
Communicating TILCO for

Real�Time System Speci�cation

Pierfrancesco Bellini� Paolo Nesi

Dipartimento Sistemi e Informatica� University of Florence

Via S�Marta� � ������ Firenze 	 Italy

��	���������� nesi�dsi�uni��it� http���www�dsi�uni��it��nesi

January ��� ����

ABSTRACT

Formal techniques for the speci�cation of real�time systems must be capable of describing a set of relationships
expressing the temporal constraints among events and actions� properties of invariance� precedence� periodicity�
liveness and safety conditions� etc� This paper describes CTILCO� an extension of TILCO� Temporal Interval Logic
with Compositional Operators� CTILCO introduces the communication among components speci�ed in TILCO
and allows the adoption of decomposition�composition mechanisms� TILCO has been expressly designed for the
speci�cation of real�time systems� CTILCO is based on time intervals and can concisely express temporal constraints
with time bounds� such as those needed to specify real�time systems� It can be used to verify the completeness and
consistency of speci�cations� as well as to validate system behavior against its requirements and general properties�
CTILCO has been formalized by using the theorem prover Isabelle�HOL� CTILCO speci�cations satisfying certain
properties are executable� CTILCO is de�ned in terms of theorems and allows the system speci�cation and the
formal proof of properties including composition�decomposition with communications� An example of system
speci�cation and validation has been also included�

��� Keywords

formal speci�cation language� �rst order logic� temporal interval logic� veri�cation and validation� real�time systems�

� INTRODUCTION

Applications of avionics� robotics� process control� patient monitoring� etc�� frequently must meet temporal con�
straints for avoiding critical or degenerative conditions� These applications are typically modeled as real�time
systems by using suitable speci�cation techniques� For their speci�cation a set of relationships expressing temporal
constraints among events must be used � e�g�� 	
�� 	�� � for example� properties of invariance� precedence among
events� periodicity� liveness and safety conditions� etc� The speci�cation correctness in meeting the temporal
constraints has to be demonstrated by using veri�cation and validation techniques�

For these reasons� formal speci�cation techniques are presently considered the best tools for the speci�cation
of real�time systems see 	
� for a survey�� Most of the formal methods allow the veri�cation and validation of the
speci�cation with respect to system requirements and�or to real stimuli by using classical and symbolic model�
checking techniques� These approaches� allow the veri�cation of the most critical aspects and use�cases in limited
time� To guarantee the absolute reliability of the speci�cations is still an open problem since the costs of exhaustive
veri�cation and validation with model�checking techniques are often unmanageable� For these cases� a solution is
to demonstrate the satisfactory of speci�c system properties and behavior by using theorem prover approaches
	���	���

Composition�decomposition techniques are mechanisms to cope with the general system complexity� Most of
software development methodologies address the structural composition�decomposition of the systems� A com�
posite object is de�ned in terms of its sub�object�components and their relationships� Object�based and object�
oriented approaches include and formalize composition�decomposition concepts� Di�erent communication mecha�

nisms among components� shared variables� synchronous or asynchronous communications are chosen� Components
can be separately developed� tested and then combined for modeling the whole system� Problems arise when the
combination of components produces unexpected and� thus� di�cultly controllable and veri�able behavior for the
presence of communication among components� To this end� veri�cation and validation criteria for compositional
methods are used 	��� 	��� These must address the veri�cation and validation of composition of components and
their relationships with the requirements of the composite object�

For complex and large systems� the compositional approaches are typically accompanied by the availability of
a layering support� The veri�cation of consistency between composite object and its components at each level of
the structural hierarchy guarantees the satisfactory of the abstract speci�cation and thus of system requirements
� for example� 	��� 	��� 	��� 	��� 	��� 	
���

For the speci�cation of real�time systems temporal logics have been pro�tably used see 	

� for a survey�� and
they can be used also for the validation of the system under speci�cation� In particular� the temporal logic TILCO
Temporal Interval Logic with Compositional Operators� has been de�ned with the aim of de�ning a powerful
temporal logic� with special emphasis on its expressiveness and conciseness 	��� TILCO has been designed for
the speci�cation of real�time systems� it extends FOL with a set of temporal operators and can be regarded as a
generalization of the classical temporal logics operators eventually and henceforth to time intervals 	

�� TILCO has
a metric for time� the time is discrete and no explicit temporal quanti�cation is allowed� TILCO allows de�nition
of expressions of ordering relationships among events� delays� time�outs� periodicity� liveness and safety conditions�
etc� These features are mandatory for specifying the behavior of real�time systems�

In this paper� C�TILCO Communicating TILCO� Temporal Interval Logic with Compositional Operators�
is presented� It has been de�ned since TILCO does not provide facilities for the speci�cation of complex�wide
systems� To this end� C�TILCO permits the decomposition of the system in a hierarchy of communicating processes�
Processes communicate using message�passing primitives on synchronous ports� The communication between
processes is based on typed synchronous input�output ports connected through channels� The connection is
�
�
each output port is connected to at most one input port and viceversa� In the following� the way in which processes
are modeled in C�TILCO is introduced and in the next sections the formalization of communication between
processes in TILCO and the way that could be used for reasoning about communicating processes are presented�

This paper is organized as follows� Section � brie�y presents TILCO temporal logic� Section � presents a
C�TILCO overview� Section � shows the communication model used in C�TILCO� low�level and the high�level
communication constructs with their semantics expressed in TILCO� Section � brie�y highlights the validation
methods usable in CTILCO speci�cations� Section � provides an example of speci�cation to show the composi�
tion�decomposition capabilities of C�TILCO� Conclusions are drawn in Section ��

� TILCO OVERVIEW

In TILCO� the same formalism used for system speci�cation is employed for describing high�level properties that
should be satis�ed by the system itself� These must be proven on the basis of the speci�cation in the system
validation phase� To this end� a formalization of TILCO has been implemented in the theorem prover Isabelle�HOL
	��� 	��� Using this formalization� a set of fundamental theorems has been proven and a set of tactics has been
built for supporting the semi�automatic demonstration of properties of TILCO speci�cations� Causal TILCO
speci�cations are also executable by using an inferential engine and algorithm� Since TILCO has aspects typical
of both descriptive and operational semantics� it can be considered a dual approach following the classi�cation
reported in 	
��

TILCO�s temporal operators have been added to FOL by leaving the evaluation time implicit� The meaning of a
TILCO formula is given with respect to the current time such as in other logical languages � e�g�� 	
��� 	
��� Time
is discrete and linear� and the temporal domain is Z� the set of integers� The current time instant is represented
by �� whereas positive negative� numbers represent future past� time instants�

The basic temporal entity in TILCO is the time interval� Intervals can be quantitatively expressed by using
the notation with round� ��� ���� or squared� �	�� ���� brackets for excluding and including interval boundaries�
respectively� Time instants are regarded as special cases that are represented as closed intervals composed of a
single point e�g�� 	a� a��� Symbols �� and �� can be used as interval boundaries� if the extreme is open� to
denote in�nite intervals�

The basic TILCO temporal operators are�

� �A�i� is true if formula A is true in every instant in interval i� with respect to the current time instant

�

� �A!i� is true if formula A is true in at least one instant in the interval i� with respect to the current time
instant

� �untilA B� is true if either predicate B will always be true in the future� or it will be true until predicate
A will become true

� �since A B�� is true if either predicate B has always been true in the past� or it has been true since predicate
A has become true�

A�i is true if formula A is true in every time instant in interval i� with respect to the current time instant�
Therefore� if t is the current time instant� A�i represents a constraint on A considering the interval i with respect
to the evaluation time instant t� that is A�i��t� � �x � i�A�x�t� holds� This approach is called implicit time and
is used in RTL� TRIO and in several other temporal logics 	

� In particular� A�	t�� t�� evaluated in t means�

�x � 	t�� t���A
�x�t��

Obviously t� and t� can be either positive or negative� and� thus the interval can be in the past and�or in the future�
respectively� If the lower bound of an interval is greater than the upper bound� the interval is null� Operators ���
and ��� correspond� in the temporal domain� to FOL quanti�ers � and �� respectively hence� they are related
by a duality relationship analogous to that between � and �� ��� and ��� operators are used to express delays�
time�outs and any other temporal constraint that requires a speci�c quantitative bound� Concerning the other
temporal operators� untilA B evaluated in t� is true if B will always be true in the future with respect to t� or if
B will be true in the interval t� x � t� with x � � and A will be true in x � t� This de�nition of until does not
require the occurrence of A in the future� so the until operator corresponds to the weak until operator de�ned in
PTL 	
��� The operators until and since can be e�ectively used to express ordering relationships among events
without specifying any numeric constraint�

until A B operator does not consider the evaluation time instant as an instant where A could happen� then
operator until� has been introduced� It is de�ned as�

until� A B � A 	 B
 until A B�

and also a �strong� until is sometime needed� For this reason the operator until� has been de�ned as�

until� A B � A!�����
 until A B

For completeness� the until�
�

has been de�ned as�

until�
�
A B � A!	�����
 until� A B

In a similar manner� since�� since� and since�

�
operators have been also de�ned�

In a TILCO speci�cation� predicates and functions with typed parameters can also be de�ned� Predicates return
a value of type bool� The body of each predicate must be speci�ed by means of a TILCO formula� in which the
only non�quanti�ed variables are the predicate parameters� Predicates are an instrument to simplify the writing of
formul" hence� more complex temporal expressions and formul" can be hidden in predicates� For example� the
two predicates�

ruleA � bool�
def

A�������

upA � bool�
def

A
 �A�	�
��
�

where� rule expresses that a predicate A is always true and up means that A from false becomes true� Predicates
with parameters are often used in speci�cations to have shorter and easily readable formul"�

In Tab�
� in order to provide a clearer view of TILCO expressivity� some examples of formul" are reported
with an explanation of their meaning� where t stands for a positive integer number�

� CTILCO OVERVIEW

A system speci�cation in C�TILCO is a hierarchy of communicating processes whose speci�cations are written in
TILCO� Many instances of the same process can be present in the speci�cation� Processes can have some general
static parameters and every instance could have di�erent values�

The communication between processes is based on typed synchronous input�output ports connected through
channels� The connection is
�
� each output port is connected to at most one input port and viceversa� In the
following� the way in which processes are modeled in C�TILCO is introduced� The next sections the formalization

�

A���� t� A is true from now for t time instants

A������� A will be always true in the future

A������� A will be sometimes true in the future

A��t� � t�� A is true in �t�� t��

A��t�� t�� A is true in an instant of �t�� t��

��A��������� A is not always true

A��t� � t��� �t�� t�� A is true in t�	 and in �t�� t��

A��t� � t��
 �t�� t�� A is true in t�	 or in �t�� t��

A��t� t�� �A���� t� t is the next time instant in which A

will be true

A���� t��������� A will become true within t� for each
time instant in the future �response�

�A� B����� t� if A is true within t	 then also B will
be true at the same time

�A� B�i��j A leads to an assertion of B in i for
each time instant of j

�A� B�i��j A leads to the assertion of B in the
whole interval i in at least a time in�
stant of j

Table
� Examples of TILCO formul"�

of communication between processes in TILCO and the way used for reasoning about communicating processes are
presented�

In the following� a process represents a class according to object�based formalism�
In C�TILCO a process is represented by two views�

� the external view that basically describes the input�output behavior of the process

�� the internal view that describes the process decomposition into subprocesses or a low�level formalization of
the process behavior if it cannot be furtherly decomposed�

A C�TILCO process is externally characterized by�

� a set of external input ports used to acquire information from the outside

� a set of external output ports used to produce information to the outside

� a set of external variables used to give some general information about the process state or to simplify the
external behavior speci�cation

� a set of external parameters used to permit general process speci�cation to make easy process reuse� since
di�erent process instances may have di�erent parameters

� a set of external TILCO formul� that describe the external process behavior by means of the messages
exchanged and constraints on the external variables�

CTILCO is internally characterized by�

� a set of C�TILCO subprocesses

� a set of internal input ports� used to get information from subprocesses

� a set of internal output ports used to send information to subprocesses

� a set of internal variables

� a set of internal TILCO formul�� which describe the internal behavior of the process�

The ports of subprocesses can be directly connected to the containing process ports of the same type� input to
input and output to output� or can be connected through channels to the complementary internal ports output
to input and input to output�� In Fig�
� a decomposition is exempli�ed� The use of internal ports permits the
realization of partial decompositions� when the process behavior is only partially speci�ed by subprocesses and�
thus� some interactions with the subprocesses is stated in the internal speci�cation TILCO formul"�

In TILCO formul"� to access at process components the dot notation is used� For example� if p is a process
with a variable v then p�v is used to refer to the variable of p� Whether process p has a subprocess s with a variable
v� then p�s�v is used to access to the subprocess variable�

Since many instances of the same process can be present in the system� its speci�cation is valid for all of them�
For example� if the internal speci�cation of a process with a variable ivar includes the following formula�

� ivar #
 � � ivar # ���	��� ���

�

a_P1

SubProc1

a_P4

SubProc4

a_P5

SubProc5

Process

Internal view
of Process

SubProc3

Internal
Port

External view
of Process

External
Port a_P1

a_P2

Process

SubProc1

SubProc2

a_P3

SubProc3

Figure
� External and internal representation of a C�TILCO process

It means that if ivar is equal to
� then after �� time units ivar will be equal to �� This will be true in each process
independly� By means of colon operator� process and local variables can be easily distinguished�

Since in TILCO the time axis is in�nite in both directions there is not a time instant that can be regarded as
the start time instant of execution process� In the speci�cation of a system� it is natural to think at a reference
time instant in which the process starts its work� and before that� the signals are stable� For this reason� a boolean
variable process start has been introduced to each process� This variable is true only in one time instant for each
process� It should be noted that each process has its own start instant and a formula of the internal speci�cation is
used to de�ne the start time instant of its subprocesses� Typically when a process starts all its subprocesses start�

� CTILCO COMMUNICATION MODEL

The communication between two processes is structured in two layers� the low�level communication model for
transmission of typed messages and of acknowledgements ACKs� and the high�level communication model that
uses the low�level to realize a synchronous communication protocol�

��� Low�level communication

Properties assumed for the low�level are�
� no data creation� a message or ACK� arrived has been surely sent

� no data loss� a message or ACK� sent will be received

� constant delay� a message or ACK� sent will be received after a constant delay greater or equal than zero�
The no data creation assumption is fundamental without this assumption communications have not sense�� The
no data loss and constant delay assumptions have been introduced to have a deterministic behavior� From these
assumptions� the no reorder property can be derived messages arrive in the same order as they are sent��

In this layer� the following temporal predicates have been de�ned and� thus� can be used by the higher�level�

�

�outPort��send��expr��
is true when output port �outPort� sends the value obtained evalutating expression �expr��

�outPort��receiveAck
is true when an ACK has been received by output port �outPort��

�inPort��receive��expr��
is true when a message has been received by input port �inPort� with the value indicated by �expr��

�inPort��sendAck
is true when input port �inPort� sends an acknowledge�

There is also a connection predicate between ports�

outP
d
 inP

that asserts that output port outP is connected to input port inP and messages and ACKs� sent are delayed of
d time units� Please note that connections are static assertions� design��xed�

The rules to manage low�level communication are reported in the following�

message transmission�

�outP
d

� inP ��

rule�outP� send�k� �� inP� receive�k���d�d��

This rule states� if port outP is connected to port inP then in every time instant� outP sends a message if
and only if inP receives the same message after d time units� From this rule� we have that the message sent
is received after d time units no data loss� and that the message received has been sent d time units ago no
creation��

ack transmission�
�outP

d

� inP ��

rule�inP� sendAck �� outP� receiveAck��d� d��

This rule is similar to the previous except that it deals with the ACKs and that the direction is opposite
from input port to output port��

send one value�

rule�outP� send�k� � outP� send�v�� k � v�

This rule states� if at the same time instant two values are sent on the same port these values have to be
equal�

receive one value�

rule�inP� receive�k� � inP� receive�v�� k � v�

This rule states� if at the same time instant two values are received on the same port these values have to be
equal�

��� High�level Communication

The high�level layer introduces synchronous ports� the basic operators on these ports are� Send $$� and Receive

!!�� They are quite easy to remind for their similarity with CSP�

�outPort� �� �expr� ��whileExpr�� � ��thenExpr� sends throught output port �outPort� the value obtained evalu�
tating expression �const expr�� When the communication ends TILCO expression �thenExpr� is asserted�
During the waiting the temporal expression �whileExpr� is asserted�

�inPort�		 ��whileExpr�� � ��thenExpr� waits for a message if not already arrived� from input port �inPort��
When the message arrives TILCO expression �thenExpr� is evaluated as a function of the value received�
During the waiting the expression �whileExpr� is asserted�

In order to specify that a process has not to send a message on a port or that the process has not to ask for
a message other two operators� outP $$ and inP !! have been introduced� These conditions cannot be speci�ed by
using �inP $$ v 	P � W � which has a di�erent meaning�

High�level synchronous operators are de�ned in TILCO by using the low�level predicates as reported in the
following� In Fig� �� the two cases of synchronous communication are reported� i� the emitting process sends a
message� and after the receiving process asserts that wants to receive a message ii� the receiving process waits for
a message and after the emitting process sends the message�

�

s(v) = send(v)

r = receive(v)

sa = sendAck
ra = receiveAck

ns = not send(v)

nr = not receive(v)

nsa = not sendAck
nra = not receiveAck

S(v) = out !! v [Ws] ;; Ps

R = inp ?? [Wr] ;; Pr

NR = not inp ??

NS = not out !!

RW = inp.RWait

H
ig

h-
le

ve
l

L
ow

-l
ev

el

nra
s(v)

nra nra nra nra

nsa nsa nsa nsa nsa

r(v)

NR NR NR NR NR

ns ns ns ns

nr nr nr nr

ra

RW

S(v)

R

sa

Pr(v)

ns ns ns ns ns s(v)

ra

NS NS NS NS NS S(v)

R
RW

Ps

RW

nr nr nr nr nr r(v)

nsa nsa nsa nsa nsa sa

Pr(v)Wr Wr Wr Wr Wr

Ws Ws Ws Ws Ws Ps

out

inp

out

inp

delay: d = 0

Figure �� Examples of syncronous communications with no delay�

� operator Send emits the message and waits for an ACK� While it is waiting� wait formula Ws is asserted
and no other messages are sent� When the ACK arrives the �end of communication� formula� Ps� is asserted�
The behavior of Send operator has been speci�ed in TILCO with the following axioms�

rule��outP �� v �Ws� � �Ps� �� outP� send�v��

until��outP� receiveAck�Ps�

��outP�receiveAck �Ws��

�outP� receiveAck�

��outP� receiveAck�

until�outP� receiveAck�

��outP� receiveAck �outP ������

rule�outP �� �� ��k�outP� send�k��

the until� formula is used to state that Ps is true when the ACK is received and Ws is true until this time
instant� The other part of the formula states that during the waiting for the ACK no message is sent�

� operator Receive has two possible situations� If there exists a message received in the past that was not
acknowledged� then the ACK must be sent and the �end of communication� formula� Pr� is asserted with
the value received� In the other case� a new message has to be waited asserting wait formula Wr� When a
message is received if any�� the �end of communication� formula� Pr � is evaluated with the value received�
The behavior of Receive has been speci�ed in TILCO with the following axioms�

�

rule��inP 		 �Wr� � �Pr� � inP �RValue v ��

inP� sendAck�Pr�v��

rule��inP 		 �Wr� � �Pr� � inP �RWait ��

until���k�inP� receive�k� � inP� sendAck �Pr�k��

���k�inP� receive�k� �Wr��

��k�inP� receive�k��

���k�inP� receive�k� � � inP� sendAck�

until��k�inP� receive�k��

���k�inP� receive�k� � inP 		����

rule�inP 		 �� � inP� sendAck�

rule�inP 		 �Wr� � �Pr � inP 		 �� ��

where next formula indicates that there exists a pending v message�

inP �RValue v �

since
��inP� receive�v� � �inP� sendAck�

��inP� sendAck�

and formula

inP �RWait � ��v� inP �RValue v

states the absence of a pending message to be elaborated the current instant is not considered��

In Fig��� the more complex case in which there is a delay in transmission is shown� Even in this case there are
two situations� The �rst� when the distance from the Send and the subsequent Receive is greater than the delay�
thus the message is received prior to the Receive action� The second and opposite case� when the Send action is
performed after the Receive or before it with a distance lower than the delay�

��� CTILCO Communication Theorems

During the de�nition of CTILCO Communication Theorems many properties have been proved about the com�
munication operators� This has been performed in order to validate the de�nitions of operators and to aid the
construction of proofs involving these operators� The proofs were made by using a formalization of TILCO and
C�TILCO in Isabelle�HOL�

Theorems proved can be divided in two groups�

� theorems used to prove internal properties of a process� They substitute operators Send and Receive with
their semantics

� theorems used to prove properties involving connected processes�

In the �rst group� there are the theorems that can be used to eliminate a Send from the assumptions of a goal�

	t p �� v �Ws� � �Ps

�	t p� send�v��

	t p� receiveAck	����
�

	t until
�

�
Ps Ws

	t p �� v �Ws� � �Ps

	t until�Ps Ws

The �rst theorem states that� if the process wants to send a message at time t and the message is sent receiving
the ACK� then a time instant exists in which Ps is true� And� until that time instant� predicate Ws is true� This
theorem is used to substitute the Send with a strong until in the assumptions of the goal within the backward
proofs of Isabelle�

The second theorem is similar to the previous without the assumption that if a message is sent an ACK will

be received� In this weaker condition� the same condition with the weak�until has been derived�

�

nra nra nra nra nra

nsa nsa nsa nsa nsa

NR NR NR NR NR

ns ns ns

nr nr nr

R

sa

S(v)

ns s(v)

NS NS

nr r(v)

ranra nra
ns ns

nr nr nr

Pr(v)
nr

ns ns ns ns

NS NS S(v)

s(v) ns

nra nra nra nra

Ps

nr nr r(v)

Pr(v)
sansa nsa nsa nsa

nr nr nr

R
RW

NR NR

ra

Ws Ws Ws Ws Ws

Ws Ws Ws Ws

Wr Wr RW

Ps

RW

out

inp

out

inp

delay: d=2

Figure �� Examples of synchronous communications with delay�

For the Receive� similar theorems have been proved�
	t p 		 �Wr� � �Pr 	t �k� p� receive�k� 	 ����
�

	t �v� until
�

�
Pr�v� Wr

	t p 		 �Wr� � �Pr

	t �v�until�Pr�v� Wr

The �rst theorem of Receive states that� if a message will be received the operator Receive may be substituted
with a strong until� The other theorem substitutes the Receive operator with a weak until� making no assumptions
about the message arrival�

In Fig� �� the visual descriptions of the next two theorems proved are reported� The assumptions of the theorems
are depicted over the time axis while consequences are below�

In the theorems used to prove properties for connected processes� the RWait operator plays an important role�
It summarizes the communication status�

I j� out
d
� in

�t in �� �Wr �

Pr
�t�ts out v �Ws�

Ps
�t in ����ts � d� ��

ts � �d

�t Pr�v�

�t�d Ps

�tWs��ts� d�

�t out ��ts� d�

�t�� in�RWait

�

This means in the premises� if two ports are connected with a delay d� a Receive is asserted at time t� and a
Send is asserted ts instants before the Receive� In the implication� the message is received at time t� Ps is true
after d time instants� the wait formula of Send is true from the Send time instant to the end of communication
time instant� and at t �
 RWait is true stating that no message is pending�

The following theorem covers the opposite case� in the absence of pending message� the Send is done after the
Receive or within the delay�

�t in�RWait

I j� out
d
� in

�t in �� �Wr �

Pr
�t�ts out v �Ws�

Ps
�t in ����ts � d� ��

�t out ���d� ts�

�d � ts

�t�ts�d Pr�v�

�t�ts��d Ps

�tWr���� ts � d�

�t�ts Ws�����d�

�t in ������ ts � d�

�t�ts in �����d�

�t�ts�d�� in�RWait

Other theorems have been proved� some about the RWait operator that permit to deduce that if RWait is true
for an input port and the connected emitting process is not sending� then RWait will remain true�

� CTILCO SPECIFICATION VALIDATION

In order to validate a CTILCO speci�cation� properties have to be proved by using the Isabelle�HOL theorem
prover with the formalization of TILCO and CTILCO� In that environment� theorems reported in the previous
section and many others facilitate the proofs of properties manually or automatically� It should be noted that�
in this environment� properties can be proved for the entire system as well as for single processes with generic
parameters�

Proved properties are typically those of safeness nothing bad will never happen� or liveness something good
will happen�� Other properties that can be demonstrated are those to validate the composition�decomposition of
components� The proof of the external properties of process are validated by means of its internal speci�cation
decomposition�� or viceversa composition�� depending on the approach used for building the system bottom�up
or top�down��

Since TILCO speci�cations can be executed by using a causal inferential engine even a CTILCO speci�cation
can be executed� Obviously� not all the speci�cations can be executed� quanti�cations have to be done on �nite
domains� the speci�cations have to be deterministic and no generic parameters have to be present� However� the
speci�cation can be time incomplete� that is the system behavior can be partially speci�ed for all the time instants�

� AN EXAMPLE

In this section� an example to highlight the composition and reuse capabilities of C�TILCO is presented together
with some validations�

The system under speci�cation is an abstraction of a train system that connects a set of stations� Every train
passes from a �xed set of stations with a cyclic path� A train needs a bounded time duration to go from a station
to the next� The train has to ask the permission to enter in a station� Once the permission is granted the train
remains in the station for a constant time duration and then it leaves the station for the next one� Every station
may have only one train inside at the same time� As an example� we consider the system shown in Fig���
The system is decomposed with three types of processes�

� process Station� Sa and Sb� manages the access of only one train�

� process Station� Sc� manages the access of two trains�

� process Train� Ta and Tb� models a train that reaches two stations�

Please note that the speci�cation at system level consists only of the de�nition of process relationships and of
a global start predicate�

�

In order to mange the access to a station� three ports are needed� one for the request to enter in the station
Rq�� another to give access to the station when the station is free Ent�� and the last to notify at the station that
the train has left the station Ext��

Due to the limited space of the article the full speci�cation of the system cannot be reported� In the following�
many details are omitted� However� we think that with reported parts the main aspects of C�TILCO are rightly
highlighted and understandable�

��� Process Station�

Process Station
 has three ports Rq� Ent� Ext� to communicate with the train and three Boolean internal variables�

� hasTrain stating that the station has a train inside�

� waitRq that is true when the process has to wait for a request of the train�

� waitExt that is true when the process has to wait for the noti�cation of exit of the train�

When the process starts� it has to wait for a request and before the starting the station has no train inside and
no communication has been issued�

process start �� waitRq � �� hasTrain����
� ��

process start �� �Rq 		� Ent ��� Ext 		����
� ��

The general behavior is speci�ed with the following formula�

waitRq ��

Rq 		 �� hasTrain� Ent ��� Ext 		� � �

Ent �� enter �� hasTrain� Rq 		� Ext 		� � �

Ext 		 �hasTrain� Rq 		� Ent ��� � �

waitRq

This formula states that if the process has to wait for a request a Receive is performed on port Rq� And� when
a request is received the grant is immediately sent� During the waiting for the Receive on Rq port and the Send
on Ent port� the train is not in the station � �hasTrain�� When the grant is received� the process waits for the
exit noti�cation� In this while� the train is in the station� When the noti�cation is received� the waitRq variable
is newly asserted to begin the waiting for a new request� It should be noted that� during the waiting for a certain
port� the waiting predicate states that the process is not sending�receiving on the other ports� This is given for
granted in the following�

��� Process Station�

Process Station� has six ports Rq
� Ent
� Ext
� Rq�� Ent�� Ext�� to communicate with the two trains and two
Boolean variables� hasTrain� and hasTrain�� These state that the station hosts train
 or � inside� respectively�

A general requirement of Station� is that only one train can be inside the station at the same time instant�

���hasTrain�� hasTrain������
��
�

For the internal speci�cation of process Station�� the following Boolean variables have been used�

� free states that the station in free

� waitRq
 and waitRq� � when one of these is true� the process has to wait for an access request of train
 or
�� respectively

� req
 and req� indicate the receipt of an access request for train
 or �� respectively� It remains true until the
train has access to the station

� sendEnt
 and sendEnt� � when one of these is true� the process has to send to train
 or � the enter
noti�cation and wait for the exit noti�cation�

For the system speci�cation� the following shortcuts have been used�

A���B � A� B������

inv�A� � A A��������

The free process variable is de�ned as�
free�� � hasTrain� � � hasTrain�

When the process starts� it has to wait for the requests� until a request is received req
�req� is false and when the
request is received req
�req� becomes true�

process start �waitRq�� waitRq�� free���
� ��

process start �

�Rq� 		� Ent� ��� Ext� 		�� ��
� ��

process start �

�Rq� 		� Ent� ��� Ext� 		�� ��
� ��

waitRq� �

Rq�		 �� req�� Ent� ��� Ext� 		� � �

req�� � hasTrain�� Ent� ��� Ext� 		

waitRq� �

Rq�		 �� req�� Ent� ��� Ext� 		� � �

req�� � hasTrain�� Ent� ��� Ext� 		

When no requests have been received hasTrain
 and�or hasTrain� remains stable with the same value��

� req� ��� inv�hasTrain��

� req� ��� inv�hasTrain��

When the station is free and a request is received for a train but not for the other the enter noti�cation is sent�

 free � req�� � req� ��� sendEnt�

 free � req�� � req� ��� sendEnt�

When two requests are contemporaneously received� train
 has the precedence�

 free � req�� req���� sendEnt�� req� � � hasTrain�

When the station is not free and a request is received� the request is maintained active�
� free � req����

req�� � hasTrain�� Rq� 		� Ent� ��� Ext� 		

� free � req����

req�� � hasTrain�� Rq� 		� Ent� ��� Ext� 		

When sentEnt
�sentEnt� is true� the enter noti�cation is sent� and the exit noti�cation is waited� In this
while� hasTrain
�hasTrain� is true and no requests have to be received� When the exit noti�cation is received�
hasTrain
�hasTrain� becomes false and� at the next instant� the process begins to wait for a new request to
leave the chance for a pending request to be served��

sendEnt��

Ent� �� enter �hasTrain�� � req�� Rq� 		� Ext� 		� � �

Ext�		 �hasTrain�� � req�� Rq� 		� Ent� ��� � �

� hasTrain�� � req�� waitRq����� ��
sendEnt��

Ent� �� enter �hasTrain�� � req�� Rq� 		� Ext� 		� � �

Ext�		 �hasTrain�� � req�� Rq� 		� Ent� ��� � �

� hasTrain�� � req�� waitRq����� ��

��� Process Train�

Process Train� managing the access to two stations is decomposed with two kinds of processes connected as depicted
in Fig� �� Processes of type TrainAtStation manage the access to a station while processes of type MinMaxDelay are
used to model the time spent by the train to reach the next station� A deterministic delay can be �xed depending
on the railway path length�

Ports TokIn and TokOut are used to sequentially activate the processes� When a message is received from
port TokIn� the process is activated� And� when the process has �nished� a message is sent via the TokOut port�
It is a sort of token passing mechanism�

Reusing the above processes strongly more complex con�gurations can be de�ned and validated against complex
and general properties� For example� the train will reach the station within a given time duration�

�

��� Process TrainAtStation

Process TrainAtStation manages the access to the station� the permanence in the station and �nally the abandon
of the station� It can be decomposed in three processes as shown in Fig� �� Process EnterStation manages the
request of access to the station and the wait for enter noti�cation� Process MinMaxDelay already presented for
the upper level� is reused to model the time spent by the train in the station� Process ExitStation states the exit
from the station�

The speci�cations of processes EnterStation and ExitStation are rather simple� For example� process EnterStation
has to wait for the token� then it sends the access request� waits the enter noti�cation� sends the token to the next
and waits for the token again�

��	 Process EnterStation

This process has to wait for the token� then it sends the access request� waits the enter noti�cation� sends the token
and waits for the token again�

process start�

waitTok � �TokIn 		� Ent 		� TokOut ������
� ��

waitTok �

TokIn 		 �� waiting� Rq ��� Ent 		� TokOut ��� � �

Rq �� request �waiting� TokIn 		� Ent 		� TokOut ��� � �

Ent 		 �waiting� TokIn 		� Rq ��� TokOut ��� � �

TokOut �� token �� waiting� TokIn 		� Rq ��� Ent 		� � �

waitTok

��� Process ExitStation

This process has to wait for the token� then it sends the exit noti�cation� sends the token and waits for the token
again�

process start�

waitTok � �TokIn 		� Ext ��� TokOut ������
� ��

waitTok �

TokIn 		 �� waiting� Ext ��� TokOut ��� � �

Ext �� exit �waiting� TokIn 		� TokOut ��� � �

TokOut �� token �� waiting� TokIn 		� Ext ��� � �

waitTok

��
 Process MinMaxDelay

This process has to wait for the token and to send the token to the next process after a delay between MinDelay
and MaxDelay�

process start�

waitTok � �TokIn 		� TokOut ������
� ��

waitTok �

TokIn 		 �� waiting� TokOut ��� � �

�� sendTok���� MinDelay��

sendTok 	�MinDelay� MaxDelay��

until� sendTok �� waiting� TokIn 		� TokOut ����

sendTok �

TokOut �� token �� waiting� TokIn 		� � �

waitTok

�

��� Validation

Using the proved rules reported in the previous sections several properties have been proved�
The speci�cation has been formally validated with success by using Isabelle theorem prover� In addition� the

whole system as well as each single process have been tested with the TILCO executor� In this case� several typical
histories for inputs and outputs have been generated by using a signal editor� and formally veri�ed�

For example� for process Station�� the external mutual exclusion requirement has been derived from the internal
speci�cation� this has to be considered as a decomposition veri�cation and is also a safeness property proof�

For example� for the train Ta� the following liveness property has been proved�

up��Ta�inStation�� ��

up��Ta�inStation�� 	 �minTa�maxTa�

That is� the distance between two successive time instants in which the train enters in the �rst station is
bounded� In the best case� the minimum time needed to across the path is�

minTa � Ta�timeInS�� Ta�minS�ToS��

Ta�timeInS�� Ta�minS�ToS�

In the worst case we have�

maxTa � Ta�timeInS�� Ta�maxS�ToS��

Tb�timeInS�� Ta�timeInS��

Ta�maxS�ToS�

Where� timeInS�� timeInS�� maxS�ToS�� maxS�ToS�� minS�ToS� and minS�ToS� are generic parameters of
process Train�� These express the time spent in each station and the maximum�minimum time to pass from a
station to the next� inStation� is a Boolean variable indicating that the train is in the �rst station of its path�

� CONCLUSIONS

In this paper� C�TILCO extension of the TILCO temporal logic has been presented� C�TILCO is well suited
for system composition�decomposition� It permits to reuse other speci�cations within the same system or the
development for other systems� C�TILCO has been formalized within Isabelle�HOL theorem prover� Properties for
the whole system as well as for a single process can be proved� This logical framework permits also the validation
of system decomposition in terms of processes�

The possibility to execute the speci�cation is an important feature since well�known conditions can be quickly
tested�

Language used for the speci�cation we think is expressive� simple and concise with a limited �time to learn�
since it has inherited conciseness from TILCO 	

��

C�TILCO has been pro�tably used for the formal speci�cation of critical complex real�time systems�
Presently� a visual speci�cation tool for C�TILCO is under development� It will be based on the available

theorem prover� the executor of TILCO speci�cations and on the signal editor�

ACKNOWLEDGEMENTS

The authors would like to thank all the members of CTILCO and TILCO projects� This work has been partially
supported by the MURST Ex��% and COFIN�

References

	
� G� Bucci� M� Campanai� and P� Nesi� �Tools for specifying real�time systems�� Journal of Real�Time Systems�
vol� �� pp�

��
��� March
����

	�� A� D� Stoyenko� �The evolution and state�of�the�art of real�time languages�� Journal of Systems and Software�
pp� �
���� April
����

�

	�� R� Mattolini and P� Nesi� �An interval logic for real�time system speci�cation�� IEEE Transactions on Software

Engineering� in press� March�April� ���
�

	�� L� C� Paulson� Isabelle� A Generic Theorem Prover� Lecture Notes in Computer Science� Springer Verlag
LCNS ����
����

	�� P� Bellini� M� Bruno� and P� Nesi� �Veri�cation of external speci�cations of reactive systems�� IEEE Transac�

tions on System Man and Cybernetics� p� in press� ��������
�

	�� P� Bellini� M� Bruno� and P� Nesi� �Veri�cation criteria for a compositional model for reactive systems�� Proc�

of the IEEE International Conference on Complex Computer Systems� Sept�

�
� �����

	�� M� Felder and A� Morzenti� �Validating real�time systems by history�checking trio speci�cations�� ACM Trans�

actions on Software Engineering and Methodology� vol� �� pp� �������� Oct�
����

	�� A� Morzenti and P� SanPietro� �Object�oriented logical speci�cation of time�critical systems�� ACM Transac�

tions on Software Engineering and Methodology� vol� �� pp� ������ Jan�
����

	�� R� Koymans� Specifying Message Passing and Time�Critical Systems with Temporal Logic� No� ��
� Lecture
Notes in Computer Science� Springer�Verlag�
����

	
�� A� Coen�Porosini� C� Ghezzi� and R� A� Kemmerer� �Speci�cation of realtime systems using astral�� IEEE

Transactions on Software Engineering� vol� ��� pp� �������� Sept�
����

	

� P� Bellini� R� Mattolini� and P� Nesi� �Temporal logics for real�time system speci�cation�� ACM Computing

Surveys� vol� �
� December �����

	
�� C� Ghezzi� D� Mandrioli� and A� Morzenti� �Trio� a logic language for executable speci�cations of real�time
systems�� Journal of Systems and Software� vol�
�� pp�
���
��� May
����

	
�� M� Felder� D� Mandrioli� and A� Morzenti� �Proving properties of real�time systems through logical speci��
cations and petri net models�� tech� rep�� Politecnico di Milano� Dipartimento di Elettronica e Informazione�
�
����� Piazza Leonardo da Vinci ��� Milano� Italy�
��
�

	
�� M� Ben�Ari� Mathematical Logic for Computer Science� New York� Prentice Hall�
����

�

-d

-d

d

-d

d

-d

NSNS NS

in

S(v)
out

Pr(v) RW

ts < -d

NR NR NR NR NR R

Wr Pr(v) RWWr Wr

in

NR R
RW

NRNR

Ws Ws Ws Ws Ws Ps
NSNS NS NS

out

S(v)

ts > -d

Ws Ws Ws Ws Ps

2d

NSNS NS

delay: d=2

Figure �� Theorems for synchronous communication

�

��������
��������
��������
������������
����
����
����

����������
����������
����������
���������������
�����
�����

�����
�����
�����

���������
���������
���������
���������

����
����
����

����
����
����

Ta Sa

Sc

Sb
Tb

Rq1

Rq

Ent1

Ent

Ext1

Ext

Ext2Rq2
Ent2

Rq1

Rq2

Rq2

Rq1
Ent1

Rq

Ext1

Ext2

Ext2

Ext1

Ext

Ent2
Ent2

Ent

Ent1

Station1

Train2

Station2

Train2

Station1

Sa

Ta

Sc

Tb

Sb

Figure �� The railway system and its decomposition�

TrainAtStation

AtS1

TrainAtStation

AtS2

TokIn

TokOut

TokIn

TokIn

TokOut

Rq

Ent

Ext

TokIn

TokOut

TokOut

Rq

Ent

Ext

MinMaxDelay

MinMaxDelay

S1ToS2

S2ToS1

Figure �� Train� decomposition�

Exit
ExitStation

In
MinMaxDelay

TokIn

Rq

Ent

TokOut

TokIn

TokOut

TokIn

Ext

TokOut

Enter
EnterStation

Figure �� TrainAtStation decomposition�

�

