
Estimation and Prediction Metrics for Adaptive
Maintenance Effort of Object-Oriented Systems

Fabrizio Fioravanti, Member, IEEE, and Paolo Nesi, Member, IEEE

AbstractÐMany software systems built in recent years have been developed using object-oriented technology and, in some cases,

they already need adaptive maintenance in order to satisfy market and customer needs. In most cases, the estimation and prediction

of maintenance effort is performed with difficulty due to the lack of metrics and suitable models. In this paper, a model and metrics for

estimation/prediction of adaptive maintenance effort are presented and compared with some other solutions taken from the literature.

The model proposed can be used as a general approach for adopting well-known metrics (typically used for the estimation of

development effort) for the estimation/prediction of adaptive maintenance effort. The model and metrics proposed have been validated

against real data by using multilinear regression analysis. The validation has shown that several well-known metrics can be profitably

employed for the estimation/prediction of maintenance effort.

Index TermsÐObject-oriented metrics, adaptive maintenance effort, estimation/prediction.

æ

1 INTRODUCTION

ONE of the most relevant problems of the maintenance
process is the estimation and prediction of related

effort [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The process of
maintenance can be focussed on several different types of
interventions on software: correction, adaptation, preven-
tion, etc. For this reason, it is very difficult to define and
validate a unique model for estimating effort that applies in
all cases. The different maintenance activities may present
several related aspects: reuse, understanding, deletion of
parts, modifications, development of parts, redocumenta-
tion, etc. These problems are relevant for both procedural
and object-oriented systems.

Several interesting approaches have been presented for

predicting and evaluating maintainability, reusability,

reliability, and effort for system development and/or

maintenance of object-oriented systems. These high-level

features and aspects have been, in many cases, related to

complexity or size and sometimes to other aspects concern-

ing system conformity with the object-oriented paradigm.

Certain relationships have been demonstrated by using

validation processesÐe.g., [11], [12], [13], [14], [15]. Classi-

cal metrics for procedural languages can be applied with

difficulty for the assessment of object-oriented systems [16],

[17], [11], [18], [19], [20].
To this end, for the assessment of object-oriented

systems, it is very important to take into account the

relationships of is-part-of, is-referred-by, and is-a. These

aspects must be captured with specific metrics, otherwise

their related costs are not directly measurable (e.g., the costs

of specialization, the costs of object reuse, the cost of

development, the costs for reengineering, maintenance,

etc.). The is-part-of, also called has-a by value, relationships

are very important for considering the system composition/

decomposition. The is-referred-by, also called has-a by

reference or association, relationships frequently hide dy-

namic links due to pointers between two or more objects for

managing data structures such as lists, trees, and graphs.

The is-a relationships are a reuse mechanism to exploit

polymorphism features of the object-oriented paradigm, but

have to be carefully used since inheritance can produce

degenerative conditions in which the presence of speciali-

zation can also decrease system reusability and maintain-

ability. Object-oriented modeling has been largely adopted

in industry in recent years. Unfortunately, systems built

four or five years ago may need adaptive maintenance in

order to better satisfy market and customer needs and, in

some cases, to follow the technology evolution.
In order to control development, as well as maintenance

and reengineering, quantitative metrics for evaluating and

predicting system characteristics must be used. Effort is one

of the most important issues that should be maintained

under control (i.e., person-months or -days needed for

system development or maintenance including analysis,

design, test or, in some cases, only for coding). To this end,

a linear or nonlinear relationship between software com-

plexity/size and effort is commonly assumed [21]. There-

fore, the problem of effort evaluation is typically shifted to a

complexity or size evaluation process. It should be noted

that, when software complexity evaluation is performed

after system building, it can be useful for:

1. predicting maintenance costs,
2. comparing productivity and costs among different

projects,
3. assessing development process efficiency and

parameters, and
4. predicting reengineering costs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002 1

. The authors are with the Department of Systems and Informatics,
University of Florence, Via di S. Marta 3, 50139, Florence Italy.
E-mail: {fioravanti@dsi, nesi@ingfi1}.unifi.it.

Manuscript received 1 Feb. 2000; revised 21 July 2000; accepted 1 Dec. 2000.
Recommended for acceptance by S. Pfleeger.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111365.

0098-5589/02/$17.00 ß 2002 IEEE

When software complexity evaluation is performed before
system building, it can be used for predicting development,
testing, early maintenance costs, etc.

Moreover, on the basis of knowledge that is present in
the early stages of the software life-cycle (e.g., number of
classes, main class relationships, number of methods,
method interfaces, etc.), the process of system analysis
allows for the definition and tuning of metrics for predicting
effort. From the cognitive point of view, the observable
complexity can be regarded as the effort required to
understand subsystem/class behavior and functionalities.
This complexity can usually be evaluated in the early
phases and can be used for predicting costs of reuse and
maintenance [22] or for estimating and predicting other
featuresÐe.g., [11], [23], [24], [25], [14], [26], [17], [27], [28].

In this paper, a study of the estimation and prediction of
adaptive maintenance effort for object-oriented systems
coded in C++ is presented. As a result, a model and metrics
for effort estimation/prediction of adaptive maintenance
are proposed and compared with traditional models and
metrics taken from the literature. For the proposed model,
new metrics and some well-known metrics are adopted and
validated. The validation has been performed by using real
data coming from a multipartner project. The validation
presented shows that several metrics that can be profitably
employed for effort estimation/prediction can also be
successfully used for estimation/prediction of adaptive
maintenance effort by using the proposed model. The
metrics presented in this paper are an extension of a
framework specifically defined for the C++ language [17],
[11], [29], [30], [31], [32].

This paper is organized as follows: In Section 2, the
metrics proposed for evaluating and predicting effort for
the adaptive maintenance of each class on the basis of
complexity/size are reported. In Section 3, the validation of
the most important metrics proposed is presented together
with a comparison of metrics extracted from the literature.
A descriptive statistic of metrics considered is also reported.
The validation proposes a study about the evolution of
metric parameters in the adaptive maintenance process. The
evolution of metric parameters can be profitably used to
deduce/study the trend of other projects. The metrics
considered have been validated against real data by using a
multilinear regression analysis. The validation shows the
relevance of metric terms during adaptive maintenance,
considering the differences with other estimation models.
Conclusions are drawn in Section 4.

To help the reader understand the metric formulation and
discussion, the authors have prepared the glossary reported at the
end of the paper, Table 23, in which the metrics and their
corresponding meaning are listed in alphabetic order.

2 METRICS FOR ESTIMATION/PREDICTION OF

ADAPTIVE MAINTENANCE EFFORT

In this section, a new model and metrics for the estimation
and prediction of the adaptive maintenance effort of object-
oriented systems are presented. The model is based on
classical metrics for effort estimation of object-oriented
systems development. To this end, a selection of metrics

from the literature has been performed on the basis of the
authors' experience (e.g., [17], [11], [29], [31], [30], [21]) and
considering the several similar experiences presented in the
literatureÐe.g., [28], [12], [25], [33], [16], [34], [14], [35], [36]
and [37].

A validation for the proposed metrics for prediction/
estimation for the adaptive maintenance effort is reported
in Section 3. The validation process has been performed
by using multilinear regression analysis and other
techniques [38].

Before presenting the new model/metric, some already
known metrics are presented since the model is based on
these.

2.1 Class Complexity and Size

At the method level, traditional functional metrics such as
McCabe's Cyclomatic Complexity, V g0, [39], [40], the
Halstead measure, Ha [41], and the number of lines of
code, LOC, can be used. These metrics are not very suitable
for assessing object-oriented projects since they are not
capable of taking into account all the object-oriented aspects
[23], [24], [11]. In fact, they neglect information about class
specialization (is_a: code and structure reuse) and class
aggregation and association (is_part_of and is_referred_by:
class/system structure definition and dynamic managing of
object sets, respectively). Metrics WMC (Weighted Methods
for Class) [25] and LOC (used in [28]) have been adopted as
good compromises between precision and simplicity of
evaluation for measuring the development effort.

In [31], [11], the fully object-oriented metric, CC, for
evaluating class complexity/size has been presented to-
gether with a comparison with the above mentioned object-
oriented metrics. This metric includes cognitive, structural,
and functional aspects. Class complexity/size, CC, has been
defined as the sum of the External Class Description (ECD)
and the Internal Class Implementation (ICI):

CC � ECD� ICI; �1�
where ECD is the complexity/size due to class definition
including method interface definition, while ICI is the
complexity/size due to method implementation. The above
mentioned CC components can be decomposed in complex-
ities due to local and inherited class members:

ECD � ECDL�ECDI; �2�

ICI � wCLCL� wCICI; �3�
where ECDL is External Class Description Local, CL is the
Class complexity/size due to Local methods, ECDI is
External Class Description Inherited, and CI is the Class
complexity/size due to Inherited methods. Metrics ECDL
and ECDI are defined as follow:

ECDL � wCACLCACL� wCMICLCMICL;

ECDI � wCACICACI � wCMICICMICI;

where CACL is the Class Attribute Complexity Local
(complexity due to locally defined attributes), CACI is the
Class Attribute Complexity Inherited, CMICL is the Class
Method Interface Complexity Local (complexity of local

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

method parameters), and CMICI is the Class Method
Interface Complexity Inherited (as the previous for methods
inherited).

Metrics CACL and CACI are estimated by considering
the complexity/size (CC) of class attributes involved.
Metrics CMICL and CMICI are estimated by considering
the complexity/size (CC) of class method parameters.
Metrics CL and CI measure the complexity/size of the
functional part estimated by using one of the above
mentioned metrics: Ha, V g0, and LOC. Thus, according to
the metric used, CC may be considered a complexity or a
size metric [42], in which details about the estimation of
metric terms and their formal properties are reported.
Similar results can be obtained by using V g0, while with
Ha the metric is less precise in estimating and predicting
effort [11].

Metric CC takes into account:

1. structural aspects (attributes, relationships of is_
part_of and is_referred_by),

2. cognitive aspects (methods, method ªcohesionº by
means of CMICL and CMICI, respectively), and

3. functional aspects by means of CL and CI.

The class attributes can be class instances (evaluated by
considering metric CC of their corresponding class), or
basic types (e.g., char, int, float, etc.) for which the
complexity is posed to predefined values according to the
functional metric used.

In the rest of the paper, CC has always been estimated by
using LOC as the basic functional metric.

Weights in the above metrics have to be evaluated by
using multilinear regression [38] on the basis of the actual
class effort [11]. The values of weights obviously depend on
the purpose for which metric is used. Thus, a trend for the
weights during the development and/or maintenance and/
or the reuse process has to be determined. For system
development, wCACI and wCI are typically negative stating
that the inheritance of attributes and methods leads to
savings in complexity/size and, thus, in effort.

In the context of estimating code metrics, the main
difference between predictive and a posteriori metrics is the
consideration or not of the functional code in their
estimation. Predictive metrics are estimated by using only
the class interface (that is the class/data definition). The
class definition is available from the early phases of detailed
analysis in which the final cost can be predicted. A
posteriori metrics also need class implementations, in terms
of method coding. Predictive metrics can be used even in
the presence of method implementations; in these cases,
they typically give less precise estimations than a posteriori
metrics. In general, a posteriori metrics consider all the class
aspects: attributes, method interface, and method imple-
mentation (both locally defined and inherited). Predictive
metrics can be also evaluated if the implementation phase
has not yet been performed, such as in the early phases of
system development.

The External Class Description metric, ECD, gives a
measure of what can be observed by a programmer via the
class definition, for example, in the phase of class reuse or
maintenance. ECD can be regarded as a particular case of
CC when the functional part is not considered or when it is

not yet availableÐfor instance, during the early phases of
system development or in the use of a library. For this
reason, metric CC can also be used for predicting class
complexity/size. In particular, the prediction is performed
by only considering the class definition: attribute declara-
tions and method prototypes. This estimation can be
performed during system analysis/early-design, for exam-
ple, from the information available in UML class diagrams.
The predictive version of the CC metric has the following
form:

CC0 � wCACL0CACL0 � wCMICL0CMICL0

� wCACI 0CACI 0 � wCMICI 0CMICI 0;
�4�

where CACI 0 and CACL0 are estimated on the basis of
CC0 of class members and, thus, are different from the
CC terms. Metric CC0 can be based on LOC or token-based
metrics. In the rest of the paper, a LOC-based CC0 metric
has been considered. Even in this case, the weights must be
evaluated by using a validation process such as that
reported in the next sections.

2.2 Class Attributes and Methods

A lighter approach for class size evaluation can be based
simply on counting the Number of Attributes Locally
defined (NAL) and the Number of Methods Locally defined
(NML) (see also metric Size2 � NAL�NML defined by Li
and Henry in [14], which is the sum of the number of local
attributes and methods). The counting of class members
could in many cases be a too coarse measure. For example,
when a class attribute is an instance of a very complex class,
it often implies a high cost of method development, which
is not simply taken into account by increasing the NAL of
one unit. Moreover, Size2 does not consider the class
members inherited (that is, reuse). In order to improve the
metric precision, a more general metric has been defined by
considering the sum of the number of class attributes and
methods both locally defined (NAML) and inherited
(NAMI), respectively:

NAM � NAML�NAMI; �5�
therefore, NAM can be expanded assuming the form:

NAM � wNALNAL� wNMLNML

� wNAINAI � wNMINMI;
�6�

where NMI is the number of inherited methods and NAI is
the number of inherited attributes. The typical values of
weights can be estimated by using a multilinear regression
technique. Note that, NAM metric can be used since the
early phases of software development for predicting class
size and thus class development costs.

2.3 Related Metrics

The CC metric and its components are related to other
metrics taken from the literature: the metric proposed by
Thomas and Jacobson [23], that proposed by Henderson-
Sellers [24], and the Weighted Method per Classes metric,
WMC, of Chidamber and Kemerer [25], [43]. These metrics
have been defined as the weighted sum of the number of
class members. The suggested weights were numbers

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 3

determined on the basis of previous experiences. In some
cases, the weight estimation has been performed by using
functional metrics [11]. Behind these definitions lies the
identification of the terms that can be relevant for the
estimation of class complexity/size. Therefore, considering
the terms suggested by these metrics and according to CC
and NAM, we have obtained the following metrics:

TJCC � w00CACLCACL00 � w00CLCL;

HSCC � w000CACLCACL000 � w000CLCL� w000CICI;

TJNAM � w00NALNAL� w00NMLNML:

In these metrics, the weights are different from those used
for CC or NAM since they are estimated according to a
different definition of the class complexity/size metric. For
the same reason, CACL00 and CACL000 are different from the
corresponding terms used in CC or CC0 since they are
based on a different estimation of class level complex-
ityÐe.g., CACL00 is the sum of the class complexity of the
attributes it estimated by using TJCC. For these reasons,
weights are distinguished from the previous by using
double and triple primes. Metrics CL and CI are based on
the simple estimation of functional metrics independently
from the class complexity estimation. Metrics NAL and

NML are based on counting class members. In addition to
these metrics, WMC can also be considered for its wide
diffusion. This metric is mainly considered as the number of
local methods: WMC � NML, while, in some cases, is
estimated considering a functional metric for weighting
class methods. If LOC is considered:

WMC�c� �
XNML�c�

m�1

LOC�m� � CL; �7�

where m is the generic method of class c. In the rest of the
paper, WMC will be considered in this more complex
version, while, in its simpler version, it is discussed as
NML. Note that, according to the definition of these
metrics, CC and NAML metrics are a generalization of
most of the metrics proposed in the literature.

2.4 A Reference Example for the Defined Metrics

In Fig. 1, a small C++ example is reported in order to better
explain the mechanisms used for the estimation of metrics
reported in the previous sections. The class diagram of the
presented system is also reported. Note that class C has
been derived from class B and both these classes include an
attribute of class A.

The values of the basic metrics discussed before are
reported in Table 1; while, in Table 2, some of the

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

Fig. 1. Example used for the estimation of the cited metrics.

composite metrics that have been previously cited are
calculated by considering their weights to be equal to 1. In
this case, LOC metric has been used for the estimation of
CC. Note the nonlinear behavior of CC with respect to the
LOC of the example and the different behavior of metrics
NAM and Size2 with respect to CC and CC0 in assessing
class B. For NAM and Size2, class B has the lowest values
compared to those of the other classes, while the CC and
CC0 metrics produce an intermediate value. This is due to
the fact that the NAM and Size2 metrics do not take into
account the complexity/size of attributes and methods in
their estimation.

2.5 System Level Metrics

The measurements performed on system components/
classes are composed to obtain the measure of the whole
system. Even in this case, compositional operators are used.
An object-oriented metric X is calculated at the system level
according to the following equation:

SX �
XNCL�S�
i�1

X�ci�; �8�

where X is the class-level metric used, NCL is the number
of system classes, and ci is the ith class of system S. This
approach can be used for estimating the following system
level metrics: SCC , SCC0 , SNAM , etc.

2.6 Metrics for Adaptive Maintenance Effort

As demonstrated in [11], some of the above-mentioned
metrics for complexity/size estimation are strongly corre-
lated with the development effort. In this section, a new
model and metric for the estimation and prediction of class
effort for adaptive maintenance is proposed. The model can
be applied by using the above-mentioned metrics.

The system/class effort for adaptive maintenance is
typically spent performing several operations: comprehen-
sion/understanding, addition and/or deletion of parts, and
modifications/changes of other system code portions. The
resulting model is:

Effam � Effadd � Effund � Effdel � Effchang;

where Effam is the effort of class/system adaptive
maintenance, Effadd the effort due to the addition of new
system parts, Effund the effort for system/class under-
standing; Effdel the effort for deleting parts and Effchang
the effort for changing/modifying parts. Note that the
understanding effort, Effund, is the first step for operating
changes: deletion, reuse, and modifications. This is a more
general model with respect to that used in [5]. The term
Effchang can be eliminated since the changes can be
regarded as decomposed into the phases of deleting and
of rewriting (adding) of specific parts. In this way, the
model is reduced to three terms:

Effam � Effadd �Effund � Effdel:
If the intention is to estimate/predict the maintenance

effort on the basis of the available data, the above-
considered terms for the maintenance effort have to be
estimated by using specific indirect metrics. These metrics
have to be based on code analysis, considering both the
system/class code after and before the adaptive maintenance
process. If the estimation is performed at the class level,
then complexity/size metrics such as CC, CC0, WMC,
TJNAM, Size2, and NAM can be used, while the
corresponding SX metrics can be used at the system level.
In Fig. 2, the relationships between system/class after and
before the adaptive maintenance are depicted.

An estimation of the effort related to the added parts,
Effadd, can be performed by using:

Effadd �Ma ÿMr;

where Ma is a system/class measure of effort performed on
the code after the activity of adaptive maintenance and Mr is
a measure obtained on the reused code of the system/class
before the adaptive maintenance.
Effund is the effort used to understand the system and to

decide the actions needed for the adaptation. It is reason-
able to suppose that Effund is related to the class/system
measure before the adaptive maintenance. For this reason,
the effort of understanding can be approximately estimated
by using Effund � kundMb, considering effort as directly
related to the effort for developing the size/complexity of
system/class before the adaptive maintenance process, and
kund specifies the relationship (as a scale factor) between
effort of understanding and the effort used for producing
the code before the adaptation process. This scale factor
should be determined during the validation process. If the
team, comprised of programmers and managers, which
performs the adaptive maintenance is the same as that
which has created the application before the adaptation,

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 5

TABLE 1
Basic Metrics Calculated on the Reference Example of Fig. 1

TABLE 2
Composite Metrics Calculated on the Reference Example,

by Using Weights Equal to 1, of Fig. 2

then the effort for comprehending the system can be
neglected with respect to the other factors. Under these
conditions, the effort is mainly due to the addition and
deletion of code pieces and, thus, Effund � 0.

In most cases, Effdel may be very difficult to directly
estimate by analyzing the system code. If a LOC-based

metric is used, the counting of removed lines of code can be
an approximated mechanism to perform its estimation.
Unfortunately, this approach cannot be used when more
complete and complex metrics are used (such as CC) since
structural and functional aspects and the class definitions
and relationships have to be considered. Typically, the
programmers are quite reluctant to delete methods since, in
many cases, it may be difficult and time consuming to be
sure that they are not used in other classes or by other team
members. Thus, code deletion in classes is typically limited
to parts of methods and only in some cases to entire
methods or attributes. This produces a well-known main-
tenance problem for object-oriented systems: the presence
of nonused methods and attributes. In general, Effdel can
be approximately estimated by using:

Effdel � kdelMdel � kdel�Mb ÿMr�;
where Mdel is a system/class measure of code deleted from
the before version of the system during the activity of
adaptive maintenance, kdel specifies the relationship (as a
scale factor) between deleting effort and the measure of the
deleted code, and Mb is a system/class measure of code
before the adaptive maintenance. The effort for deleting is
considered proportional to the estimated size/complexity
of the system/class code before the adaptive maintenance
process, minus the reused parts of the same code. The scale
factor is needed since the activity of deletion has a different
effort cost with respect to either the adding or under-
standing of parts. The scale factor should be estimated by
means of the validation process. Typically, the deleted parts
are only a limited percentage of the system/class before the
maintenance process. For these reasons, the model assumes
the form:

Effam �Ma ÿMr � kundMb � kdel�Mb ÿMr�:
In this equation, the values of metrics can be obtained on

the basis of the code if the reused portion of the before system
is known. The estimation of the unknown parameters kund

and kdel could be performed by a validation process based
on a multilinear regression technique.

This model can be simplified by considering that the
reused parts can be represented as a percentage of the
system/class before the adaptive maintenance process
Mr � kbMb, then

Effam �Ma ÿ kbMb � kundMb � kdelMb ÿ kdelkbMb:

This can be rewritten obtaining the model

Effam �Mam �Ma ÿ wMb
Mb; �9�

where Mam is a metric for effort estimation during adaptive
maintenance, typically related to effort, while the weightwMb

is defined as wMb
� �kb ÿ kund ÿ kdel � kdelkb. The estimation

of each weight is impossible since they are all multiplied by
the same factor; therefore, they are included in wMb

as a
unique weight. Weight wMb

can be estimated by means of a
validation process with a linear regression such as that
reported in Section 3. In addition, M metrics may have
internal weights that may be influenced by the adaptation
process performed as discussed in the next sectionsÐsee, for
example, CC, CC0, TJCC, HSCC, and NAM.

The above model takes into account:

1. the addition of new classes or parts of them for
addressing new functionalities;

2. the deletion of classes or parts of them in the before
version;

3. the changes in the before version;
4. the reuse of classes or portions of them from the

before version.

The model of (9) can be directly used at the system level.
If the model is used at the class level, the basic costs of
addition, deletion, and understanding are referred to each
class. This means that (9) can be used assuming a unique
value for weight wMb

. This implies that changes for the
adaptive maintenance are supposed to be uniformly
performed on all system classes, while during the adaptive
maintenance several distinct actions may be performed in a
nonuniform manner.

At class level, the uniform adaptation can be a correct
model depending on the adaptation process performed. For
example, if the adaptation consists of porting a software
application from one operating system to another, the
changes could be uniformly distributed in some classes and

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

Fig. 2. Relationships among the system after and before the maintenance process.

totally missing in others. If the hypothesis of uniformity is
not verified for all system classes, it can be satisfied at the
subsystem level or at level of clusters of classes [21]. In this
way, the limitation is removed by simply partitioning the
system into clusters. The above model remains valid by
estimating different values of weight wMb

for each cluster of
classes that suffered similar transformations during the
adaptive maintenance process.

In any case, the structure of the empirical relationship
between effort and measure holds the structure of (9).

2.6.1 CC-Based Metrics for Adaptive Maintenance

Considering M � CC in (9), the effort spent during the
adaptive maintenance can be expressed as

CCam � CCa ÿ wCCbCC�b ;
then wCCb can be included in the weights of CCb, thus
CCb � wCCbCC�b :

CCam � CCa ÿ CCb � wCLaCLa � wCIaCIa
� wCACLaCACLa � wCACIaCACIa
� wCMICLaCMICLa � wCMICIaCMICIa

ÿ wCLbCLb ÿ wCIbCIb ÿ wCACLbCACLb
ÿ wCACIbCACIb ÿ wCMICLbCMICLb

ÿ wCMICIbCMICIb:

Since CC is defined as the weighted sum of six terms, the
whole metric CCam has 12 terms and their corresponding
weights, six for CCa, and six for CCb. A complete validation
of the CCam metric has to be performed by considering the
whole structure of CC. In that case, a multilinear regression
can be used to estimate suitable weights. This validation
also allows for identifying terms of metric CCam that are
relevant for effort estimation of the adaptive maintenance.
Metric CCb also takes into account some cognitive aspects of
the system; for example, it partially models the effort in
comprehending the system before adaptation. In the past,
other linear and nonlinear models have been considered [5],
[7], [8], [9]. The adoption of a linear or nonlinear model
depends on the structure of the basic metric, M, used for the
definition of the maintenance metric. Typically, the basic
metrics are selected from those which are strongly related to
the development effort. For the same reasons, the CC metric
[11] was selected. Note that the CC metric considers the
nonlinearity of effort since CC terms take into account both
structural and functional aspects iteratively along the class
hierarchy [11].

A predictive version of CCam can be obtained by
considering M � CC0 in (9):

CC0am � CC0a ÿ wCC0bCC0�b � CC0a ÿ CC0b:
In this case, weight wCC0

b
can also be included in the terms of

CC0b (CC0b � wCC0bCC0�b); then, a multilinear regression has to

be used for estimating the eight weights of CC0am. Once the

system analysis of the adaptation phase is performed, the

structures that system classes will have after the adaptive

maintenance are known. With this knowledge, it is possible

to use the CC0am metric for predicting the adaptive

maintenance effort.

2.6.2 NAM-Based Metric for Adaptive Maintenance

Considering M � NAM in (9), effort spent for the adaptive
maintenance can be expressed as

NAMam � NAMa ÿ wNAMb
NAM�

b � NAMa ÿNAMb:

Weight wNAMb
can be included in the terms of NAMb

(therefore, NAMb � wNAMb
NAM�

b). The validation has to be
performed by considering the whole structure of NAM for
both NAMa and NAMb and, thus, estimating eight weights.
After a draft analysis of the adaptation phase that has to be
performed, the number of members that each class will
present at the end of the adaptive maintenance process is
known. Therefore, by using the NAMam metric, it is
possible to use this early knowledge for predicting the
adaptive maintenance effort.

2.7 Other Metrics and Models for Adaptive
Maintenance

The above approach can be used for defining general
metrics for the estimation of adaptive maintenance effort,
on the basis of the above-mentioned metrics: HSCCam,
TJCCam, and TJNAMam. For the WMC and Size2
metrics, a different approach has to be used since they
do not include weights in their definition. For this reason,
in order to estimate the model by applying techniques
reported in [38] for Size2 or WMC metrics, it is necessary
to adjust the model according to the following equation.
For example, for Size2:

Effam � Size2am � Size2a ÿ wSize2bSize2b;
and then,

Size2a ÿEffam � wSize2bSize2b:
Weight wSize2b is a scale factor that can be estimated with a
linear regression. Note that TJNAMam is based on counting
the same aspects as for the Size2am metric. The only
difference is the number of weights.

For NML, a model with two weights has been used. This
model is more precise than the model used for Size2am and
WMCam since the general metric can be more precisely
tuned:

Effam � NMLam � wNMLaNMLa ÿ wNMLbNMLb:

A very different model for estimating adaptive main-
tenance effort can be defined by considering only the
measure on the code after:

Effam �Mam0 � wMa: �10�
Weights w can be included in those of metric Ma, if any.
This model can be used for defining several different
metrics based on: CC, CC0, NAM, Size2, etc., obtaining
CCam0, CC0am0, NAMam0, Size2am0, etc.

Another different model with respect to those previously
discussed can be defined by considering the same weights
for both after and before terms:

Effam �Mam1 �
XN
i�1

wi�Ta�i� ÿ Tb�i��; �11�

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 7

where, for example, Ta�2� is the second term of metric Ma

(after the adaptive maintenance) and wi is the weight
associated with both after and before i-indexed terms of
metric M. This approach can be applied to all the above-
mentioned metrics. This model is probably the most used
for estimating and predicting the maintenance effort. In this
case, the terms of the metrics are previously combined and
then the weights are applied. For instance, NAMam1

presents only four weights instead of the eight weights of
model Mam discussed in the previous sections:

NAMam1 �
wNALam1

�NALa ÿNALb� � wNAIam1
�NAIa ÿNAIb�

� wNMLam1
�NMLa ÿNMLb� � wNMIam1

�NMIa ÿNMIb�:
The same approach can be used to obtain CCam1, WMCam1,
and Size2am1, etc.

2.7.1 Metric and Models Summary

In Table 3, a summary of the considered metrics and models
is reported. In the first column, the considered metrics are
listed, for each metric a short description is included on the
last two columns: type and class features. Column Type states
the approach for metric estimation: Functional-based, when
the metric is based on functional metrics such as LOC, V g0,
etc.; Counting members, when the metric is estimated by
counting the specified class members. Column Class Features
briefly describes the terms/class members considered
during the metric estimation. The metrics are ordered from
the more complete to the simpler: A metric has been
considered more complete than another if it takes into
account a greater number of aspects/factors of the object-
oriented paradigm (such as class members, relationships)
and phases of the maintenance process. For example,
metric Size2 is less complete than NAM since it does not
take into account inherited aspects and the latter metric is
less complete than CC for the lack of the functional part.

The internal columns are related to the measuring
models described in the previous sections. These columns
report the number of weights that are included in the model
defined depending on the metric M chosen. The number of
weights is related to the number of additive terms of the

metric and to the model used; for instance, models am0 and

am1 produce metrics with the same number of weights,

while model am1 uses two different measures of the

system, that is, after and before. As will be shown in the

next section, more complete models and metrics lead to

more precise results.
In the next section, the adoption of the above presented

metrics based on the models considered for estimation/

prediction of maintenance effort is discussed by using

validation techniques. These metrics can be useful for

1) comparing productivity and costs among different

projects and 2) learning the development process efficiency

and parameters for further estimation and prediction.

3 METRICS VALIDATION

A metric analysis has been performed in order to identify

which metrics among the above-mentioned are better

ranked for evaluating and/or predicting the effort for

adaptive maintenance of object-oriented systems.
The comparative analysis with validation has been

carried out among the previously defined metrics and

some of those already defined in the literature. Moreover,

an analysis to verify the influence of metric parameters in

producing the final results has been performed in order to

identify the minimum number of parameters that are

needed to obtain suitable measures. Therefore, the analysis

performed is more than a simple validation. It has produced

a clear view of the behavior of the above-mentioned metrics

for estimating class effort for adaptive maintenance.
The validation has been performed by considering the

data related to the MOODS ESPRIT IV project (Music

Object-Oriented Distributed System). The project consisted

of the implementation of a distributed system of music

lecterns starting from a stand-alone music editor (LIOO,

Lectern Interactive Object-Oriented) according to the tech-

nology transfer approach of HPCN project managed via

Technology Transfer Nodes, TTNs. The project addressed

the adaptation of a stand-alone music lectern and editor to

transform it into a distributed system of music editors, for

cooperative management of music. The reference TTN was

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

TABLE 3
Summary of Metrics and Models for the Estimation and Prediction of the Adaptive Maintenance

TETRApc having as partners CPR (Consortium Pisa
Research) and CESVIT (High Tech Agency).

MOODS has been a multipartners project evaluated in
about 44 man months including hardware and software.
Hardware effort was mainly devoted to implementing
special music lecterns. Software effort was used to

1. port the stand alone music editor from MS-DOS to
UNIX,

2. include the possibility of editing main music scores,
3. adapt the original version of the music editor

towards a distributed co-operative version,
4. implement an independent orchestra network con-

figurator and monitor,
5. implement several additional advanced functional-

ities for the cooperative music editor, and
6. connect the music editor to a database of music

scores.

The data and the code used in the following validation
are referred to points 1 and 2, which are the adaptive
maintenance phases of the project. In the MOODS project,
the first work-packages have been the porting and the
adaptation to the distributed approach, 1 and 2; then phases
3, 4, and 5 have been performed in parallel. Phases 1 and 2
have been performed by the same team that developed the
original version of LIOO. This has strongly reduced the
effort for class and documentation comprehension. LIOO
was comprised of 113 classes and these have become 133
after performing phases 1 and 2, with 9.6 person-months.
This version has been called LIOO5 since several inter-
mediate versions were analyzed.

In the following validation, the effort data was collected
by using log files detailing the effort performed in two main
categories [21]: the effort for coding and readapting the
system and the effort for documenting, general testing,
taking high-level decisions, management, etc. In the
following, two effort data sets are considered:

Effcm: effort including code manipulation, i.e., deleting
code, adding classes, removing classes, changing classes,
single class, and method testing, etc.

Efftot: effort including the above effort of code manipula-
tion, Effcm, plus the time spent for designing, docu-
menting, general testing, taking high-level decision,
management, etc. All these collateral activities are
fundamental to the adaptation process and are differ-
ently related to the code complexity/size with respect to
the activity on code.

The MOODS project has been built by using object-
oriented analysis and design methodologies (i.e., Booch
[44]) and all the project phases have been monitored and
maintained under control by using all the metrics presented
above and several others (e.g., those defined and discussed
in [11], [29], [31], and [30]).

Before presenting the validation of the proposed metrics,
the analysis of the system evolution including the phases of
porting and adaptive maintenance is presented.

3.1 Analysis of System Evolution

In order to better understand the system evolution in
Table 4, a summary of some system-level metrics is

reported for both LIOO1 (before) and LIOO5 (after) versions.

The process of adaptive maintenance has provoked an

increment of about 15 percent in the system size due to the

addition of new functionalities. This size increment is

located in some new classes and quite uniformly distributed

in the reused classes. This can be coarsely observed by

comparing the mean values of CC and MCC and the values

of MNA and MNM that have not changed their values in a

significant way after the adaptation. By the value of NRC, it

is evident that six classes (roots or stand-alone) have been

added. The added classes in our example are stand-alone

classes for representing the music main-score. In LIOO1,

some classes having a very high value of CC were

identified (e.g., CC about 4,300 units). This condition was

corrected during adaptive maintenance in version LIOO5 in

which the maximum CC is about 3,200 [30]. A further

analysis of system evolution during the adaptive main-

tenance is reported in the following.

3.1.1 System Effort and Weights Trends

In Fig. 3, the trend of metrics CC, CC0, and NAM for effort

prediction/estimation is reported together with the actual

cumulative effort evolution. The figure covers the time

frame from the phase of detailed analysis to the 90 percent

of the project. Note that the above graph reports the

evolution of LIOO in the MOODS project including the

orchestra network configurator. Note that, during the

maintenance process (from version 1 to version 5), the

estimation/prediction of system effort has been quite

precise with all the considered metrics. More precise figures

of this behavior are reported at the end of the validation.
Another interesting trend analysis is that of metric

weights. In Fig. 4, the trend for weights of CC along the

project evolution is reported. The weights have been

estimated by means of a multilinear regression analysis

during the validation of CC considering the total develop-

ment effort. This graph refers to the same project and

temporal window discussed in Fig. 3. The project presents

from phase 1 to 5, the period in which the porting and

adaptive maintenance have been performed. LIOO5 is the

phase after which the development restarted and LIOO6

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 9

TABLE 4
Overview of the System before and after

the Adaptive Maintenance Process

NCL is the Number of Classes in the system, NRC is the Number of
Root Classes in the system, TNM is the Total Number of Methods in
the system, TLOC is the Total number of LOC in the system, MCC is
the Mean value of CC, MNA is the Mean value of the Number of class
Attributes, and MNM is the Mean value of the Number of class
Methods.

represents the first check point in the development phase

after the porting. From Fig. 4, it can be observed that

. wCACL is quite stable, demonstrating that the defini-
tion of a local attribute is quite a constant cost during
the whole project life-cycle that includes the adap-
tive maintenance.

. wCACI is negative during the early phases of the
software life-cycle (denoting an effort saving). Then,
it becomes positive when the software becomes
more stable and during the adaptive maintenance.
The value of this weight increases during the
adaptation. The porting and adaptation have been
implemented by restructuring functional parts, in-
cluding the inherited part, thus the inspection of the
attributes of the superclasses has been a cost.

. wCMICL is positive during the project evolution
except for LIOO6 for which it becomes negative
denoting that an effort saving is possible only after
the stabilization of specification and documentation
about the methods' interfaces of the classes in the
hierarchy.

. wCMICI has quite an opposite trend with respect to
wCMICL denoting that a modification of basic class

method interfaces in the first phase of the project
produces light increments in effort; while a change,
when the hierarchy is stable, implies extensive
adaptation to all derived classes and, thus, the
coefficient becomes positive. During the adaptive
maintenance, this weight is negative, stating that the
presence of inherited methods was a cost saving.
This means that during the porting and adaptation
the presence of detailed interfaces for inherited
methods was a saving.

. The wCL coefficient is quite stable and always
positive for all the project versions denoting that
the development of local code is always a cost. The
relevance of functional aspects of the classes is
constant along the process even during the porting
and adaptation.

. The wCI coefficient influences only the last phases of
the software life-cycle, in which it helps to save effort
(it is negative). When the hierarchy is stable, the
code reuse by means of inheritance is always an
effort saving.

This example has shown how the trend analysis of

weights can give interesting information about the system

evolution. In Fig. 5, the trend of weights for CC0 metric

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

Fig. 3. Trend of the total development effort and the estimated/predicted effort (cumulative) on the basis of CC, CC0, and NAM. The trends include
LIOO6, which is the first milestone after the adaptive maintenance. It includes the implementation of the orchestra network configurator.

Fig. 4. Trend of CC weights along LIOO project evolution considering total development effort.

considering the total effort is reported. Their trend is quite

similar to that of the corresponding weights of the

CC metric. This means that to consider the functional terms

does not radically change the behavior of metric terms and

of the results produced.
The trends of weights reported in Fig. 4 and Fig. 5 do not

change their behavior if the values of weights are normal-

ized with respect to the mean value of their corresponding

metrics.
In Fig. 6, the trend for weights of CC along the project

development considering the code manipulation effort is

reported. From Fig. 6, it can be observed that:

. wCACL, wCL, and wCI denote quite constant costs
related to local attributes and methods, both locally
implemented and inherited.

. wCACI has a slight increasing value. This can be due
to the effort spent in inspecting the class hierarchy in
the adaptive maintenance.

. wCMICL and wCMICI have a similar behavior as the
corresponding weights for the CCam metric for the
total effort (see Fig. 4).

This example has shown how the trend of weights can be

used to analyze the system evolution. Moreover, the trend

of the weights is quite independent from the effort type

considered. As above, the same trend can be recovered by

considering the weights of CC0 metrics estimated for the

development effort.

3.2 Data Analysis

The distribution of changes along system classes is typically

nonuniform. As already stated, the problem of nonuniform

distribution of changes (addition, deletion, reusage) can be

managed by clustering classes with the same history and

evolution. The nonuniformity can be easily detected by

using tools for tracking changes.
According to the defined model, some other exceptions,

that can lead to obtain noncorrect estimations of the

adaptive maintenance effort, may exist.

1. Fusion. Some classes in the before version can be
fused into one class in the after version. This
operation is quite rare but possible during the
adaptive maintenance.

2. Split. The functionalities managed by a class in the
before version can be distributed among more classes
in the after version by moving methods and
attributes, and in some cases deleting parts. The

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 11

Fig. 5. Trend of CC0 weights along LIOO project evolution considering total development effort.

Fig. 6. Trend of CC weights along LIOO project development considering code manipulation effort.

split is quite a frequent action when a class becomes
too large.

The solution for the case of Fusion is to consider the fused
classes as a single class since the before version. For instance,
if classes Ci and Cj of the before version are fused into
class Ck in the after version, the following model can be
considered:

Effam�Cij!k� �Ma�Ck� ÿ wMb
�Mb�Ci� �Mb�Cj��:

In the same manner, in the case of Split, the solution is
to consider classes produced by splitting a large class
such as a unique class in the metric estimation even in the
after version:

Effam�Ck!ij� � �Ma�Ci� �Ma�Cj�� ÿ wMb
Mb�Ck�:

The grouping of classes with similar needs/histories of
adaptation is a solution for getting more precise predic-
tions/estimations, even for systems presenting a significant
number of instances of these cases. The weights related to
each of these groups can be separately considered and
estimated via separate validation processes if the number of
classes is large enough to perform a regression analysis. If
the history of system classes is not known, it is also possible
to make an analysis of system evolution by using tools for
tracking changes and duplicated code.

Moreover, it is very difficult to collect data by consider-
ing projects that have been evolved in a similar way. Thus,
the validation has been performed by using only the
MOODS project. The validation process has been per-
formed by using a multilinear least squares regression
technique [38] considering 1) the relationship between effort
and metrics as linear, 2) the values of direct metrics, and
3) the weights as unknown. Considering that, the effort for
each class of the system was available, the metric validation
has been based with more than 120 degrees of freedom. This
confers a certain relevance to the validation process.

In the validation reported in the following, no grouping
has been performed since the system evolution has been
only marginally affected by the above reported problems
even if the 26 percent of system classes have not suffered a
uniform adaptive maintenance.

In Table 5, the main clusters of classes which have been
identified on the basis of the changes performed on the
system during the adaptive maintenance are reported. The
main group is comprised of classes with changes and
additions. These classes are responsible for the 91 percent of
the whole system complexity. Classes of this group present
quite uniform modifications. The system evolution has not

produced deleted and/or fused classes. Only one class has
been split into two classes and, to these, additional code has
been added. The other significant clusters are those related
to unchanged classes, completely new classes, and split and
changed classes. These clusters present a low number of
classes and are only a small part of the whole system
complexity/size.

By using real data of adaptive maintenance effort
(provided in man/hours), the weights for CCam, CC0am,
and NAMam have been calculated by minimizing the least
squares error [38]. The correlation values have been
reported with all the data evaluated in order to have an
immediate figure of the validity of the results obtained.

As already discussed in the previous sections, metrics
can be classified as a-posteriori and predictive metrics. The
validation/analysis of metrics for these two categories are
separately discussed in the next sections.

The empirical validation proposed includes several
aspects and techniques. These contribute to provide a quite
comprehensive model for the metrics considered. To this
end, a statistical description of metrics has been implemen-
ted and, thus, a multilinear regression for the adaptive
maintenance effort has been used. In Table 6, the typical
values for the above metrics estimated by considering the
projects listed in Table 4 have been reported. In the table,
the maximum, the median, the minimum values, and the
standard deviation are reported for each metric. The values
reported in the table for metrics NAL, NML, NAI, NMI,
and Size2 are in accordance with those obtained by other
researchers [28], [16] when guidelines of object-oriented
analysis and design are applied by skilled people.

In the next sections, the results of the multilinear
regression analysis are given for the adaptive maintenance:

1. a-posteriori estimation of total effort;
2. a-posteriori estimation of code manipulation effort;
3. predictive estimation of total effort;
4. predictive estimation of code manipulation effort.

At the end, a comparison of results is reported.
In the next sections, if not otherwise specified, the data refers to

the period between version 1 and version 5 of LIOO system since
the maintenance was mainly performed in that period.

3.3 A-Posteriori Estimation of Total Effort of
Maintenance

In Table 7, the results of the multilinear regression analysis
for the CCam metric are reported. The regression has been
carried out by considering the total effort of adaptive
maintenance, Efftot, in person-hours and the CCam metric

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

TABLE 5
Classification Analysis of System Changes

Note the lack of deleted and fused classes, where SCC is the system complexity defined in terms of class complexity, CC, see (8).

with 12 components/weights, by using the techniques
discussed in [38]. In Table 7, statistical values showing the
confidence of the weights are reported for each component
of CCam. Relevant metric terms have to provide a t-value
greater than tnÿp;1ÿ�=2, where n is the number of classes, p is
the number of terms to be estimated, and � is the
percentage of confidence (i.e., for � equal to 0.05, we have
a confidence interval of 95 percent). In order to avoid the
recovering of data from probability tables, p-values are also
reported. p-values represent the probability that a Student-t
with nÿ p degrees of freedom becomes larger in absolute
value than the corresponding t-value. Below, the rows
containing the weights and the correlation between the real
adaptive maintenance effort and the estimated CCam with
the identified weights are reported.

In order to understand the results, it must be noted that a
Student-t can be considered quite similar to a Gaussian curve
if the number of degrees of freedom is greater than 30. In our

assessment, nÿ p > 100 and, therefore, the absolute value of
the t-value has to be greater than 1:96 for obtaining a
confidence interval of 95 percent. According to the above
considerations, the weights of CACL and CACI can be
imposed to zero in the CCam structure because both after
and before components satisfy the null hypothesis. By
imposing a null value on these weights the correlation
remains quite stable, 0:885, while, by eliminating any other
couple of terms, the correlation decreases significantly.

In the following tables, other results obtained by
eliminating couples of weights are reported. In general, it
is necessary to proceed to eliminate or consider both terms
(after and before) valid; otherwise, the Mam metric could
partially lose its symmetric structure (see, in the following,
the comparison with other models).

The model presented for the estimation of adaptive
maintenance takes into account the weighted difference
between corresponding terms (e.g., wCMICLaCMICLa ÿ
wCMICLbCMICLb), the weight sign must be carefully
considered. For this reason, a negative term represents an
effort saving, while a positive term represents a cost. In the
proposed model, the signs of weights are equal since they
are applied to the metric before or after the adaptation
process. This is due to the presence of the minus sign in the
proposed model (see (9)). According to Table 5, different
signs can be found for the metrics terms. Typically, the
terms after have higher values than their corresponding
before terms (that is, Ta � Tb). This is due to the fact that
classes after the adaptation typically present an increment
in size/complexity. For this reason, considering a couple of
corresponding terms we have two cases if Ta � Tb.

. Case 1. If wa > wb > 0, then waTa ÿ wbTb > 0 and,
thus, the corresponding term is a cost.

. Case 2. If wa < wb < 0, then waTa ÿ wbTb < 0 and,
thus, the corresponding term is a saving.

If wa < wb and the weights are positive or if wa > wb and the
weights are negative, nothing can be said about the cost or
saving for the terms, in general. A more accurate analysis
could be performed only by observing the single class or
cluster. Therefore, the above cases can be applied for
systems and clusters in which the deleted portions can be
neglected with respect to the additions performed.

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 13

TABLE 6
Typical Value of the Metrics Considered (Descriptive Statistics)

The values have been obtained considering LIOO5 version. WMC is present in both forms: CL and NML.

TABLE 7
Results of the Multilinear Regression Analysis

of CCam Metric for Total Effort Evaluation, Efftot

In Table 7, it should be noted that the terms related to
attributes (both locally defined and inherited) are not
relevant from a statistical point of view. Even if they
contribute to increase the correlation, their removal does
not change a lot the correlation level. According to the
previous considerations, the terms that increase the effort
are mainly related to the method interface: CMICL and
CMICI terms. This behavior is coherent with the process of
adaptation in which the inspection of class interfaces is
frequent.

In Table 7, the best correlation is obtained by considering
valid the values of the coefficients that are not significant
from a statistical point of view. In Fig. 7, CCam is depicted
by means of a dot diagram showing real values of effort
against the estimated ones.

For TJCCam, a strong decrement of correlation has been
obtained (correlation equal to 0.62, with a Standard
Deviation of 10.094). This decrement of correlation, with
respect to that of CCam, is mainly due to the lack of
inherited terms in TJCC. In this model, the term related to
class attributes, CACL, has no statistical meaning, but its
removal decreases the correlation by about 10 percent.

Metric HSCC is obtained by adding to metric TJCC the
term related to the inherited code, CI. The corresponding
results are reported in Table 8. In this case, the CACL term
is not significant according to the multilinear regression
analysis. As in the previous examples, the removal of this
component decreases the correlation.

Metric WMCam presents a low correlation with the total
maintenance effort spent during the adaptation process.
This fact is highlighted by a correlation of 0.6 with a
standard deviation of 9.5. The estimation of this version of
WMC is quite cheap since it consists of the counting of the
LOC for methods.

Metrics CC0am, TJNAMam, Size2am, and NMLam are
discussed together with prediction metrics in Section 3.5.

According to the above analysis, CCam is a suitable
metric for maintenance effort estimation by using the
nonstatistically meaningful coefficients, such as highlighted
in Section 3.7. The generic model allows estimating of the
maintenance effort with a significant accuracy. The stan-
dard deviation has to be regarded as a measure of the

spreading-out of the estimation and thus also of the feature
under estimation. The standard deviation of total Effort,
Efftot (see Table 6), is 11.26, which is comparable to the
standard deviations found for the previous metrics.

3.4 A-Posteriori Estimation of Code Manipulation
Effort of Maintenance

In Table 9, the results related to the validation of the
CCam metric for the estimation of code manipulation effort
of maintenance are reported. The correlation between that
effort, Effcm, and CCam is lower than those reported in
Table 7, where the total effort was considered. The mean-
ingful terms, from the statistical point of view, are the same
as in the analysis performed for the total effort. In general,
class attributes seem to have a lower influence on effort
estimation. The removal of CACL and CACI components
provokes a very small change in the correlation.

Note that, when code manipulation effort is considered,
the development of local code, CL, is only marginally
significant (see pÿ value of wCLa), while aspects considered
by CMICI are still a cost.

The same considerations reported for TJCCam, in the
case of total effort, are also valid for code manipulation

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

Fig. 7. Dot diagram representing the correlation between CCam and Efftot.

TABLE 8
Results of the Multilinear Regression Analysis of the

HSCCam Metric for Total Effort Evaluation of Maintenance,Efftot

effort, such as reported in Table 10. The main difference is
related to the fact that all coefficients are significant. In
particular, the CACL term is significant and the sign of the
weights of the after terms of the metric suggests that an
effort increment is related to this component.

In Table 11, wCI is the only nonsignificant term. By
removing the CI term (forcing wCI � 0), HSCC assumes
the same structure of TJCC, but with a higher correlation.
This fact suggests that the CI term influences the other
terms in metric estimation (see the definition of the
CC metric). The significance of the CI terms is not
drastically low and, thus, it may be included in the model.
For the estimation of code manipulation effort, the HSCC
correlation is increased to more than 80 percent. Also in this
case, local attributes and methods have generated an
increment of effort, confirming the above analysis of the
adaptive maintenance process.

In this case, metric WMCam presents a correlation of
0.442 with a standard deviation of 3.98. This is coherent

with the behavior of this metric for the total effort
estimation. Note that this version of WMC is in practice
totally procedural since it consists of counting the LOC. For
a different version of WMCam, follow the behavior of
NMLam which is discussed together with prediction
metrics in Section 3.6.

3.5 Predictive Estimation of Total Effort of
Maintenance

In this section, some metrics for effort prediction (in absence
of terms related to functional code complexity) are reported.
In particular, metrics CC0, TJNAM, NAM, and Size2 are
applied in the generic maintenance model of (9).

In Table 12, the results obtained for metric CC0am
considering total effort, Efftot, are reported. The correlation
obtained for CC0am is very close to that obtained for CCam.
Analyzing the statistical values related to the metric terms,
it is evident that CACI 0am and CMICI 0am satisfy the null
hypothesis and, therefore, the related weights should be
zeroed. After removing the CACI 0am and CMICI 0am terms, a

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 15

TABLE 9
Results of the Multilinear Regression Analysis of the

CCam Metric for Code Manipulation Effort Evaluation, Effcm

TABLE 10
Results of the Multilinear Regression Analysis of the

TJCCam Metric for Code Manipulation Effort Evaluation, Effcm

TABLE 11
Results of the Multilinear Regression Analysis of the

HSCCam Metric for Code Manipulation Effort Evaluation, Effcm

TABLE 12
Results of the Multilinear Regression Analysis of the

CC0am Metric for Total Effort Evaluation, Efftot

new evaluation of the correlation has produced a value of
0.90, with a standard deviation of 11.2. The more complete
metric, CCam, is better ranked with respect to the reduced
CC0am. This gives a very accurate effort prediction even in

the early phases of the adaptive maintenance process. The

CMICL0 term was the most significant for CC0 estimation

as resulted from the regression analysis. This can be

justified by the fact that in the reengineering phase a great

effort is devoted to the method interface, review, analysis,

and understanding.
Metric NAM can be suitably used for effort prediction

[11], while in this case, NAM has been used for predicting

the adaptive maintenance effort. In Table 13, the results

regarding multilinear regression analysis and correlation

for total effort estimation of the adaptive maintenance for

metric NAMam are reported. A relatively high correlation

has been obtained for NAMam. The analysis performed on

NAMam highlights that NML is the most important factor

among the metric components. This confirms the considera-

tions about the relevance of the CMICLam term of CCam,

and the diffusion of the WMC version based on counting

local methods. The terms of NMI have a specific behavior

with respect to the other cases inspected since they present

the same positive sign in both after and before terms

(including the minus sign of (9)). On the other hand, this

term is not very significant.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

TABLE 13
Results of the Multilinear Regression Analysis of the
NAMam Metric for Total Effort Evaluation, Efftot

Fig. 8. Fitting trends for the intermediate versions from LIOO1 to LIOO5: (a) NAMam and (b) CC0am.

Note that metric NAMam is very cheap to calculate and
the high correlation obtained means that it can produce a
very interesting approximation of the adaptive maintenance
effort when the method interfaces have not been defined.
Metric NAMam can be profitably used in the early phases of
reengineering analysis. Once the method interfaces are
defined, metric CC0am can be used to obtain a better
approximation of the maintenance effort. As soon as the
same pieces of method code are written, CCam and
CC values can be adopted to evaluate the correct coeffi-
cients to be applied in future estimations. CCam can be
directly used since CC0am can be regarded as a special case
of CCam when the functional parts are empty. Therefore,
errors may be accepted in the predictive estimation of effort
by using metric NAMam since they are corrected when the
estimation of NAMam can be abandoned in favor of more
precise metrics along the project life-cycle.

Metric TJNAMam can be considered equivalent to
NAMLam and presents a lower correlation with respect to
the NAMam and Size2am metrics, even if at system level it
performs better than Size2am, see Section 3.7. According to
the above discussion, metric Size2am presents only one
coefficient for the tuning process. The weight obtained by
the multilinear regression analysis has the value of wSize2b �
0:547 with a great confidence (pÿ value � 0:000). A correla-
tion of 0.671 has been obtained with a standard deviation of
8.58. This metric is penalized with respect to NAM for the
lack of 1) inherited terms and of 2) weights associated with
the metric terms.
NMLam produces quite good results considering its

correlation (0.73) even though it is very simple to estimate.
In Fig. 8, the applications of metrics NAMam and CC0am to

the intermediate versions of the system under adaptive
maintenance is reported. As it is shown in the next sections
these metrics are those that were better ranked among all
metrics considered. The dashed line depicts the actual
maintenance effort, while the continuous line represents the
metric fitting: reevaluating weights for each intermediate
version. In this way, the model has been validated not only
between version 1 and 5 of LIOO, but also in all the
intermediate versions. Version LIOO6 has not been taken
into account since it is out of the maintenance as previously
discussed.

In Table 14, the absolute error (in hours) and MRE percent,
(100 (actual effortÐpredicted effort)/actual effort) in esti-
mating the maintenance effort are reported.

3.6 Predictive Estimation of Code Manipulation
Effort of Maintenance

In Table 15, the multilinear regression analysis of CC0am for
predictive estimation of code manipulation effort is
reported. The weights of CMICI 0 present a different sign,
but were nonsignificant for the model. In this case, the
weights wCMICL0 are the only significant weights of the
metric; when all the other weights are set to zero, the
correlation becomes slightly better. In this case, the
correlation is greater than 0.8 and, thus, it can be suitably
employed for prediction of code manipulation effort. It
should be noted that the CC0am metric is better ranked for
total effort prediction. This confirms the suitability of the
model and metric for effort prediction.

For metric NAMam, the results are similar to those
obtained for CC0am (see Table 16). TJNAMam presents a
lower correlation with respect to NAMam. Metric Size2am
confirms the good performance of metrics based on
counting class members. By employing the same methodol-
ogy described in Section 3.5 for the estimation of the

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 17

TABLE 14
Estimation Errors of Total Maintenance Effort (Efftot) by Using

Predictive Metrics NAMam and CC0am

Several estimations depending on the application phase are reported.

TABLE 15
Results of the Multilinear Regression Analysis of CC0am Metric

for Code Manipulation Effort Evaluation, Effcm

TABLE 16
Results of the Multilinear Regression Analysis of the

NAMam Metric for Code Manipulation Effort Evaluation, Effcm

coefficient, a coefficient wSize2 � 0:985 and a correlation of
0.786 have been obtained with a standard deviation of 5.61.
NMLam produces quite good results considering its
correlation of 0.77.

In Fig. 9, the applications of metrics NAMam and CC0am
for the estimation/prediction of code manipulation effort
for the intermediate versions of the system under adaptive

maintenance is reported. The dashed line depicts the actual

maintenance effort, while the continuous line represents the

fitting: reevaluating weights for each intermediate version.
In Table 17, the absolute error (in hours) and

MRE percent in estimating the code manipulation effort of

maintenance are reported. These values correspond to data

depicted in Fig. 9 in continuous and dashed lines.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

Fig. 9. Fitting trends and predictions for the intermediate versions from LIOO1 to LIOO5: (a) NAMam and (b) CC0am. The dashed line depicts the
actual maintenance effort, while the continuous line represents the fitting: reevaluating weights for each intermediate version. The dotted lines depict
the prediction activity from one phase to the next.

TABLE 17
Estimation Errors of Code Manipulation Maintenance Effort
(Effcm) by Using the Predictive Metrics NAMam and CC0am

Several estimations depending on the application phase are reported.

TABLE 18
Errors in Predicting Code Manipulation Maintenance Effort

(Effcm) by Using the Predictive Metrics Described in the Paper
with the One-Step Prediction Metric

The metrics have been evaluated by using the weights estimated in the
previous phase.

In order to verify the model predictability, a further
inspection has been performed. In Fig. 9, the dotted lines
represent the prediction activity from one phase to the
next. In that case, the weights estimated by considering
metric Mam�ver:k; ver:k� 1� between two consecutive
versions have been used for predicting maintenance effort
to reach version k� 2, obtaining a one-step metric for
prediction Mam�ver:k; ver:k� 1; ver:k� 2�. This approach
poses the basis for the continuous control (prediction/
estimation) of the maintenance process, where weights
calculated in the previous phase are used to predict the
next phase effort. In Table 18, the absolute errors and
MRE percent with respect to the actual effort of main-
tenance for the predictions depicted in Fig. 9 are reported.
Note that, even in this case, the prediction of adaptive
maintenance is quite satisfactory. The maximum of the
error has been recorded for the CC0am metric.

3.7 Discussion and Comparison

In Tables 19 and 20, a comparison among the above-
mentioned metrics when they are used for the estimation of
the adaptive maintenance effort is reported. The compar-
ison has been performed by using these metrics in the
model of (9), obtaining in this way a set of new metrics:
CCam, TJNAMam, CC0am, NAMam, NMLam, Size2am, and
WMCam. The correlation and standard deviation values
have been obtained via validation by considering the code
of LIOO (after and before the adaptive maintenance) and
the maintenance effort.

The results show that metrics TJCCam and HSCCam are
less suitable than the complete model based on CCam
because they do not take into account the methods interface
that has a great influence in the evaluation of adaptive

maintenance effort. On the other hand, metric Size2am
seems to have a relatively high correlation, considering that,
in Size2am, only local class members are considered. This
fact is strengthened by the consideration that, in NAMam,
the most significant terms are related to the local part of the
class.

In Table 21, the system estimated and/or predicted
maintenance effort, SX, is reported along with the absolute
error (in hours) and MRE percent, in order to understand
how a metric which performs better in terms of correlation
can be suitably employed for the estimation of total system
maintenance effort. In general, the metrics used under-
estimate the real effort and the error is more relevant to
Total Effort that takes into account not only the code, but
also all the maintenance related aspects.

As a general result, CCam and NAMam are the most
suitable metrics for adaptive maintenance effort estimation
and prediction. On the other hand, the other metrics
considered also present quite satisfactory results. Note that
the standard deviation of the estimating metrics is very
close to that of effort, see Table 6.

In Table 22, results obtained by using the models of (10)
and (11) have been reported for comparing them with those
obtained for the same metrics with the more complete
model of (9). The first part of the table reports the results
obtained by using model am0 of (10) in which the measures
on the code after the adaptive maintenance process have
been used for estimating the corresponding effort. Note that
metrics, such as Size2 and NAM, present very low
correlation values. These are about 10 percent lower than
those obtained by using the previously discussed model.

In the second part of Table 22, model am1 of (11) has
been used for the estimation and prediction of the

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 19

TABLE 19
Comparison Among Several Estimation Metrics for Maintenance Effort (Development and Total)

TABLE 20
Comparison Among Several Predictive Metrics for Maintenance Effort (Development and Total)

maintenance effort. In this model, after and before terms

present the same weights.
Note that both these models are less satisfactory than

that obtained by using metric model Mam of (9). Similar

results are confirmed by all the other metrics considered.
The correlation values obtained between maintenance

effort with CCam0 and NAMam0 and Size2am0 are less

satisfactory than those obtained for other metrics. The

results demonstrate that classical metrics for estimation and

prediction of development effort are unsuitable for the

estimation of the adaptive maintenance effort with respect

to the newly identified metrics and model. They can be

suitably employed for maintenance effort estimation by

using the model of (9).

4 CONCLUSIONS

A general model for adaptive maintenance effort evaluation
and prediction has been proposed. The application of the
model to metrics and their validation with respect to real
data collected during the ESPRIT project MOODS have
allowed us to identify a suitable set of new metrics for
maintenance effort estimation and prediction. The metrics
analyzed and validated have been compared with well-
known complexity/size metrics for the estimation of
development effort presented in the literature. Statistical
validations and the estimated weights have been reported.

The proposed model has been compared with simpler
models considering several different metrics. The results
obtained have shown that the proposed model is better
ranked with respect to the simpler models. The difference
results from a 10 percent to 20 percent of increment in
correlation. The model can be also used for predicting
maintenance effort depending on the metric used.

The main lessons learned from this analysis can be
summarized in the following points:

1. During adaptive maintenance, strong attention
should be paid to method definition and in parti-
cular to the method interfaces.

2. Local attributes are not so relevant during the
adaptive maintenance (typically few attributes are
added), while inherited attributes are relevant since
they hide internal states for subclasses instances.

3. CC0am was the most suitable metric for predicting
the effort for the adaptive maintenance (the count-
ing of the number of methods or the estimation of
Size2 metrics can be good compromises for an early
system assessment).

4. The complexity of the interfaces for locally defined
methods and their number are the most important
factors for estimating the adaptive maintenance
effort, their complexity is a cost for comprehending
the system and thus for its manipulation.

5. The analysis of the evolution of metric weights can
help to understand the process performed on a
system.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

TABLE 22
Results Obtained by Using Other Two Classical Metric Models for Estimation of Maintenance Effort

TABLE 21
Comparison Among the Considered Metrics for System
Estimation and Prediction of Effort (Code Manipulation
and Total in Hours) for Adaptive Maintenance, Where

Efftot � 1; 476 Hours and Effcm � 415 Hours

6. Metrics based on counting members are less precise
than functional-based metrics.

7. Total effort of maintenance can be better estimated
by using functional-based metrics since metrics
based on counting class members neglect several
aspects that produce a strong impact on documenta-
tion and test costs.

8. Simple development metrics used in model am0 are
unsuitable to estimate maintenance effort; the best
model was am, the proposed one.

APPENDIX

The Appendix presents a glossary of the metrics mentioned
in this paper (Table 23).

ACKNOWLEDGMENTS

The authors would like to thank Professor G. Bucci for his
suggestions and the members of the MOODS team for the
collected data and the reviewers for their contribution in
making the paper stronger and clearer. They extend a
particular thanks to the reviewers that provided useful
suggestions to improve the paper and to the people who
have worked in the past for the implementation and testing
of the several components of our code analyzer, TAC++. The
code analyzer for the estimation of the metrics mentioned in
this paper can be obtained by sending a request to the
authors. This work was partially supported by Ministero
dell'Universita' e della Ricerca Scientifica e Tecnologica
(MURST Ministry of University and Scientific Research).

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 21

TABLE 23
Glossary of the Metrics Mentioned in this Paper

REFERENCES

[1] N.F. Schneidewind, ªThe State of Software Maintenance,º IEEE
Trans. Software Eng., vol. 13, no. 3, pp. 303±310, Mar. 1987.

[2] D. Kafura and G.R. Reddy, ªThe Use of Software Complexity
Metrics in Software Maintenance,º IEEE Trans. Software Eng.,
vol. 13, no. 3, pp. 335±343, Mar. 1987.

[3] C.F. Kemerer and S. Slaughter, ªAn Empirical Approach to
Studying Software Evolution,º IEEE Trans. Software Eng., vol. 25,
no. 4, pp. 493±509, Apr. 1999.

[4] D. Coleman, D. Ash, B. Lowther, and P. Oman, ªUsing Metrics to
Evaluate Software System Maintainability,º Computer, pp. 44±49,
Aug. 1994.

[5] M. Jorgensen, ªExperience with the Accuracy of Software
Maintenance Task Effort Prediction Models,º IEEE Trans. Software
Eng., vol. 21, no. 8, pp. 674±681, Aug. 1995.

[6] R.D. Banker, S.M. Dtar, C.F. Kemerer, and D. Zweig, ªSoftware
Complexity and Maintenance Costs,º Comm. ACM, vol. 36, no. 11,
pp. 81±94, Nov. 1993.

[7] B.W. Boehm, Software Engineering Economics, Prentice Hall, 1982.
[8] B. Kitchenham, ªEmpirical Studies of Assumptions that Underlie

Software Cost-Estimation Models,º Information and Software
Technology, vol. 34, pp. 211±218, Apr. 1992.

[9] T. Mukhopadhyay and S. Kekre, ªSoftware Effort Models for
Early Estimation of Process Control Applications,º IEEE Trans.
Software Eng., vol. 18, no. 10, pp. 915±923, Oct. 1992.

[10] G.K. Gill and C.F. Kemerer, ªCyclomatic Complexity Density and
Software Maintenance Productivity,º IEEE Trans. Software Eng.,
vol. 25, no. 12, pp. 1284±1288, Dec. 1999.

[11] P. Nesi and T. Querci, ªEffort Estimation and Prediction of Object-
Oriented Systems,º The J. Systems and Software, vol. 42, pp. 89±102,
1998.

[12] V.R. Basili, L. Briand, and W. L. Melo, ªA Validation of Object
Oriented Design Metrics as Quality Indicators,º IEEE Trans.
Software Eng., pp. 751±761, Oct. 1996.

[13] C.F. Kemerer, ªAn Empirical Validation of Software Cost
Estimation Models,º Comm. ACM, vol. 30, no. 5, pp. 416±429,
May 1987.

[14] W. Li and S. Henry, ªObject-Oriented Metrics that Predict
Maintainability,º The J. Systems Software, vol. 23, pp. 111±122, 1993.

[15] W. Li and S. Henry, ªMaintenance Metrics for the Object Oriented
Paradigm,º Proc. First IEEE Int'l Software Metrics Symp., pp. 52±60,
May 1993.

[16] B. Henderson-Sellers, Object Oriented Metrics. N.J.: Prentice Hall,
1996.

[17] P. Nesi and M. Campanai, ªMetric Framework for Object-
Oriented Real-Time Systems Specification Languages,º The J.
Systems and Software, vol. 34, pp. 43±65, 1996.

[18] L.C. Briand, J.W. Daly, and J. K. Wust, ªA Unified Framework for
Coupling Measurement in Object Oriented Systems,º IEEE Trans.
Software Eng., vol. 25, no. 1, pp. 91±120, Jan./Feb. 1999.

[19] L.C. Briand, J. Wust, and H. Lounis, ªUsing Coupling Measure-
ments for Impact Analysis in Object Oriented Systems,º Proc. IEEE
Int'l Conf. Software Maintenance, Sept. 1999.

[20] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, ªExploring the
Relationships between Design Measures and Software Quality in
Object Oriented Systems,º J. Systems and Software, 1998.

[21] P. Nesi, ªManaging Object Oriented Projects Better,º IEEE
Software, pp. 50±60, July/Aug. 1998.

[22] S.N. Cant, B. Henderson-Sellers, and D.R. Jeffery, ªApplication of
Cognitive Complexity Metrics to Object-Oriented Programs,º J.
Object Oriented Programming (JOOP), pp. 52±63, July/Aug. 1994.

[23] D. Thomas and I. Jacobson, ªManaging Object-Oriented Software
Engineering,º Tutorial Note, TOOLS '89, Int'l Conf. Technology of
Object-Oriented Languages and Systems, p. 52, Nov. 1989.

[24] B. Henderson-Sellers, ªSome Metrics for Object-Oriented Software
Engineering,º Proc. Int'l Conf. Technology of Object-Oriented
Languages and Systems, TOOLS 6, pp. 131±139, 1991.

[25] S.R. Chidamber and C.F. Kemerer, ªA Metrics Suite for Object
Oriented Design,º IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476±
493, June 1994.

[26] B. Henderson-Sellers, ªIdentifying Internal and External Char-
acteristics of Classes Likely to be Useful as Structural Complexity
Metrics,º Proc. Int'l Conf. Object Oriented Information Systems, OOIS
'94, D. Patel, Y. Sun, and S. Patel, eds., pp. 227±230, Dec. 1994.

[27] L.A. Laranjeira, ªSoftware Size Estimation of Object-Oriented
Systems,º IEEE Trans. Software Eng., vol. 16, no. 5, pp. 510±522,
May 1990.

[28] M. Lorenz and J. Kidd, Object-Oriented Software Metrics, A Practical
Guide. N.J.: PTR Prentice Hall, 1994.

[29] F. Fioravanti, P. Nesi, and S. Perlini, ªA Tool for Process and
Product Assessment of C++ Applications,º Proc. Second Euromicro
Conf. Software Maintenance and Reeng., pp. 89±95, Mar. 1998.

[30] G. Bucci, F. Fioravanti, P. Nesi, and S. Perlini, ªMetrics and Tool
for System Assessment,º Proc. IEEE Int'l Conf. Complex Computer
Systems, pp. 36±46, Aug. 1998.

[31] F. Fioravanti, P. Nesi, and S. Perlini, ªAssessment of System
Evolution through Characterization,º Proc. IEEE Int'l Conf. Soft-
ware Eng., pp. 456±459, Apr. 1998.

[32] F. Fioravanti and P. Nesi, ªA Method and Tool for Assessing
Object-Oriented Projects and Metrics Managemen,º The J. Systems
and Software, 2001.

[33] L. Briand, J. Wurst, S. Ikonomovski, and H. Lounis, ªA
Comprehensive Investigation of Quality Factors in Object Or-
iented Designs: An Industrial Case Study,º Technical Report
ISERN-98-29, IESE-47988e, IESE, Germany, 1998.

[34] F. BritoeAbreu, M. Goulao, and R. Esteves, ªToward the Design
Quality Evaluation of Object Oriented Software Systems,º Proc.
Fifth Int'l Conf. Software Quality, Oct. 1995.

[35] O. Signore and M. Loffredo, ªSome Issues on Object-Oriented Re-
Engineering,º Proc. ERCIM Workshop Methods and Tools for Software
Reuse, 1992.

[36] M.A. Chaumun, H. Kabaili, R.K. Keller, and F. Lustman, ªA
Change Impact Model for Changeability Assessment in Object
Oriented Software Systems,º Proc. Second Euromicro Conf. Software
Maintenance and Reeng., Mar. 1999.

[37] P. Bengtsson and J. Bosh, ªArchitecture Level Prediction of
Software Maintenance,º Proc. Third Euromicro Conf. Software
Maintenance and Reeng., Mar. 1999.

[38] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier
Detection. N.Y.: John Wiley & Sons, 1987.

[39] T.J. McCabe, ªA Complexity Measure,º IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308±320, 1976.

[40] B. Henderson-Sellers and J.M. Edwards, ªThe Object Oriented
Systems Life Cycle,º Comm. ACM, vol. 33, no. 9, pp. 143±159, Sept.
1990.

[41] H.M. Halstead, Elements of Software Science. N. Holland: Elsevier,
1977.

[42] F. Fioravanti and P. Nesi, ªComplexity/Size Metrics for Object-
Oriented Systems,º Technical Report, Univ. of Florence, TR 17/99,
Italy, 1999.

[43] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, ªManagerial Use of
Metrics for Object Oriented Software: An Exploration Analysis,º
IEEE Trans. Software Eng., vol. 24, no. 8, pp. 629±639, Aug. 1998.

[44] G. Booch, Object-Oriented Design with Applications. Calif.: The
Benjamin/Cummings Publishing Company, 1994.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

Fabrizio Fioravanti received the Laurea De-
gree in electronic engineering and the PhD
degree in software engineering and telecommu-
nications from the University of Florence, Italy.
He is an assigned professor of computer
architecture at the same University. He has
been local chair and a member of the program
committee of international conferences. His
current research interests include software en-
gineering, object-oriented technologies, and

software metrics for quality estimation of object-oriented systems. He
is a member of the IEEE and the IEEE Computer Society.

Paolo Nesi received the DrEng degree in
electronic engineering from the University of
Florence, Italy. He received the PhD degree
from the University of Padoa, Italy, in 1992. In
1991, he was a visitor at the IBM Almaden
Research Center, California. Since 1992, he has
been with the Dipartimento di Sistemi e Informa-
tica, where he is a professor for the University of
Florence, Italy. He is active on several research
topics: formal methods, object-oriented technol-

ogy, real-time systems, system assessment, physical models, and
parallel architectures. He has been general chair, program chair, or
cochair of some international conferences. He is a member of the
program committee of several international conferences, among them:
IEEE ICECCS, IEEE ICSM, IEEE METRICS, CSMR, etc. He is the
general chair of the IEEE International Conference on Software
Maintenance, 2001. He has been the guest editor of special issues of
international journals and an editorial board member of the Journal of
Real-Time Imaging and of a book series of CRC. He is the author of
more than 120 technical papers and books. He has been the coordinator
of several ESPRIT projects and holds the scientific responsibility at the
CESVIT (High-Tech Agency for technology transfer) for object-oriented
technologies and HPCN. He is a member of the IEEE, the IEEE
Computer Society, the ACM, ICMA, AIIA, and TABOO.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

FIORAVANTI AND NESI: ESTIMATION AND PREDICTION METRICS FOR ADAPTIVE MAINTENANCE EFFORT OF OBJECT-ORIENTED... 23

