha-

nisms among components: shared variables, synchronous or asynchronous communications are chosen. Components can be separately developed, tested and then combined for modeling the whole system. Problems arise when the combination of components produces unexpected and, thus, difficultly controllable and verifiable behavior for the presence of communication among components. To this end, verification and validation criteria for compositional methods are used [5], [6]. These must address the verification and validation of composition of components and their relationships with the requirements of the composite object.

For complex and large systems, the compositional approaches are typically accompanied by the availability of a layering support. The verification of consistency between composite object and its components at each level of the structural hierarchy guarantees the satisfactory of the abstract specification and thus of system requirements – for example, [7], [8], [5], [6], [9], [10].

For the specification of real-time systems temporal logics have been profitably used (see [11] for a survey), and they can be used also for the validation of the system under specification. In particular, the temporal logic TILCO (Temporal Interval Logic with Compositional Operators) has been defined with the aim of defining a powerful temporal logic, with special emphasis on its expressiveness and conciseness [3]. TILCO has been designed for the specification of real-time systems, it extends FOL with a set of temporal operators and can be regarded as a generalization of the classical temporal logics operators eventually and henceforth to time intervals [11]. TILCO has a metric for time, the time is discrete and no explicit temporal quantification is allowed. TILCO allows definition of expressions of ordering relationships among events, delays, time-outs, periodicity, liveness and safety conditions, etc. These features are mandatory for specifying the behavior of real-time systems.

In this paper, C-TILCO (Communicating TILCO, Temporal Interval Logic with Compositional Operators) is presented. It has been defined since TILCO does not provide facilities for the specification of complex/wide systems. To this end, C-TILCO permits the decomposition of the system in a hierarchy of communicating processes. Processes communicate using message-passing primitives on synchronous ports. The communication between processes is based on typed synchronous input/output ports connected through channels. The connection is 1:1, each output port is connected to at most one input port and viceversa. In the following, the way in which processes are modeled in C-TILCO is introduced and in the next sections the formalization of communication between processes in TILCO and the way that could be used for reasoning about communicating processes are presented.

This paper is organized as follows. Section 2 briefly presents TILCO temporal logic. Section 3 presents a C-TILCO overview. Section 4 shows the communication model used in C-TILCO: low-level and the high-level communication constructs with their semantics expressed in TILCO. Section 5 briefly highlights the validation methods usable in CTILCO specifications. Section 6 provides an example of specification to show the composition/decomposition capabilities of C-TILCO. Conclusions are drawn in Section 7.

2 TILCO OVERVIEW

In TILCO, the same formalism used for system specification is employed for describing high-level properties that should be satisfied by the system itself. These must be proven on the basis of the specification in the system validation phase. To this end, a formalization of TILCO has been implemented in the theorem prover Isabelle/HOL [4], [3]. Using this formalization, a set of fundamental theorems has been proven and a set of tactics has been built for supporting the semi-automatic demonstration of properties of TILCO specifications. Causal TILCO specifications are also executable by using an inferential engine and algorithm. Since TILCO has aspects typical of both descriptive and operational semantics, it can be considered a dual approach following the classification reported in [1].

TILCO's temporal operators have been added to FOL by leaving the evaluation time implicit. The meaning of a TILCO formula is given with respect to the current time such as in other logical languages — e.g., [12], [13]. Time is discrete and linear, and the temporal domain is \mathcal{Z} , the set of integers. The current time instant is represented by 0, whereas positive (negative) numbers represent future (past) time instants.

The basic temporal entity in TILCO is the time interval. Intervals can be quantitatively expressed by using the notation with round, "(", ")", or squared, "[", "]", brackets for excluding and including interval boundaries, respectively. Time instants are regarded as special cases that are represented as closed intervals composed of a single point (e.g., [a, a]). Symbols $+\infty$ and $-\infty$ can be used as interval boundaries, if the extreme is open, to denote infinite intervals.

The basic TILCO temporal operators are:

• "A@i" is true if formula A is true in every instant in interval i, with respect to the current time instant;

- "A?i" is true if formula A is true in at least one instant in the interval i, with respect to the current time instant;
- "until A B" is true if either predicate B will always be true in the future, or it will be true until predicate A will become true;
- "since A B", is true if either predicate B has always been true in the past, or it has been true since predicate A has become true.

A@i is true if formula A is true in every time instant in interval i, with respect to the current time instant. Therefore, if t is the current time instant, A@i represents a constraint on A considering the interval i with respect to the evaluation time instant t, that is $(A@i)^{(t)} \equiv \forall x \in i.A^{(x+t)}$ holds. This approach is called implicit time and is used in RTL, TRIO and in several other temporal logics [11] In particular, $A@[t_1, t_2)$ evaluated in t means: $\forall x \in [t_1, t_2).A^{(x+t)}$.

Obviously t_1 and t_2 can be either positive or negative, and, thus the interval can be in the past and/or in the future, respectively. If the lower bound of an interval is greater than the upper bound, the interval is null. Operators "@" and "?" correspond, in the temporal domain, to FOL quantifiers \forall and \exists , respectively; hence, they are related by a duality relationship analogous to that between \forall and \exists . "@" and "?" operators are used to express delays, time-outs and any other temporal constraint that requires a specific quantitative bound. Concerning the other temporal operators, until A B (evaluated in t) is true if B will always be true in the future with respect to t, or if B will be true in the interval (t, x + t) with x > 0 and A will be true in x + t. This definition of until does not require the occurrence of A in the future, so the until operator corresponds to the weak until operator defined in PTL [14]. The operators until and since can be effectively used to express ordering relationships among events without specifying any numeric constraint.

until A B operator does not consider the evaluation time instant as an instant where A could happen, then operator until₀ has been introduced. It is defined as:

$$\mathbf{until}_{\mathbf{0}} \ A \ B \equiv A \lor (B \land \mathbf{until} \ A \ B)$$

and also a "strong" until is sometime needed. For this reason the operator until' has been defined as:

until'
$$A B \equiv A?(0, +\infty) \land$$
 until $A B$

For completeness, the $until_0'$ has been defined as:

$$\mathbf{until}_{\mathbf{0}}' A B \equiv A?[0, +\infty) \land \mathbf{until}_{\mathbf{0}} A B$$

In a similar manner, $since_0$, since' and $since'_0$ operators have been also defined.

In a TILCO specification, predicates and functions with typed parameters can also be defined. Predicates return a value of type **bool**. The body of each predicate must be specified by means of a TILCO formula, in which the only non-quantified variables are the predicate parameters. Predicates are an instrument to simplify the writing of formulæ; hence, more complex temporal expressions and formulæ can be hidden in predicates. For example, the two predicates:

$$\mathbf{rule}(A : \text{bool}) \stackrel{\text{def}}{=} A@(-\infty, +\infty)$$
$$\mathbf{up}(A : \text{bool}) \stackrel{\text{def}}{=} A \wedge \neg A@[-1, -1]$$

where: **rule** expresses that a predicate A is always true and **up** means that A from false becomes true. Predicates with parameters are often used in specifications to have shorter and easily readable formulæ.

In Tab. 1, in order to provide a clearer view of TILCO expressivity, some examples of formulæ are reported with an explanation of their meaning, where t stands for a positive integer number.

3 CTILCO OVERVIEW

A system specification in C-TILCO is a hierarchy of communicating processes whose specifications are written in TILCO. Many instances of the same process can be present in the specification. Processes can have some general static parameters and every instance could have different values.

The communication between processes is based on typed synchronous input/output ports connected through channels. The connection is 1:1, each output port is connected to at most one input port and viceversa. In the following, the way in which processes are modeled in C-TILCO is introduced. The next sections the formalization

A@[0, t)	A is true from now for t time instants
$A@(0,+\infty)$	A will be always true in the future
$A?(0,+\infty)$	A will be sometimes true in the future
$A@[t_1, t_2]$	A is true in $[t_1, t_2]$
$A?[t_1, t_2)$	A is true in an instant of $[t_1, t_2)$
$\neg(A@(-\infty,+\infty))$	A is not always true
$A@[t_1,t_1],(t_2,t_3]$	A is true in t_1 , and in $(t_2, t_3]$
$A@[t_1, t_1]; (t_2, t_3]$	A is true in t_1 , or in $(t_2, t_3]$
$A@[t,t] \land \neg A@(0,t)$	t is the next time instant in which A
	will be true
$A?[0, t_1]@[0, +\infty)$	A will become true within t_1 for each
	time instant in the future (response)
$(A \Rightarrow B)?[0,t]$	if A is true within t , then also B will
	be true at the same time
$(A \Rightarrow B?i)@j$	A leads to an assertion of B in i for
	each time instant of j
$(A \Rightarrow B@i)?j$	A leads to the assertion of B in the
	whole interval i in at least a time in-
	stant of j

Table 1: Examples of TILCO formulæ.

of communication between processes in TILCO and the way used for reasoning about communicating processes are presented.

In the following, a process represents a class according to object-based formalism.

In C-TILCO a process is represented by two views:

- 1. the external view that basically describes the input/output behavior of the process;
- 2. the *internal view* that describes the process decomposition into subprocesses or a low-level formalization of the process behavior if it cannot be furtherly decomposed.

A C-TILCO process is *externally* characterized by:

- a set of external *input* ports used to acquire information from the outside;
- a set of external *output* ports used to produce information to the outside;
- a set of external *variables* used to give some general information about the process state or to simplify the external behavior specification;
- a set of external *parameters* used to permit general process specification to make easy process reuse, since different process instances may have different parameters;
- a set of external TILCO formulæ that describe the external process behavior by means of the messages exchanged and constraints on the external variables, CTILCO is internally characterized by:
- a set of C-TILCO *subprocesses*;
- a set of internal *input* ports, used to get information from subprocesses;
- a set of internal *output* ports used to send information to subprocesses;
- a set of internal variables;
- a set of internal TILCO formulæ, which describe the internal behavior of the process.

The ports of subprocesses can be directly connected to the containing process ports (of the same type, input to input and output to output) or can be connected through channels to the complementary internal ports (output to input and input to output). In Fig. 1, a decomposition is exemplified. The use of internal ports permits the realization of *partial* decompositions, when the process behavior is only partially specified by subprocesses and, thus, some interactions with the subprocesses is stated in the internal specification TILCO formulæ.

In TILCO formulæ, to access at process components the *dot* notation is used. For example, if p is a process with a variable v then p.v is used to refer to the variable of p. Whether process p has a subprocess s with a variable v, then p.s.v is used to access to the subprocess variable.

Since many instances of the same process can be present in the system, its specification is valid for all of them. For example, if the internal specification of a process with a variable *ivar* includes the following formula:

$$:ivar = 1 \Rightarrow (:ivar = 0)@[20,20]$$

Figure 1: External and internal representation of a C-TILCO process

It means that if *ivar* is equal to 1, then after 20 time units *ivar* will be equal to 0. This will be true in each process independly. By means of *colon* operator, process and local variables can be easily distinguished.

Since in TILCO the time axis is infinite in both directions there is not a time instant that can be regarded as the *start* time instant of execution process. In the specification of a system, it is natural to think at a reference time instant in which the process starts its work, and before that, the signals are stable. For this reason, a boolean variable *process_start* has been introduced to each process. This variable is true only in one time instant for each process. It should be noted that each process has its own start instant and a formula of the internal specification is used to define the start time instant of its subprocesses. Typically when a process starts all its subprocesses start.

4 CTILCO COMMUNICATION MODEL

The communication between two processes is structured in two layers: the *low-level* communication model for transmission of typed messages and of acknowledgements (ACKs); and the *high-level* communication model that uses the low-level to realize a synchronous communication protocol.

4.1 Low-level communication

Properties assumed for the low-level are:

- no data creation: a message (or ACK) arrived has been surely sent;
- no data loss: a message (or ACK) sent will be received;

• **constant delay**: a message (or ACK) sent will be received after a constant delay greater or equal than zero. The *no data creation* assumption is fundamental (without this assumption communications have not sense). The *no data loss* and *constant delay* assumptions have been introduced to have a deterministic behavior. From these assumptions, the *no reorder* property can be derived (messages arrive in the same order as they are sent).

In this layer, the following temporal predicates have been defined and, thus, can be used by the higher-level:

<outPort>.send(<expr>)

is true when output port <outPort> sends the value obtained evalutating expression <expr>.

<outPort>.receiveAck

is true when an ACK has been received by output port <outPort>.

<inPort>.receive(<expr>)

is true when a message has been received by input port <inPort> with the value indicated by <expr>.

<inPort>.sendAck

is true when input port <inPort> sends an acknowledge.

There is also a *connection* predicate between ports:

 $out P \xrightarrow{d} in P$

that asserts that output port outP is connected to input port inP and messages (and ACKs) sent are delayed of d time units. Please note that *connections* are static assertions, design-fixed.

The rules to manage low-level communication are reported in the following:

message transmission:

 $(outP \stackrel{d}{\rightarrow} inP) \Rightarrow$

 $rule(outP.send(k) \iff inP.receive(k)@[d,d])$

This rule states: if port outP is connected to port inP then in every time instant, outP sends a message if and only if inP receives the same message after d time units. From this rule, we have that the message sent is received after d time units (no data loss) and that the message received has been sent d time units ago (no creation).

ack transmission:

 $(outP \xrightarrow{d} inP) \Rightarrow$ rule $(inP. sendAck \iff outP. receiveAck @[d, d])$

This rule is similar to the previous except that it deals with the ACKs and that the direction is opposite (from input port to output port).

send one value:

 $\operatorname{rule}(outP.\operatorname{send}(k) \land outP.\operatorname{send}(v) \Rightarrow k = v)$

This rule states: if at the same time instant two values are sent on the same port these values have to be equal.

receive one value:

rule $(inP. \text{receive}(k) \land inP. \text{receive}(v) \Rightarrow k = v)$

This rule states: if at the same time instant two values are received on the same port these values have to be equal.

4.2 High-level Communication

The high-level layer introduces synchronous ports, the basic operators on these ports are: Send (!!) and Receive (??). They are quite easy to remind for their similarity with CSP:

- <outPort> !! <expr> [<whileExpr>];;<thenExpr> sends throught output port <outPort> the value obtained evalutating expression <const expr>. When the communication ends TILCO expression <thenExpr> is asserted. During the waiting the temporal expression <whileExpr> is asserted.
- <inPort>?? [<whileExpr>];;<thenExpr> waits for a message (if not already arrived) from input port <inPort>. When the message arrives TILCO expression <thenExpr> is evaluated as a function of the value received. During the waiting the expression <whileExpr> is asserted.

In order to specify that a process has not to send a message on a port or that the process has not to ask for a message other two operators: outP $\overline{!!}$ and inP $\overline{??}$ have been introduced. These conditions cannot be specified by using $\neg(inP !! v [P];;W)$ which has a different meaning.

High-level synchronous operators are defined in TILCO by using the low-level predicates as reported in the following. In Fig. 2, the two cases of synchronous communication are reported: (i) the emitting process sends a message, and after the receiving process asserts that wants to receive a message; (ii) the receiving process waits for a message and after the emitting process sends the message.

• operator **Send** emits the message and waits for an ACK. While it is waiting, wait formula W_s is asserted and no other messages are sent. When the ACK arrives the "end of communication" formula, P_s , is asserted. The behavior of Send operator has been specified in TILCO with the following axioms:

 $\begin{aligned} \operatorname{rule}((outP \mathrel{!!} v [W_s]; P_s) &\Longrightarrow outP.\operatorname{send}(v) \wedge \\ \operatorname{until}_0(outP.\operatorname{receiveAck} \wedge P_s) \\ (\neg outP.\operatorname{receiveAck} \wedge W_s) \wedge \\ (outP.\operatorname{receiveAck} \vee \\ (\neg outP.\operatorname{receiveAck} \wedge \\ \operatorname{until}(outP.\operatorname{receiveAck}) \\ (\neg outP.\operatorname{receiveAck} \wedge outP \,\overline{!!})))) \end{aligned}$

 $\operatorname{rule}(outP \stackrel{!!}{!!} \Longrightarrow \neg \exists k.outP.\operatorname{send}(k))$

the $until_0$ formula is used to state that P_s is true when the ACK is received and W_s is true until this time instant. The other part of the formula states that during the waiting for the ACK no message is sent.

• operator **Receive** has two possible situations. If there exists a message received in the past that was not acknowledged, then the ACK must be sent and the "end of communication" formula, P_r , is asserted with the value received. In the other case, a new message has to be waited asserting wait formula W_r . When a message is received (if any), the "end of communication" formula, P_r , is evaluated with the value received. The behavior of Receive has been specified in TILCO with the following axioms:

 $\begin{aligned} \operatorname{rule}((inP ?? [W_r];; P_r) \wedge inP.\operatorname{RValue} v \implies \\ inP.\operatorname{sendAck} \wedge P_r(v)) \\ \operatorname{rule}((inP ?? [W_r];; P_r) \wedge inP.\operatorname{RWait} \implies \\ & \operatorname{until}_0(\exists k.inP.\operatorname{receive}(k) \wedge inP.\operatorname{sendAck} \wedge P_r(k)) \\ & (\neg \exists k.inP.\operatorname{receive}(k) \wedge W_r) \wedge \\ & (\exists k.inP.\operatorname{receive}(k) \vee \\ & (\neg \exists k.inP.\operatorname{receive}(k) \wedge \neg inP.\operatorname{sendAck} \wedge \\ & \operatorname{until}(\exists k.inP.\operatorname{receive}(k)) \\ & (\neg \exists k.inP.\operatorname{receive}(k) \wedge inP \overline{??})))) \end{aligned}$

 $\operatorname{rule}(inP \overrightarrow{??} \Longrightarrow \neg inP.\operatorname{sendAck})$

rule $(inP?? [W_r];; P_r \land inP \overline{??} \Longrightarrow \bot)$

where next formula indicates that there exists a pending v message:

inP.RValue v =since'(inP. receive(v) $\land \neg inP.$ sendAck) ($\neg inP.$ sendAck)

and formula

 $inP.RWait = \neg \exists v. inP.RValue v$

states the absence of a pending message to be elaborated (the current instant is not considered).

In Fig.3, the more complex case in which there is a delay in transmission is shown. Even in this case there are two situations. The first, when the distance from the Send and the subsequent Receive is greater than the delay, thus the message is received prior to the Receive action. The second and opposite case, when the Send action is performed after the Receive or before it with a distance lower than the delay.

4.3 CTILCO Communication Theorems

During the definition of CTILCO Communication Theorems many properties have been proved about the communication operators. This has been performed in order to validate the definitions of operators and to aid the construction of proofs involving these operators. The proofs were made by using a formalization of TILCO and C-TILCO in Isabelle/HOL.

Theorems proved can be divided in two groups:

- theorems used to prove internal properties of a process. They substitute operators Send and Receive with their semantics;
- theorems used to prove properties involving connected processes.

In the first group, there are the theorems that can be used to eliminate a Send from the assumptions of a goal.

$$[\vdash_t p. \operatorname{send}(v)]$$

$$\frac{\vdash_{t} p \parallel v [W_{s}];; P_{s} \vdash_{t} p. \text{receiveAck}?[0, +\infty)}{\vdash_{t} \mathbf{until}_{0}' P_{s} W_{s}}$$

$$\frac{\vdash_{t} p \parallel v [W_{s}];; P_{s}}{\vdash_{t} \mathbf{until}_{0} P_{s} W_{s}}$$

The first theorem states that: if the process wants to send a message at time t and the message is sent receiving the ACK, then a time instant exists in which P_s is true. And, until that time instant, predicate W_s is true. This theorem is used to substitute the Send with a strong until in the assumptions of the goal within the backward proofs of Isabelle.

The second theorem is similar to the previous without the assumption that if a message is sent an ACK will be received. In this weaker condition, the same condition with the weak-until has been derived.

delay: d=2

For the Receive, similar theorems have been proved:

$$\frac{\vdash_t p ?? [W_r]; P_r \vdash_t \exists k. \ p. \text{receive}(k) ? [0, +\infty)}{\vdash_t \exists v. \ \textbf{until}_0' P_r(v) \ W_r}$$

$$\frac{\vdash_t p ?? [W_r]; P_r}{\vdash_t \exists v. \ \textbf{until}_0 P_r(v) \ W_r}$$

The first theorem of Receive states that, if a message will be received the operator Receive may be substituted with a strong until. The other theorem substitutes the Receive operator with a weak until, making no assumptions about the message arrival.

In Fig. 4, the visual descriptions of the next two theorems proved are reported. The assumptions of the theorems are depicted over the time axis while consequences are below.

In the theorems used to prove properties for connected processes, the RWait operator plays an important role. It summarizes the communication status:

$$\begin{split} \mathcal{I} &\models out \xrightarrow{d} in \\ \vdash_t in \ref{eq:interm} in \ref{eq:interm} \left[W_r \right]; \ref{eq:interm} P_r \\ \vdash_{t+t_s} out &!! v \left[W_s \right]; \ref{eq:interm} P_s \\ \vdash_t in \fboxef{eq:interm} \left[t_s - d, 0 \right] \\ t_s &< -d \\ \hline \\ \vdash_t P_r(v) \\ \vdash_{t+d} P_s \\ \vdash_t W_s @[t_s, d) \\ \vdash_t out \fboxef{eq:interm} \left[@(t_s, d) \\ \vdash_{t+1} in. \texttt{RWait} \\ \end{split}$$

This means in the premises: if two ports are connected with a delay d, a Receive is asserted at time t, and a Send is asserted t_s instants before the Receive. In the implication: the message is received at time t, P_s is true after d time instants, the wait formula of Send is true from the Send time instant to the end of communication time instant, and at t + 1 RWait is true stating that no message is pending.

The following theorem covers the opposite case: in the absence of pending message, the Send is done after the Receive or within the delay.

$$\begin{split} & \vdash i \text{ in. RWait} \\ \mathcal{I} \models out \stackrel{d}{\rightarrow} in \\ & \vdash t \text{ in } ?? [W_r] \text{ ; } P_r \\ & \vdash t + t_s \text{ out } !! \text{ } v [W_s] \text{ ; } ; P_s \\ & \vdash t \text{ in } ?? @[t_s - d, 0) \\ & \vdash t \text{ out } !! @[-d, t_s) \\ & -d \leq t_s \\ \hline & \vdash t + t_s + d P_r(v) \\ & \vdash t + t_s + 2d P_s \\ & \vdash t W_r @[0, t_s + d) \\ & \vdash t + t_s W_s @[0, 2d) \\ & \vdash t \text{ in } ?? @(0, t_s + d) \\ & \vdash t + t_s \text{ in } !! @(0, 2d) \\ & \vdash t + t_s \text{ in } !! @(0, 2d) \\ & \vdash t + t_s + d + 1 \text{ in. RWait} \end{split}$$

Other theorems have been proved, some about the RWait operator that permit to deduce that if RWait is true for an input port and the connected emitting process is not sending, then RWait will remain true.

5 CTILCO SPECIFICATION VALIDATION

In order to validate a CTILCO specification, properties have to be proved by using the Isabelle/HOL theorem prover with the formalization of TILCO and CTILCO. In that environment, theorems reported in the previous section and many others facilitate the proofs of properties manually or automatically. It should be noted that, in this environment, properties can be proved for the entire system as well as for single processes with generic parameters.

Proved properties are typically those of safeness (nothing bad will never happen) or liveness (something good will happen). Other properties that can be demonstrated are those to validate the composition/decomposition of components. The proof of the external properties of process are validated by means of its internal specification (decomposition), or viceversa (composition), depending on the approach used for building the system (bottom-up or top-down).

Since TILCO specifications can be executed by using a causal inferential engine even a CTILCO specification can be executed. Obviously, not all the specifications can be executed, quantifications have to be done on finite domains, the specifications have to be deterministic and no generic parameters have to be present. However, the specification can be time incomplete, that is the system behavior can be partially specified for all the time instants.

6 AN EXAMPLE

In this section, an example to highlight the composition and reuse capabilities of C-TILCO is presented together with some validations.

The system under specification is an abstraction of a train system that connects a set of stations. Every train passes from a fixed set of stations with a cyclic path. A train needs a bounded time duration to go from a station to the next. The train has to ask the permission to enter in a station. Once the permission is granted the train remains in the station for a constant time duration and then it leaves the station for the next one. Every station may have only one train inside at the same time. As an example, we consider the system shown in Fig.5. The system is decomposed with three types of processes:

- process *Station1* (Sa and Sb) manages the access of only one train.
- process *Station2* (Sc) manages the access of two trains.
- process *Train2* (**Ta** and **Tb**) models a train that reaches two stations.

Please note that the specification at system level consists only of the definition of process relationships and of a global start predicate.

In order to mange the access to a station, three ports are needed, one for the request to enter in the station (Rq), another to give access to the station when the station is free (Ent), and the last to notify at the station that the train has left the station (Ext).

Due to the limited space of the article the full specification of the system cannot be reported. In the following, many details are omitted. However, we think that with reported parts the main aspects of C-TILCO are rightly highlighted and understandable.

6.1 Process Station1

Process Station 1 has three ports (Rq, Ent, Ext) to communicate with the train and three Boolean internal variables:

- has Train stating that the station has a train inside.
- waitRq that is true when the process has to wait for a request of the train.
- waitExt that is true when the process has to wait for the notification of exit of the train.

When the process starts, it has to wait for a request and before the starting the station has no train inside and no communication has been issued:

 $\begin{array}{rcl} :process_start \implies :waitRq \land (\neg :hasTrain)@(-\infty, 0) \\ :process_start \implies (:Rq\overline{??} \land :Ent \overline{!!} \land :Ext \overline{??})@(-\infty, 0) \end{array}$

The general behavior is specified with the following formula:

$$\begin{array}{rcl}:waitRq&\Longrightarrow\\ :Rq\,??\,[\neg:hasTrain\wedge:Ent\,\overrightarrow{!!}\wedge:Ext\,\overrightarrow{??}]\,;\,;\\ :Ent\,!!\,\,enter\,[\neg:hasTrain\wedge:Rq\,\overrightarrow{??}\wedge:Ext\,\overrightarrow{??}]\,;\,;\\ :Ext\,??\,[:hasTrain\wedge:Rq\,\overrightarrow{??}\wedge:Ent\,\overrightarrow{!!}]\,;\,;\\ :waitRq\end{array}$$

This formula states that if the process has to wait for a request a Receive is performed on port Rq. And, when a request is received the grant is immediately sent. During the waiting for the Receive on Rq port and the Send on *Ent* port, the train is not in the station (\neg :*hasTrain*). When the grant is received, the process waits for the exit notification. In this while, the train is in the station. When the notification is received, the *waitRq* variable is newly asserted to begin the waiting for a new request. It should be noted that, during the waiting for a certain port, the waiting predicate states that the process is not sending/receiving on the other ports. This is given for granted in the following.

6.2 Process Station2

Process Station2 has six ports (Rq1, Ent1, Ext1, Rq2, Ent2, Ext2) to communicate with the two trains and two Boolean variables: has Train1 and has Train2. These state that the station hosts train 1 or 2 inside, respectively.

A general requirement of *Station2* is that only one train can be inside the station at the same time instant:

 $(\neg(:hasTrain1 \land :hasTrain2))@(-\infty, +\infty)$

For the internal specification of process Station2, the following Boolean variables have been used:

- *free* states that the station in free;
- waitRq1 and waitRq2 when one of these is true, the process has to wait for an access request of train 1 or 2, respectively;
- req1 and req2 indicate the receipt of an access request for train 1 or 2, respectively. It remains true until the train has access to the station;
- sendEnt1 and sendEnt2 when one of these is true, the process has to send to train 1 or 2 the enter notification and wait for the exit notification.

For the system specification, the following shortcuts have been used:

$$A \Longrightarrow B \equiv A \Rightarrow B@[1,1]$$

inv(A) $\equiv A \Leftrightarrow A@[-1,-1]$

The *free* process variable is defined as:

 $: free \iff \neg : hasTrain1 \land \neg : hasTrain2$

When the process starts, it has to wait for the requests, until a request is received req1/req2 is false and when the request is received req1/req2 becomes true:

When no requests have been received *hasTrain1* and/or *hasTrain2* remains stable (with the same value):

 $\neg : req1 \implies inv(:has Train1)$

 $\neg : req2 \implies inv(:has Train2)$

When the station is free and a request is received for a train but not for the other the enter notification is sent:

$$: free \ \land : req1 \land \neg : req2 \quad \Longrightarrow \quad : sen \, dEnt1$$

$$: free \land : req2 \land \neg : req1 \implies : sendEnt2$$

When two requests are contemporaneously received, train 1 has the precedence:

 $: \textit{free} \land : \textit{req1} \land : \textit{req2} \Longrightarrow : \textit{sendEnt1} \land : \textit{req2} \land \neg : \textit{hasTrain2}$

When the station is not free and a request is received, the request is maintained active:

 $\neg : free \land : req1 \Longrightarrow \\ : req1 \land \neg : has Train1 \land : Rq1 \overrightarrow{??} \land : Ent1 \overrightarrow{!!} \land : Ext1 \overrightarrow{??} \\ \neg : free \land : req2 \Longrightarrow \\ : req2 \land \neg : has Train2 \land : Rq2 \overrightarrow{??} \land : Ent2 \overrightarrow{!!} \land : Ext2 \overrightarrow{??} \\ \end{vmatrix}$

When sentEnt1/sentEnt2 is true, the enter notification is sent, and the exit notification is waited. In this while, hasTrain1/hasTrain2 is true and no requests have to be received. When the exit notification is received, hasTrain1/hasTrain2 becomes false and, at the next instant, the process begins to wait for a new request (to leave the chance for a pending request to be served): :sendEntt \Rightarrow

 $\begin{array}{l} :Ent1 \mathrel{!\!!} enter \; [:has Train1 \land \neg :req1 \land :Rq1 \overrightarrow{??} \land :Ext1 \overrightarrow{??}] \; ; \; ; \\ :Ext1?? \; [:has Train1 \land \neg :req1 \land :Rq1 \overrightarrow{??} \land :Ent1 \overrightarrow{!!}] \; ; ; \\ \neg :has Train1 \land \neg :req1 \land :waitRq1 @ [1, 1] \\ :sendEnt2 \Rightarrow \\ :Ent2 \mathrel{!\!!} enter \; [:has Train2 \land \neg :req2 \land :Rq2 \overrightarrow{??} \land :Ext2 \overrightarrow{??}] \; ; ; \\ :Ext2?? \; [:has Train2 \land \neg :req2 \land :Rq2 \overrightarrow{??} \land :Ent2 \overrightarrow{!!}] \; ; ; \\ \neg :has Train2 \land \neg :req2 \land :Rq2 \overrightarrow{??} \land :Ent2 \overrightarrow{!!}] \; ; ; \\ \neg :has Train2 \land \neg :req2 \land :Rq2 \overrightarrow{??} \land :Ent2 \overrightarrow{!!}] ; ; \\ \end{array}$

6.3 Process Train2

Process Train2 managing the access to two stations is decomposed with two kinds of processes connected as depicted in Fig. 6. Processes of type *TrainAtStation* manage the access to a station while processes of type *MinMaxDelay* are used to model the time spent by the train to reach the next station. A deterministic delay can be fixed depending on the railway path length.

Ports TokIn and TokOut are used to sequentially activate the processes. When a message is received from port TokIn, the process is activated. And, when the process has finished, a message is sent via the TokOut port. It is a sort of token passing mechanism.

Reusing the above processes strongly more complex configurations can be defined and validated against complex and general properties. For example, the train will reach the station within a given time duration.

6.4 Process TrainAtStation

Process TrainAtStation manages the access to the station, the permanence in the station and finally the abandon of the station. It can be decomposed in three processes as shown in Fig. 7. Process *EnterStation* manages the request of access to the station and the wait for enter notification. Process *MinMaxDelay* (already presented for the upper level) is reused to model the time spent by the train in the station. Process *ExitStation* states the exit from the station.

The specifications of processes *EnterStation* and *ExitStation* are rather simple. For example, process *EnterStation* has to wait for the token, then it sends the access request, waits the enter notification, sends the token to the next and waits for the token again.

6.5 Process EnterStation

This process has to wait for the token, then it sends the access request, waits the enter notification, sends the token and waits for the token again.

```
: process\_start \Rightarrow \\: waitTok \land (:TokIn ??? \land :Ent ??? \land :TokOut !!) @(-\infty, 0)
: waitTok \Rightarrow \\: TokIn ?? [\neg : waiting \land :Rq !! \land :Ent ??? \land :TokOut !!];; \\: Rq !! request [: waiting \land :TokIn ??? \land :Ent ??? \land :TokOut !!];; \\: Ent ?? [: waiting \land :TokIn ??? \land :Rq !! \land :TokOut !!];; \\: TokOut !! token [\neg : waiting \land :TokIn ??? \land :Rq !! \land :Ent ??];; \\: waitTok
```

6.6 **Process ExitStation**

This process has to wait for the token, then it sends the exit notification, sends the token and waits for the token again.

```
\begin{array}{l} :process\_start \Rightarrow \\ :waitTok \land (:TokIn \overrightarrow{??} \land :Ext \overrightarrow{!!} \land :TokOut \overrightarrow{!!}) @(-\infty, 0) \\ :waitTok \Rightarrow \\ :TokIn \ ?? \ [\neg :waiting \land :Ext \overrightarrow{!!} \land :TokOut \overrightarrow{!!}];; \\ :Ext \ !! \ exit \ [:waiting \land :TokIn \ \overrightarrow{??} \land :TokOut \ !!];; \\ :TokOut \ !! \ token \ [\neg :waiting \land :TokIn \ \overrightarrow{??} \land :Ext \ !!];; \\ :waitTok \end{array}
```

6.7 Process MinMaxDelay

This process has to wait for the token and to send the token to the next process after a delay between MinDelay and MaxDelay.

```
: process\_start \Rightarrow
: waitTok \land (:TokIn ??? \land :TokOut !!) @(-\infty, 0)
: waitTok \Rightarrow
:TokIn ?? [\neg : waiting \land :TokOut !!];;
(\neg : sendTok @[0, :MinDelay) \land
: sendTok ?[:MinDelay, :MaxDelay] \land
until_{0} : sendTok (\neg : waiting \land :TokIn ?? \land :TokOut !!))
: sendTok \Rightarrow
: TokOut !! token [\neg : waiting \land :TokIn ??];;
```

: waitTok

6.8 Validation

Using the proved rules reported in the previous sections several properties have been proved.

The specification has been formally validated with success by using Isabelle theorem prover. In addition, the whole system as well as each single process have been tested with the TILCO executor. In this case, several typical histories for inputs and outputs have been generated by using a signal editor, and formally verified.

For example, for process *Station*2, the external mutual exclusion requirement has been derived from the internal specification, this has to be considered as a decomposition verification and is also a safeness property proof.

For example, for the train \mathbf{Ta} , the following liveness property has been proved:

 $up(:Ta.inStation1) \Longrightarrow$ $up(:Ta.inStation1)?[min_{Ta}, max_{Ta}]$

That is, the distance between two successive time instants in which the train enters in the first station is bounded. In the best case, the minimum time needed to across the path is:

 $min_{Ta} = Ta.timeInS1 + Ta.minS1ToS2 + Ta.timeInS2 + Ta.minS2ToS1$

In the worst case we have:

 $max_{Ta} = Ta.timeInS1 + Ta.maxS1ToS2 + Tb.timeInS2 + Ta.timeInS2 + Ta.maxS2ToS1$

Where: timeInS1, timeInS2, maxS1ToS2, maxS2ToS1, minS1ToS2 and minS2ToS1 are generic parameters of process Train2. These express the time spent in each station and the maximum/minimum time to pass from a station to the next. inStation1 is a Boolean variable indicating that the train is in the first station of its path.

7 CONCLUSIONS

In this paper, C-TILCO extension of the TILCO temporal logic has been presented. C-TILCO is well suited for system composition/decomposition. It permits to reuse other specifications within the same system or the development for other systems. C-TILCO has been formalized within Isabelle/HOL theorem prover. Properties for the whole system as well as for a single process can be proved. This logical framework permits also the validation of system decomposition in terms of processes.

The possibility to execute the specification is an important feature since well-known conditions can be quickly tested.

Language used for the specification we think is expressive, simple and concise with a limited "time to learn" since it has inherited conciseness from TILCO [11].

C-TILCO has been profitably used for the formal specification of critical complex real-time systems.

Presently, a visual specification tool for C-TILCO is under development. It will be based on the available theorem prover, the executor of TILCO specifications and on the signal editor.

ACKNOWLEDGEMENTS

The authors would like to thank all the members of CTILCO and TILCO projects. This work has been partially supported by the MURST Ex60% and COFIN.

References

- G. Bucci, M. Campanai, and P. Nesi, "Tools for specifying real-time systems," Journal of Real-Time Systems, vol. 8, pp. 117-172, March 1995.
- [2] A. D. Stoyenko, "The evolution and state-of-the-art of real-time languages," Journal of Systems and Software, pp. 61-84, April 1992.

- [3] R. Mattolini and P. Nesi, "An interval logic for real-time system specification," IEEE Transactions on Software Engineering, in press, March-April, 2001.
- [4] L. C. Paulson, Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science, Springer Verlag LCNS 828, 1994.
- [5] P. Bellini, M. Bruno, and P. Nesi, "Verification of external specifications of reactive systems," *IEEE Transac*tions on System Man and Cybernetics, p. in press, 2000-2001.
- [6] P. Bellini, M. Bruno, and P. Nesi, "Verification criteria for a compositional model for reactive systems," *Proc.* of the IEEE International Conference on Complex Computer Systems, Sept. 11-15 2000.
- [7] M. Felder and A. Morzenti, "Validating real-time systems by history-checking trio specifications," ACM Transactions on Software Engineering and Methodology, vol. 3, pp. 308-339, Oct. 1994.
- [8] A. Morzenti and P. SanPietro, "Object-oriented logical specification of time-critical systems," ACM Transactions on Software Engineering and Methodology, vol. 3, pp. 56-98, Jan. 1994.
- R. Koymans, Specifying Message Passing and Time-Critical Systems with Temporal Logic. No. 651, Lecture Notes in Computer Science, Springer-Verlag, 1992.
- [10] A. Coen-Porosini, C. Ghezzi, and R. A. Kemmerer, "Specification of realtime systems using astral," IEEE Transactions on Software Engineering, vol. 23, pp. 572–589, Sept. 1997.
- [11] P. Bellini, R. Mattolini, and P. Nesi, "Temporal logics for real-time system specification," ACM Computing Surveys, vol. 31, December 2000.
- [12] C. Ghezzi, D. Mandrioli, and A. Morzenti, "Trio, a logic language for executable specifications of real-time systems," *Journal of Systems and Software*, vol. 12, pp. 107–123, May 1990.
- [13] M. Felder, D. Mandrioli, and A. Morzenti, "Proving properties of real-time systems through logical specifications and petri net models," tech. rep., Politecnico di Milano, Dipartimento di Elettronica e Informazione, 91-072, Piazza Leonardo da Vinci 32, Milano, Italy, 1991.
- [14] M. Ben-Ari, Mathematical Logic for Computer Science. New York: Prentice Hall, 1993.

Figure 4: Theorems for synchronous communication

Figure 5: The railway system and its decomposition.

Figure 6: Train2 decomposition.

Figure 7: TrainAtStation decomposition.