
A method and tool for assessing object-oriented projects and metrics
management q

F. Fioravanti, P. Nesi *

Department of Systems and Informatics, Faculty of Engineering, University of Florence, Via di S. Marta 3, 50139, Florence, Italy

Received 5 August 1999; received in revised form 2 January 2000; accepted 7 January 2000

Abstract

The number of metrics and tools for the assessment/control of object-oriented project is increasing. In the last years, the e�ort

spent in de®ning new metrics has not been followed by a comparable e�ort in establishing methods and procedures for their sys-

tematic application. To make the investment on project assessment e�ective, speci®c methods and tools for product and process

control have to be applied and customized on the basis of speci®c needs. In this paper, the experience of the authors cumulated in

interpreting assessment results and de®ning a tool and a method for the assessment of object-oriented systems is reported. The tool

architecture and method for system assessment provide support for: (1) customizing the assessment process to satisfy company

needs, project typology, product pro®le, etc.; (2) visualizing results in an understandable way; (3) suggesting actions for tackling with

problems; (4) avoiding unuseful interventions and shortening the assessment analysis; (5) supporting metrics validation and tuning.

The tool and method have been de®ned in years of work in identifying tool features and general guidelines to de®ne a modus

operandi with metrics, with a special care to detect analysis and design problems as soon as possible, and for e�ort estimation and

prediction. In this line, a speci®c assessment tool has been built and used as a research prototype in several projects. Ó 2000 Elsevier

Science Inc. All rights reserved.

Keywords: Product and process assessment; Diagram analysis; Object-oriented metrics; Assessment tool; E�ort prediction; Pro®les and histograms;

Validation; Tuning; Process improvement; Control process; Quality

1. Introduction

The object-oriented paradigm (OOP) is considered
one of the most interesting paradigms for its promises
about reusability, maintainability, capability for pro-
gramming ``in the large'', etc. These features are not
automatically obtained by using the OOP, even if an
object-oriented methodology supporting all features of
the OOP, such as inheritance, polymorphism, aggrega-
tion, association, etc., is used. To this end, the intro-
duction of the object-oriented technology must be
accompanied by a corresponding e�ort to establish
mechanisms for controlling the development process
(Nesi, 1998).

In order to control the development process, metrics
for evaluating system features are fundamental. Their
validation and interpretation are tasks frequently much
more complex than their evaluation. Reference values,
views, histograms, and graphs are typically used. How-
ever, without the support of a methodology for their
adoption and interpretation they are frequently aban-
doned or misused. In many cases, the relationships
among reference values for attended features and the
estimated values of metrics may depend on the appli-
cation domain, the development tool, libraries used, the
implementation language, etc. Obviously, each feature
must be directly or indirectly measurable and suitable
actions for its achievement must be identi®ed.

During system assessment, di�erent views, pro®les,
and histograms of the same entity/class can be required
either from di�erent people involved in the project
(project and task managers, developers, etc.) or from the
same people in di�erent phases of the development
life-cycle or for di�erent purposes. These views must
be focussed on highlighting di�erent aspects. Measured
values are typically compared against minimum,

The Journal of Systems and Software 53 (2000) 111±136
www.elsevier.com/locate/jss

q This work was partially supported by MURST Ex60% and 40%

govern Ministry of University and Scienti®c Research.
* Corresponding author. Tel.: +39-55-479-6523; fax: +39-55-479-

6363; http://www.dsi.uni®.it/�nesi.

E-mail addresses: nesi@dsi.uni®.it, nesi@ing®1.ing.uni®.it (P.

Nesi).

0164-1212/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (0 0) 0 0 0 5 0 - 9

maximum and typical values de®ned for the develop-
ment phase under observation on the basis of the
product pro®le required. These have to be de®ned by the
company on the basis of their experience and needs.

The growing attention on the process of software
development has created the need to get process-ori-
ented information and to integrate metrics into the
software development process. Furthermore, it is also
important to create an integrated environment for
software development (editing, navigating among
classes, measuring, etc.) and to perform project-oriented
tailored measures, owing to the presence of many dif-
ferences among projects by the same company. This
means that it is important for a company to tune the
assessment methodology for di�erent types of projects
and languages. This process of tuning is usually per-
formed by adjusting weights, thresholds, and pro®les
(Henderson-Sellers et al., 1994; Nesi and Querci, 1998).

Some studies with metrics and measurement frame-
works for object-oriented systems have been presented
in Laranjeira (1990), Meyer (1990), Henderson-Sellers
(1991, 1993), Coulange and Roan (1993), Li and Henry
(1993), BritoeAbreu et al. (1995), Nesi and Campanai
(1996), Bucci et al. (1998), Fioravanti et al. (1998a,b),
Nesi and Querci (1998), and Zuse (1994), where general
concepts for the estimation of system size, complexity,
and reuse level have been proposed together with many
other metrics. Unfortunately, the e�ort for de®ning new
metrics has not been supported by the implementation
of assessment tools and methodologies.

This paper reports the description of a method and
tool named TAC++ (tool for the analysis of C++ code
and metrics) for the assessment of object-oriented sys-
tems. TAC++ is a research tool by means of which
several experiments on metric assessment and de®nition
have been performed. TAC++ has been developed for
studying the metric behavior during the development
process, and it is capable of estimating more than 200
metrics. The method and tool have been derived by the
experience in metrics de®nition and validation, assess-
ment results interpretation, for product assessment in
several small- and medium-size industrial and academic
object-oriented projects in the last 10 years (Nesi, 1998;
Butera et al., 1998; Bellini et al., 1999). Details about the

de®ned metrics and their validation can be found in
Fioravanti et al. (1998a,b), Bucci et al. (1998), and Nesi
and Querci (1998).

Table 1 shows the pro®les of some real projects in
chronological order: TOOMS, a CASE tool to specify,
verify, test and assess real-time systems; ICOOMM, a
computerized numerical control for milling machines;
QV, a library providing a uniform object-oriented sup-
port for MOTIF and X; LIOO, a lectern/editor for
music scores reused as the basis for project MOODS;
ICCOC, ESPRIT HPCN project, a distributed system
for integrating CAD/CAM activities on numerical con-
trol machines; MOODS, ESPRIT HPCN project, a
distributed system of music lecterns for orchestras and
music schools; MUPAAC, ESPRIT HPCN project, a
distributed system of control based on Ethernet, PCI
and CANBUS.

Most of these projects were carried out by using
heterogeneous teams, in the sense that they included
people from
1. some industries,
2. the University of Florence, and
3. CESVIT (high-tech agency) research center.

Although the project partners were in separate loca-
tions, the heterogeneous task/subtask teams were con-
strained to work in one place to improve the
homogeneity of results, i.e., by using the same ``quality
manual'': reference document that contained all the
guidelines for project development according to the
de®ned general criteria.

This experience has also been condensed in an as-
sessment methodology that consists of a modus ope-
randi to work with metrics in order to detect analysis
and design problems, and for e�ort estimation and
prediction. The approach suggests modalities for in-
terpreting metrics results and for the validation and
tuning of metrics. Criticisms about the adoption of
speci®c diagrams explaining their semantics and rela-
tionships are also reported. These may be used for
providing a clearer picture of the system under as-
sessment. TAC++ tool supports and integrates the
assessment methodology including an algorithm to
reduce complexity in managing the typically large
amount of numerical results and diagrams that are

Table 1

Main ®gures of some referred projects: NCL, number of system classes; for some of the above projects several versions have been assessed during

their development

Project Operating system Language Tools & libs NCL

TOOMS UNIX, LINUX C++ Lex/Yacc, CommonView 204

ICOOMM Windows NT C++ MFC 193

QV UNIX C++ XLIB, Motif 65

LIOO DOS-LINUX C++ Lex/Yacc, XVGAlib 165

ICCOC Windows NT C++/Java MFC, JDK 80

MOODS LINUX, HPUX C++ Lex/Yacc, XVGAlib 253

MUPAAC WinNT, WinCE, DSP C/C++ MFC 180

112 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

produced and have to be analyzed during system as-
sessment.

The main contributions of the paper are:
· the architecture and the detailed solutions of TAC++

tool;
· the mechanisms for the identi®cation and the repre-

sentation of bounds in diagrams, their meaning and
analysis;

· the adoption of normalized histograms and related
reference distributions;

· the integration between metric estimation, validation
and tuning;

· an algorithm for managing the large amount of dia-
grams and pro®les and its validation for shortening
the assessment time.
TAC++ and the related methodology provide sup-

port for:
1. customizing the assessment process to satisfy com-

pany needs, project typology, product pro®le, etc.;
2. de®ning new high-level metrics for assessment cus-

tomization;
3. visualizing results in an understandable way;
4. navigating on system hierarchies and structure;
5. suggesting actions for solving problems;
6. de®ning and visualizing pro®les, histograms, and

views;
7. avoiding unuseful interventions and analysis on the

basis of simple bounds;
8. supporting metrics validation and tuning via statis-

tic analysis techniques;
9. reasoning about the evolution of metrics, views, his-

tograms, pro®les, etc., along the life-cycle;
10. supporting the user in navigating on the whole in-

formation produced during the assessment, control-
ling project evolution by using reference/threshold
values, shortening the assessment process by auto-
mating some of its parts;

11. collecting real data such as e�ort, faults, etc.
The needs of automatically estimating metrics pro-

ducing visual representations of results for facilitating
their interpretation and highlighting their relationships
have been the basis for the study and the implementa-
tion of TAC++.

This paper is organized as follows. In Section 2, a
short overview of the object-oriented metrics mentioned
in the rest of the paper is reported.

In order to make this paper more readable, in
Appendix A, a glossary of cited metrics is reported in
Table 9.

In Section 3, the overview of TAC++ architecture is
reported. TAC++ presents two main areas. The ®rst
area, discussed in Section 4, includes the estimation, the
de®nition, and the validation and the tuning of metrics.
The estimation phase includes the evaluation of code
metrics and the collection of data from other sources:
documents, time sheets, etc. The second part, discussed

in Section 5, includes the interpretation of results by
means of the support of several diagrams and their re-
lated reference values and shapes according to rules,
criticisms and guidelines. In this part, the adoption of
normalized histogram distributions for problem detec-
tion is presented. The same section includes an algo-
rithm to semi-automatically perform the system
assessment. The above aspects are discussed on the basis
of results and examples taken from the above mentioned
projects. An example of the algorithm proposed for the
semi-automatic assessment is also proposed considering
real data. Conclusions are drawn in Section 6.

2. Overview of object-oriented metrics

Before beginning the description of TAC++ tool and
methodology, an overview of some of the most signi®-
cant object-oriented metrics categories is given.

In general, metrics can be direct or indirect. Direct
metrics should produce a direct measure of parameters
under consideration, e.g., the number of the lines of
code (LOC) for estimating the program length in terms
of LOC. Indirect metrics are usually related to high-level
features, e.g., the number of system classes can be sup-
posed to be related to the system size by means of a
mathematical relationship, while LOC (as indirect met-
ric) is typically related to development e�ort. Thus, the
same measure can be considered as a direct and/or an
indirect metric depending on its adoption. Indirect
metrics have to be validated for demonstrating their
relationships with the corresponding high-level features
(reusability, e�ort, etc.). This process consists in
1. evaluating parameters of metrics (e.g., weights and

coe�cients),
2. verifying the robustness of the identi®ed model

against real cases.
The model can be linear or not, and it must be identi®ed
by using both mathematical and statistical techniques,
e.g., Zuse (1994), Rousseeuw and Leroy (1987), Nesi
and Querci (1998), Schneidwind (1992), Schneidewind
(1994), Kemerer and Slaughter (1999), Briand et al.
(1998a,b,c, 1999a), Zuse (1998), and Basili et al., 1996.

In Sections 2.1 and 2.2, some selected metrics for
e�ort prediction and estimation, and for quality and
system structure assessment, are reported. This presen-
tation of metrics does not pretend to be an exhaustive
review about object-oriented metrics since it is only
oriented to present those metrics which are useful for
discussing assessment methodology and tool in the fol-
lowing sections.

2.1. E�ort estimation and prediction metrics

The cost of development is one of the main issues
that must be kept under control. To this end, a linear/

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 113

non-linear relationship between software complexity/
size and e�ort is commonly assumed. The e�ort can be
expressed in person-months, -days or -hours needed for
system development, from requirements analysis to
testing or in some cases only for coding. In this way, the
problem of e�ort evaluation is shifted into the problem
of complexity or size evaluation. When software com-
plexity evaluation is performed on code, this can be
useful for controlling costs and development process
e�ciency, as well as for evaluating the cost of mainte-
nance, reuse, etc. When software evaluation is per-
formed before system building, metrics are used for
predicting costs of development, testing, etc. As pointed
out by many authors, traditional metrics for complexity/
size estimation, often used for procedural languages, can
be di�cult to apply for evaluating object-oriented sys-
tems (Li and Henry, 1993; Henderson-Sellers et al.,
1994; Nesi and Campanai, 1996). Several interesting
studies on predicting and evaluating maintainability,
reusability, reliability, and e�ort for development and
maintenance have been presented. These relationships
have been demonstrated by using validation processes
(Kemerer, 1987; Henderson-Sellers, 1996; Briand et al.,
1998a,b; Nesi and Querci, 1998; Basili et al., 1996;
Kemerer and Slaughter, 1999).

Traditional code metrics for complexity/size estima-
tion, often used for procedural languages [Mc Cabe
(McCabe, 1976; Henderson-Sellers and Edwards, 1990),
Mc; Halstead (Halstead, 1977), Ha; and the number of
LOC] are unsuitable to be directly applied for evaluating
object-oriented systems (Henderson-Sellers et al., 1994;
Nesi and Querci, 1998). By using the above procedural
metrics, data structure and data ¯ow aspects related to
method parameters are neglected (Zuse, 1998). More
general metrics have been de®ned in which the external
interface of methods is also considered in order to avoid
this problem.

Operating with OOP leads to move human resources
from the design/code phase to that of analysis (Hen-
derson-Sellers et al., 1994), where class relationships are
identi®ed. Following evolutionary models for the de-
velopment life-cycle (e.g., spiral, fountain, whirlpool,
pinball), the distinction among phases is partially lost,
e.g., some system parts can be under design when others
are still under analysis (Booch, 1996; Nesi, 1998). These
aspects must be captured with speci®c metrics; other-
wise, their related costs are immeasurable (e.g., the costs
of specialization, the costs of object reuse, etc.).

In order to cope with the above-mentioned draw-
backs, speci®c code metrics for evaluating size and/or
complexity of object-oriented systems have been pro-
posed (e.g., Thomas and Jacobson, 1989; Henderson-
Sellers, 1991; Li and Henry, 1993; Lorenz and Kidd,
1994; Chidamber and Kemerer, 1994). Some of these
metrics are based on well-known functional metrics,
such as LOC, McCabe, etc. In Henderson-Sellers (1994)

and Nesi and Campanai (1996), issues regarding the
external and internal class complexities have been dis-
cussed by proposing several metrics. Early metrics, such
as the number of local attributes, the number of local
methods or the number of local attributes and methods
have been frequently used for evaluating the confor-
mance with the ``good'' application of the OOP. These
are unfortunately too coarse for evaluating in details the
development costs (Nesi and Querci, 1998). The above
metrics have been generalized and compared in Nesi and
Querci (1998), by adding terms and weights opportunely
estimated during a validation phase.

At method-level classical size and volume metrics can
be pro®tably used. In some cases, speci®c metrics in-
cluding also the cohesion of methods are considered, for
instance, by taking into account the complexity of
method parameters (Nesi and Querci, 1998). On the
other hand, these metrics are only marginally more
precise in estimating development e�ort than pure
functional metrics, while they are quite useful for esti-
mating e�ort for reuse.

Class-level metrics have also to take into account
class specialization (is_a, that means code and structure
reuse), and class association and aggregation (is_part_of
and is_referred_by, that mean class/system structure
de®nition and dynamic managing of objects, respec-
tively), to assess all the characteristics of system classes.
A fully object-oriented metric for evaluating class
complexity/size has to consider also attributes and
methods both locally de®ned and inherited (Nesi and
Campanai, 1996; Nesi and Querci, 1998; Fioravanti
et al., 1999b). These factors must be considered for
evaluating the cost/gain of inheritance adoption, and
that of the other relationships. Therefore, the class
complexity, CCm, is regarded as the weighted sum of
local and inherited class complexities (recursively, till the
roots are reached), where m is a basic metric for evalu-
ating functional/size aspects such as, Mc, LOC, Ha. This
is a generalization of the metrics proposed in Thomas
and Jacobson (1989), Henderson-Sellers (1991), and
Chidamber and Kemerer (1994):

CCm � wCACLm CACLm � wCMICLm CMICLm

� wCLm CLm � wCACIm CACIm

� wCMICIm CMICIm � wCIm CIm; �1�
where CACLm is the class attribute complexity local,
CACIm the class attribute complexity inherited,
CMICLm the class method interface complexity of local
methods; CMICIm the class method interface complexity
of inherited methods; CLm class complexity due to local
methods; CIm class complexity due to inherited methods
(e.g., complexity reused). In this way, CCm takes into
account both structural (attributes, relationships of
is_part_of and is_referred_by) and functional/behavioral
(methods, method ``cohesion'' by means of CMICLm

114 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

and CMICIm) aspects of class. In CCm, also the internal
reuse is considered by means of the evaluation of in-
herited members. Weights in Eqs. (1) must be evaluated
by a regression analysis. In the development e�ort esti-
mation, wCACI is typically negative, stating that the in-
heritance leads to save complexity/size and, thus, e�ort.
CCm can be regarded as the de®nition of several fully
object-oriented metrics based on functional metrics, of
McCabe, Halstead and LOC, CCMc, CCHa, CCLOC, re-
spectively (Nesi and Querci, 1998; Fioravanti et al.,
1999a).

It should be noted that values for CCm metrics are
obtained even if only the class structure (attribute and
method interface) is available. This can be very useful
for class evaluation and prediction since the early phase
of class life-cycle. The weights and the interpretation
scale must be adjusted according to the phase of the
system life-cycle in which they are evaluated as in (Nesi
and Campanai, 1996; Nesi and Querci, 1998; Fioravanti
et al., 1999a).

CCm metric can also be used for the complexity/size
prediction since the detailed phase of analysis/early
phases of design, i.e., when the methods are not imple-
mented: CI and CL are zero. In that case, CCm is called
CC0m:

CC0m � wCACL0m CACL0m � wCMICL0m CMICL0m

� wCACI0m CACI0m � wCMICI0m CMICI0m: �2�

A simpler approach is based on counting the number
of local attributes and methods (see metric
Size2 � NAL�NML de®ned by Li and Henry (1993)),
as the sum of the number of attribute and methods lo-
cally de®ned in the class). On the other hand, the simple
counting of class members (attributes and methods)
could be in many cases too coarse. For example, when
an attribute is an instance of a very complex class its
presence often implies a high cost of method develop-
ment which is not simply considered by increasing NAL
of one unit. Moreover, Size2 does not take into account
the class members inherited (i.e., reuse). For these rea-
sons, in order to improve the metric precision, a more
general metric has been de®ned by considering the sum
of the number of class attributes and methods (NAM),
both locally de®ned and inherited (Bucci et al., 1998).

At system level, several direct metrics can be de®ned
in order to analyse the system e�ort, e.g.: NCL, number
of classes in the system; NRC number of root classes
(speci®cally C++); system complexity, SCm (de®ned as
the sum of either CC, WMC or NAM for all system
classes), etc. It should be noted that if SCm is de®ned in
terms of CCm, it can be estimated since the early phases
of class life-cycle by using CC0m.

Other system level metrics, such as the mean value of
CC and the mean value of NAM, are much more ori-

ented to evaluate the general development behavior
rather than the actual system e�ort.

2.2. Metrics for assessing system structure and quality

During system development, several factors should be
considered in order to detect the growing of degenera-
tive conditions in the system architecture or in the code.
A system may become too expensive to be maintained,
too complex to be reusable, too complex to be portable,
etc. Most of these features are referred into the typical
quality pro®le de®ned by the well-known ISO9126
standard series on software quality.

It is commonly believed that the object-oriented
technology can be a way to produce more reliable,
maintainable, portable, etc., systems. These very im-
portant features are not automatically achieved by the
OOP adoption. In fact, only a ``good'' application of
the OOP may produce indirect results on some of the
quality features (Daly et al., 1995; Basili et al., 1996;
Briand et al., 1998a). It is also very di�cult to quantify
what ``good application of the OOP'' means. This ob-
viously depends on the context: language, product type
(library, embedded system, applications on GUI, etc.),
etc. The context also in¯uences the measures obtained
on the product and the reference product pro®le. Some
quality features are very di�cult to estimate by analyz-
ing system code or documentation, e.g., e�ciency, ma-
turity, suitability, accuracy and security; thus, measures
based on the results of testing and questionnaires are
needed.

To this end, several criteria for controlling class de-
generative conditions are typically based on bounds on
the number of local or inherited attributes; on the
number of local or inherited methods; on the number
of the total number of attributes (NA � NAL�NAI,
local and inherited attributes) or methods (NM �
NML�NMI, local and inherited methods), etc. (see
Table 9 in Appendix A).

Interesting metrics are those related to the inheritance
hierarchy analysis. These lead to important assumptions
about the quality of the analysis/design phases of the
software development process and system maintain-
ability, reusability, extensibility, testability, etc. In the
literature, the so-called DIT, depth of inheritance tree,
metric has been proposed (Chidamber and Kemerer,
1994). DIT estimates the number of direct superclasses
until the root is reached. As can be easily understood, it
ranges from 0 to N (where 0 is obtained in the case of
root classes). Metric DIT is strongly correlated with
maintenance costs (Li and Henry, 1993). This metric is
not very suitable for treating the case of multiple in-
heritance; in fact, in the implementations reported in the
literature, for the case of multiple inheritance, DIT
metric evaluates the maximum value among the possible
paths towards the several roots or the mean value

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 115

among the possible values. These measures are in most
cases an over-simpli®cation of the real conditions be-
cause the complexity of a class obviously depends on all
the superclasses. In order to solve this problem, metric
NSUP (number of superclasses) has been proposed and
compared with DIT in (Bucci et al., 1998).

In order to better analyze the class relevance within
the class hierarchy, the number of its direct subclasses is
very important to be evaluated. To this end, the so-
called NOC, number of children (Chidamber and Ke-
merer, 1994), metric has been de®ned. Metric NOC
counts the number of children considering only the di-
rect sub-classes. It ranges from 0 to N (where 0 is ob-
tained in the case of a leaf class). Classes with a high
number of children must be carefully designed and
veri®ed because their code is shared by all the classes
that are deeper in the hierarchy. NSUB metric (number
of subclasses, Bucci et al., 1998) counts all the subclasses
until leaves are reached and, thus, it can be regarded as a
more precise measure of class relevance in the system.
Therefore, these metrics can be useful for identifying
critical classes, and are also strongly correlated with
maintenance costs as demonstrated in Li and Henry
(1993). Other metrics for assessing system structure can
be: NRC, number of root classes; mean value of NM;
mean value of NA; mean value of CC, etc.

In general, complexity metrics (like CC, WMC, etc.)
are unsuitable for evaluating comprehensibility of the
system under assessment (for reuse and/or mainte-
nance). For example, a metric that produces a general
view of class understandability is CCGI (class cognitive
index; Fioravanti et al., 1998a), which is de®ned as fol-
lows:

CCGI�ECD

CC

� CACI�CACL�CMICI�CMICL

CACI�CACL�CMICI�CMICL�CI�CL
;

�3�

where ECD is the external class description and is de-
®ned as the sum of terms related to class de®nition of
CC metric. With CCGI it is possible to identify classes
with low understandability and select classes that can be
used as a ``black box''. These considerations arise from
the de®nition of the class itself that measures an index
(and not a direct value that cannot be easily compared
with reference values) showing how much the class is
understandable by looking only at its external interface.
A high value for CCGI means that ECD (class de®ni-
tion) is very detailed with respect to the class complexity.
For example, if a class presents several small methods in
its de®nition, then it is more understandable than a class
that, having the same total complexity or size, presents a
lower number of members.

In object-oriented systems assessment, it is very im-
portant to take into account all the typical relationships
that characterize OOP: is_part_of, is_referred_by, is_a
as previously stated, but also the coupling among
classes/objects. This can be performed by using metrics
such as CBO, coupling between objects (Chidamber and
Kemerer, 1994). Several other coupling metrics have
been reviewed and compared in Briand et al. (1998c,
1999a). Even metrics CC and CCGI contain some terms
related to the coupling among object, i.e., CMICI and
CMICL. In that case, the coupling is partially consid-
ered by means of the parameter complexity of method
calling.

In order to evaluate an objective quality pro®le of the
system under assessment, a speci®c set of metrics is
necessary and, therefore, the number of data that have
to be managed by the system manager or reviewer may
become very large. Therefore, a procedure for the au-
tomatic or semi-automatic identi®cation of degenerative
conditions according to OOP, quality and company
reference pro®le is mandatory.

3. General architecture of TAC++

The above-mentioned object-oriented metrics and
many others have been used for taking under control
several projects. The results produced have been com-
pared with those obtained by other researchers (Lorenz
and Kidd, 1994; Daly et al., 1995; Briand et al., 1998a,b,
1999b; Bucci et al., 1998; Chidamber et al., 1998; Fio-
ravanti et al., 1998a,b; Nesi and Querci, 1998). In this
paper, the detailed description of TAC++ tool is re-
ported. It has been developed to automatically estimate
metrics for controlling project evolution. With TAC++,
the behavior of several metrics has been studied. This
has given the possibility to de®ne a suitable methodol-
ogy for navigating among the large amount of measures
that can be produced during the system assessment. The
main technical features of TAC++ can be summarized
as follows:
· to navigate on system classes and hierarchy;
· to provide a su�cient number of elementary metrics

and the possibility of de®ning new metrics;
· to allow the validation of metrics in several manner,

estimation of weights, identi®cation of bounds;
· to allow the comparison of di�erent metrics;
· to allow the managing of weights, bounds and typical

pro®les or distributions;
· to allow the di�erentiation of metrics on the basis of

the context;
· to support the collection of real data values in con-

strained manner;
· to allow the analysis of the principal components of

metrics;
· to allow the metric tuning and revalidation;

116 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

· to support the mechanism for the continuous im-
provement of system under development;

· to allow the de®nition of views, pro®les and histo-
grams in several forms;

· to allow the adoption of histograms for detecting un-
suitable classes by normalizing them and de®ning
typical distributions.

· to allow the analysis in times of weights, pro®les, and
histograms;

· to assist the assessment personnel partially automat-
ing the assessment process.
TAC++ is a research prototype that has been devel-

oped for studying the metric behavior during the de-
velopment process and for controlling project evolution.
It can be used by both developers and sub-system
managers. The measuring context is considered in the
de®nition of graphs and in allowing the manipulation of
di�erent versions of the assessment results. This is de-
®ned in terms of:
· Development context ± system/subsystem structure

(GUI, non-GUI; embedded; real-time, etc.), applica-
tion ®eld (toy, safety critical, etc.); tools and languag-
es for system development (C, C++, Visual C++,
GNU, VisualAge, etc.); development team (expert,
young, mixture, small, large, to be trained, etc.);
adoption of libraries; development methodology; as-
sessment tools; etc.;

· Life-cycle context ± requirements collection, require-
ments analysis, general structure analysis, detailed
analysis, system design, subsystem design, coding,
testing, maintenance (e.g., adaptation, porting), doc-
umentation, demonstration, testing, regression test-
ing, number of cycle in the spiral life-cycle, etc.
Typically, in a company only a limited number of

development contexts are used since consolidated pro-
cedures and tools are employed; these aspects have dif-
ferent in¯uences on di�erent metrics. A certain
generalization can be performed by considering even
non-strongly similar projects as belonging to the same
measuring context. On the other hand, this implies to
obtain a wider variance and a wider uncertainty interval.
In general, the development context may be di�erent for
each subsystem. The life-cycle context has a strong in-
¯uence on each measure and changes along the product
development. Di�erent subsystems may present di�erent
life-cycle contexts at the same time instant. An assess-
ment tool has to be capable of de®ning di�erent metrics
set with di�erent weights and reference values on the
basis of the measuring context.

Usually, a metric may present a high number of
components, but not all the terms may have the same
relevance in each life-cycle context. By using statistic
tools, it is possible to verify the correlation of the whole
metric with respect to the real data, but also the in¯u-
ence of each metric term with respect to the collected
e�ort, maintenance or other real data. Thus, the vali-

dation process may prove or disprove that the terms
selected for de®ning the metrics are related or not to the
feature to be estimated by the metric itself. In this way, a
process of re®nement can be operated in order to iden-
tify the metric terms which are more signi®cant than the
others for obtaining the indirect measure (Dunteman,
1989; Fioravanti et al., 1999a).

The main features of TAC++ can be divided in two
areas (see Fig. 1).

The ®rst includes the estimation, the de®nition, the
validation and the tuning of metrics. During the vali-
dation and tuning, reference values and weights are
identi®ed. The estimation phase includes the evaluation
of code metrics and the collection of data from other
sources: documents, time sheets, etc., by means of the
collector.

The second part includes the interpretation of results
by means of the support of several diagrams and their
related reference values and shapes according to rules
and guidelines. In addition, in order to reduce the
complexity and the e�ort for general system assessment
an algorithm to semi-automatically perform the system
assessment is discussed. These features are implemented
in the so-called assessment assistant.

The following sections report details about the part of
the tool TAC++ related to metric estimation, tuning
and validation. During the presentation of TAC++
components several guidelines to work with metrics are
reported for:
1. metric estimation, validation and tuning;
2. the adoption of thresholds, reference values, diagram

selection, application, interpretation for detecting
problems from the assessment results.

Fig. 1. TAC++ general architecture and components.

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 117

These guidelines help the users to work with TAC++
and to navigate on the huge amount of information
produced during the assessment. These guidelines can be
regarded as a sort of assessment methodology derived
by the authors on the basis of their experience in as-
sessing and managing several projects, in which the
methodology has been used with a management meth-
odology (Nesi, 1998), and validated against several real
projects. It can be used as a basis for taking decisions
during the system development. The aspects and com-
ponents related to the ®rst area are discussed in Section
4, while aspects related to visualization and interpreta-
tion of results are reported in Section 5.

4. TAC++: metric estimation, tuning and validation

In Fig. 1, the relationships among the main entities of
TAC++ tool for metric de®nition, estimation, validation
and tuning are reported. This part of the TAC++ tool is
comprised of several tools for
1. evaluating low level metrics, LLMs, LLM evaluator;
2. de®ning and evaluating high level metrics, HLMs,

HLM evaluator, HLM editor;
3. statistically analyzing data for validating and tuning

metrics, validator;
4. collecting real data by programmers and subsystem

managers, collector.

4.1. Low-level metrics and data collector

The estimation of low level metrics, LLMs, is per-
formed on the basis of the system sources considering
relationships of is_a, is_part_of, and is_referred_by.
LLMs are simple metrics that can be estimated by
counting requirements (e.g., functionalities, input/out-
put links) or code features (e.g., tokens, LOC). For this
purpose, in the literature several metrics have been
proposed as discussed in the previous section, e.g., NA,
NM, NAL, NML, NCL, NRC, method LOC, number
of protected attributes, etc. In addition to these simple
metrics, an abstract description of each class is extracted
from the code. The abstract description includes all as-
pects of class de®nition and code metrics related to the
implementation of methods. In this way, more complex
measures can be performed by considering such infor-
mation.

In this phase, the main interface of the tool is a class
browser by means of which the users can navigate on
class hierarchies to edit classes and to inspect them (see
Fig. 2). The browser shows the list of classes with a
concise description of their relationships: the class
hierarchy, the list of methods, etc. By selecting a class
and an its method, the corresponding method code is
directly available in separate editing windows. The
hierarchy tree window uses the following notation:

hClassNameix; y; z��OtherParents��, where ClassName is
the name of the class under analysis, x is level number in
the hierarchy tree, y the number of super classes (in the
case of multiple inheritance the OtherParents, which
indicate other father classes names, are reported; in that
case y and x can be di�erent), and z shows the number
of children. The methods window gives information
about the method structure according to the following
terms: �X hlistoffeaturesi�MethodName, where Method-
Name is the name of the method, X (if present) indicates
if the method is a constructor (with c), destructor with d
or virtual de®nition from parents (methods) with v, and
®rst virtual method de®nition with V. The list of features
includes: a number n for stating the inheritance level
number of the method, d for locally declared methods, i
for implemented methods, and ? for not-yet imple-
mented methods.

In order to control the development process, several
other measures that cannot be produced from the source
codes have to be collected. The typical information
collected relates to the e�ort in terms of hours of work
for each class of each project, the storing of defects and
the e�ort for their solution (corrective maintenance),
e�ort for porting, e�ort for analysis, e�ort for design,
log of testing, e�ort for documenting, the number of
pages produced, etc. This information is stored in a
database for its further analysis and for metric valida-
tion of tuning. The validation process may lead to un-
reliable results if the real data are badly collected. For
instance, they may be a�ected by systematic errors, e.g.,
considering time for class design and coding and not for
the system analysis; considering in certain cases the time
spent for documenting, and/or in other cases for testing,
etc. In order to reduce these problems a formally guided
data Collector has been implemented. It constrains the

Fig. 2. TAC++ Browser.

118 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

team members to ®ll a questionnaire each working day
for collecting real data. To ®ll the questionnaire via
WWW is faster and light. In our case, a Java application
has been implemented, collector.

4.2. High level metrics

Working with metrics for controlling systems' evo-
lution is very important to support the de®nition of new
metrics for automating their estimation. The de®nition
of new metrics is typically based on reasoning of good
sense, or on the analysis of questionnaires targeted to
highlight dependencies among system features and
metrics that can be estimated by processing code, data
de®nitions or documentation, e.g., e�ort of development
with complexity, e�ort for coding with size, e�ort of
maintenance with volume, quality with complexity,
quality with cohesion, reusability with interface com-
plexity. (See for example GQM, Basili et al., 1994.)

In TAC++, high-level metrics, HLMs, can be de®ned
and evaluated. For this purpose, a visual HLM editor
has been created for de®ning HLMs. Simple HLMs can
be de®ned according to the following structure com-
prised of one or more additive terms:

hNewMetricNamei � WR1
R1

WU1

P
x U1

WD1

P
x D1

� � � �

� WRn Rn

WUn

P
x Un

WDn

P
x Dn

; �4�

where
· hNewMetricNamei is the name given to the new met-

ric;
· Wmi are weights that can be imposed on the basis of

the company experience or estimated via a valida-
tion/tuning process (see in the following section); dif-
ferent values of weights have to be estimated and
collected according to the measuring context on the
basis of previous projects;

· x is the context in which the sum is performed ± for
instance (1) on all class attributes, (2) on all class
methods, (3) on all system classes; each sum can be
set to operate by using the value of a single metric
or imposed to be equal to 1; these metrics can be at
class, system or method levels;

· Ri, Ui, Di are LLMs or already de®ned HLMs.
For example, the following metrics can be de®ned

with the above structure:

MCC �
PNCL

i CCi

NCL
;

MPAC � 100

�
PTNM

i NumberOfReferredPrivateAttributesiPTNM
j NumberOfReferredAttributesj

;

where MCC is the mean value of CC on the system;
NCL the number of system classes; MPAC method
private attribute cohesion; TNM total number of
methods in the system.

Once both LLMs and HLMs are evaluated, the re-
sults can be used for assessing the system under control.
Please note that, most of the above-mentioned direct
metrics can produce draft results even when only the
class de®nition is available, such as in the early analysis
(e.g., NAM; Size2 and CC). This can be very useful for
predicting ®nal values of these metrics and, thus, for
predicting the ®nal product characteristics.

Both LLMs and HLMs are collected in the same data
®les. Moreover, the tool is capable of exporting the data
in:
1. tabular form for their import on spreadsheets, and
2. HTML format for making them public towards the

development group and for browsing the results ac-
cording to the hierarchical structure of the system.

4.3. Metric validation and measuring context

Metrics must be validated before their use to get re-
sults. The goal of the validation process is to demon-
strate that the metrics can be suitably used as measures
for estimating certain system/process features. The
techniques adopted are typically based on statistical
methods. The validation process has to produce con®-
dence values (e.g., correlation, variance, uncertainty
interval) for the metric in a given measuring context (see
in the following for its de®nition).

The validation module is used for validation and
tuning of both LLMs and HLMs. On the basis of the
de®nition of metrics, these activities are performed by
using mathematical and statistical techniques. The pro-
cesses of validation and tuning must be supported by the
knowledge of real data collected from developers, sub-
systems managers and project manager accumulated by
means of the collector or other mechanisms, such as
forms.

The main component of validator is the statistical
analyzer. This is based on the well-known progress tool
and is capable of estimating metric weights by means of
a multilinear robust regression and residual analysis
(Rousseeuw and Leroy, 1987), logistic regression and
other statistic analyses are performed by using SPSS
(principal component analysis, several tests on data,
etc.). The statistical analysis is quite far from the pro-
grammers' mindset. This is due to the fact that it is the
less user-friendly tool of the system, since the results are
expressed in a numerical form and a deep knowledge of
their meanings is needed. This knowledge is not usually
required for a developer, but system managers or system
controllers must be capable of interpreting and taking
decisions on the basis of statistical analysis. Since the
original version of progress tool presented only a textual

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 119

interface, a graphic user interface has been developed in
TAC++ to make it user-friendly. In this way, the results
can be easily interpreted since they are graphically
visualized.

TAC++ framework with its most important metrics
have been used and validated during the development of
several C++ projects (both in academic and industrial
contexts; Bucci et al., 1998; Fioravanti et al., 1998a,b,
1999a). Metric validation process has been performed in
order to determine which metrics must be evaluated and
which components are relevant (Nesi and Querci, 1998),
and when metrics give good results for controlling the
system's main characteristics.

On the basis of the validation process, metrics can be
compared and, thus, chosen in order to adopt the best
metrics for the assumed measuring context. Typically,
more than one metric is used for estimating the same
feature in order to get more robust results. For instance,
class de®nition LOC, Size2, for predicting development
and test e�ort since the analysis phase; and CC0, WMC
for better predicting test costs during the design and
coding phases.

As was shown in the technical literature, many
powerful metrics include in their de®nition weights in
order to compensate the di�erent scale factors of the
terms involved and for adjusting dimensional issues.
These metrics are typically called hybrid metrics (Zuse,
1998). In some cases, the weights are imposed to be
unitary, while in other cases they can be ®xed on the
basis of tables. McCabe cyclomatic complexity is a hy-
brid metric since is de®ned as the combination of edges
and nodes with unitary weight; information ¯ow metric
in Henry and Kafura (1981), CC in this paper, metrics
proposed in Thomas and Jacobson (1989) and Hen-
derson-Sellers (1991), are others hybrid measure. Even
function points and COCOMO metrics presents num-
bers that can be considered weights. Suitable values for
the weights have been evaluated before their adoption,
during a validation phase (see Fig. 1) in order to make
e�ective the metric estimation. Once the weights are
estimated, they can also be given in speci®c tabular
forms.

Typically, the validation process is performed by
means of statistic analysis techniques: multilinear re-
gression, logistic regressions, etc. (Rousseeuw and Le-
roy, 1987; Hosmer and Lemeshow, 1989). Examples and
theories about the validation process can be recovered in
the papers Nesi and Campanai (1996, 1998), Basili
(1983), Basili and Hutchens (1983), Basili and Weiss
(1984), Basili et al. (1994, 1996), Albrecht and Ga�ney
(1983), Behrens (1983), Fioravanti et al. (1998b), Sch-
neidwind (1992, 1994), Kemerer (1987), Li and Cheung
(1987, 1993), Fagan (1986), Lorenz and Kidd (1994),
Low and Je�ery (1990), Shepperd and Ince (1993),
Stetter (1984) and Zuse (1994, 1998) depending on the
type of information managed.

In some cases, the validation process produces the
values of the metric weights. The evaluation of weights
is a quite complex and critical task since it is based on
the knowledge of real data, e.g., real e�ort, number of
defects detected. For instance, the estimation of weights
for the above-mentioned metric CC0 (see Eq. (2)) for
e�ort prediction implies the knowledge of the e�ort.
This seems to be a contradiction; in e�ect, the weights
may be estimated on the basis of the data collected
during a set of similar past projects. The estimated
weights can be used for e�ort prediction in future pro-
jects, providing that the measuring context is equivalent.
The validation process may lead to unsuitable or un-
precise results if the data collected are referred to a
di�erent measuring context.

For example, metric CCm is comprised of six terms
(see Eq. (1) and Table 2). Intuitively, t-value is an index
that establishes the importance of a coe�cient for the
general model. A coe�cient can be considered signi®-
cant if the absolute value of t-value is greater than 1.96
(since a high number of measures have been used for the
regression and, therefore, the statistic curve of student
t-test can be approximated by a Gaussian curve). On the
basis of t-value, the con®dence intervals can be evalu-
ated. P-value can be considered a probability; when its
absolute value is lower than 0.05 the corresponding
coe�cient is signi®cant with a con®dence of 95%,
(Rousseeuw and Leroy, 1987). Therefore, components
CIm and CMICIm are the least signi®cant in CCm metric
and could be removed. The reduction of metric com-
ponents can be used for reducing the estimation e�ort
and, in some cases, for increasing correlation and reli-
ability.

The F -test has been adopted in order to check the
validity of the full regression model. In this example the
F -test con®rms that the regression results are con®dent.
This claim is also con®rmed by the high values obtained
for R-squared and R-squared adjusted that are both
higher than 80%.

Table 2

Results of the multilinear regression analysis for e�ort evaluation of

classes by using metrics CCLOC: values of weights and their corre-

sponding con®dence values are reported for project LIOO

CC m � LOC

w Standard

error

t-value P-value

CACL 0.003 0.001 2.933 0.004

CACI)0.039 0.013)2.911 0.004

CL 0.026 0.002 11.326 0.000

CI 0.001 0.003 0.269 0.789

CMICL 0.185 0.052 3.547 0.000

CMICI)0.013 0.041)0.319 0.750

R-squared 0.851

R-squared adj. 0.832

F-stat (P-value) 91.137 (0.000)

E�-corr. 0.924

120 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

The R-squared is not the only measure for validating
a good model, also because it is not always available
(e.g., in analog model), or does not have the same
meaning (e.g., see the meanings in logistic regression),
for other validation techniques. Another approach for
assessing the predictive power of an e�ort estimation
model is the mean magnitude of relative error (MMRE),
where MRE � 100 j�realeffortÿ estimatedeffort�=
realeffortj.

In Table 3, the MMRE for data of Table 2 are re-
ported together with the median magnitude of relative
error (MdMRE), the standard deviation of MRE
SDMRE, minimum and maximum MRE: MAXMRE and
MINMRE, respectively.

The regression model adopted is tied to the residual
analysis, and in particular to the assumption about the
distribution of residuals. The residuals should be dis-
tributed as an independent normal random variable with
zero mean and identical variance. In Fig. 3, the residual
distribution compared against a normal�0; 1� is report-
ed. The shape shows how the two distributions are close
to each other. The distribution of residuals can be
considered normal also because it has a mean value
equal to 0; the skewness is 0.255 (a commonly used
thumb-rule asserts that the distribution is normal if the
skewness is in interval �ÿ0:5; 0:5�; and kurtosis is close
to 11 (with respect to 3 of a perfect normal) that shows a
short-tail distribution. From this analysis, a normal
distribution for residual can be assumed. Con®rming the
validity of the multilinear regression performed.

4.4. Metric tuning

Once the metrics are validated, they can be used for
assessing projects for the speci®c measuring context in
which the weights have been evaluated. The same metric

can be used in di�erent measuring contexts with di�erent
weights for similar or di�erent purposes.

Moreover, as usually occurs, the measuring context
usually changes with time, e.g., until 1996, ELEXA
factory produced controllers for low-price machines, now
they are moving to produce high performance machines
(project ICOOMM). Thus, metrics have been continu-
ously revalidated in order to adjust the weights for
tracking the evolution of a set of products. For instance,
once a project maintained under control with CC0 met-
rics has reached its completion, predicted values can be
compared with collected data. Causes of di�erences have
to be carefully analyzed. In general, if project results are
satisfactory, the collected data can be included into the
values used for evaluating the general weights for the
given measuring context. Otherwise, corresponding
corrective actions have to be introduced.

The set of values used for evaluating the weights must
be carefully analyzed in order to correctly tune the
model. For instance, the analysis of outliers and the
analysis of dependencies of the metric terms can be used.

In Fig. 4, the dot diagram showing the scattering
between e�ort and class complexity is reported. In this
graph, the outliers are points located out of the bound
lines marking the con®dent limits (Rousseeuw and Le-
roy, 1987). The study of the outliers (values marked with
letters) has to be associated with a deep analysis of the
reasons for which those classes are far from the ideal
correlation line (Barnett and Price, 1985; Rousseeuw
and Leroy, 1987). This could be discussed together with
the metric histograms. Outliers detection in single uni-
variate sample can be easily identi®ed, in a ®rst ap-
proximation, because they are very di�erent from the
others values of the sample. For more structured data,
and especially for regression models the concept of ou-
tlier should be modi®ed because it is not simply an ex-
treme value, but it has a more general pattern-disrupting
form. The outlier in multilinear regression models can
impact largely on the model chosen for explaining data.
This fact leads to take into account outliers and robust
techniques for their estimation and accommodation
(Barnett and Price, 1985).

4.5. Thresholds and reference values

In order to detect the presence of system dysfunc-
tions, the adoption of reference values is quite frequent
for discriminating when a metric value describes a
problem on system/component. Frequently, systems/
components are considered correct if the estimated
metric value belongs to the range de®ned within the
maximum and minimum values. In some cases the typ-
ical value is also given. For example, a too high NM
may mean that the class is too large and, thus, very
expensive to be maintained; a too high DIT means that
the system presents a deep specialization hierarchy and,

Table 3

Results of the MRE analysis for the data reported in Table 2

MMRE MdMRE SDMRE MAXMRE MINMRE

91.462 42.041 136.089 673.742 1.117

Fig. 3. Residuals distribution compared with a normal�0; 1�.

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 121

thus, it is becoming too complex to be reused. The re-
lationship between the metric and feature has to be
proven via a validation phase.

The reference values used for detecting problems are
typically set on the basis of the experience in several
validation processes. In TAC++, their estimation can be
performed on the basis of a statistical analysis of the
reference projects and by considering the experience on
past products. Thus, maximum and minimum values are
evaluated for each speci®c measuring context.

The adoption of reference values is surely very useful
for a fast detection of degenerative conditions. This
approach is too simple when it is used on system level
metrics. For example, assertions like ``if the mean value
of NM for the whole system is lower than a prede®ned
threshold, the costs of system maintenance will be ac-
ceptable'' have to be carefully accepted. Thus, getting an
out-of-bounds for a speci®c metric for a certain class
does not mean that the class has to be surely revised.
Before correcting a problem, we have to be sure to have
it. To this end, the results of a set of independent metrics
have to be compared before deciding the intervention on
a class. For example, a class can be very complex, but if
it is reusable, veri®able, testable, well-documented, etc.,
it is better to solve other problems ®rst, if any.

5. TAC++: results visualization and interpretation

In order to provide a fast and understandable view of
the project status, the values obtained for LLMs and
HLMs at system, class and method levels have to be

visualized in a set of speci®c views, pro®les and histo-
grams.

Fig. 5 depicts the relationships among the main
components of TAC++ tool to manage these aspects:
view manager, pro®le manager, histogram manager and
assessment assistant. In Sections 5.1±5.3, the features of
these components are described in detail. The views,
pro®les and histograms are de®ned and saved according
to the measuring contexts for which they have been
de®ned. These graphs can be based on the LLMs,
HLMs and data collected by the collector. For this
purpose, speci®c graphic managers have been built.
During the presentation of TAC++ components,
guidelines to work with interpretation tools about the
adoption of thresholds, reference values, diagram se-
lection, application and interpretation for detecting
problems from the assessment results are reported.
These guidelines help the users to navigate on the large
amount of information managed during the assessment.

Di�erent members of the development team may use
TAC++ for di�erent purposes. During the development
life-cycle the system manager (project manager or con-
trol manager) is also supposed to analyze the results
produced by evaluating selected metrics and by com-
paring them with the corresponding company suggested
bounds (by means of pro®les). The results produced and
their related actions for correcting any di�erences with
respect to the milestones planned (described in terms of
the same indicators) are normally included in the project
documentation. Typical actions for correcting the values
of the most important indicators should also be de®ned
in advance.

Fig. 4. Scattering diagram for CC (estimated e�ort) against observed e�ort (project LIOO).

122 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

For each measuring context and for each view, pro®le
and histogram, speci®c textual comments should be
added and shown to the user when reference values,
pro®les and distribution are exceeded. These also have
to be collected in a development and management
manual of the company. Even these comments need to
be maintained and tuned according to the company
evolution. The histogram manager can also draw nor-
malized graphs (see Fig. 5) with superimposed statistic
curves in order to easily check if the system under as-
sessment is suitable with respect to the quality manual
speci®cations of the company. Typical distributions of
histograms can be assumed as reference patterns by the
company. A collection of histograms among the various
phases of the development life-cycle could aid the system
manager to take into account the modi®cations, from
the point of view of quality pro®le, of each class in the
system.

The assessment assistant provides support for system
assessment by means of algorithms that reduce the
complexity for inspecting the results and, thus, for de-
tecting dysfunctions, and/or performing in automatic
manner some processes.

5.1. Views and pro®les

Graphic diagrams, typically called views and pro-
®les, are needed for showing the assessment results
with respect to typical and/or limit values. Two dis-
tinct de®nitions are given for views and pro®les.

A collection of di�erent metrics representing the same
or related system/class features can be used and visual-
ized in a single view with respect to bounds and typical
values. Views are used to have an immediate and ro-
bust ®gure of system features, e.g., quality, e�ort for

Fig. 5. TAC++: visualization of results and the assessment assistant.

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 123

maintenance, e�ort for reuse, e�ort per subsystem, e�ort
per work-package. The views can be employed for
monitoring aspects of the system during its evolution, at
methods, classes, and/or system levels. This is performed
on the basis of the life-cycle context for which they are
de®ned.

In the views, the bounds (minimum and maximum
acceptable values) can be considered as the limits out of
which a further analysis (and may be a correction)
should be needed. In a di�erent visualization, minimum
and maximum values can be those obtained from the
whole system under analysis. In this way, it is quite clear
how the class/subsystem under assessment is referred to
the whole system. In any case, normalized graphs are
used: Kiviat, star, pie, etc. In Fig. 6, four Kiviat dia-
grams corresponding to four classes of LIOO project are
reported. In this case, the maximum values (external
circles) are evaluated on the whole system, while the
dashed lines report the acceptable values estimated
during the validation and imposed on the basis of the
experience.

In Fig. 6, the views reported are related to classes
marked as outliers in the scattering diagram of Fig. 4.
From these ®gures, it can be noted that most of the class
features are out of the typical bounds and that the pic-
ture in lower-right corner has, for CI, NMI, CMICI,
and NAI, values close to the maximum of the whole
system. These metrics assert that the class inherits too
much.

In order to unify the actions to be performed for
solving problems and for accelering their understanding,
brief comments describing what should be done in the
case of out-of-bounds, have to be de®ned. In order to
monitor class quality in project LIOO, we de®ned a view
reporting values of metrics: NA, NM, CCm, CCGI and
NSUP. Other typical examples of views are:
1. a view on class e�ort prediction ± Size2, NAM and

CC0;
2. a view on class e�ort estimation ± CC0m, CCm, WMC,

CL, CI, NAM and NAML;
3. a view on e�ort prediction or estimation at system

level ± SC, TLOC, NCL, NRC and mean DIT;

Fig. 6. Views (Kiviat's diagrams) of some of the outliers identi®ed in the previous scatter diagram (project LIOO).

124 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

4. a view on conformity to OOP at system level ± NRC,
NRC/NCL, SCm=NCL, Max(CC) and Max(NAM);

5. a view on class metrics related to reusability and
maintainability ± NOC, NSUP, NSUB, DIT, and
NAI;

6. a view on class reusability ± cognitive complexity,
NAM, VI (veri®ability index) and CCGI.

Typical actions to be performed when these metrics are
out of the prede®ned bounds are discussed in Fioravanti
et al. (1998a,b) and Bucci et al., 1998.

The number of these diagrams for the whole system
may become huge and, thus, their analysis fairly com-
plex up to infeasible. For this reason, algorithms for
navigating in the results produced by the assessment are
needed (see Section 5.3).

A pro®le is a diagram in which the estimations of the
several direct and indirect metrics are compared against
expected values (reference value). For example, the
quality pro®le de®ned on the basis of the six features of
the ISO 9126. In Fig. 7, the expected pro®les are com-
pared with the estimated pro®les in a normalized scale.
Pro®les are typically shown by using bars or Kiviat di-
agrams. Pro®les can be used in any instant in which
planned/reference measures can be compared against the
actual values (see Fig. 7 on the right, in which the e�ort
planned for each system task is compared with respect
to the actual e�ort). Another very important pro®le is
the product pro®le. It includes material costs for each
piece, general costs, market level, potential reusability,
etc. The structure of pro®les (the number and selection
of aspects to be controlled) is typically ®xed for all
products of the factory/unit, while the speci®c reference
values may change for each product, e.g., to get a cus-
tomized pro®le.

In TAC++, both views and pro®les can be de®ned at
method, class and system levels. The structure of views
and pro®les with their reference values can be organized
according to the measuring context. Thus, actions and
suggestions for solving problems in the case of detection

of critical conditions can be customized for each speci®c
case. Di�erent views can be de®ned according to the
needs of developers, subsystem managers and project
manager (Nesi, 1998).

5.2. Histograms

At system/subsystem level, metrics can be used to
analyze general system features (e.g., number of classes
NCL, number of subsystems, number of root classes
NRC, system complexity SC) or as generic system
component behavior (e.g., mean CC, mean NA, mean
NM and mean NCL for subsystem). In this second case,
the views are unsuitable for detecting troubles since the
mean values can be within the correct bounds, but the
system may present several out-of-bounds at class level.

For this reason, it is important to analyze the distri-
bution of each metric for the system under assessment.
For example, by using histograms:
1. the number of classes for the complexity of classes;
2. the number of methods for the complexity of meth-

ods;
3. the number of classes for their CCGI;
4. the number of classes for their NSUP;
5. the number of classes for their NSUB, etc.

In Fig. 8, the histogram of CCGI for project LIOO is
reported. It is typically recommended, for reuse and
understandability, to have classes with a CCGI close to
0.6. This allows the developers to use the class as a
``black-box''. For instance, in the example, by observing
CCGI histogram, it is evident that the peak is close to
the suggested value. Some classes with a too low metric
value are present; these classes are not observable en-
ough and, thus, are expensive to be maintained and re-
used. It is suggested to check these classes in order to
verify if the high internal complexity can be justi®ed by
their role in the system. In any case, the splitting of these
large classes in more classes by using the well-known
mechanism of delegation should be a good solution. It is

Fig. 7. On the left: project pro®le according to the ISO 9126 quality standard. On the right: project pro®le regarding predicted and estimated e�ort

for tasks in men/month; evaluation performed close to the end of the development phase (project ICOOMM).

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 125

also possible to identify classes for which the functional
complexity is too high with respect to the interface
complexity (CCGI close to 0). Owing to the tool used
for collecting data, classes having CC� 0 have also been
collected in this group and, thus, all classes de®ned, but
not yet implemented. Classes with CCGI� 1 are struc-
tures (according to C++) or have attributes and the
external interface de®ned, but the methods are not yet
implemented.

Histograms are strongly useful since the adoption of
bounds for detecting problems may lead to make large
errors. In fact, according to the life-cycle context some
out-of-bounds for some metrics and non-well-behaved
histograms (sensibly out of the reference distribution)
may be accepted. For example, during the early devel-
opment phase, the presence of de®ned but not yet im-
plemented classes has to be accepted without
considering them as wrongly implemented classes. In
fact, in the early phases the number of special cases can
be too high to be manually managed. This problem
frequently leads the assessment personnel to wait for a
quite complete version before starting with the system
assessment. Speci®c metrics and tools may guide the
assessment personnel in these phases.

The result obtained by the scatter diagrams can be
better analyzed if compared with the histogram of the
corresponding metric. In Fig. 9, the histogram of metric
CC (estimated e�ort), related to the diagram of Fig. 4 is
shown. If the reference distribution is a log normal curve
(as will be shown in Section 5.3), only some of the
classes that are outliers in the scatter diagram are also
out of the typical distribution histogram. In particular,
classes H, D, and E should be more carefully inspected
in order to verify the reasons of the dysfunction and to

de®ne action (if needed) to correct their behavior. Please
note that the other classes have not been considered as
a�ected by problems since they are within the reference
histogram distribution. This means that in a system
there may exist few very complex classes. These are
typically called key and/or engine classes (Lorenz and
Kidd, 1994; Nesi, 1998).

Histograms are a powerful tool for system assess-
ment. In order to make histograms comparable with
other systems and with reference distributions they have
to be normalized. The typical distributions of the his-
tograms for each metric have been extracted on the basis
of the projects reported in the Introduction. Some typ-
ical distributions can be modeled as Gaussian, log nor-
mal curves. Normalized histogram distributions are
quite independent of the development context, while are
depending on the life-cycle context. In most cases, nor-
malized histogram distributions are also independent of
the languages (Lorenz and Kidd, 1994; Fioravanti et al.,
1998a).

Please note that the above-mentioned views, pro®les
and histograms are capable of analyzing the system as-
pects in a given time instant and in a given life-cycle
context.

In several cases, the single snapshot of the system
status may produce insigni®cant ®gures. This is more
critical for metrics that are very sensitive to the devel-
opment life-cycle phase. The trend analysis can be per-
formed on metrics involved in views, pro®les and
histograms, and is speci®cally needed to verify if the
evolution of metrics is reaching the expected results.

In some cases, the trend analysis can be performed
for predicting future values by using some extrapola-
tion algorithm, e.g., for predicting the cost of designing

Fig. 8. Histogram for CCGI, obtained at the ®rst checkpoint (project LIOO, version 0).

126 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

and coding in the phase of analysis (Fioravanti et al.,
1999a).

5.3. Analysis of assessment results

The process of system assessment may produce a
huge amount of data, typically analyzed by inspecting
pro®les, views, and histograms. A manual exhaustive
analysis of graphs and diagrams is a very heavy, tedious
and time consuming process. Moreover, the number of
detected interventions per analyzed graph is really low.
This is due to the fact that typically the largest part of
the problems is relegated in a small system/subsystem
part. For these reasons, and for the repetitive operations
that have to be performed, the probability of producing
errors in identifying real problems and thus on taking
decisions is quite high.

In TAC++, according to the discussions performed in
the previous sections, the elements manipulated during
the assessment can be de®ned as:
· Class2SubSystem, SubSystem2System, Class2System:

The system can be regarded as a set of subsystems
and these in turn are sets of classes. Thus, gener-
ally, classes belong to the system, without loss of
generality.

· Metrics
These are used into views, pro®les, and histo-
grams with the associated reference bounds/distri-
butions and weights (if any) on the basis of the
measuring context and considering the feature
that is intended to be estimated. Metrics formally
hold only their de®nition since the same metric
can be used for di�erent purposes with di�erent
weights.

· Profile � fmetric$ �feature; reference value;
weights�g.

A pro®le is a collection of metrics related to fea-
tures of class, subsystems or systems depending
on its goals and on the measuring context (with
reference value and weights). A pro®le reports
the speci®c detailed features that have to be mea-
sured and their expected values along the soft-
ware life-cycle. Pro®les are more concise than
views (pro®les have only a reference value), thus
they are more used at system or subsystem level.

· View � fmetric$ �feature; reference bounds;
weights�g; fview suggestionsg.

A view is a collection of metrics related to fea-
tures of classes, subsystems or systems depending
on the view goals and on the measuring context.
Reference bounds and weights depend on the
measuring context and include minimum, maxi-
mum and typical values. A view identi®es the spe-
ci®c detailed features that have to be measured
and their expected values along the software
life-cycle. The views are a more general and pow-
erful working tool than pro®les and thus can be
used in their place without restriction, but not
the vice versa. For each view, a set of suggestions
can be associated with the presence of out-of-
bounds on a set of its metrics. These suggestions
can be modi®ed by the end-users. The suggestions
cannot be associated with metrics since their
meaning is context-dependent and may depend
on more than one metric.

· Histogram � metric$ �reference distribution;
weights�; fhistogram suggestionsg

A histogram reports the distribution of the metric
behavior on the whole system/subsystem. For

Fig. 9. Histogram of metric CC as the estimated e�ort, related to the scatter diagram of Fig. 4 (project LIOO).

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 127

each histogram, a set of suggestions can be asso-
ciated with the presence of out-of-distribution.
These suggestions can be changed by the end-
users. The suggestions cannot be associated with
metrics since their meaning is context-dependent.

For system level assessment, speci®c pro®les are
typically de®ned for annualizing e�ort, quality, etc. The
collection of features analyzed via metrics depends on
these pro®le goals. These are typically mean values of
class metrics (mean CC, mean NAM, mean NAML,
mean CCGI, etc.) or structural consumptive metrics
(NRC, NCL, SC, etc.). In the assessment phase, the
estimated values are compared with the reference values
(the reference pro®le).

The detection of a problem (a relevant di�erence be-
tween expected and estimated value) by means of a system
level metric may be considered as an alarm for the system
life-cycle process. Once detected at system level, the
same or a corresponding problem may be found into
one or more subsystems. On the other hand, the lack of
detectable problems in the system (subsystem) pro®le/
view may make the general manager satis®ed but does
not guarantee the lack of problems in the subsystems
(classes). This fact constraints subsystem managers and
quality control personnel to analyze all system classes
with speci®c views in systematic manner to look for
problems.

At system level, the presence of out-of-bounds can be
identi®ed by de®ning speci®c consumptive metrics for
reporting problems at systems (subsystem). These can be
based on the results produced at lower level, subsystem
(class). This can be obtained by de®ning metrics such as
maximum value of CC among the system (subsystem)
classes, maximum value of NAML among the system
(subsystem) classes, etc. This kind of consumptive met-
rics are useful for the fast automatic detection of out-of-
bounds; on the other hand, they are too simple since the
presence of out-of-bounds does not always imply the
needs of intervention; thus a further inspection at class
level is consequently needed. On the other hand, metrics
based on the mean value of class level metrics are totally
unuseful since a correct mean value may hide a lot of
undesirable instances of unsatisfactory values.

In the following, an algorithm for partially auto-
mating the assessment process is proposed. It has been
de®ned for automatically combining results coming
from views and histograms. This reduces the number of
views that have to be analyzed during the assessment.
The algorithm has been implemented into the so-called
assessment assistant inside the TAC++ tool.

5.3.1. Assessment assistant algorithm
Once de®ned the views with their metrics on the basis

of the experience and by using the results of validation
phases, the set of views and related histograms can be
used for system assessment in a systematic manner.

For example, if the assessment of a (sub)system is
based on 4 views with 6 metrics each, and it has 1000
classes, then the tool for system assessment has to esti-
mate 24 000 metric values. Their estimation is not a
problem with the support of suitable automatic tools,
but a real-time estimation is frequently needed for small
projects or subsystems. The main problem is that system
classes have to be analyzed by specialized personnel via
4000 views, 4 views per class. The computational com-
plexity of an exhaustive analysis by means of views is an
O�CVM� (considering the comparison with the reference
value as the dominant operation), where C is the num-
ber of classes per (sub)system, V the number of views
per class, and M is the mean number of metrics involved
in each view. Please note that a metric can be used in
di�erent views for di�erent purposes, with di�erent
bounds. Thus, in these conditions, the complexity of the
assessment process is too heavy to be performed in short
time and without errors. A partial screening of the 4000
views can be performed by considering as classes that
need of a further analysis only those having more than a
metrics out of the suggested bounds (for instance, with
the number of out-of-bounds bigger than a value, a).
The value of a can be tuned according to the goals used.

In order to make the assessment process easier and
faster, an algorithm has been de®ned and implemented.
The main idea behind the algorithm is the adoption of
the histogram as the main vehicle for detecting prob-
lematic classes. According to the above numerical ex-
ample, the histograms to be analyzed are only 24. In
order to make histograms of a (sub)system comparable
with those of other (sub)systems and with the reference
distributions they have to be normalized (see Fig. 10).
The normalization has to be performed on both axes on
the basis of the total number of classes. To this end, in
the histogram:
1. X-axis is divided in to a number of categories for col-

lecting classes having similar metric values and ranges
from 0 to the maximum of the metric in the (sub)sys-
tem or to the maximum number of categories;

2. Y-axis ranges from 0 to 1, from 0 classes per category
to 1 when all classes belong to the same category.

It is possible to pass from the category to the metric
value by using the scale factor, F. In Fig. 10, each graph
presents the histograms of the same system in two dif-
ferent phases. The project LIOO has been totally reused
into project MOODS and thus has changed name. Ob-
serving the graphs, the evolution of the histogram dis-
tributions is clear.

The typical distributions of the histograms for each
metric have to be extracted on the basis of reference
projects and can be modeled as Gaussian, log normal
curves, etc., depending on the metric. The reference
distribution de®nes the percentage (and thus the num-
ber) of classes that may belong to a certain category.
This may present the metric value in a certain range.

128 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

Normalized histograms may present several classes out
of the histogram distribution in the correspondence of
their mean value or close to the zero. These classes may
be considered correct depending on the metrics used.

In order to verify if the sample data for each distri-
bution can be generated from a standard distribution
like a normal or log normal, the Kolmogorov±Smirnov
one sample statistic has been adopted. For this test, the
null hypothesis, H0, consists in assessing that the sam-
ples can be drawn from a prede®ned distribution, while
the alternative hypothesis, H1, asserts that it is not
possible to draw the samples from the chosen distribu-

tion. In particular, the signi®cance level for rejecting the
null hypothesis has been imposed to 0.05. Under this
condition for a number of samples equal to 116 (LIOO,
version 3) the critical distance for rejecting H0 is
D � 0:124, while for a number of samples equal to 186
(MOODS, version 1) is D � 0:098. Values lower or
equal than those reported con®rm that data can be
considered as belonging to the supposed distribution. In
Table 4, the values related to the validation of the typ-
ical histogram distributions are reported. With the same
technique, it has been demonstrated that histogram
distributions depend on the development and life-cycle

Fig. 10. Each histogram contains the distribution estimated for project MOODS (version 1) and LIOO (version 3) and the reference distribution for

the context of LIOO, version 3. Please consider scale factors F reported in Table 6 for estimating the metric values.

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 129

context as shown in Table 4, where the results of the
Kolmogorov±Smirnov test on the distributions of LIOO
(version 3) and MOODS (version 1) have been reported.
For the test, the H0 hypothesis states that the two
samples are drawn from the same distribution, then H1
states that the distributions are di�erent. H0 has been
rejected, and then the distribution are di�erent
(D � 0:37 and P -value � 0:0000). This is mainly due to
the di�erent mean values that distributions provide.

According to the histogram distribution, some classes
are considered correct even if they present values typi-
cally out of the imposed bounds for the metric. This is
due to the fact that histograms evaluate the distribution
of the metric value in the system and, thus, classes under
the ®rst part of distribution tails are considered as be-
longing to the general system behavior and not a�ected
by problems. On the other hand, the adoption of simple
bounds on the metric value marks these classes as af-
fected by problems. According to our experience, both
the approaches can be used. The combination of both
the techniques is a more robust approach to identify
classes that surely need an intervention.

The algorithm reported in Fig. 11 has been de®ned
and implemented in TAC++ for processing the results
of the assessment in order to identify in automatic
manner the classes that have relevant problems. As al-
ready stated, we consider as relevant problems those
which lead classes to be out-of-bound in the view and
out-of-distribution in the corresponding histogram. This
means that the class metric presents unacceptable value
and that in the distribution the class belongs to a cate-
gory out of typical histogram distribution.

The system is analyzed on the basis of the measuring
context (context plus phase plus level in the algorithm).
On this basis, a set of views are identi®ed (as above
de®ned) with their corresponding metrics and reference
values. From these views all the related metrics are ex-
tracted.

In a ®rst phase, the histograms of these metrics are
automatically inspected in order to exact the classes
which are out of the reference distribution,
ClassesOutOfDistrib�m�, for each metric, m, in at least a
histogram. To work only with out-of-distribution classes
is a relevant reduction with respect to the analysis of all
classes. The extraction of out-of-distribution classes,
with ExtractClasses� �, has to be based on the knowledge
of a reference distribution for the histogram, and is

performed by extracting classes that belong to categories
in which the number of classes is too high with respect to
the planned value of the reference histogram distribu-
tion.

In the second phase, each class of the union of all
ClassesOutOfDistrib�i� is analyzed to verify if it provides
out-of-bounds in the views and if these are also out-of-
distribution. To this end, for each view the metrics out-
of-bounds, MetricsOutOfBounds, are extracted. Then,
for each class metric it is veri®ed if the class is also out-
of-distribution. With this process, for each class and
view the set of CriticalMetrics which are both out-of-
bounds and out-of-distribution are extracted. Finally, if
the number of critical metrics in the view is bigger than a
the algorithm considers the class as a�ected by a prob-
lem and thus suggested actions are searched in both the
related view and histogram repositories. The user can
customize the corrective actions. Suggested by the as-
sessment assistant and the related rules for their pre-
sentation.

The second phase of the algorithm has a computa-
tional complexity which is an O�KODVM�, where KOD is
the number of classes which have at least an out of
histogram distribution. The global complexity of the
algorithm is lower than the complexity obtained for the
systematic analysis based on classes. It is an O�CVM�;
since typically, KOD � C. The algorithm takes advan-
tage from the reduction of the number of classes to be
analyzed and avoids the inspection of all views for each
class.

The methodology and algorithm have been used in
several assessment phases in the projects mentioned in
the introduction. After a validation phase, the algorithm
has been also implemented in the assistant assessment of
TAC++ tool. In Section 5.3.2, an example of the
adoption of the assistant assessment for a real project is
reported.

5.3.2. Working with the assistant assessment
The following example is mainly referred to project

LIOO version 3. In this case, four views have been used.
The ®rst view includes metrics related to: development
e�ort (CC, CL, CI, and NAM), hierarchy (NSUP) and
comprehensibility (CCGI); e�ort prediction or estima-
tion at system level ± SC, TLOC, NCL, NRC and mean
DIT; conformity to OOP at system level ± NRC, NRC/
NCL, SCm=NCL, Max(CC) and Max(NAM); reusability

Table 4

Data of metric distributions validated with Kolmogorov±Smirnov statistic testa

Metric Distribution type Project Version Mean value Standard deviation Distance D P-value

CCGI Normal LIOO 3 0.59 0.15 0.1030 0.161

CCGI Normal MOODS 1 0.63 0.21 0.0936 0.072

NAM Log normal LIOO 3 1.59 0.45 0.1218 0.059
a The values of mean and standard deviation are those that allow obtaining a P-value for the corresponding project for demonstrating that the

distribution can model the data.

130 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

and maintainability ± NOC, NSUP, NSUB, DIT and
NAI for a total of 21 di�erent metrics in the four views.

The following data has been obtained by using the
above-presented algorithm for system assessment. The
example has a relevance only for showing the evolution
of the number of classes identi®ed as needing interven-
tion and not for the speci®c values used for the metrics.
These may have a relevance only for the speci®c mea-
suring context used.

In Table 5, the number of classes that have been de-
tected out-of-bounds for each metric in project LIOO
(version 3), KOB, are reported. The reference bounds
used in the above-mentioned ®rst view for identifying
classes that may need a further inspection are reported:
minimum and maximum values. The bounds depend on
the measuring context. In this case, the project was as-
sessed in the ®rst part of its development life-cycle. The
bounds are typically very strict (close to the typical
mean values) with respect to the bound values which are
used for the same metrics in the case of the class selec-

tion only via out-of-bounds (see the second part of the
table). Please note that when large bound values (distant
from the typical mean value) are used, a lower number
of classes are selected. Large bounds are typically used
for reducing the number of classes to be inspected.
Moreover, the bounds have to be substituted with strict
bounds when the algorithm is used to identify classes
with problems by using both bounds and distributions.

In Table 6, the data of the reference histogram dis-
tributions for the metrics related to a view used in the
example are reported. Each reference histogram distri-
bution is de®ned on the basis of its basic curve (second
column, ``Histogram distribution'', in the table), mean
value, standard deviation, and the scale factor, F. In this
context, F can be used for interpreting the graphs re-
ported in Fig. 10. The correlations have been estimated
by considering the distribution of metric values in the
system and the reference distributions reported in
Table 6. The table reports also the number of classes
that have been detected to be out of the reference

Fig. 11. Assistant assessment algorithm for automating the result screening and understanding.

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 131

distribution for each histogram (metric in the view) in
project LIOO version 3, KOD.

Typically, classes presenting 1 or more out-of-bounds
or out-of-distributions in the selected view metrics are
considered as problematic and thus they need a further
inspection. This approach, in most cases, produces a too
high number of classes that have to be inspected. In
order to reduce this high number of classes (thus, the
e�ort for their analysis) the metric bounds are typically
enlarged (see Table 5). On the other hand, in this
manner, classes with problems (that need to be furtherly
inspected) risk to pass the selection without any prob-
lem, leaving the system to grow towards degenerative
conditions.

By using the above-presented algorithm, this problem
is strongly reduced. This has been veri®ed by observing
the e�ects of di�erent criteria for selecting critical
classes, as reported in the following against the results
produced by an exhaustive analysis. The number of se-
lected classes, NSC, to be inspected and revised can be
estimated on the basis of di�erent criteria, that are the
detection metrics:

NSC�DMi� �
XNCL

c

gc�DMi; a�;

where gc�DMi; a� is a function of the generic detection
metric, DMi, and threshold a, on a view of class c,

gc�DMi; a� � 1 if DMi > a;
0 otherwise:

�
:

DMi can be a detection metric considering the out-of-
bounds, OB, or the out-of-distributions, OD. Di�erent
detection metrics have been de®ned as reported in
Table 7, where OBm states if metric m is out-of-bound or
not, ODm states if metric m is out-of-distribution or not,
and function istrue� � return a value equal to 1 if its
parameter is out. In Table 7, the following detection
metrics have been de®ned: DMOB for counting the
number of metrics of out-of-bounds in a class view;
DMOD for counting the number of metrics of out-
of-distribution in a class view; DM^ for counting the
number of metrics which are out-of-bounds and out-of-
distribution for the same class view; DM_ for counting
the number of metrics which are out-of-bounds or out-
of-distribution for a class view; DM� for counting the
number of metrics which are out-of-bounds plus those
which are out-of-distribution for a class view. Therefore,
with NSC� � is possible to count critical conditions
according to di�erent detection criteria.

In Table 8, the data related to the application of
detection metrics in the counting of NSC have been
combined as a function of a for the ®rst view of LIOO
project, version 3, where the percentage of saving for the
generic detection metric, DMi, is estimated by using

percentage of saving�DMi�

� NSC�DM�� ÿNSC�DMi�
NSC�DM�� � 100:

When NSC�DM�� is used as the main criterion for
detecting classes that need a further analysis, a larger
number of classes are identi®ed. If this approach for
identifying classes with problems is performed on all
views a very large percentage of classes are selected, in
the above case we reached the 93%. This very high
number of classes is obviously impossible to be managed

Table 5

Number of identi®ed out-of-bounds classes per metric (®rst view) for

project LIOO (version 3) and related bounds: above the bounds cor-

responding to correct measuring context; below the large bound values

which are typically used in simple approaches based only on out-

of-bounds

Project LIOO version 3

Metric Minimum Maximum KOB

Strict bounds

CCGI 0.5 0.70 49

CC 0.0 600.0 32

NSUP 0.0 4 1

NAM 0.0 50 31

CL 0.0 400 8

CI 0.0 600 9

Large bounds

CCGI 0.5 1.0 31

CC 0.0 1500.0 16

NSUP 0.0 5 0

NAM 0.0 90 21

CL 0.0 700 5

CI 0.0 1200 1

Table 6

Number of identi®ed out-of-distribution classes for the metrics related to the ®rst view for project LIOO (version 3); and related mean values and

standard deviations

Histogram distributions parameters, project LIOO version 3

Metric Histogram distribution Mean value Standard deviation F KOD Correlation with distribution

CCGI Normal 0.6 0.1 1 64 0.86

CC Log normal 1.0 0.3 100 32 0.84

NSUP Log normal 1.0 0.45 1 0 0.86

NAM Log normal 1.4 0.4 10 28 0.79

CL Log normal 0.6 0.8 20 18 0.81

CI Log normal 1.0 0.5 50 28 0.85

132 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

and has no sense. This e�ect is also present (even if in
lower manner) when large bound values are used. The
percentage of saving for the DM^-based solution has
been estimated with respect to DM�-based solution
since this is the typically used approach for selecting
classes that need a further inspection.

From the table, it is clear that it is possible to obtain a
number of selected classes, NSC�DM��, comparable
with that obtainable by using a di�erent value of a or by
using di�erent values for bounds by NSC�DMOB� or
NSC�DMOD�. On the other hand, these last detection
metrics for identifying the critical classes are not
equivalent, they share great part of the same classes but
not all as it can be seen comparing NSC�DMOD� and
NSC�DMOB�.

A di�erent approach is to consider the operation of
conjunction and disjunction for identifying the number
of selected classes. For higher values of a, a higher
percentage of saving (in terms of classes to be analyzed)
is obtained by using DM^ instead of DM�. This dis-
tribution is also present when the percentage of saving is
estimated with respect to either NSC�DMOB� or
NSC�DMOD� or NSC�DMO�.

Therefore, the more restrictive detection metric is
DM^. In this case, an a � 3 was considered and thus 11
classes were analyzed. Among these, we discovered that
only 3 classes were a�ected by real design problems.
These classes were the same classes identi®ed by quality
control personnel by performing a manual exhaustive

analysis of views. Only two of these classes were in-
cluded in those identi®ed by NSC�DMOB� or by
NSC�DMOD� for a � 4. Similar results have been ob-
tained for other projects mentioned in the introduction.
For this reason, it is convenient to adopt an a equal 2 or
3, obtaining a time saving of about 40% with respect to
working only with bounds or distributions and about a
90% with respect to the exhaustive analysis.

6. Conclusions

The tool described in this paper has been developed
during the last years during the assessment and control
of several industrial and academic projects. Some of
these have been multipartner ESPRIT projects, e.g.,
ICCOC ESPRIT HPCN, MOODS ESPRIT HPCN,
MUPAAC ESPRIT HPCN. During the last few years, a
tool has been pro®tably used for both metrics and sys-
tem assessment. Together with the tool we identi®ed a
collection of guidelines and suggestion that can be
considered a sort of modus operandi to work with
metrics in order to detect analysis and design problems,
and for e�ort estimation and prediction. Operatively,
the methodology provides a set of diagrams: views,
pro®les and histograms and the strategies for their
adoption and the corresponding guidelines for their in-
terpretation. The methodology and related visualization
facilities are fully supported by TAC++ tool. In the

Table 7

De®nition of detection metrics and a counting example for a view with 6 metrics, for m � 1::6: CC, CL, CI, NAM, NSUP, CCGI

DM metric de®nition View with 6 metrics Value

CC CL CI NAM NSUP CCGI

DMOB �
P

m2view istrue�OBm� Out In Out Out In Out 4

DMOD �
P

m2view istrue�ODm� Out Out In Out In In 3

DM^ �
P

m2view istrue�OBm ^ODm� Out In In Out In In 2

DM_ �
P

m2view istrue�OBm _ODm� Out Out Out Out In Out 5

DM� � DMOB �DMOD 2 Out Out Out 2 Out In Out 7

Table 8

Number of selected classes, NSC�DMi�, as a function of a for the ®rst view: project LIOO version 3 with 116 classes

a NSC�DMOB� NSC�DMOD� NSC�DM^� NSC�DM_� NSC�DM�� Percentage of saving (DM^)

0 53 79 45 87 87 48

1 34 50 29 54 59 51

2 26 25 15 28 40 62

3 14 11 11 23 31 64

4 2 5 1 6 26 96

5 1 0 0 1 24 100

6 0 0 0 0 14 100

7 0 0 0 0 11 100

8 0 0 0 0 6 100

9 0 0 0 0 1 100

10 0 0 0 0 1 100

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 133

paper, some suggestions to avoid confusion and time
consuming in processing results and choosing metrics
for views and pro®les have been also given. The authors'
experience in interpreting assessment results and de®n-
ing a methodology for product assessment along its life-
cycle has been reported. By interpreting the suggested

diagrams in the proposed manner a clear picture of the
system under assessment can be obtained, and the quick
detection of system dysfunction during the development
life-cycle is possible. The assistant assessment algorithm
has been pro®tably adopted reducing the detection and
intervention time.

Table 9

Glossary of metrics and related acronyms mentioned in this papera

Metric Comment

C Number of classes per subsystem/system

CACIm Class attribute complexity/size inherited

CACLm Class attribute complexity/size local

CBO(Chidamber and Kemerer, 1994) Class cognitive index local

CCm (Nesi and Querci, 1998) Class complexity/size

CC0m (Nesi and Querci, 1998) Class complexity/size, predictive form

CCGI (Fioravanti et al., 1998a) Class cognitive index

CIm Class method complexity/size inherited

CLm Class mcomplexity/size local, equivalent to CMm

CMICIm Class method interface complexity/size inherited

CMICLm Class method interface complexity/size local

Di Generic LLM and/or HML

DIT (Chidamber and Kemerer, 1994) Deep inheritance tree

DM_ Number of metrics which are out-of-bounds or out-of-distribution for a class view

DM^ Number of metrics which are out-of-bounds and out-of-distribution for a class view

DMOB Number of metrics of out-of-bounds

DMOD Number of metrics of out-of-distribution

DM� Number of metrics which are out-of-bounds plus those which are out-of-distribution

Mi Generic LLM and/or HML

ECD (Fioravanti et al., 1998a) External class description

F Scale factor for the histogram distributions

Ha (Halstead, 1977) Halstead metric

KOB Number of system classes with at least a metrics out-of-bound

KOD Number of system classes with at least a metrics out-of-distribution

LOC Number of LOC

M Mean number of metrics for each view

Max�i� Maximum value of metric i among those of the system classes

Mc(McCabe, 1976) McCabe ciclomatic complexity

MCC Mean value of CC metric estimated on the system

MPAC Method private attribute cohesion

NA Number of attributes of a class (local and inherited)

NAI Number of attributes iInherited of a class

NAL Number of attributes locally de®ned of a class

NAM Number of attributes and methods of a class

NAML Number of attributes and methods locally de®ned of a class

NCL Number of classes

NM Number of methods of a class (local and inherited)

NMI Number of methods inherited of a class

NML Number of methods local of a class

NOC (Chidamber and Kemerer, 1994) Number of child

NRC Number of root classes in the system class tree

NSC� � Number of selected classes for a further inspection based on a DM metric

NSUB (Fioravanti et al., 1998a) Number of subclasses of a class

NSUP (Fioravanti et al., 1998a) Number of superclasses of a class

Ri Generic LLM and/or HML

SCm System complexity/size

Size2 (Li and Henry, 1993) Number of class attributes and methods

TLOC Total number of LOC in the system

TNM Total number of methods in the system

Ui Generic LLM and/or HML

V Number of views per class

VI (Nesi and Campanai, 1996) Veri®ability index

WMC (Chidamber and Kemerer, 1994) Weighted methods for class, CLMc in our notation
a Metrics with m parameter are evaluated on the basis of a functional metric selected from: Mc, Ha or LOC, e.g., CCMc class complexity/size based on

McCabe ciclomatic complexity.

134 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

Acknowledgements

The authors would like to thank all the members of
TAC++ team and the many other people involved in its
development. Deep thanks also to the many people in-
volved in the several projects managed by one of the
authors. A special thank to B. Pages for an early version
of the class browser. A particular thank to Prof. G.
Bucci for his suggestions and encouragement.

Appendix A. Metric glossary

See Table 9.

References

Albrecht, A.J., Ga�ney Jr., J.E., 1983. Software function, source lines of

code, and development e�ort prediction: a software science valida-

tion. IEEE Transactions on Software Engineering 9 (6), 639±648.

Barnett, V., Price, T., 1985. Outliers in Statistical Data. Wiley, New

York, USA.

Basili, V.R., Briand, L., Melo, W.L., 1996. A validation of object-

oriented design metrics as quality indicators. IEEE Transactions on

Software Engineering, 751±761.

Basili, V., Caldiera, C., Rombach, H.D., 1994. Goal question metric

paradigm. In: Marciniak, J.J. (Ed.), Encyclopedia of Software

Engineering, vol. 1. Wiley, New York, pp. 528±532.

Basili, V.R., Hutchens, D.H., 1983. An empirical study of a syntactic

complexity family. IEEE Transactions on Software Engineering 9

(6), 664±672.

Basili, V.R., Selby Jr., R.W., Phillips, T.-Y., 1983. Metric analysis,

data validation across Fortran projects. IEEE Transactions on

Software Engineering 9 (6), 652±663.

Basili, V., Weiss, D.M., 1984. A methodology for collecting valid

software engineering data. IEEE Transactions on Software Engi-

neering 10 (6), 728±738.

Behrens, C.A., 1983. Measuring the productivity of computer systems

development activities with function points. IEEE Transactions on

Software Engineering 9 (6), 648±652.

Bellini, P., Fioravanti, F., Nesi, P., 1999. Managing music in

orchestras. IEEE Computer, 26±34.

Booch, G., 1996. Object Solutions, Managing the Object-Oriented

Project. Addison-Wesley, Menlo Park, California, USA.

Briand, L., Daly, J.W., Porter, V., Wurst, J., 1998a. A comprehensive

empirical validation of product measures for object oriented

systems. Technical Report ISERN-98-07, ISERN, Germany.

Briand, L.C., Daly, J.W., Wust, J.K., 1999a. A uni®ed framework for

coupling measurement in object oriented systems. IEEE Transac-

tions on Software Engineering 25 (1), 91±120.

Briand, L., Wurst, J., Ikonomovski, S., Lounis, H., 1998b. A

comprehensive investigation of quality factors in object-oriented

designs: an industrial case study. Technical Report ISERN-98-29,

IESE-47988e, IESE, Germany.

Briand, L.C., Wust, J., Daly, J.W., Porter, D.V., 1998c. Exploring the

relationships between design measures and software quality in

object-oriented systems. Journal of Systems and Software.

Briand, L.C., Wust, J., Lounis, H., 1999b. Using coupling measure-

ments for impact analysis in object-oriented systems. In: Proceed-

ings of the IEEE International Conference on Software

Maintenance (September). IEEE Press, New York.

BritoeAbreu, F., Goulao, M., Esteves, R., 1995. Toward the design

quality evaluation of object-oriented software systems. In: Pro-

ceedings of the Fifth International Conference on Software Quality

(October), Austin, USA, McLean.

Bucci, G., Fioravanti, F., Nesi, P., Perlini, S., 1998. Metrics and tool

for system assessment. In: Proceedings of the IEEE International

Conference on Complex Computer Systems (August), California,

USA, pp. 36±46.

Butera, F., Fontanella, B., Nesi, P., Perfetti, M., 1998. Reengineering a

computerized numerical control towards object-oriented. In: Pro-

ceedings of the Second Euromicro Conference on Software

Maintenance and Reengineering (March), Florence, Italy, IEEE

Press, New York, pp. 8±11.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object-

oriented design. IEEE Transactions on Software Engineering 20

(6), 476±493.

Chidamber, S.R., Darcy, D.P., Kemerer, C.F., 1998. Managerial use

of metrics for object-oriented software: an exploration analysis.

IEEE Transactions on Software Engineering 24 (8), 629±639.

Coulange, B., Roan, A., 1993. Object-oriented techniques at work:

facts and statistics. In: Proceedings of the International Conference

on Technology of Object-oriented Languages and Systems,

TOOLS Europe 93, 8-11 March, Versailles, France, pp. 89±94.

Daly, J., Miller, J., Brooks, A., Roper, M., Wood, M., 1995. Issues on

the object-oriented paradigm: a questionnaire, RR-95-183. Tech-

nical report, Department of Computer Science, University of

Strahclyde, UK.

Dunteman, G., 1989. Principal Component Analysis. Sage University

Paper, 07-69, Thousand Oaks, CA, USA.

Fagan, M.E., 1986. Advances in software inspections. IEEE Transac-

tions on Software Engineering 12 (7), 744±751.

Fioravanti, F., Nesi, P., Perlini, S., 1998a. Assessment of system

evolution through characterization. In: Proceedings of the IEEE

International Conference on Software Engineering, Kyoto, Japan,

April, pp. 456±459.

Fioravanti, F., Nesi, P., Perlini, S., 1998b. A tool for process and

product assessment of C++ applications. In: Proceedings of the

Second Euromicro Conference on Software Maintenance and

Reengineering, Florence, Italy, 8±11 March 1998, IEEE Press, New

York, pp. 89±95.

Fioravanti, F., Nesi, P., Stortoni, F., 1999a. Metrics for controlling

e�ort during adaptive maintenance of object-oriented systems. In:

Proceedings of the IEEE International Conference on Software

Maintenance (September), Oxford, UK, IEEE Press, New York,

pp. 483±492.

Fioravanti, F., Nesi, P., Polo Usaola, M., 1999b. Complexity/size

metrics for object-oriented systems. Technical report, TR 17/99,

University of Florence, Florence, Italy.

Halstead, H.M., 1977. Elements of Software Science. Elsevier, North

Holland.

Henderson-Sellers, B. 1991. Some metrics for object-oriented software

engineering. In: Proceedings of the International Conference on

Technology of Object-oriented Languages and Systems, TOOLS 6

Paci®c 1991, TOOLS USA, pp. 131±139.

Henderson-Sellers, B., 1993. The economics of reusing library classes.

Journal of Object Oriented Programming, 43±50.

Henderson-Sellers, B., 1994. Identifying internal and external charac-

teristics of classes likely to be useful as structural complexity

metrics. In: Patel, D., Sun, Y., Patel, S. (Eds.), Proceedings of

International Conference on Object-oriented Information Systems,

OOIS'94, London, 19±21 December, Springer, Berlin, pp. 227±230.

Henderson-Sellers, B., 1996. Object Oriented Metrics. Prentice-Hall,

Englewood Cli�s, NJ.

Henderson-Sellers, B., Edwards, J.M., 1990. The object-oriented

systems life-cycle. Communications of the ACM 33 (9), 143±

159.

Henderson-Sellers, B., Tegarden, D., Monarchi, D., Metrics and

project management support for an object-oriented software

development. In: Tutorial Notes TM2, TOOLS Europe'94,

F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136 135

International Conference on Technology of Object-oriented Lan-

guages and Systems, 7±10 March, Versailles, France.

Henry, S., Kafura, D., 1981. Software structure metrics based on

information ¯ow. IEEE Transactions on Software Engineering 7

(5), 510±518.

Hosmer Jr., D.R., Lemeshow, S., 1989. Applied Logistic Regression.

Wiley, New York, USA.

Kemerer, C.F., 1987. An empirical validation of software cost

estimation models. Communications of the ACM 30 (5), 416±429.

Kemerer, C.F., Slaughter, S., 1999. An empirical approach to studying

software evolution. IEEE Transactions on Software Engineering 25

(4), 493±509.

Laranjeira, L.A., 1990. Software size estimation of object-oriented systems.

IEEE Transactions on Software Engineering 16 (5), 510±522.

Li, H.F., Cheung, W.K., 1987. An empirical study of software metrics.

IEEE Transactions on Software Engineering 13 (6), 697±708.

Li, W., Henry, S., 1993. Object-oriented metrics that predict main-

tainability. The Journal of Systems Software 23, 111±122.

Lorenz, M., Kidd, J., 1994. Object-oriented Software Metrics: A

Practical Guide. Prentice-Hall, Englewood Cli�s, NJ.

Low, G.C., Je�ery, D.R., 1990. Function points in the estimation and

evaluation of software process. IEEE Transactions on Software

Engineering 16 (1), 64±71.

McCabe, T.J., 1976. A complexity measure. IEEE Transactions on

Software Engineering 2 (4), 308±320.

Meyer, B., 1990. Tools for the new culture: lessons learned from the

design of the Ei�el libraries. Communications of the ACM 33 (9),

68±88.

Nesi, P., 1998. Managing OO projects better. IEEE Software, 12±24.

Nesi, P., Campanai, M., 1996. Metric framework for object-oriented

real-time systems speci®cation languages. The Journal of Systems

and Software 34, 43±65.

Nesi, P., Querci, T., 1998. E�ort estimation and prediction of object-

oriented systems. The Journal of Systems and Software 42, 89±102.

Rousseeuw, P.J., Leroy, A.M., 1987. Robust Regression and Outlier

Detection. Wiley, New York, USA.

Schneidewind, N.F., 1992. Methodology for validating software met-

rics. IEEE Transactions on Software Engineering 18 (5), 410±421.

Schneidewind, N.F., 1994. Validating metrics for ensuring space

shuttle ¯ight software quality. Computer, 50±57.

Shepperd, M., Ince, D., 1993. Derivation and Validation of Software

Metrics. Clarendon Press, Oxford.

Stetter, F., 1984. A measure of program complexity. Computer

Language 9 (3), 203±210.

Thomas, D., Jacobson, I., 1989. Managing object-oriented software

engineering. In: Tutorial Note, TOOLS'89, International Confer-

ence on Technology of Object-oriented Languages and Systems,

13±15 November, Paris, France, p. 52.

Zuse, H., 1994. Quality measurement ± validation of software metrics.

In: Proceedings of the Seventh International Software Quality

Week in San Francisco, QW'94, Software Research, 17±20 May,

p. 4±T±2.

Zuse, H., 1998. A Framework of Software Measurement. Walter de

Cruyter, Berlin.

Paolo Nesi received the Laurea degree in Electronic Engineering from
the University of Florence, Italy, in 1987. He is currently Associate
Professor at the Department of Systems and Informatics, University of
Florence. Previously he was an assistant professor at University of
Florence and visiting researcher at the IBM Almaden Research Center,
USA. He received his Ph.D. in computer engineering from University
of Padoa. He has been the Chair of several international conferences in
the area of software engineering. He serves in the program and orga-
nization committees of several international conferences, journals and
book series. He holds the scienti®c responsibility at CESVIT for
HPCN (High Performance Computer and Networking). He has been
responsible for several national and international multipartner re-
search projects, in the area of software engineering. He has published
more than 110 research papers on journals and conference proceed-
ings. His research interests include: software assessments, metrics,
formal languages, object-oriented, reengineering and maintenance.

Fabrizio Fioravanti took his Ph.D. in Software and Telecommunication
Engineering at the University of Florence. He obtained the Laurea
degree in Electronic Engineering from the same University in 1996. He
is currently Assigned Professor in Computer Architecture at the Uni-
versity of Florence. He has been actively involved in the organization
of international conferences.

136 F. Fioravanti, P. Nesi / The Journal of Systems and Software 53 (2000) 111±136

