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ABSTRACT

Formal techniques for the speci�cation of real�time systems must be capable of describing a set of relationships
expressing the temporal constraints among events and actions� properties of invariance� precedence� periodicity�
liveness and safety conditions� etc� This paper describes CTILCO� an extension of TILCO� Temporal Interval Logic
with Compositional Operators� CTILCO introduces the communication among components speci�ed in TILCO
and allows the adoption of decomposition�composition mechanisms� TILCO has been expressly designed for the
speci�cation of real�time systems� CTILCO is based on time intervals and can concisely express temporal constraints
with time bounds� such as those needed to specify real�time systems� It can be used to verify the completeness and
consistency of speci�cations� as well as to validate system behavior against its requirements and general properties�
CTILCO has been formalized by using the theorem prover Isabelle�HOL� CTILCO speci�cations satisfying certain
properties are executable� CTILCO is de�ned in terms of theorems and allows the system speci�cation and the
formal proof of properties including composition�decomposition with communications� An example of system
speci�cation and validation has been also included�
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� INTRODUCTION

Applications of avionics� robotics� process control� patient monitoring� etc�� frequently must meet temporal con�
straints for avoiding critical or degenerative conditions� These applications are typically modeled as real�time
systems by using suitable speci�cation techniques� For their speci�cation a set of relationships expressing temporal
constraints among events must be used � e�g�� 	
�� 	�� � for example� properties of invariance� precedence among
events� periodicity� liveness and safety conditions� etc� The speci�cation correctness in meeting the temporal
constraints has to be demonstrated by using veri�cation and validation techniques�

For these reasons� formal speci�cation techniques are presently considered the best tools for the speci�cation
of real�time systems see 	
� for a survey�� Most of the formal methods allow the veri�cation and validation of the
speci�cation with respect to system requirements and�or to real stimuli by using classical and symbolic model�
checking techniques� These approaches� allow the veri�cation of the most critical aspects and use�cases in limited
time� To guarantee the absolute reliability of the speci�cations is still an open problem since the costs of exhaustive
veri�cation and validation with model�checking techniques are often unmanageable� For these cases� a solution is
to demonstrate the satisfactory of speci�c system properties and behavior by using theorem prover approaches
	���	���

Composition�decomposition techniques are mechanisms to cope with the general system complexity� Most of
software development methodologies address the structural composition�decomposition of the systems� A com�
posite object is de�ned in terms of its sub�object�components and their relationships� Object�based and object�
oriented approaches include and formalize composition�decomposition concepts� Di�erent communication mecha�



nisms among components� shared variables� synchronous or asynchronous communications are chosen� Components
can be separately developed� tested and then combined for modeling the whole system� Problems arise when the
combination of components produces unexpected and� thus� di�cultly controllable and veri�able behavior for the
presence of communication among components� To this end� veri�cation and validation criteria for compositional
methods are used 	��� 	��� These must address the veri�cation and validation of composition of components and
their relationships with the requirements of the composite object�

For complex and large systems� the compositional approaches are typically accompanied by the availability of
a layering support� The veri�cation of consistency between composite object and its components at each level of
the structural hierarchy guarantees the satisfactory of the abstract speci�cation and thus of system requirements
� for example� 	��� 	��� 	��� 	��� 	��� 	
���

For the speci�cation of real�time systems temporal logics have been pro�tably used see 	

� for a survey�� and
they can be used also for the validation of the system under speci�cation� In particular� the temporal logic TILCO
Temporal Interval Logic with Compositional Operators� has been de�ned with the aim of de�ning a powerful
temporal logic� with special emphasis on its expressiveness and conciseness 	��� TILCO has been designed for
the speci�cation of real�time systems� it extends FOL with a set of temporal operators and can be regarded as a
generalization of the classical temporal logics operators eventually and henceforth to time intervals 	

�� TILCO has
a metric for time� the time is discrete and no explicit temporal quanti�cation is allowed� TILCO allows de�nition
of expressions of ordering relationships among events� delays� time�outs� periodicity� liveness and safety conditions�
etc� These features are mandatory for specifying the behavior of real�time systems�

In this paper� C�TILCO Communicating TILCO� Temporal Interval Logic with Compositional Operators�
is presented� It has been de�ned since TILCO does not provide facilities for the speci�cation of complex�wide
systems� To this end� C�TILCO permits the decomposition of the system in a hierarchy of communicating processes�
Processes communicate using message�passing primitives on synchronous ports� The communication between
processes is based on typed synchronous input�output ports connected through channels� The connection is 
�
�
each output port is connected to at most one input port and viceversa� In the following� the way in which processes
are modeled in C�TILCO is introduced and in the next sections the formalization of communication between
processes in TILCO and the way that could be used for reasoning about communicating processes are presented�

This paper is organized as follows� Section � brie�y presents TILCO temporal logic� Section � presents a
C�TILCO overview� Section � shows the communication model used in C�TILCO� low�level and the high�level
communication constructs with their semantics expressed in TILCO� Section � brie�y highlights the validation
methods usable in CTILCO speci�cations� Section � provides an example of speci�cation to show the composi�
tion�decomposition capabilities of C�TILCO� Conclusions are drawn in Section ��

� TILCO OVERVIEW

In TILCO� the same formalism used for system speci�cation is employed for describing high�level properties that
should be satis�ed by the system itself� These must be proven on the basis of the speci�cation in the system
validation phase� To this end� a formalization of TILCO has been implemented in the theorem prover Isabelle�HOL
	��� 	��� Using this formalization� a set of fundamental theorems has been proven and a set of tactics has been
built for supporting the semi�automatic demonstration of properties of TILCO speci�cations� Causal TILCO
speci�cations are also executable by using an inferential engine and algorithm� Since TILCO has aspects typical
of both descriptive and operational semantics� it can be considered a dual approach following the classi�cation
reported in 	
��

TILCO�s temporal operators have been added to FOL by leaving the evaluation time implicit� The meaning of a
TILCO formula is given with respect to the current time such as in other logical languages � e�g�� 	
��� 	
��� Time
is discrete and linear� and the temporal domain is Z� the set of integers� The current time instant is represented
by �� whereas positive negative� numbers represent future past� time instants�

The basic temporal entity in TILCO is the time interval� Intervals can be quantitatively expressed by using
the notation with round� ��� ���� or squared� �	�� ���� brackets for excluding and including interval boundaries�
respectively� Time instants are regarded as special cases that are represented as closed intervals composed of a
single point e�g�� 	a� a��� Symbols �� and �� can be used as interval boundaries� if the extreme is open� to
denote in�nite intervals�

The basic TILCO temporal operators are�

� �A�i� is true if formula A is true in every instant in interval i� with respect to the current time instant 

�



� �A!i� is true if formula A is true in at least one instant in the interval i� with respect to the current time
instant 

� �untilA B� is true if either predicate B will always be true in the future� or it will be true until predicate
A will become true 

� �since A B�� is true if either predicate B has always been true in the past� or it has been true since predicate
A has become true�

A�i is true if formula A is true in every time instant in interval i� with respect to the current time instant�
Therefore� if t is the current time instant� A�i represents a constraint on A considering the interval i with respect
to the evaluation time instant t� that is A�i��t� � �x � i�A�x�t� holds� This approach is called implicit time and
is used in RTL� TRIO and in several other temporal logics 	

� In particular� A�	t�� t�� evaluated in t means�

�x � 	t�� t���A
�x�t��

Obviously t� and t� can be either positive or negative� and� thus the interval can be in the past and�or in the future�
respectively� If the lower bound of an interval is greater than the upper bound� the interval is null� Operators ���
and ��� correspond� in the temporal domain� to FOL quanti�ers � and �� respectively hence� they are related
by a duality relationship analogous to that between � and �� ��� and ��� operators are used to express delays�
time�outs and any other temporal constraint that requires a speci�c quantitative bound� Concerning the other
temporal operators� untilA B evaluated in t� is true if B will always be true in the future with respect to t� or if
B will be true in the interval t� x � t� with x � � and A will be true in x � t� This de�nition of until does not
require the occurrence of A in the future� so the until operator corresponds to the weak until operator de�ned in
PTL 	
��� The operators until and since can be e�ectively used to express ordering relationships among events
without specifying any numeric constraint�

until A B operator does not consider the evaluation time instant as an instant where A could happen� then
operator until� has been introduced� It is de�ned as�

until� A B � A 	 B 
 until A B�

and also a �strong� until is sometime needed� For this reason the operator until� has been de�ned as�

until� A B � A!�����
 until A B

For completeness� the until�
�

has been de�ned as�

until�
�
A B � A!	�����
 until� A B

In a similar manner� since�� since� and since�

�
operators have been also de�ned�

In a TILCO speci�cation� predicates and functions with typed parameters can also be de�ned� Predicates return
a value of type bool� The body of each predicate must be speci�ed by means of a TILCO formula� in which the
only non�quanti�ed variables are the predicate parameters� Predicates are an instrument to simplify the writing of
formul" hence� more complex temporal expressions and formul" can be hidden in predicates� For example� the
two predicates�

ruleA � bool�
def

# A�������

upA � bool�
def

# A 
 �A�	�
��
�

where� rule expresses that a predicate A is always true and up means that A from false becomes true� Predicates
with parameters are often used in speci�cations to have shorter and easily readable formul"�

In Tab� 
� in order to provide a clearer view of TILCO expressivity� some examples of formul" are reported
with an explanation of their meaning� where t stands for a positive integer number�

� CTILCO OVERVIEW

A system speci�cation in C�TILCO is a hierarchy of communicating processes whose speci�cations are written in
TILCO� Many instances of the same process can be present in the speci�cation� Processes can have some general
static parameters and every instance could have di�erent values�

The communication between processes is based on typed synchronous input�output ports connected through
channels� The connection is 
�
� each output port is connected to at most one input port and viceversa� In the
following� the way in which processes are modeled in C�TILCO is introduced� The next sections the formalization

�



A���� t� A is true from now for t time instants

A������� A will be always true in the future

A������� A will be sometimes true in the future

A��t� � t�� A is true in �t�� t��

A��t�� t�� A is true in an instant of �t�� t��

��A��������� A is not always true

A��t� � t��� �t�� t�� A is true in t�	 and in �t�� t��

A��t� � t��
 �t�� t�� A is true in t�	 or in �t�� t��

A��t� t�� �A���� t� t is the next time instant in which A

will be true

A���� t��������� A will become true within t� for each
time instant in the future �response�

�A� B����� t� if A is true within t	 then also B will
be true at the same time

�A� B�i��j A leads to an assertion of B in i for
each time instant of j

�A� B�i��j A leads to the assertion of B in the
whole interval i in at least a time in�
stant of j

Table 
� Examples of TILCO formul"�

of communication between processes in TILCO and the way used for reasoning about communicating processes are
presented�

In the following� a process represents a class according to object�based formalism�
In C�TILCO a process is represented by two views�


� the external view that basically describes the input�output behavior of the process 

�� the internal view that describes the process decomposition into subprocesses or a low�level formalization of
the process behavior if it cannot be furtherly decomposed�

A C�TILCO process is externally characterized by�

� a set of external input ports used to acquire information from the outside 

� a set of external output ports used to produce information to the outside 

� a set of external variables used to give some general information about the process state or to simplify the
external behavior speci�cation 

� a set of external parameters used to permit general process speci�cation to make easy process reuse� since
di�erent process instances may have di�erent parameters 

� a set of external TILCO formul� that describe the external process behavior by means of the messages
exchanged and constraints on the external variables�

CTILCO is internally characterized by�

� a set of C�TILCO subprocesses 

� a set of internal input ports� used to get information from subprocesses 

� a set of internal output ports used to send information to subprocesses 

� a set of internal variables 

� a set of internal TILCO formul�� which describe the internal behavior of the process�

The ports of subprocesses can be directly connected to the containing process ports of the same type� input to
input and output to output� or can be connected through channels to the complementary internal ports output
to input and input to output�� In Fig� 
� a decomposition is exempli�ed� The use of internal ports permits the
realization of partial decompositions� when the process behavior is only partially speci�ed by subprocesses and�
thus� some interactions with the subprocesses is stated in the internal speci�cation TILCO formul"�

In TILCO formul"� to access at process components the dot notation is used� For example� if p is a process
with a variable v then p�v is used to refer to the variable of p� Whether process p has a subprocess s with a variable
v� then p�s�v is used to access to the subprocess variable�

Since many instances of the same process can be present in the system� its speci�cation is valid for all of them�
For example� if the internal speci�cation of a process with a variable ivar includes the following formula�

� ivar # 
 � � ivar # ���	��� ���

�
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Figure 
� External and internal representation of a C�TILCO process

It means that if ivar is equal to 
� then after �� time units ivar will be equal to �� This will be true in each process
independly� By means of colon operator� process and local variables can be easily distinguished�

Since in TILCO the time axis is in�nite in both directions there is not a time instant that can be regarded as
the start time instant of execution process� In the speci�cation of a system� it is natural to think at a reference
time instant in which the process starts its work� and before that� the signals are stable� For this reason� a boolean
variable process start has been introduced to each process� This variable is true only in one time instant for each
process� It should be noted that each process has its own start instant and a formula of the internal speci�cation is
used to de�ne the start time instant of its subprocesses� Typically when a process starts all its subprocesses start�

� CTILCO COMMUNICATION MODEL

The communication between two processes is structured in two layers� the low�level communication model for
transmission of typed messages and of acknowledgements ACKs� and the high�level communication model that
uses the low�level to realize a synchronous communication protocol�

��� Low�level communication

Properties assumed for the low�level are�
� no data creation� a message or ACK� arrived has been surely sent 

� no data loss� a message or ACK� sent will be received 

� constant delay� a message or ACK� sent will be received after a constant delay greater or equal than zero�
The no data creation assumption is fundamental without this assumption communications have not sense�� The
no data loss and constant delay assumptions have been introduced to have a deterministic behavior� From these
assumptions� the no reorder property can be derived messages arrive in the same order as they are sent��

In this layer� the following temporal predicates have been de�ned and� thus� can be used by the higher�level�

�



�outPort��send��expr��
is true when output port �outPort� sends the value obtained evalutating expression �expr��

�outPort��receiveAck
is true when an ACK has been received by output port �outPort��

�inPort��receive��expr��
is true when a message has been received by input port �inPort� with the value indicated by �expr��

�inPort��sendAck
is true when input port �inPort� sends an acknowledge�

There is also a connection predicate between ports�

outP
d
 inP

that asserts that output port outP is connected to input port inP and messages and ACKs� sent are delayed of
d time units� Please note that connections are static assertions� design��xed�

The rules to manage low�level communication are reported in the following�

message transmission�

�outP
d

� inP ��

rule�outP� send�k� �� inP� receive�k���d�d��

This rule states� if port outP is connected to port inP then in every time instant� outP sends a message if
and only if inP receives the same message after d time units� From this rule� we have that the message sent
is received after d time units no data loss� and that the message received has been sent d time units ago no
creation��

ack transmission�
�outP

d

� inP ��

rule�inP� sendAck �� outP� receiveAck��d� d��

This rule is similar to the previous except that it deals with the ACKs and that the direction is opposite
from input port to output port��

send one value�

rule�outP� send�k� � outP� send�v�� k � v�

This rule states� if at the same time instant two values are sent on the same port these values have to be
equal�

receive one value�

rule�inP� receive�k� � inP� receive�v�� k � v�

This rule states� if at the same time instant two values are received on the same port these values have to be
equal�

��� High�level Communication

The high�level layer introduces synchronous ports� the basic operators on these ports are� Send $$� and Receive

!!�� They are quite easy to remind for their similarity with CSP�

�outPort� �� �expr� ��whileExpr�� � ��thenExpr� sends throught output port �outPort� the value obtained evalu�
tating expression �const expr�� When the communication ends TILCO expression �thenExpr� is asserted�
During the waiting the temporal expression �whileExpr� is asserted�

�inPort�		 ��whileExpr�� � ��thenExpr� waits for a message if not already arrived� from input port �inPort��
When the message arrives TILCO expression �thenExpr� is evaluated as a function of the value received�
During the waiting the expression �whileExpr� is asserted�

In order to specify that a process has not to send a message on a port or that the process has not to ask for
a message other two operators� outP $$ and inP !! have been introduced� These conditions cannot be speci�ed by
using �inP $$ v 	P �   W � which has a di�erent meaning�

High�level synchronous operators are de�ned in TILCO by using the low�level predicates as reported in the
following� In Fig� �� the two cases of synchronous communication are reported� i� the emitting process sends a
message� and after the receiving process asserts that wants to receive a message ii� the receiving process waits for
a message and after the emitting process sends the message�

�



s(v) = send(v)

r = receive(v)

sa = sendAck
ra = receiveAck

ns = not send(v)

nr = not receive(v)

nsa = not sendAck
nra = not receiveAck

S(v) = out !! v [Ws] ;; Ps

R = inp ?? [Wr] ;; Pr

NR = not inp ??

NS = not out !!

RW = inp.RWait
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Pr(v)Wr Wr Wr Wr Wr

Ws Ws Ws Ws Ws Ps

out

inp

out

inp

delay: d = 0

Figure �� Examples of syncronous communications with no delay�

� operator Send emits the message and waits for an ACK� While it is waiting� wait formula Ws is asserted
and no other messages are sent� When the ACK arrives the �end of communication� formula� Ps� is asserted�
The behavior of Send operator has been speci�ed in TILCO with the following axioms�

rule��outP �� v �Ws� � �Ps� �� outP� send�v��

until��outP� receiveAck�Ps�

��outP�receiveAck �Ws��

�outP� receiveAck�

��outP� receiveAck�

until�outP� receiveAck�

��outP� receiveAck �outP ������

rule�outP �� �� ��k�outP� send�k��

the until� formula is used to state that Ps is true when the ACK is received and Ws is true until this time
instant� The other part of the formula states that during the waiting for the ACK no message is sent�

� operator Receive has two possible situations� If there exists a message received in the past that was not
acknowledged� then the ACK must be sent and the �end of communication� formula� Pr� is asserted with
the value received� In the other case� a new message has to be waited asserting wait formula Wr� When a
message is received if any�� the �end of communication� formula� Pr � is evaluated with the value received�
The behavior of Receive has been speci�ed in TILCO with the following axioms�

�



rule��inP 		 �Wr� � �Pr� � inP �RValue v ��

inP� sendAck�Pr�v��

rule��inP 		 �Wr� � �Pr� � inP �RWait ��

until���k�inP� receive�k� � inP� sendAck �Pr�k��

���k�inP� receive�k� �Wr��

��k�inP� receive�k��

���k�inP� receive�k� � � inP� sendAck�

until��k�inP� receive�k��

���k�inP� receive�k� � inP 		����

rule�inP 		 �� � inP� sendAck�

rule�inP 		 �Wr� � �Pr � inP 		 �� ��

where next formula indicates that there exists a pending v message�

inP �RValue v �

since
��inP� receive�v� � �inP� sendAck�

��inP� sendAck�

and formula

inP �RWait � ��v� inP �RValue v

states the absence of a pending message to be elaborated the current instant is not considered��

In Fig��� the more complex case in which there is a delay in transmission is shown� Even in this case there are
two situations� The �rst� when the distance from the Send and the subsequent Receive is greater than the delay�
thus the message is received prior to the Receive action� The second and opposite case� when the Send action is
performed after the Receive or before it with a distance lower than the delay�

��� CTILCO Communication Theorems

During the de�nition of CTILCO Communication Theorems many properties have been proved about the com�
munication operators� This has been performed in order to validate the de�nitions of operators and to aid the
construction of proofs involving these operators� The proofs were made by using a formalization of TILCO and
C�TILCO in Isabelle�HOL�

Theorems proved can be divided in two groups�

� theorems used to prove internal properties of a process� They substitute operators Send and Receive with
their semantics 

� theorems used to prove properties involving connected processes�

In the �rst group� there are the theorems that can be used to eliminate a Send from the assumptions of a goal�

	t p �� v �Ws� � �Ps

�	t p� send�v��





	t p� receiveAck	����
�

	t until
�

�
Ps Ws

	t p �� v �Ws� � �Ps

	t until�Ps Ws

The �rst theorem states that� if the process wants to send a message at time t and the message is sent receiving
the ACK� then a time instant exists in which Ps is true� And� until that time instant� predicate Ws is true� This
theorem is used to substitute the Send with a strong until in the assumptions of the goal within the backward
proofs of Isabelle�

The second theorem is similar to the previous without the assumption that if a message is sent an ACK will

be received� In this weaker condition� the same condition with the weak�until has been derived�

�
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Figure �� Examples of synchronous communications with delay�

For the Receive� similar theorems have been proved�
	t p 		 �Wr� � �Pr 	t �k� p� receive�k� 	 ����
�

	t �v� until
�

�
Pr�v� Wr

	t p 		 �Wr� � �Pr

	t �v�until�Pr�v� Wr

The �rst theorem of Receive states that� if a message will be received the operator Receive may be substituted
with a strong until� The other theorem substitutes the Receive operator with a weak until� making no assumptions
about the message arrival�

In Fig� �� the visual descriptions of the next two theorems proved are reported� The assumptions of the theorems
are depicted over the time axis while consequences are below�

In the theorems used to prove properties for connected processes� the RWait operator plays an important role�
It summarizes the communication status�

I j� out
d
� in

�t in �� �Wr � 
 
Pr
�t�ts out  v �Ws� 
 
Ps
�t in ����ts � d� ��

ts � �d

�t Pr�v�

�t�d Ps

�tWs��ts� d�

�t out  ��ts� d�

�t�� in�RWait

�



This means in the premises� if two ports are connected with a delay d� a Receive is asserted at time t� and a
Send is asserted ts instants before the Receive� In the implication� the message is received at time t� Ps is true
after d time instants� the wait formula of Send is true from the Send time instant to the end of communication
time instant� and at t � 
 RWait is true stating that no message is pending�

The following theorem covers the opposite case� in the absence of pending message� the Send is done after the
Receive or within the delay�

�t in�RWait

I j� out
d
� in

�t in �� �Wr � 
 
Pr
�t�ts out  v �Ws� 
 
Ps
�t in ����ts � d� ��

�t out ���d� ts�

�d � ts

�t�ts�d Pr�v�

�t�ts��d Ps

�tWr���� ts � d�

�t�ts Ws�����d�

�t in ������ ts � d�

�t�ts in  �����d�

�t�ts�d�� in�RWait

Other theorems have been proved� some about the RWait operator that permit to deduce that if RWait is true
for an input port and the connected emitting process is not sending� then RWait will remain true�

� CTILCO SPECIFICATION VALIDATION

In order to validate a CTILCO speci�cation� properties have to be proved by using the Isabelle�HOL theorem
prover with the formalization of TILCO and CTILCO� In that environment� theorems reported in the previous
section and many others facilitate the proofs of properties manually or automatically� It should be noted that�
in this environment� properties can be proved for the entire system as well as for single processes with generic
parameters�

Proved properties are typically those of safeness nothing bad will never happen� or liveness something good
will happen�� Other properties that can be demonstrated are those to validate the composition�decomposition of
components� The proof of the external properties of process are validated by means of its internal speci�cation
decomposition�� or viceversa composition�� depending on the approach used for building the system bottom�up
or top�down��

Since TILCO speci�cations can be executed by using a causal inferential engine even a CTILCO speci�cation
can be executed� Obviously� not all the speci�cations can be executed� quanti�cations have to be done on �nite
domains� the speci�cations have to be deterministic and no generic parameters have to be present� However� the
speci�cation can be time incomplete� that is the system behavior can be partially speci�ed for all the time instants�

� AN EXAMPLE

In this section� an example to highlight the composition and reuse capabilities of C�TILCO is presented together
with some validations�

The system under speci�cation is an abstraction of a train system that connects a set of stations� Every train
passes from a �xed set of stations with a cyclic path� A train needs a bounded time duration to go from a station
to the next� The train has to ask the permission to enter in a station� Once the permission is granted the train
remains in the station for a constant time duration and then it leaves the station for the next one� Every station
may have only one train inside at the same time� As an example� we consider the system shown in Fig���
The system is decomposed with three types of processes�

� process Station� Sa and Sb� manages the access of only one train�

� process Station� Sc� manages the access of two trains�

� process Train� Ta and Tb� models a train that reaches two stations�

Please note that the speci�cation at system level consists only of the de�nition of process relationships and of
a global start predicate�
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In order to mange the access to a station� three ports are needed� one for the request to enter in the station
Rq�� another to give access to the station when the station is free Ent�� and the last to notify at the station that
the train has left the station Ext��

Due to the limited space of the article the full speci�cation of the system cannot be reported� In the following�
many details are omitted� However� we think that with reported parts the main aspects of C�TILCO are rightly
highlighted and understandable�

��� Process Station�

Process Station
 has three ports Rq� Ent� Ext� to communicate with the train and three Boolean internal variables�

� hasTrain stating that the station has a train inside�

� waitRq that is true when the process has to wait for a request of the train�

� waitExt that is true when the process has to wait for the noti�cation of exit of the train�

When the process starts� it has to wait for a request and before the starting the station has no train inside and
no communication has been issued�

process start �� waitRq � �� hasTrain����
� ��

process start �� �Rq 		� Ent ��� Ext 		����
� ��

The general behavior is speci�ed with the following formula�

waitRq ��

Rq 		 �� hasTrain� Ent ��� Ext 		� � �

Ent �� enter �� hasTrain� Rq 		� Ext 		� � �

Ext 		 �hasTrain� Rq 		� Ent ��� � �

waitRq

This formula states that if the process has to wait for a request a Receive is performed on port Rq� And� when
a request is received the grant is immediately sent� During the waiting for the Receive on Rq port and the Send
on Ent port� the train is not in the station � �hasTrain�� When the grant is received� the process waits for the
exit noti�cation� In this while� the train is in the station� When the noti�cation is received� the waitRq variable
is newly asserted to begin the waiting for a new request� It should be noted that� during the waiting for a certain
port� the waiting predicate states that the process is not sending�receiving on the other ports� This is given for
granted in the following�

��� Process Station�

Process Station� has six ports Rq
� Ent
� Ext
� Rq�� Ent�� Ext�� to communicate with the two trains and two
Boolean variables� hasTrain� and hasTrain�� These state that the station hosts train 
 or � inside� respectively�

A general requirement of Station� is that only one train can be inside the station at the same time instant�

���hasTrain�� hasTrain������
��
�

For the internal speci�cation of process Station�� the following Boolean variables have been used�

� free states that the station in free 

� waitRq
 and waitRq� � when one of these is true� the process has to wait for an access request of train 
 or
�� respectively 

� req
 and req� indicate the receipt of an access request for train 
 or �� respectively� It remains true until the
train has access to the station 

� sendEnt
 and sendEnt� � when one of these is true� the process has to send to train 
 or � the enter
noti�cation and wait for the exit noti�cation�







For the system speci�cation� the following shortcuts have been used�

A���B � A� B������

inv�A� � A A��������

The free process variable is de�ned as�
free�� � hasTrain� � � hasTrain�

When the process starts� it has to wait for the requests� until a request is received req
�req� is false and when the
request is received req
�req� becomes true�

process start �waitRq�� waitRq��  free���
� ��

process start �

�Rq� 		� Ent� ��� Ext� 		�� ��
� ��

process start �

�Rq� 		� Ent� ��� Ext� 		�� ��
� ��

waitRq� �

Rq�		 �� req�� Ent� ��� Ext� 		� � �

req�� � hasTrain�� Ent� ��� Ext� 		

waitRq� �

Rq�		 �� req�� Ent� ��� Ext� 		� � �

req�� � hasTrain�� Ent� ��� Ext� 		

When no requests have been received hasTrain
 and�or hasTrain� remains stable with the same value��

� req� ��� inv�hasTrain��

� req� ��� inv�hasTrain��

When the station is free and a request is received for a train but not for the other the enter noti�cation is sent�

 free � req�� � req� ��� sendEnt�

 free � req�� � req� ��� sendEnt�

When two requests are contemporaneously received� train 
 has the precedence�

 free � req�� req���� sendEnt�� req� � � hasTrain�

When the station is not free and a request is received� the request is maintained active�
�  free � req����

req�� � hasTrain�� Rq� 		� Ent� ��� Ext� 		

�  free � req����

req�� � hasTrain�� Rq� 		� Ent� ��� Ext� 		

When sentEnt
�sentEnt� is true� the enter noti�cation is sent� and the exit noti�cation is waited� In this
while� hasTrain
�hasTrain� is true and no requests have to be received� When the exit noti�cation is received�
hasTrain
�hasTrain� becomes false and� at the next instant� the process begins to wait for a new request to
leave the chance for a pending request to be served��

sendEnt��

Ent� �� enter �hasTrain�� � req�� Rq� 		� Ext� 		� � �

Ext�		 �hasTrain�� � req�� Rq� 		� Ent� ��� � �

� hasTrain�� � req�� waitRq����� ��
sendEnt��

Ent� �� enter �hasTrain�� � req�� Rq� 		� Ext� 		� � �

Ext�		 �hasTrain�� � req�� Rq� 		� Ent� ��� � �

� hasTrain�� � req�� waitRq����� ��

��� Process Train�

Process Train� managing the access to two stations is decomposed with two kinds of processes connected as depicted
in Fig� �� Processes of type TrainAtStation manage the access to a station while processes of type MinMaxDelay are
used to model the time spent by the train to reach the next station� A deterministic delay can be �xed depending
on the railway path length�

Ports TokIn and TokOut are used to sequentially activate the processes� When a message is received from
port TokIn� the process is activated� And� when the process has �nished� a message is sent via the TokOut port�
It is a sort of token passing mechanism�

Reusing the above processes strongly more complex con�gurations can be de�ned and validated against complex
and general properties� For example� the train will reach the station within a given time duration�
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��� Process TrainAtStation

Process TrainAtStation manages the access to the station� the permanence in the station and �nally the abandon
of the station� It can be decomposed in three processes as shown in Fig� �� Process EnterStation manages the
request of access to the station and the wait for enter noti�cation� Process MinMaxDelay already presented for
the upper level� is reused to model the time spent by the train in the station� Process ExitStation states the exit
from the station�

The speci�cations of processes EnterStation and ExitStation are rather simple� For example� process EnterStation
has to wait for the token� then it sends the access request� waits the enter noti�cation� sends the token to the next
and waits for the token again�

��	 Process EnterStation

This process has to wait for the token� then it sends the access request� waits the enter noti�cation� sends the token
and waits for the token again�

process start�

waitTok � �TokIn 		� Ent 		� TokOut ������
� ��

waitTok �

TokIn 		 �� waiting� Rq ��� Ent 		� TokOut ��� � �

Rq �� request �waiting� TokIn 		� Ent 		� TokOut ��� � �

Ent 		 �waiting� TokIn 		� Rq ��� TokOut ��� � �

TokOut �� token �� waiting� TokIn 		� Rq ��� Ent 		� � �

waitTok

��� Process ExitStation

This process has to wait for the token� then it sends the exit noti�cation� sends the token and waits for the token
again�

process start�

waitTok � �TokIn 		� Ext ��� TokOut ������
� ��

waitTok �

TokIn 		 �� waiting� Ext ��� TokOut ��� � �

Ext �� exit �waiting� TokIn 		� TokOut ��� � �

TokOut �� token �� waiting� TokIn 		� Ext ��� � �

waitTok

��
 Process MinMaxDelay

This process has to wait for the token and to send the token to the next process after a delay between MinDelay
and MaxDelay�

process start�

waitTok � �TokIn 		� TokOut ������
� ��

waitTok �

TokIn 		 �� waiting� TokOut ��� � �

�� sendTok���� MinDelay��

sendTok 	�MinDelay� MaxDelay��

until� sendTok �� waiting� TokIn 		� TokOut ����

sendTok �

TokOut �� token �� waiting� TokIn 		� � �

waitTok
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��� Validation

Using the proved rules reported in the previous sections several properties have been proved�
The speci�cation has been formally validated with success by using Isabelle theorem prover� In addition� the

whole system as well as each single process have been tested with the TILCO executor� In this case� several typical
histories for inputs and outputs have been generated by using a signal editor� and formally veri�ed�

For example� for process Station�� the external mutual exclusion requirement has been derived from the internal
speci�cation� this has to be considered as a decomposition veri�cation and is also a safeness property proof�

For example� for the train Ta� the following liveness property has been proved�

up��Ta�inStation�� ��

up��Ta�inStation�� 	 �minTa�maxTa�

That is� the distance between two successive time instants in which the train enters in the �rst station is
bounded� In the best case� the minimum time needed to across the path is�

minTa � Ta�timeInS�� Ta�minS�ToS��

Ta�timeInS�� Ta�minS�ToS�

In the worst case we have�

maxTa � Ta�timeInS�� Ta�maxS�ToS��

Tb�timeInS�� Ta�timeInS��

Ta�maxS�ToS�

Where� timeInS�� timeInS�� maxS�ToS�� maxS�ToS�� minS�ToS� and minS�ToS� are generic parameters of
process Train�� These express the time spent in each station and the maximum�minimum time to pass from a
station to the next� inStation� is a Boolean variable indicating that the train is in the �rst station of its path�

� CONCLUSIONS

In this paper� C�TILCO extension of the TILCO temporal logic has been presented� C�TILCO is well suited
for system composition�decomposition� It permits to reuse other speci�cations within the same system or the
development for other systems� C�TILCO has been formalized within Isabelle�HOL theorem prover� Properties for
the whole system as well as for a single process can be proved� This logical framework permits also the validation
of system decomposition in terms of processes�

The possibility to execute the speci�cation is an important feature since well�known conditions can be quickly
tested�

Language used for the speci�cation we think is expressive� simple and concise with a limited �time to learn�
since it has inherited conciseness from TILCO 	

��

C�TILCO has been pro�tably used for the formal speci�cation of critical complex real�time systems�
Presently� a visual speci�cation tool for C�TILCO is under development� It will be based on the available

theorem prover� the executor of TILCO speci�cations and on the signal editor�
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