A Non-Invasive Object-Oriented Tool

for Software Testing

P. Nesi' and A. Serra*

'‘Dipartimento di Sistemi e Informatica, Faculty of Engineering
University of Florence, Via S. Marta 3, 50139 Firenze, Italy
NESIQINGFI1.ING.UNIFLIT
tel.: +39-55-4796265, fax.: +39-55-4796363.

*ASIC S.r.l., Torino, Italy

December 9, 1994

Abstract

A non-invasive approach for Capture and Playback (C&P) can be a very useful tool for
testing applications endowed of a graphic user interface in local and/or distributed environ-
ments, and in general for testing applications without modifying their run-time environment.
In the software life-cycle, the phases of C&P are performed after the application design.
Since these are close to the deadline of delivering, the time needed for application testing
is considered as a high, and frequently unacceptable, cost. In this paper, a new approach
for non-invasive C& P testing techniques is proposed. This is strongly based on the object-
oriented paradigm at both hardware and software levels. In particular, a new board for
image grabbing and pattern matching, and a new object-oriented language for specifying the
tests have been defined. The main goals of this new approach are (i) the reduction of testing
time by supporting the reuse of tests (coded by using a specific language) at each level of

abstraction, and (ii) the anticipation of the capture-phase of testing with the system design.

Keywords: testing, capture and playback, non-invasive, object-oriented, object-oriented

language, real-time, distributed applications.

1 Introduction

One the most powerful methods for testing software applications with man-computer interac-
tions is the so-called Capture and Playback (C& P) approach [2], [3]. This is based on two
distinct phases, which are the Capture and the Playback (see Fig.1). During the Capture, each
computer-user interaction is collected — i.e., all the messages which are displayed on the monitor
(presentation of messages, windows, text, etc.), all the keys pressed coming from the keyboard
and all the motion and clicks of the mouse. In this way, the histories of computer interactions
in the form of sequences of interactions are collected, and stored in the form of a script file. The
histories of man-computer interactions are reproposed during the Playback to the computer in-
terfaces (simulating the presence of keyboard and mouse) for simulating the presence of the user
itself. After each simulated stimulus the responses of the computer can be tested to verify the
application answers on the video signal according to the application correct behavior (which is
supposed to be known).

The definition of the test structure can be made on the basis of the application structure
and functionalities by using a Test Generator —e.g., T of IDE, SoftTest of Bender & Associates,
[20], [1], [14]. The history of sequences and the sequences of operations that must be performed
for testing the applications are usually specified in an ad-hoc programming language, and thus
are coded in script files (in ASCII form). This capability allows the direct modification of
these programs, following the syntax and semantics of the script language [2]. Usually, in
these script files references to the elementary entities which are typical of the man-computer
interactions, such as pixel patterns on the video screens (with their absolute position), mouse
absolute positions and clicks, and sequences of keys from keyboard, are present.

Automatic testing tools can be classified in software- and hardware-based C'& P approaches.
The software-based approaches are also called invasive approaches, since they consist of programs
that run (capturing and playing back) on the same machine on which the application under test
is running — e.g., XRunner by Mercury [5], Automator QA (Direct Technology), Auto Tester
(Software Recording, Inc.), SQA-Robot (Software Quality Automation), CAP/BAK (Software
Research), Sterling TestPro (Sterling Software, Inc.), etc. The hardware-based approaches (also
called non-invasive approaches), consist of a dedicated hardware which is capable of grabbing
the signals passing through the cables linking the monitor (i.e., video grabber), the mouse and
the keyboard to the computer body itself. In this case, a second computer called “HOST” is
needed to control the processes of C&P (see Fig.2) — e.g., CAP/BAK NI (Software Research),

Ferret (Tiburn Systems, Inc.), Evaluator (Elverex and Eastern Software), etc. The non-invasive

@ Requirements
supervision navigation +

Human Interaction | test scripts Test
Interceptor and graphic Generation
T i elements
System Under
CAPTURE Test
PLAYBACK ‘ H Simulat Test monitoring
umar} 1mu ator and managment
System Under
Test
SUTs HOST

Figure 1: The Capture and Playback phases.

approach is much more robust with respect to the invasive, since the latter obviously changes
the context of the System Under Test (SUT). This can also change the performance of the SUT
and all testing results. Moreover, some failures could be due to the presence of the tool itself and
some errors may not be revealed, especially if the operating system of the SUT is a multitasking
system.

The non-invasive approaches can be very useful for executing tests in real-time and for testing
distributed environments where several computers execute the same or different applications at
the same time (running on the same or different operating systems). On the contrary, the
invasive approaches are less suitable for testing: (i) time-dependent operations, (ii) distributed
applications, and (iii) low-level software procedures such as part of the operating system, drivers,
command shell, etc. The better performance of non-invasive approaches with respect to the
invasive approaches is obtained at the expense of an increment of the tool costs and complexity.
In fact, a dedicated hardware is needed in order to implement non-invasive approaches. On the
other hand, these offer a performance improvement and the possibility of real-time testing of
distributed applications.

C'& P tools are usually employed for controlling the product quality and to assess the new
versions of software product already used and tested. In both cases, the phase of C&P is
performed after the design and formal test of the application. For companies which are focused
on software development, this fact is strongly unsatisfactory, since the time which is necessary
to perform the test is often passing the delivery date, due to delays accumulated during the
software development. For this reason, the time which is needed to test the application by means
of a C&P is psychologically considered as a high and frequently unacceptable cost, though the

testing obviously produces benefits in the software quality. This is particularly evident on the

TOOL ARCHITECTURE Network Interface

&
Process Controller

ENl 1

dedicated network

Figure 2: Non-invasive approach to Capture and Playback with capabilities for testing dis-
tributed (the SUTs could be connected or not to the same local area network, LAN) and/or
multiple applications. The dedicated hardware interfaces are connected to the HOST by means

of a dedicated network.

first marked release (since, no previous “history” is available) rather than on subsequent versions
of the same product. This is due to the fact that, during the first time of testing by means of a
C& P approach all the screen elements (windows, dialog boxes, buttons, scroll bars, list box, etc.,
see Fig.3), mouse motions and keyboard sequences must be captured, and the script must be
generated and refined. On the contrary, for testing a new version of an already tested application
(i.e., regression testing) only a part of the work performed in the last capture phase must be
done again, for modifying the scripts and for capturing new graphics features, if any, according
to the changes occurred in the application itself. This problem can be strongly reduced if the
script generation is anticipated with respect to the end of the application development. This
is possible only if the script files can be written in a high-level language without specifying the
implementation details of the application under test.

As remarked in many studies and applications, one of the main limits in the first generation
of C'& P tools, when applied to perform regression testing on applications endowed of Graphical
User Interface (GUI), is the difficulty in maintaining consistency between the application and the
recorded scripts. This is due to the fact that these tools need the absolute stability (equality at
the pixel level) of the graphic interface. Even a very negligible change in the user interface, such
as the depth of a border of a window, makes the scripts recorded unusable on the new version
of the software under test. This means that, in practice, a continuous activity of regenerating
old scripts is needed, and the regression testing is no longer an automatic process.

Another problem of traditional C'& P approaches is that the script programs are neither easy
to be understood nor easy to be modified. Though, they are usually programming languages
with mnemonic keywords and, thus, they are changeable by using a text editor. This is due
to the fact that human operations described in the scripts (mouse motions and clicks, screen
checking, etc.) are usually referenced by means of physical descriptions and not by using logical
labels.

In this paper, an evolution of the non-invasive C& P approaches [2] is proposed. This new
approach is strongly based on the object-oriented paradigm at both hardware and software levels
of the systems: “Hardware” in the sense that a new object-oriented image grabber board for
capturing and searching patterns in real-time has been implemented; “Software” in the sense that
the entire application of C&P is object-oriented and a new language called LOOT (Language
Object-Oriented for Testing) for describing the script sequences has been developed. It should
be noted that the object-oriented paradigm allows the representation of relationships among

the main entities which are present in the man-computer interaction such as windows, buttons,

i
w B

|DKI
\ﬁ

(o] (1]
M B [

E Cancel

Iﬂ L] Check

i Option
[+] _
m Line 1 B | IE
— Line 2 Line 1 +
Line 3 == Line 2 =
Line 4 Line 3 —
Line 5 it Line 4 +

+]

(=l | [+] Enter: | |

Figure 3: Examples of visual entities grabbed in the phase of capture.

patterns, mouse motions and actions etc., which have also been defined in many object-oriented
user interfaces proposed in the literature [12], [15], [9], [16], [22]. In addition, the object-oriented
paradigm has the capability to support reuse of already defined objects and to reduce the cost
of maintenance and expansion. Therefore, the main goals of this new approach are (i) reducing
of testing time — i.e., reducing the time of capture, (ii) overlapping of the testing phase with
the earlier phases of Software Life-Cycle [11], and (iii) solving the above-mentioned problems
related to the script maintainability and understandability, thus preserving the advantages of
the non-invasive testing tools. The approach proposed is a sensible improvement with respect to
other C'& P tools based on object-oriented paradigm, such as Sterling TestPro (Sterling Software,
Inc.) and XRunner (Mercury Interactive Corp.), since they are invasive and not fully object-
oriented in the above explained meanings; therefore, they cannot provide all the facilities which
are present in the C'& P tool presented.

This paper is organized as follows. In Section 2, the main aspects related to the adoption
of the object-oriented paradigm for the definition and implementation of a non-invasive testing
tool for C& P are reported, with a discussion about the main drawbacks of the traditional
approaches. In Section 3, the architecture of the testing tools is proposed. In Section 4, some
examples about the Language Object-Oriented for Testing, LOOT, are reported in order to show

its main capabilities. Conclusions are drawn in Section 5.

In the rest of the paper, the word “entity” will be used for representing simple and complex
visual elements (e.g., windows, icons, borders, patterns, etc.) as well as for mouse and keyboard
actions, while the word “gadget” refers only to simple or composite objects which are the typical

elements of a dialog box or window (e.g., Button, ListBox, ScrollBar, etc.).

2 Object-Oriented-Based Capture & Playback

The approach proposed in this paper has been motivated by the fact that most of the classical

C'& P approaches have several drawbacks. In particular:

1. Testing of a new version of a previously tested application: it can happen that a slight
change in the visual profile of a dialog box (or window, etc.), such as the displacement of
a gadget (i.e., a button, a scrollbar, etc.) of the dialog box is recognized as a severe error

even if the semantics of the dialog box (or window, etc.) is unchanged (see Fig.4).

2. Testing of a new version of a previously tested application: it can happen that a slight
change in the visual profile of a dialog box (or window, etc.), such as the addition of a
new gadget (or menu) is not recognized as a severe error even if the semantics of the dialog
box (or window, etc.) has been substantially changed. Moreover, in this case, the old test,
coded in the script, is performed on the new version of the dialog box (or window) without
detecting the differences between the old and the new dialog box (or windows). The
verification of differences about the shape of a composite visual entity must be explicitly
coded in the script of the test. This could be a problem since in traditional approaches

the comparison must be performed at the pixel level.

3. In testing a new version of a previously tested application, it can happen that a slight
change in the visual presentation, such as the displacement of the window (or dialog box),
when it is open, is recognized as a severe error even if the semantics of the application
is unchanged and the graphic entities are the same. This happens even when a different
environment is used during two different sections of testing the same application (of the

same version).

4. During the capture, a considerable number of patterns (visual — i.e. 2D, textual — i.e.
1D, etc.) are collected and associated with the entities (menu, text, button, window,
mouse motion, etc.) of the application under test. In this way, in the Playback phase the

presence of these patterns can be verified. Consider a window-based application of medium

= Dialog Title

Options Line 1 +
Line 2
Line 3 hd
| oK I | Cancel I

= Dialog Title

Lines:

Line 1
Line 2
Line 3
Line 4
& Check Line 5 +

e

I 1] 4 I | Cancel I

Figure 4: Semantically equal dialog boxes. These are usually sources of severe errors in some

traditional C'& P approaches.

size: during the capture phase, it can be very easy to have to collect 100-200 patterns.
The tool of capture maintains this information by generating a script file describing the
history of the capture. This script file is substantially the same file as that which will be
used for testing the application during the playback. The information collected is very
difficult to reuse for testing other applications, even if the patterns are the same as those
of many other applications. However, the reuse of this information could shorten the time
of capturing. This fact is more evident if we consider that most of the companies tend
to reuse software components during the application development following the criteria of
software engineering (for example the dialog box for selecting files). This is also due to
the fact that there exists international standards for the definition of the actions allowed
on user interfaces, in the sense that the semantics of certain visual entities and actions is
standardized (position of certain selections on the menu, adoption of certain combinations
of keys for closing an application, mechanism for selecting and drugging things on the

screen, etc.).

5. Even if the script files can be generated by means of an automatic section of capture, the
operation of manual capturing is sometimes mandatory — for example, when the applica-
tion must be tested against specific combinations of keyboard characters, or sequence of
commands, etc. The manual capturing is very difficult since the syntax and semantics of
the script language are too much related to the low-level details of the visual aspects of
the application. This means that it is impossible to recover the application structure only
by knowing the generic behavior of the user interface of the application. This obviously
means that the application is not completely observable from the outside, otherwise it
should be a banal application. On the other hand, the main structure of the script can
be generated by a generic description of the application behavior provided, since this is

defined in the early stages of the application development.

These problems are mainly due to the fact that traditional script languages are usually
strictly related to the low-level details of the application, such as the positions of graphics
elements, the patterns to be searched, etc. Moreover, the script languages are also procedure-
oriented and, thus, they are less suitable for modeling and maintaining the structure of the
application. This means that the scripts do not model the relationships among the visual
entities which can appear on the screen, and the relationships among the visual entities and
other events which are needed to test the application. For example, the relationships between a

window and its menu, items and subitems, or between a button and the possible mouse actions

which can be performed on it, are not described by using the traditional script languages for
C&P. In addition, if the information related to the visual entities (e.g., pattern, buttons, icons)
and the corresponding actions (which can be performed on an entity) are maintained in a unique
structure, then a powerful mechanism for reusing the old tests is obtained. This concept is in
accordance with the object-oriented paradigm, by which the single entities of an application can
be modeled with a unique class containing both data and behavioral aspects [13]. The Object-
Oriented Paradigm (OOP) also has many other mechanisms which are very useful for modeling
the applications and for providing a support for reusing the visual and textual entities of the
applications together with their allowed operations (i.e., entity behavior) [17], [19], [4].

In order to define a fully object-oriented system for Capture & Playback both hardware and
software components of the SUT must be in accordance with the object-oriented paradigm. As
regards the hardware components, in the non-invasive testing systems, a board to grab and
analyze the video screen in real-time is usually present. The screen patterns grabbed during the
capture are compared in the phase of playback with specific areas of the current screen in order
to verify their presence. In order to guarantee the real-time testing the verification is directly
performed by hardware. It allows the verification of the presence of given patterns at given
image coordinates. This is a strong limitation because due to slight modifications of the screen
of the SUT, the process of verification fails. For example, a simple displacement of a gadget
(i.e., a button, a listhox, etc.) in a dialog-box is confused with the absence of the gadget. This
problem can be circumvented by software, reiterating the process of verification in each pixel
of a given area, thus searching for a pattern in a given sub-frame of the screen. It should be
noted that a software-based solution to this problem is completely unfeasible if real-time testing
is required, thus a hardware real-time search is mandatory. In particular, a dedicated hardware
based on programmable gate-arrays and fast correlators has been specifically developed for the
C'& P tool described in this paper. This hardware is capable of searching image patterns on the
whole screen in real-time.

Therefore, this hardware supports the object-oriented management of the problem. In fact,
if a dialog-box Dy contains a certain gadget (1, its presence must be directly recognized by
asking the hardware where G is in the Dy. Once G has been found, then the request of the
execution of an operation on that gadget can be required directly to that gadget. Therefore,
the instruction used to test G is semantically reduced to test G; of Dq. In this way, the script
files can be independent of the visual position of the visual entities on the screen, hence only

high-level relationships among these are needed. In this case, the script file can describe the

10

c
test

coding

Requirements

TEST STRUCTURE PREDEFINITION CAPTURE PLAYBACK

Figure 5: The software and test developing life-cycles.

testing procedure at a higher level with respect to what is possible by using position-dependent
languages such as the traditional script files.
It should be noted that the object-oriented paradigm is present in the software architecture

at various levels. In particular:

1. For defining a Language Object-Oriented for Testing (LOOT). By using this language
the operations which must be performed for testing the application can be described at
a high-level of abstraction. It also has the capability of describing the test at various
levels of abstraction in order to reach the final version for refinement, possibly during the
application development. In addition, it is capable of defining new entities and reusing the
already defined entities. The adoption of this approach defines a different life-cycle (see
Fig.5) for the development of the test scripts which is strongly anticipated with respect to
the classical C& P approaches that can be used only after the coding of the software that
has to be tested. In fact, a phase of test preparation, where the test structure is defined
on the basis of system analysis and design (following a program-based approach at the
tests preparation), is present. In this phase, the structure of test scripts is prepared; then,
these are used during the coding of the applicative software for appending visual details

(i.e., phase of details capture), and thus for completing the capture phase.

2. For defining the tool itself for C& P. Since the tool architecture is also object-oriented, a
major confidence is attributed to its capabilities of expressivity and expandability. This
is due to the fact that most of the primitives which are available at the language level are
also used inside the tool for generating the script files in the LOOT language; thus, the
same object-oriented model is used for modeling the application under test, and during

the capture and the playback.

11

3. For modeling entities which are used for applications testing. These entities are also
stored into an object-oriented database. For each entity (button, dialog box, icon, etc.)
both static and dynamic descriptions are stored. Static descriptions correspond, for the
visual entities, to patterns, while dynamic descriptions are the possible operations which

are allowed on that entity.

Most of the above-mentioned facilities allow the reduction of Capture time by reusing objects
and classes and by beginning to specify the test of the application even if the final visual aspect
of the application is not completely available (e.g., test structure pre-definition). In addition,
the reduction of the Capture time is also obtained by reusing already defined entities. The reuse
can be done at various levels of abstraction, thus it consists in both time saved for capturing
patterns, and/or time saved for describing the procedures of testing of already tested parts of
applications, such as dialog boxes, etc. Hence, as soon as the application if finished the scripts

are ready for testing the application with the Playback approach.

3 Testing-Tool Architecture, and Application Modeling

The tool proposed for C'& P includes a real-time object-oriented kernel supporting the concur-
rency at various levels. With this kernel the concurrency can be among objects of the same or
different classes as well as among methods of the same class. This is indispensable since the
testing tool must be capable of keeping under control at the same time several SUTs connected
to the host by means of the dedicated network (see Fig.2 in Sect.1l). Through the dedicated
network, asynchronous messages can arrive at/from the several SUTs; thus, the kernel must be
capable of reacting in real-time to the stimuli sent from the SUTs (such as alarms and events in
general). For stressing distributed applications the responses of the SUTs against strict dead-
lines are usually tested — e.g., simulating a set of “contemporaneous” requests of the SUTs to
the same host [21]. Therefore, a run-time kernel for the tool must be characterized by real-time
capabilities [6]. To this end, the object-oriented real-time kernel of the CASE tool TOOMS
has been adopted [7], [10] (i.e., the kernel of the real-time language TROL [8]). It consists of
(i) a low-level interface between the object-oriented system of classes and the operating system
(0S/2 2.1, or SUN Solaris 2.3), and (ii) a set of classes like Thread, Path, Temporal Constraint,
Clause, etc.

In order to provide the basic elements for modeling the application under test several classes
have been defined around the real-time kernel, such as Pattern, Font, Button, Keyboard, Mouse,

Screen, Window, DialogBox, TextInput, Text, Icon, On0ffButton, RadioButton, ScrollBar,

12

Root — ExtEvent ——— Keyboard
— Mouse
— Time
— Screen
— Application — Window—[ChildWindow
DialogBox
'— ScreenTextual ScrollTextual
— Menu ———— TopMenu
— PopUpMenu
— SubltemMenu
— ItemMenu
— Gadget — ComplexGadget
— Box |_ListBOX
TextBox
— ScrollBar—[VertScrollBar
HorScrollBar
— Button—— —RadioButton
—OnOffButton
—PushButton
L DrwObject —Line
—Ellipse
—Circle
—Point
—Text
_—Pattern Font
EScreen
Icon
— List ListOfMenu —ListOfSubMenu
E ListOfGadget
ListOfApplic ConfigTest

Figure 6: Hierarchy reporting the classes of the testing tool (a part) which are used for modeling

the applications under test.

Menu, etc. These classes have been organized in a specialization hierarchy exploiting the object-
oriented capabilities of inheritance and polymorphism (see Fig.6). Among these classes, elemen-
tary drawable objects have also been modeled, in order to provide a support for modeling more
complex graphic entities.

In Fig.6, the class hierarchy of the testing tool proposed is reported. This hierarchy is
quite different with respect to other hierarchies used for modeling GUIs endowed of windowing
systems, such as CommonView, Zinc++4, MS Visual C4++4, etc. This is due to the fact that
this hierarchy models the graphic environment from a different point of view, which is the
testing of the applications by manipulating the visual entities from outside the SUT, rather
than visualizing the entities in order to represent certain actions for getting certain information
as in the windowing systems.

The main objects of the testing system are instantiated from the classes specialized from

class ExtEvent, which are: Keyboard, Mouse, Time, and Screen. These are the classes which

13

model the physical entities of the application under test. Therefore, for each application, there
exists one object for each of these classes. Note that, these classes are internally concurrent and,
thus, they are capable of satisfying asynchronous requests with respect to the current operation,

such as for managing exceptions.

In this hierarchy, the classes Window, and ScreenTextual, have been specialized from the
class Application. This means that an application can be either built on a graphical user inter-
face (endowed of a windowing system) or on a classical ASCII interface. According to the OOP,
the specialization mechanism defines that the subclasses inherit both Attributes and Methods
from the superclasses; therefore, such inherited features are not reported in the definition of
specialized classes:

Class root

Attributes:
char #Name; // object’s name

Methods;"
Set_Name(char n[]);
char * Get_Name();

b
Class Application public : root

Attributes:
Dimension dim; // screen dimension (dx,dy)

Methods:
Open();
Close();
Dimension Get_Dimension();

From the point of view of the testing tool, during the testing of a set of applications on several
SUTs, the testing tool collects the information corresponding to each application in instances
of the class Application, which in turn are collected by an object of the class ConfigTest
(specialization of the class ListOfApplic).

At the level of the testing tool, an application is modeled by specifying its structural hierarchy
starting from an instance of a class of the Application sub-hierarchy. A window application is
modeled as an object of class Window. This is turn contains an object of the class List0fGadget
and one of the class List0fMenu, etc. Therefore, by using polymorphism, instances of the
sub-hierarchies Gadget and Menu can be collected in the corresponding lists, respectively:

Class Window public : Application

{

Attributes:
Pattern id; // pattern of identification
ListOfMenu TheMenu;
List0OfGadget TheGadget;

14

Position pos; // position on the screen

Methods:
Window(Pattern);
Set_id(Pattern);
Pattern Get_id();
Localize(); // Set position ‘‘pos’’ by calling hardware facilities

Position Get_Position();
Move(int, int);
Size(int, int);
Add_Gadget (Gadget *);
Add_Menu(Menu *);
Remove_Gadget (Gadget *);
Remove_Menu(Menu *);

3

Class ChildWindow public : Window

{
Attributes:
Window * father;

Methods;”
}

Classes belonging to the class Window sub-hierarchy have the attribute id which is the pattern
of identification for the window. This allows the testing tool to find the position of the window
on the screen by calling the image grabber board inside the method Localize().

The object TheGadget, belonging to the class List0fGadgets, maintains the structural
relationships among the elementary components belonging to the window and the application
itself, while the TheMenu (of class List0fMenu) describes the menu facilities of the Window. Each
menu may be logically related to either the opening of a DialogBox or a ChildWindow. This
information is maintained at the menu level by means of Pointers. The referenced DialogBox
or ChildWindow is in turn defined in the same way. Hence, the application is hierarchically
described inside the testing tool. It should be noted that the structural description isindependent
of the low-level details comprising the details about the application behavior. Low-level details
(such as the position of a window or the presence of a particular pattern) can be automatically
recovered or added later. Therefore, the hierarchical structure of an application can be described
a lot of time before delivering the final version of the application itself; in particular, this can
be done after the early phases of the software life-cycle. The description of an application
hierarchy can be saved into the object database for its future reuse. The same mechanism is
performed to describe the structure of DialogBox; therefore, the future reuse of these complex
entities is strongly facilitated with respect to a procedural approach of testing tools. Analogous
mechanisms are used to define complex gadgets by using a set of simple Gadgets. This is made
possible by means of the class ComplexGadget which is a Gadget containing an object of the

class List0OfGadget.

15

— Application WindOW——ChildWindow user’s
—DialogBox defined

ScreenTextual—|— ScrollTextual classes

— Gadget ——— ComplexGadget

Figure 7: Classes which can be conceptually specialized by the user and their relationships with

the tool classes.

The specific details about the applications structure and behavior are described only when the
final version of the application under test is available. For example, (a) two different applications
can present the same structural hierarchy, but a different detailed behavior, (b) two versions
of the same application can have the same structural description while presenting behavior
changes. Therefore, by modeling these two cases with the tool proposed, static (structure) and
dynamic (behavior) aspects are managed in two different ways. It should be noted that both
these conditions generate descriptions which can be reused and maintained related to each other
for ensuring congruence.

The hierarchical organization is the main support for decreasing the Capture time and al-
lowing the reuse of parts (e.g., DialogBox, ChildWindow, Button, Icons, etc.) of applications
already captured and described. As was pointed out, this organization also allows the script
generation of the application after the early phases of the application development.

In order facilitate the building of the structural and behavioral descriptions of a whole
Application as well as those of DialogBox, Buttons, etc., these descriptions can be specified by
means of a formal language called LOOT (Language Object-Oriented for Testing). This language
allows the description of the instances of the leaf classes of the hierarchy presented in Fig.6. For
example, the details about the attribute values of a ListBox, id (pattern of identification),
dimensions, color, etc. can be specified. Moreover, in order to confer a high degree of flexibility
to the language, new classes as conceptual specializations of Window, ChildWindow, DialogBox,
etc. can be defined as depicted in Fig.7.

From the point of view of the testing tool, the user’s defined classes in LOOT are instances of
their corresponding conceptual superclass, while at the language level the user’s defined classes
are a sort of template for instances, which in turn can be further specialized, for example see
Fig.8 (this mechanism has also been used in TOOMS/TROL [7], [18]). The user’s defined classes
are hierarchically organized and stored into the object databases (i.e, following the specializa-

tion hierarchy). Therefore, the specialization among the user’s defined classes improves the

16

MyApplicatiOH—[WinWithScrol -
WinWith....
Window ——ChildWindow—

—DialogBox NewDialogBox—— New3DialogBox --

< tool classes user’'s defined classes >

Figure 8: Example of conceptual specialization of user’s defined classes and sub-hierarchies from

tool classes.

reusability of the modeled applications. The user’s defined classes also support the process of
instantiation; this allows the description of very complex applications, with a minimal effort.

For the user’s defined classes, specific methods called operations can be defined. These
operations can be used to describe the elementary actions which can be performed on these
entities in order to test them. For example, the operation DoubleClick() defined for a class
TextButton (derived from the ComplexGadget and containing both a Text and a Button) can
be associated with the necessity of text editing. In this way, both structural and behavioral
aspects of the user’s defined classes can be stored in a single chunk and reused in the future.

It should be noted that many standard windowing systems, such as MS-Window, PM OS/2,
Motif, etc. have the capability of defining some visual details of the application by using partic-
ular resources languages, such as the Resource or UIL (User Interface Language). In the future,
the testing tool proposed will be able to convert this information for building the corresponding

classes inside the testing tool. This will further reduce the capture time.

4 Language Object-Oriented for Testing, LOOT

The object-oriented paradigm allows the definition of the structure and behavior of new abstract
objects by means of the concept of class and method. According to this paradigm, classes
describing the entities under test must belong to the testing procedure and, thus, the so-called
elementary operations of test belong to the classes as discussed in the previous section. This
point of view transforms the traditional concept of a sequential script file in which the low-level
details are distributed with the high-level details and the behavior of each entity cannot be
clearly identified and reused.

Following this new point of view, the script file is transformed in a sequence of class dec-
larations followed by a very short sequence of high-level operations. This is due to the fact

that the details about the test of the major entities (e.g., window objects, dialoghox objects)

17

are encapsulated inside the operations of the classes describing them. These in turn use the
operations defined for the smaller objects (e.g., Buttons, Icons, etc.) during their test.

For these reasons, LOOT allows both the definition of new classes (conceptually derived from
the testing tool classes as depicted in Fig.7 and Fig.8) as well as the instantiation of objects
from these classes and the elementary classes of the testing tool (see Fig.6). The definition
of a new class is performed by describing both the structural (internal data, i.e., attributes)
and the behavioral (allowed operations) aspects of the class. For example, the definition of
class NewDialogBox comprising two TextBoxes and two PushButtons plus several operations,
is conceptually derived from the class DialogBox, specified as:

Class NewDialogBox specialization DialogBox
Gadgets:

Name, Surname : TextBox;

Close, Cancel : PushButton;
Operations:

NewDialogBox (na:String, su:String, cl:PushButton, ca:PushButton)
{ // operations of instantiation
Name.Set_id(str2pattern(na)); // identification set

Surname.Set_id(str2pattern(su)); // identification set
Close= cl;
Cancel=ca;

WriteText(tl: String, t2: String)

{
Name.Write(t1); // call the method Write() of class TextBox
Surname.Write(t2);

ReadText(t1: String, t2: String)

{
Name.Read(t1); // call the method Read() of class TextBox
Surname.Read(t2);

CheckText(na: String, su: String)
{ // checking the presence of known Name and Surname
tmpl, tmp2: String; // temporary objects
Name.Read(tmp1l);
Surname .Read(tmp2) ;
if (tmpl==na and tmp2==su) return(i);
else return(0);

Close() // close the dialog box by clicking on the icon Close, saving strings

{ Close.Click(); // call the method Click of class PushButton }
Cancel() // close without saving strings

{ Cancel.Click(); // call the method Click of class PushButton }

The above class inherits from the class DialogBox the standard operations such as Move(),
Size(), Get_Position(), Localize(), etc. (most of these are directly inherited from the class
Window). Among the user’s defined operations, CheckText () has been defined in order to verify
the presence of known strings in the corresponding TextBox. The class definition for describing

the structure and the elementary operations of an application can be defined since the early

18

= Mew Dialog Box

Mame

Surname |

| Cloze I

Figure 9: Visual aspect of an object instantiated by the class NewDialogBox.

phases of the software life-cycle. In fact, the structures of the dialog boxes are frequently the
first things to be defined.

After a class definition, instances of this class can be defined and used (see Fig.9). On
these instances, both the operations inherited from the fundamental classes of the testing tool
and defined in the class description itself, are allowed. The process of instantiation consists in
describing the details of the class attributes (i.e., Gadgets and Menus). This is performed by
following the rules defined in the operation of instantiation of the class, for example:

CANCEL (Patt_ca), CLOSE (Patt_cl): PushButton

A_NewDialogBox ("Name'", "Surname", CLOSE, CANCEL) : NewDialogBox

where the objects CLOSE, and CANCEL are two already defined PushButtons objects with their
patterns, which could be used in many other dialog boxes.

Complex classes can be defined by means of a process of specialization, such as the class
New3DialogBox which has been obtained by specializing the class NewDialogBox (see Fig.10 for
the specialization hierarchy):

Class New3DialogBox specialization NewDialogBox
Gadgets:
Age : TextBox; // new gadget
pat : Pattern; // constant pattern
Operations:
New3DialogBox (ma:String, su:String, ag: Integer,
cl:PushButton, ca:PushButton)
{ // operation of instantiation
Name.Set_id(str2pattern(na)); // identification set
Surname.Set_id(str2pattern(su)); // identification set
Age.Set_id(integer2pattern(ag)); // identification set
Close= cl;
Cancel=ca;

19

= Mew3 Dialog Box

MName || |
Surname | |
| Close I | Cancel I

Figure 10: Visual aspect of an object instantiated by the class New3DialogBox.
pat=str2pattern("New3DialogBox"); // static initialization

pat.Set_Position(30,45); // static initialization

Events:

end;

This new class inherits from the class NewDialogBox all its Gadgets, Operations, and Events.
According to OOP, in a subclass the Operations, Gadgets, and Events (that will be discussed
later) inherited from the superclass can be overwritten, and new Operations, Gadgets, and
Events defined, following the rules of monotonic inheritance. For example, the specialized
DialogBox has been obtained by adding two new (Gadgets: Age which is a TextBox, and the
Pattern pat. In Fig.10, an example of an object instantiated from that class is given. It should
be noted that it is only a particular case that the instances shown in Fig.9 and Fig.10 present the
same values for the attributes inherited (in the sense of dimension of TextBoxes, type of Texts
associated with the TextBoxes, position of Gadgets in general, type of PushButtons, etc.). In
fact, all dialog boxes having three TextBoxes, two PushButtons and one Pattern, placed in any
position, could be regarded as instances of class New3DialogBox and, thus, they can be stored
in the Object Database and subsequently recovered by means of a conceptual navigation.

Once the class definitions are performed, the class which represents the application under
test (for example, as a specialization of class Window), and the structure of the application have
also been defined. At this point, the main script can be written describing at a high-level the
process of testing:

// class definitions

20

// instantiation

theapp: MyApplication;

tmpDB : DialogBox;

FB : FoundBox; // window confirming the entry found and containing the
// the telephone number etc..

NFB : NotFoundBox; // window affirming that the entry was not found

// program
theapp.Open();
theapp.OpenFile("MyAgend");

tmpDB = theapp.Searching(); // request for opening the DialogBox for searching
// it is of type NewDialogBox

tmpDB.WriteText ("Mark","Smith");
tmpDB.Close();

When (Screen.Appear(FB)) do
FB.Get();

for i=1 to 2 do /* loop */

endwhen;

When (Screen.Appear(NFB)) do
NFB.Get();

NFB.OK();
endwhen;

It should be noted that by default a number of active instances is defined, in particular:
Mouse, Keyboard, Screen, and Time. Active means that they lead into concurrent threads of
executions. These objects are the only allowed instances of their respective and homonymous
classes of the testing tool. The service of the objects can be requested (by sending messages) in
every position of the script and in every operation defined for the classes. For example, to move
the mouse to the position (10,30) is enough to write Mouse.Move(10,30) or Mouse.Move(P1) if
P1 is a Point with coordinates (10,30); to find a pattern on the screen:

P1 : Position;
apattern : Pattern;

21

Pi=Screen.Find(apattern);

While a timer to the object Time must be requested to set a timeout:

endwhen;

In the above example, the construct When-endwhen has been used to define the actions which
must be executed once asynchronous exceptions are detected (e.g., a specific message from a
SUT to the HOST). These exception handlers can also be defined inside the class body under the
field Events. In this case, if an exception is redefined inside a class, and its occurrence reaches
the system during the execution of the operations of that class, then the script specified for the
exception inside the class is executed instead of the script associated with the exception at the
global level. The exception can be defined only on the basis of the operations allowed for the
active instances (i.e., Mouse, Keyboard, Screen, and Time). In fact, the construct When-endwhen
is defined at the level of the class ExtEvent in the testing tool. The class ExtEvent (see Fig.6)
is interfaced with the TROL kernel in order to support concurrency and the definition of events
with temporal constraints.

In the following, a part of the class definition of class MyApplication is reported. It should
be noted that the attribute variable pos is used inside the definition of class operations in order
to request the absolute displacements of the mouse:

Class MyApplication specialization Window
Menus:

TheTopMenu : TopMenu;
Gadgets:

VS : VertScrollBar;

HS : HorScrollBar;
Operations:

MyApplication (.............)

{

Point GetVertScrollBarPosition() { return(VS.GetPosition()); }
Point GetHorScrollBarPosition() { return(HS.GetPosition()); }
SetVertScrollBarPosition(p: Point)

{

Mouse.Move(pos+p);
%ouse.ClickLeft();

SetHorScrollBarPosition(p: Point)
{

22

Mouse.Move(pos+p);
%ouse.ClickLeft();

SelectAMainItemMenu(value: String)
{
p: Point;
p=TheTopMenu.WhereIs(value);

Mouse.Move(pos+p);
%ouse.ClickLeft();

SelectASubItemMenu(itemvalue: String, subitemvalue: String)

{

p,p2: Point;

im: ItemMenu;

im=TheTopMenu.WhoIs(itemvalue);

if (im.HasSubItem()) then
p2=im.WhereIs(subitemvalue);

Mouse.Move(pos+p2);

Mouse.ClickLeft();
endif;

Events:

end;

In addition, to what has been shown in the previous examples, also the constructs of
Repeat-until,While-do-endwhile,Do-while-endwhile, and Switch-do-case-else-endswitch
are present in LOOT. Moreover, the definition of procedures and functions is also allowed.

In the LOOT languages, there exists a particular construct to specify which operations must
be performed on the different SUTs which are connected on the dedicated network. This is
particularly important to test distributed applications. With the construct OnNode, the part of
a LOOT code which must be executed on a set of SUTs is specified. For example, with:

OnNode (n1, n2, n3)
{

it is specified that the LOOT code reported inside the brackets is executed on the SUTs named
n1,n2,n3, while the other is executed only on SUT n4. Obviously, the presence of a given SUT
in the construct is mutually exclusive. In the body of an OnNode construct, the construct Where
is used to define little changes of the test behavior depending on the occurrence of particular

exceptions. This can be useful if the hardware of the declared SUTs is different or to test

23

particular operating conditions. In the phase of Capture, the testing tools help the user to
define the classes and to inspect the Object Database for reusing already defined classes and

objects.

5 Conclusions

An object-oriented non-invasive C& P approach has been presented. It is suitable for testing
applications in distributed environments and for testing applications without modifying their
run-time environment. The approach proposed is strongly based on the object-oriented paradigm
at both hardware and software levels: “Hardware” in the sense that a new object-oriented
image grabber board for capturing and searching patterns in real-time has been implemented;
and, “Software”, since the entire C& P tool is object-oriented— i.e., the run-time kernel and the
script language for describing sequences of testing called LOOT (Language Object-Oriented for
Testing). The LOOT language allows the specification of (i) the structural hierarchy of the
application under test, (ii) the application behavior, and (iii) the test procedures. All these
descriptions can be saved and reused.

The main features of this new approach are (a) a reduction of testing time by supporting
the reuse of old tests (in the form of script programs written in LOOT language) at each
level of abstraction, (b) an anticipation of the testing phase overlapping the last phases of the
software life-cycle, and (c) a strong improvement in tools behavior with respect to the above-
mentioned problems related to the script maintainability and understandability, thus preserving

the advantages of the non-invasive testing tools.

Acknowledgments

The authors would like to thank E. Miller of Software Research, S. Bartlett of Tektronix
for their suggestions, the technical staff of ASIC s.r.l. for their valuable contribution, and the

anonymous reviewers for their comments which were useful for improving the paper.

References

[1] P. C. J. adn C. Erickson, “Object-Oriented Integration Testing”, Communications of the
ACM, Vol. 37, pp. 30-38, Sept. 1994.

[2] ASIC, “User’s Manual Hardware Simulator”, tech. rep., ASIC S.r.l., Via S. Clemente, 6,
10143, Torin, Italy, 1993.

24

[3] B. Beizer, Software Testing Techniques. Van Nostrand Reinhold, 1983.

[4] G. Booch, Object-Oriented Design with Application. California, USA: The Ben-
jamin/Cummings Publishing Company, 1991.

[5] N. S. Bradley, “The GUI Test BUilder: Breaking the Test Bottleneck”, in Proc. of 6th
International Conference on Software Engineering and Its Applications (sponsored by: FC2,
CXP, CIGREF, and SEFE), (Le CNIT, Paris la Defense, France), pp. 115-124, 15-19 Nov.
1993.

[6] G. Bucci, M. Campanai, and P. Nesi, “Tools for Specifying Real-Time Systems”, Journal
of Real-Time Systems, p. in press, March 1995.

[7] G. Bucci, M. Campanai, P. Nesi, and M. Traversi, “An Object-Oriented CASE Tool for
Reactive System Specification”, in Proc. of 6th International Conference on Software En-
gineering and Its Applications (sponsored by: FC2, CXP, CIGREF, and SEFE), (Le CNIT,
Paris la Defense, France), 15-19 Nov. 1993.

[8] G. Bucci, M. Campanai, P. Nesi, and M. Traversi, “An Object-Oriented Dual Language for
Specifying Reactive Systems”, in Proc. of IFEF International Conference on Requirements

FEngineering, ICRE’94, (Colorado Spring, Colorado, USA), 18-22 April 1994.

[9] G. Bucci and P. Nesi, “Impiego di tecniche visuali per la programmazione di controllori
industriali”, L’ELETTROTECNICA rivista dell’associazione Elettrotecnica ed Flettronica
Italiana, Vol. 78, June 1991.

[10] M. Campanai and P. Nesi, “Supporting Object-Oriented Design with Metrics”, in Proc.
of the International Conference on Technology of Object-Oriented languages and Systems,
TOOLS FEurope’94, (Versailles, France), 7-11 March 1994.

[11] M. Chandrasekharan, B. Dasarathy, and Z. Kishimoto, “Requirements-Based Testing of
Real-Time Systems: Modeling for Testability”, Computer, pp. 71-80, April 1985.

[12] B. Cox and B. Hunt, “Object, Icons, and Software-1CS”, Byte, pp. 161-176, Aug. 1986.

[13] A. DelBimbo and P. Nesi, “Blackboard-Based Concurrent Object Recognition Using and
Object-Oriented Database”, in Proc. of the IFEFE International Phoeniz Conference on
Computers and Communications, IPCCC’92, Scottsdale, AZ, USA, pp. 172-180, April 1-3
1992.

25

[14]

[15]

[16]

[17]

[18]

[19]

M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick, “Incremental Testing of Object-
Oriented Class Structures”, in Proc. of 14th International Conference on Software Engi-

neering, (Melbourne, Australia), pp. 68-80, IEEE press, ACM, 11-15 May 1992.

D. Hu, Object-Oriented Environment in C++ — A User-Friendly Interface. 14th Ave.

Portland, Oregon, USA: MIS Press, Management Information Source, Inc., 1990.

M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing User Interfaces Using Inter-
View”, IELFE Computer, Vol. 22, pp. 822, February 1989.

B. Meyer, Fiffel: a Language and Environment for Software Engineering. Prentice-Hall,
Englewood Cliffs, 1988.

P. Nesi, “An Object-Oriented Language and Compiler for Reactive Systems”, tech. rep., RT
13/93 Dipartimento di Sistemi e Informatica Facolta di Ingegneria, Universita di Firenze,

Florence, Italy, 1993.

O. Nierstrasz, “A Survey of Object-Oriented Concepts”, in Object-Oriented Concepts
Databases and Applications (W. Kim and F. H. Lochovsky, eds.), pp. 3-22, New York,
USA: Addison-Wesley Publishing Company, ACM Press, 1989.

R. M. Poston, “Automated Testing from Object Models”, Communications of the ACM,
Vol. 37, pp. 4858, Sept. 1994.

W. Schutz, “Fundamental Issues in Testing Distributed Real-Time Systems”, Journal Real-
Time Systems, Vol. 7, pp. 129-157, 1994.

M. A. Tarlton and P. N. Tarlton, “Pogo: A Declarative Representation System for Graph-
ics”, in Object-Oriented Concepts Databases and Applications (W. Kim and F. H. Lochovsky,
eds.), pp. 151-176, New York, USA: Addison-Wesley Publishing Company, ACM Press,
1989.

26

Biographies

Paolo Nesi received the degree in Electronic Engineering from the University of Florence,
Italy. In 1992, he received the Ph.D. degree in Electronic and Informatics Engineering from
the University of Padoa, Italy. In 1991 he was a visitor at the IBM Almaden Research Center,
CA, USA. Since November 1991 he is with the Department of Systems and Informatics of
the University of Florence, Italy, as a Researcher and Assistant Professor of both “Computer
Science” and “Software Engineering”. Dr. P. Nesi is an editorial board member of the Journal of
Real-Time Imaging, Academic Press, and the project manager of MEPI DIM45 ESPRIT III for
the University of Florence. Since 1987 he is active on different research topics, real-time systems,
formal specification languages, software metrics, parallel architectures, physical models, image

processing.

Antonello Serra received the degree in Electronic Engineering from the University of Turin,
Italy. His main interests and research areas include software testing, software quality assurance,
distributed systems. He is the president of ASIC s.r.l. Turin, Italy, since its constitution. He is

also a consultant of Olivetti Italia.

27

