Graph Databases Lifecycle Methodology
and Tool to Support Index/Store Versioning

Pierfrancesco Bellini, Ivan Bruno, Paolo Nesi, Nadia Rauch

DISIT Lab, Dep. of Information Engineering, University of Florence, Italy
http://www.disit.dinfo.unifi.it , {pierfrancesco.bellini, ivan.bruno, paolo.nesi, nadia.rauch}@unifi.it

Abstract— Graph databases are taking place in many different
applications: smart city, smart cloud, smart education, etc. In
most cases, the applications imply the creation of ontologies and
the integration of a large set of knowledge to build a knowledge
base as an RDF KB store, with ontologies, static data, historical
data and real time data. Most of the RDF stores are endowed of
inferential engines that materialize some knowledge as triples
during indexing or querying. In these cases, deleting concepts
may imply the removal and change of many triples, especially if
the triples are those modeling the ontological part of the
knowledge base, or are referred by many other concepts. For
these solutions, the graph database versioning feature is not
provided at level of the RDF stores tool, and it is quite complex
and time consuming to be addressed as black box approach. In
most cases the indexing is a time consuming process, and the
rebuilding of the KB may imply manually edited long scripts that
are error prone. Therefore, in order to solve these kinds of
problems, this paper proposes a lifecycle methodology and a tool
supporting versioning of indexes for RDF KB store. The solution
proposed has been developed on the basis of a number of
knowledge oriented projects as Sii-Mobility (smart city),
RESOLUTE (smart city risk assessment), ICARO (smart cloud).
Results are reported in terms of time saving and reliability.

Keywords — RDF Knowledge base versioning, graph stores
versioning, RDF store management, knowledge base life cycle.

l. INTRODUCTION

Large graph databases are getting a strong push in their
diffusion for setting up new kind of big data services for smart
cities, digital libraries, competence modeling, health care,
smart education, etc. This fact is mainly due to their capability
in modeling knowledge and thus on creating Knowledge-
Based, KB, systems [Grosan and Abraham, 2011]. Graph
databases may be implemented as RDF stores (Resource
Description Framework) [Klyne and Carrol, 2004], to create
interactive services in which reasoning and deductions can be
elaborated including inference engines on top of the store. An
RDF store is grounded on the concept of triple that puts in
relationship two entities. For example, Carl knows Paolo,
consisting of a subject, a predicate and an object, which in turn
are represented with URI. Predicates, as “knows”, may be
specified by using vocabulary that defines relations. A
vocabulary defines the common characteristics of things
belonging to classes and their relations. A vocabulary, also
called ontology, is defined by using RDFS (RDF Schema,
RDF Vocabulary Description Language) or the OWL
extension (Ontology Web Language). Recently RDF store
have been also addressed as noSQL stores for big data [Bellini

et al., 2013a]. A large set of ontologies and related data sets
are now accessible, see for example the large number of LOD
(linked open data) accessible and related each other via URI
[Berners-Lee, 2006], [Bizer et al., 2011]. RDF stores may be
made accessible via an entry point to pose semantic queries
formalized for example in SPARQL [Hartig et al., 2009]
(SPARQL Protocol and RDF Query Language, recursive
definition). Non trivial RDF stores based solutions are
typically produced by exploiting multiple ontologies, loading
data triples and testing/validating the obtained results. This
means that they are built by using some ontology building
methodology [Noy and McGuinness, 2001], [Lopez, 1999],
integrated with a knowledge base development life cycles.

The RDF store may grow over time adding new triples, and
may have the capacity to learn if endowed of an inferential
reasoner/engine, i.e., producing new knowledge that are new
triples. Thus, the inferential engine associated with the RDF
store materializes new triples during reasoning (for example at
the time of indexing or querying). These facts are the main
motivations to low performances in indexing, and critical
performances in deleting triples of RDF stores as graph
databases since they are involved in removing the materialized
triples in the store. These features impact on store
performances, and thus, in literature, many benchmarks for the
evaluation of RDF stores are present. Some of them use real
data as from dbPedia, UniProt, WordNet, other use
synthetically generated data as LUBM [Guo et al., 2005]
(university domain), BSBM [Bizer et al., 2009] (e-commerce
domain), SP2Bench [Schmidt et al., 2009] (library domain).
More recently, in Linked Data Benchmark Council LDBC EU
project, two new benchmarks have been developed: one based
on Social Network [Erling et al., 2015] and the second on
Semantic  Publishing. While LUBM and SP2Bench
benchmarks are based on real data, and evaluate only the
queries performed after the data load. BSBM and LDBC
benchmarks evaluate a mix of insert/update/delete/query
workloads. When RDF stores are used as a support for a KB,
some of the changes in the RDF store can be destructive for
the graph model, such as changes in the triples modeling the
ontology on which millions of instances are related. In order to
keep the performance acceptable, the RDF store has to be
rebuilt from scratch or from some partial version to save time
in releasing the new version. Thus, the lifecycle may present
multiple cycles in which the RDF store is built incrementally
via progressive refinements mediating among: (i) reusing
ontological models, (ii) increasing the capability of making



deductions and reasoning on the knowledge base, (iii)
maintaining acceptable query performance and rendering
performances, (iv) simplifying the design of the front-end
services, (v) satisfying the arrival of additional data and
models and/or corrections, etc. A commonly agreed lifecycle
model to build KBs is not available yet and many researchers
have tried to embed KB development steps into some
conventional software lifecycle models [Batarseh, Gonzalez,
2013]. In general, development of KB systems is a multistep
process and proceeds iteratively, using an evolutionary
prototyping strategy. A number of lifecycle models have been
proposed specifically for KB systems [Milette 2012].

In the lifecycle model, a change in the ontology may generate
the review and regeneration of a wide amount of RDF triples.
The problem of ontology versioning as addressed in [Klein et
al., 2002], [Noy and Musen, 2004] can be easily applied if the
ontology is not used as a basis for creating a large RDF KB
store. Moreover, in [Volkel et al., 2005], the versioning of
RDF KB has been addressed similarly to the CVS solutions by
using commands as: commit, update, branch, merge, and diff.
The differences are computed at semantic level on files of
triples. Thus, [Zegins et al., 2007] presented a solution for
versioning RDF models assuming the possibility of estimating
the delta between two RDF models by performing a set of adds
and deletes to a model to transform it to the other. At database
level, the key performance aspects of an RDF KB store version
management are the storage space and the time to create a new
version [Tzitzikas et al., 2008]. Therefore, possible
approaches could be to store: (a) each version as an
independent triples store [Klein et al., 2002], [Noy and Musen,
2004], [Volkel et al., 2005]; (b) the deltas in terms of triples
between two consecutive versions and implementing a
computationally expensive and time consuming chain of
processes to maintain and apply deltas [Zegins et al., 2007].

In this paper, a versioning system for RDF KB proposes to
integrate both (a) and (b) solutions. It manages versioning of
RDF stores by: (i) keeping trace of the set of triples to build
each version, (ii) storing each version and related set of triples,
(iii) providing an automated tool for keeping trace of triple
files, descriptions for store building and stores, (iv) allowing
the versioning of the RDF KB store, (v) reducing the critical
manual error prone operations. This approach allows to make
indexing versioning for RDF stores that materialize triples at
indexing (as OWLIM [http://www.ontotext.com/]) or at
querying (as Virtuoso [http://virtuoso.openlinksw.com/])
without influencing the RDF store reconstruction. The
resulting time for returning to a previous version and to
reconstruction of a new one is satisfactory and viable, since
some of the RDF stores are very time consuming in indexing,
while other do not allow the deletion of triples. Therefore, the
paper presents an RDF KB methodology life-cycle suitable for
big data graph databases, and a versioning tool for RDF KB
stores that has been developed and tested for SESAME
OWLIM and Virtuoso; and thus it can be simply extended to
other RDF stores. The solutions have been developed for
KmA4City project [Bellini et al., 2013b], and adopted for other
RDF KB oriented projects as Sii-Mobility Smart City national

project and RESOLUTE H2020 European Commission
Project. They are large KB oriented projects in the Smart City,
smart cloud, smart railway domains, developed at the DISIT
Lab of the University of Florence http://www.disit.org/6568 .

The paper is organized as follows. Section Il presents the
RDF Knowledge Base life-cycle model and methodology for
development. In Section Il1, the RDF KB indexing flow and
requirements for the RDF Indexing Manager tool are
presented. Section 1V describes the RDF Index Manager tool,
detailing the architecture, and the XML formal model for
index descriptors. In Section V, experimental results are
reported providing data related to real cases, in terms of time
and managed complexity. Conclusions are drawn in Section
VL.

II. A KNOWLEDGE BASE LIFE-CYCLE

Building a RDF KB is a challenging practice that needs a well-
defined methodology and lifecycle to keep under control the
entire development process. RDF KBs are mainly developed
thanks to a cycle approach that allows checking and validating
the advances made, and if needed, to make adjustments when a
problem is identified. As stated above, the lifecycle proposed
in this paper has been derived from the DISIT Lab experience
cumulated while developing a number of big data RDF KBs.
The proposed methodology and lifecycle for RDF KB is
reported in Figure 1. The life-cycle presents 4 vertical pillars
and one horizontal block that represents the RDF Store usage
and Maintenance. The life-cycle spans from the ontology
creation to the RDF Store usage on the front-end where also
real time data are added.
L= 1

SPARGHL
Support |

Available
Ontology Review

[

e W

? 1

fant
H—papaag wage.

| I—palmv‘:i [ l'.ol.H—T

Ontology
Selection

|knowledge Base
| Adding RT Data
ry

Ontology
Intogration

Static Data Enrick & Data
Ingestion

Ontalogy
Construction

Figure 1. RDF KB Life Cycle Model

The pillars refer to the:

Ontology construction, from domain analysis the setup of
the RDF Store containing triples of the selected ontologies and
possible additional triples to complete the domain model
(Knowledge Base O, KB-0). For example, the Km4cCity
ontology reuses: dcterms to set of properties and classes for
modeling metadata; foaf dedicated to relations among people or
groups; schema.org for a description of people and
organizations; wgs84 _pos representing latitude and longitude;
GoodRelations for a description of business entities and their



locations; OWL-Time for temporal modeling; OTN for transport
aspects; GIS Dictionary, to represent the spatial component of
geographic features; etc. [Bellini et al., 2013b]. The combined
ontology is reviewed and possible problems may lead to more
or less deep redefinition of the process.

Static Data Ingestion: this phase is related to the loading of
the data instances of the ontological classes and attributes.
Despite their name, static data may change rarely over time, for
example, the position of bus stops may be considered static data
even if they change seasonally. They come from several
sources (static, statistical, historical, etc.), and have to be
converted in triples according to the KB-O coming from the
previous phase. Then, they are finally indexed by using several
sets of triples, maybe thousands. The indexing produces a KB
including the former KB-O, plus many data instances; thus,
allowing performing the Verification and Validation, V&V, of
the RDF KB.

The V&V phase may be the moment in which some
problems are detected. They may constrain the expert to: (i)
wrong data or incomplete data to need a review of the data
mapping to the ontology (restart from the first step of this phase
of data collection), (ii) missing ontology aspects and classes,
thus leading to the review of the ontology built (returning to
Ontology Review), (iii) problems in data collected that may be
wrongly mapped to ontology classes (returning to Data
Analysis and Mining), (iv) mistake in data mapping that may
lead to revise the whole Domain Analysis, and successive steps.
If this phase is passed, the RDF Store passes to the phase of
RDF Store Usage and Maintenance. Additional static data sets
may be added to the KB-O if the ontological model supports
them without deletion, otherwise a review is needed.

Enrichment and Improvement, E&I: this phase allows
solving problems that may be present in the produced RDF
Store. E&I processes may take advantage from the access to the
partially integrated KB, exploiting for examples solutions of
Link Discovering [Ngomo, 2011], [Isele, Bizer, 2013], and/or
making tuned semantic queries. Additional processes of E&I
may be added to the RDF Store if the model supports them
without performing some delete otherwise a model review is
needed.

Dynamic Data Ingestion: when the RDF store is in use,
collected data from real time information (for example, bus
delay with respect the arrival time, weather forecast, likes on
the user profile, status of sensors, status of cloud processes,
etc.) can be added to the RDF Store and saved into the
repository of the historical triples. Additional dynamic data
sources may be added to the RDF Store if the model supports
them without performing some delete otherwise a model review
is needed. Please note that dynamic data should not need to
validate and verify process since the data to be added in real
time are new instances of data already mapped and integrated
as historical data.

A. Data & Domain Analysis and Ontology Construction

Brief descriptions of major interesting blocks pertaining to the
proposed life cycle and methodology (see Figure 1) are now
provided.

Data Analysis and Mining: Each data set (static or real-time)
to be addressed in the RDF KB is analyzed and checked to
assess if the information related to each single data field is
well described in terms of type, range, and context. The data
collected is analyzed to understand the concepts in terms of
their structure, relationships and information in domain.
Domain Analysis: this step is executed in parallel or in
alternative to the above data analysis steps. In this phase, the
concepts of the domain addressed by the application are
studied to understand concepts, terminology, their
relationships, and the general rules that are related to them.
Several methodologies are accessible to help the analysts in
identifying concept from the literature review of the domain —
as well as thumb rules: substantive are classes, verbs are
relationship, details are attributes, etc.

Available Ontology Review: This phase is very important.
Once the major aspects of the domain have been identified.
The phase consists of studying other related ontologies at the
state of the art to see if they can model the whole identified
domain and data concepts or at least a part of them. The
realistic solution is to start from one or a set of available
ontologies and complete the expected model with some
specific classes and relationships. This task, it could be
performed every time new static and/or dynamic data kind
have to be addressed, or for addressing identified problems.
When this ontology review is performed starting from an
active domain ontology (in the RDF KB), it may happen that
the expert may discover that no changes are needed at
ontological level (e.g., a new class is not needed since the
concept for hosting data is already in place), thus resulting in a
direct jump to the phases of static or dynamic data
management.

Ontology Selection: on the basis of the actions previously
performed on concepts and data against ontologies, it is
possible to make a selection of the most suitable ontologies to
be taken as seeding concepts. The process of selection has to
take into account also the licensing aspects, which impose
some constraints. For example, some of licenses of the
ontologies do not allow being tuned/modified. If the study has
not led to any results, it is always possible to write a specific
domain ontology.

Ontology Integration: as a result of the previous steps the
main ontologies have been identified and thus they have to be
integrated/glued with each other. In addition, the missing
concepts have to be formalized by completing the fitting of the
KB with the domain analysis performed. Ontology Review:
Once the ontology was created/modified, a first revision took
place even without the massive loading of instance. Thanks to
tools like Protégé [http://protege.stanford.edu/], which allow
to apply a reasoner to the ontology in order to verify that
knowledge is modeled as desired. A number of metrics and
criteria may be also applied to verify if the ontology has been
developed with common criteria. E.g., [Noy and McGuinness,
2001], [GOmez-Pérez, 2004], [Rector et al., 2004].

Knowledge Base Indexing Onto, KBIO: the task in which the
RDF Store index containing the selected ontologies,
vocabularies, and custom defined concepts are integrated as



triples. They may be some files and some tens of classes. This
process usually starts from an empty RDF store and takes a
few seconds since the ontologies are comprised of a small
number of triples and the RDF is empty; differently from what
happen when millions of triples of data sets are indexed and
they lead to many materialized triples.

B. From Ontology to KB via Data Ingestion, major tasks

Static Data Collection: on the basis of the created domain
ontology, the analysed data (addressed in task Data Analysis
and Mining) have to be processed. Static data are typically
obtained from open data, statistical data, private data that do
not change over time so rapidly. The process of static data
ingestion may be performed by means of parallel and
distributed architectures executing processes as ETL (Extract,
Transform and Load), Java, microgrid, harvesting, crawling,
etc. It may include: file access, REST/WS calls, data mapping,
quality improvement, e.g., [Bellini et al., 2013b]. Data
Triplification: A task in which the data (static, dynamic) are
mapped to triples on the basis of the domain ontology model.
Knowledge Base Enrichment: task focused on enriching the
RDF KB Store by adding links to external LOD. For example,
referring from the street title to VIP to its dbPedia definition
(from Avenida Winston Churchill, to its page on dbPedia:
http://live.dbpedia.org/page/Winston_Churchill). For example
for the Km4city KB a tool has been created, that allows to
identify famous names inside the KB and search for the same
name on dbPedia, to finally create triple cite/isCitedBy thanks
to the CITO Ontology [http://purl.org/spar/cito].
Concept Reconciliation: task related to solve the lack of
coherence among indexed entities referring to the same concept
but coming from different data sets. This process is a critical
step during the KB realization and helps to create new
knowledge and new connections between data that would
otherwise remain unconnected. For example, different services
located at the same street number, several profile aspects of the
same person, different representations of the same part of the
brain. This task typically produces a number of triples solving
the problem of missing links possible. Triples includes
relationships of owl:sameAs.

Dynamic Data Collection: Dynamic data are subject to a

lighter ingestion process with respect to static data. In fact,

they are picked up and immediately mapped into RDF triples,
in order to speed up as much as possible the process that
allows making them available to users adding them to the RDF
store (Knowledge Base Adding RT Data). At the same time,

Real Time triples are stored as Historical Dynamic Data for

successive construction of versioned data stored.

Knowledge Base Indexing Data, KBID: This task takes in

charge a high number of triples coming from different data

sets:

e  Static data: for example one or more file containing a set
of triples for each single data set;

e Historical Dynamic data: several files and triples for each
real time data collection channel. For example, the
collected weather forecasts of the past two months, the last
200 measures of traffic flow sensor DG32453165, the data
regarding the Cloud Host and VM in the last week;

e Reconciliated data: triples connecting concepts and data
into the RDF KB;

e Enrichments data: triples connecting data entities of the
RDF KB to external LOD RDF stores. When the
enrichment tasks are performed on real time data, they
have to be performed in real time as well. For examples if
the enrichment is performed on an Opera Name, or about a
VIP person name.

In order to pass from the ontological model to a real RDF KB
store, many data sets (static, statistical and historical), should
be included / indexed in the RDF KB. Very often, indexing
process of large files may take several hours. Often files of
triples are linked each other and the order of indexing of these
data may becomes essential. In some cases, the historical data
can lead to very huge number of triples, thus compromising /
influencing the performance of the whole RDF Store. This
implies that the RDF KB has to be periodically polished by
removing most of the cumulated historical data. This activity
is quite natural for smart city and smart cloud applications. For
example in cloud monitoring systems as NAGIOS, data are
dense in the close time and sparse in the past.

C. RDF Store Verification and Validatiton, V&V

Once the RDF KB Store containing triples coming from data
(static, historic, reconciliation and enrichment) has been
produced, it is possible to precede with the validation and
verification of the RDF Store vs the ontological definition.
Please note that, the RDF store index has to be accessible to
perform the following V&V processes via semantic queries
end analyzing consistency. They can be automatically
performed through a set of validation processes implemented
as SILK [lIsele, Bizer, 2013] as well as SPARQL processes.
The verification and validation process has the duty to detect
inconsistencies and incompleteness: (i) verify if the data
indexing has been correctly performed, (ii) detect eventual
reconciliations to be performed identifying missing
connections, (iii) identify eventual enrichments to be
performed, (iv) identify eventual mismatch from data loaded
and the ontology (for example counting the triples to be
indexed and those indexed in reality), (v) verify if the expected
inferences are exploited at the query time, etc. The above
mentioned criteria allow identifying different kind of problems
that may lead to revise the ontological model, the data
ingestion process, etc. etc.

Ill. RDF INDEXING FLOW AND REQUIREMENTS

As described in the previous section, there are several reasons
for which into the RDF KB life cycle the process may lead to
(i) revise the ontology (and thus to revise the data mapping and
triplification invalidating the indexing and the materialization
of triples); (ii) revise the data ingestion including a new data
mapping, quality improvement, reconciliation, enrichment and
triplification. As stated in the previous section, the life-cycle
model foresees two steps where the Knowledge Base Indexing
has to be performed: KBIO, KBID. On the other hand, as
pointed out in the introduction, in most of the RDF store
models, the versioning is not an internal feature. This is due to



the fact that it cannot be easily performed at level index and
stored triples for their complexity in removing them, due to the
triples materialization by inference. According to the proposed
RDF KB life cycle, the modeling of a chain of connected
versions of indexes/RDF Stores, with incremental complexity
may be very useful to keep under control the evolving index
with the aim of saving time by exploiting intermediate
versions in generating the RDF Store/index for the successive
deployment. For example, in the case of Smart City, the
layered versions of the index may include the ontology, static
and dynamic data, historical data, etc.

To better describe the process of RDF Index versioning, it is
necessary to put in evidence the differences between the
“index” and “index descriptor”. An RDF KB store is in
substance an “index”, while content can be accessed via URI
cited in the triples elements. The index is created by loading
the triples into the RDF store, and as a result a binary index is
built, maybe materializing additional triples according to the
ontological model and the specific RDF store inferential
engine adopted. The recipe to create the RDF Store index, that
is the collection of atomic files containing triples (including
triples of ontologies as well as those related to data sets: static,
historical, dynamic), can be called as the “index descriptor”,
that may be used to generate a script for index generation. The
script syntax can be different from an RDF Store to another,
since their commands for loading and indexing can be
different. This approach implies to have aside each pair
“index” and “index descriptor” also the history of files
containing triples with their versions, last update dates, and
dependencies from other files. For example, see Figure 2,
where the reconciliation of triples connecting parking locations
(File 1, ver 1.5) with respect to civic numbers depends on the
ontology and on the parking area data sets. Thus leading to
create a set of triples connected with dashed lines.

Figure 2. Example of set of file versioning

Definition. Let F = {f}, f>, f5, ... } be the set of triple files that
are available for indexing and DS = {ds,, ds,, ds3, ...} is the
set of datasets and ontologies that are available for ingestion.
The function ds: F — DS associate the file to the dataset it
belongs to, function time: F — N associate each file with the
time when it was created and function dep:F — g(F)
associate each triple file with a set of files that it depends on
(e.g. ontologies), go(X) is the power set of set X. The dep
function must not introduce a cyclic dependency among files.
Moreover, a file should not depend on files created in the
future:

Vf € F,Vs € dep(f).time(s) < time(f)
Example DS = {km4c, otn,roads, services, busses},
F = {kfy, kf5, 0f1,7f1,7f2,5f1, Sf2, bf1, bf1, bf2, },
ds = {(kf, = km4c), (kf, —» km4c), (of; = otn),

(rfi = roads), (rf, — roads), (sf; = services),

(sf, — services), (bf; — busses), (bf, = busses)}
time = {(kf; - 2), (kf; > 5),(ofy > 1), (rf1 = 3),

(rfz = 8),(sf1 = 2),(sf2 = 8),(bfy = 3),(bf; - 8)}
dep = {(kfy - {of1}), (kfz = {0fi}), (rf1 = {kf1}),

(rfy = {kf2}), (sfi = {kfi}D), (sfo = {kf2}),

(bfy = {kfiD), (bfz = {kf2})}

Definition A subset S of F is indexable iff

VeSS f#f —ds(f)#ds(f)
Meaning that files need to be associated with different
datasets. Example the set {kf;, of;,f1, sf1} is indexable while
{kfi,rfi,rf,} is not indexable because ds(rf;) = ds(rf,) =
roads.

Definition The function C: g (F) — g(F) associates a subset
of F with closure of the subset with respect to the dep function.
It can be computed using the recursive function:
SUC(dep(S\S) S+0
c(s ={
) ) S=0
Where:

dep(s) = | ] dep(s)

SES

Example C({rfy,sf2}) = {kf1. kfa, 0f1, 711, 5/}
Definition Let I = {i,i,,i3,...} U {} be the set of indexes
produced and ¢ is the empty index. The function from:I — I
associates an index with the index it was started from and the
function files: I - g(F) associate an index with the set of
files to be added to the index we are starting from. Consider
that the “from” function must not introduce a cyclic
dependency among indexes.
Example: I ={i}, iy, i3,104}
from = {(iy = ¢), (i; = i), (iz = i3), (s = i2)}
files = {(iy - {kfi}), (i, » {rf1, bfi}D), (i3 = {sf1}),

(is = {sf2])}

Definition Function ¢: I — g(F) provides for each index the
set of files that are indexed, it is defined recursively as:
~ _ (p(from(i)) U files(i) i+#¢
b = {2 e
Example ¢(iy) = {kf1}, ¢(ix) = {kf1,7f1,bfi}, ¢(i3) =
{kfurfubf1, sfi}, ¢(s) = {kfy, 711, bf1, 52}

Definition An index i € I is correct if C(¢(i)) is indexable
meaning that in the closure of files in the index are not present
different versions of files of the same dataset. Example the
indexes iy, i,,i; are correct while i, is not correct because

C(¢p(iy) = {kf1, kfs, 0f1, 7f1, bf1, sf>} is not indexable.

Figure 3 shows possible evolutions of an RDF Store with their
corresponding index-descriptors and indexes. The figure wants
to highlight that simultaneously can be carried out different
versions of pairs: index, index-descriptor, each of which



containing different data. The different index colors indicate
that each index may contain different data, according to the
evolution with which it has been created. For example,
considering the index, index-descriptor pair version labeled 1,
including ontologies and vocabularies, we can assume that the
pairs number 1.1 could be incrementally generated, starting
from version 1 by adding geographic information and bus
stops; and version 1.1.1 by adding services. Subsequently the
need to create another alternative branch occurred since the
bus stops changed positions, and thus version 1.2 was created
by adding geographic information and the new bus stops; and
from that version 1.2.1 adding again the services. Please note
that version 1.2.2, represents an example of index generation
by starting from version 1.2 by cloning index and index-
descriptor, and adding other data set triples.

e | I
=

‘ e

==

Figure 3. RDF KB store index versioning:
reporting index-descriptors and indexed

In this last scenario, an existing index may be extended with
new generated data set or updated by including new corrected
versions of data and/or ontologies. Since the RDF KB building
is an evolving process, it is not possible to predict whether one
has to keep a specific previously created version of the index
or not. Any small change could be used to generate a new
version, while the suggestion is to save versions every time a
consolidated point is available similarly to virtual machine
snapshots. Moreover, since the triples associated with each
single data set are accessible, reconstruction of partial
intermediate versions are also possible, saving time in
generating triples. Furthermore, each times some ontologies
change, most of triples must be generated again, and therefore,
for the same dataset, more triples versions could exist.

A. Requirements for RDF Index Manager Tool

On the basis of the above presented model, the RDF KB

indexing versioning activities described can be supported by

means of an RDF Index Manager (RIM), that should allow:

e Keep tracing RDF KB Store Versions, RKBSV, in terms of
files of triples, index-description, and RDF Index;

e Maintaining a repository of RKBSVs where they could be
stored and retrieved;

e Selecting a RKBSV from the repository for modification,
to examine changes and the history version, to be used as
base for building a new version;

e Managing the index descriptor as a list of files containing
triples;

e Generating a RDF KB index on the basis of an RKBSV
independently from the RDF store kind automatically, and
in particular for SESAME OWLIM and Virtuoso;

e Monitoring the RDF KB index generation and the feeding
state;

e Suggest the closest version of the RKBSV with respect to
the demanded new index in terms of files of triples;

e Avoiding manually managing the script file of indexing,
since it is time consuming and an error prone process.

IV. RDF INDEX MANAGER TOOL

The RDF Index Manager tool satisfy the above presented
requirements, creates and manages index descriptors, and files
of triples, and generates automatically the corresponding
indexes independently from the RDF store type. The index
descriptor, as mentioned before, is a list of ontologies and
related data sets described with their triple files and version.
The chosen approach with generation and update is to: (i)
build the entire index (build all) by loading triples when
ontologies and related data set change, (ii) extending the index
when only new data sets and triples have to be added
(incremental building), (iii) make a physical copy (clone) of a
consolidated RDF index when an index descriptor is built
starting from an older consolidated descriptor. The big amount
of triples to load in the index suggested exploiting the bulk
data loading supported by many RDF stores.

The main functionalities provided by the tool are described as
following: Setup of a new index descriptor, to create an empty
index descriptor; Clone a previous index descriptor to create a
new version that it is populated with the same data sets and
triples version of the parent with some addition. A clone of the
parent RDF index is made and used to build the new store
loading the new additional data sets; Copy a previous index
with updated versions to create a new version populated with
same data sets of parent and new versions of triples. This
allows speeding up the creation of an update version of the
index descriptor. A new RDF index will be created and loaded
from scratch; Edit the index descriptor to add a data set
(ontology, static, historical and reconciliations), select triples
version; update triples version of a data set; remove a data set;
Import/Export the index descriptions as XML representations
that could be used for backup/restore and share; RDF Index
Generation by producing a scripted procedure (for Windows
and Linux) according to the index descriptor and the selected
RDF store kind. The procedure may be incremental or for
reconstructing the index from scratch; Monitoring the RDF
Index Generation by controlling the store feeding as: the queue
of data set to be loaded, the data set already in the store, time
indicators (time spent, max time to upload a data set, etc..),
progression and output of building process; Logging building
data related to RDF store building for further access (i.e.
statistical and verification analysis).



A. Architecture, RDF Index Generation and evolution

The RDF Index Manager is constituted by the following
components. The RDF Store Manager manages different
versions of RDF Stores exploiting the Version Manager which
provides the triples files version for all the data sets. The Index
Manager Application Server and GUI which is the user
interface for creating, loading and editing the index, building
and putting in execution the scripts for RDF store feed,
monitoring the whole creation process. It also provides users
management, user control access and configuration settings.
The Index Manager APl REST Interface consists of a set of
REST calls to be invoked by the indexing script during the
RDF store building to keep trace of the indexing process
status. The Index Builder Manager generates the scripts
according to the RDF Store kind. The section contains a list of
ontologies/file and each file is described by: an unique
identifier corresponding to the name, the reference to the
index, the version of triples to use, the operation to perform
add, update, remove and commit, and an entity for setting if it
was inherited by a cloning (Clone). The historical data differs
from other section for the presence of time interval that defines
the triples to use (date and time for TripleStart and TripleEnd).

Figure 4. RDF Index Buidling Monitor

For the RDF Index generation the RDF Index Manager
produces a script according to the index descriptor and the
RDF store target. The script is structured in the following
steps: (i) setup of script, (ii) initialization of RDF store, (iii)
bulk uploading of triples into the store, (iv) RDF store
finalization, (v) create possible additional indexes as textual
indexes, geographical indexes that need additional database
commands, and (vi) update index building status.

The RDF Index Manager has been realized as a PHP 5.5.x web
application with MySQL support running under Ubuntu. The
Figure 4 shows the Building Monitor View when a batch
script is running. This view provides different information
panels: the output of script in real-time on top, the queue of
data set to insert, the progress and the total time spent for the
committed data set. Such information allows also evaluating
the time necessary to build a repository using the two RDF
Stores.

V. EXPERIMENTAL RESULTS

In Table 1, examples of results are reported. The data refer to
the comparison of the usage of the RIM and versioning in
building a Smart City RDF store. The RDF stores currently

managed are Virtuoso 7.2 as open source RDF store and the
commercial OWLIM SE ver. 4.3 and GraphDB 6.1. The
measures reported have been performed by means of an
incremental building of the RDF Store for the three solutions.
The building started with 12 files of triples including
ontologies (first column), then each column of the table refers
to the added triples/files (street graphs, smart city services,
enrichment and reconciliations, historical data of real time data
for 1 month). The time estimated for the cases of total
indexing include: create, load, finalize; while those for
incremental indexing include: clone, load, finalize. The three
RDF store kinds have a different behavior. OWLIM and
GraphDB create inferred triples at the indexing; this
determines a higher number of triples with respect to Virtuoso,
i.e., 73.4 wrt 46.2 million; and a higher indexing time. In both
cases, the percentage of saved time, for non small RDF stores,
is very high, greater than the 22% up to the 97% of saved time.
For small stores, Virtuoso can be indexed in shorter time, and
thus it could be better to rebuild instead of cloning and
versioning.

+smart +Enrich& +Historica
Ontolo + street city Reconcili ldatal
gies graphs Services ations month
Indexing process
Final number of
triples 15809 33547501 34462930 34557142 44218719
Final number of
Files 12 137 178 185 27794
Added triples
with respect to
previous version 15809 33531692 915429 94212 9661577
Added Files with
respect to
previous version 12 125 41 7 27609
OWLIM SE 4.3
Indexing Time
without RIM (s) 18 6536 6198 7516 12093
Indexing Time
with RIM (s) 11 6029 514 343 5745
% of saved time,
RIM versioning 38,9 7,8 91,7 95,4 52,5
Final Number of
triples (including
geo + inferred) 16062 57486956 | 59395432 | 59486748 73441126
disk space in
Mbyte 310 8669 8936 9039 13110
VIRTUOSO 7.2
Indexing Time
without RIM (s) 146 806 964 1000 2487
Indexing Time
with RIM (s) 156 833 421 296 1932
% of saved time,
RIM versioning -6,8 -3,3 56,3 70,4 22,3
Final Number of
triples (including
geo, no inferred) 21628 35452613 | 36301322 | 36420445 46232510
disk space in
Mbyte 68 1450 1632 1631 2294
GraphDB 6.1
Indexing Time
without RIM (s) 9 7818 7929 7671 12915
Indexing Time
with RIM (s) 2 6791 454 214 4849
% of saved time,
RIM versioning 77,8 13,1 94,3 97,2 62,45
Final Number of
triples (including
geo + inferred) 15809 57486415 59394891 59487551 73441929




disk space in
Mbyte

9% ‘ 4276 ‘ 4466 ‘ 4643 ‘ 5714 |

Table 1 — Saving time using Index Manager with respect to rebuilding. Data
collected on Ubuntu 64bit, 16 core x 2 Ghz, 500 Gbyte HD

VI. CONCLUSIONS

Graph databases are used in many different applications: smart
city, smart cloud, smart education, etc., where large RDF KB
store are created with ontologies, static data, historical data
and real time data. Most of the RDF stores are endowed of
inferential engines that materialize some knowledge as triples
during indexing or querying. In these cases, the delete of
concepts may imply the removal and change of many triples,
especially if the triples are those modeling the ontological part
of the knowledge base, or are referred by many other concepts.
For these solutions, the graph database versioning feature is
not provided at level of the RDF stores tool, and it is quite
complex and time consuming to be addressed as black box
approach. In most cases, the RDF store rebuilt by indexing is
time consuming, and may imply manually edited long scripts
that are error prone. In order to solve this kind of problem, in
this paper, a lifecycle methodology and our RIM tool for RDF
KB store versioning are proposed. The results have shown that
saving time up to 95% are possible depending on the number
of triples, files and cases to be indexed.

ACKNOWLEDGMENT

The authors would like to thank to the coworkers that have
contributed to the experiments in the several projects, and in
particular to Km4City: Giacomo Martelli, Mariano Di Claudio.
Thanks also to Ontotext for providing a trial version of their
tools.

REFERENCES

[Batarseh, Gonzalez, 2013] Batarseh, Feras A., and Avelino J.
Gonzalez. "Incremental lifecycle validation of knowledge-
based systems through CommonKADS." IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol.43, n.3,
2013, pp.643-654.

[Bellini et al., 2013a] P. Bellini, M. Di Claudio, P. Nesi, N. Rauch,
"Tassonomy and Review of Big Data Solutions Navigation”,
as Chapter 2 in "Big Data Computing"”, Ed. Rajendra Akerkar,
Western Norway Research Institute, Norway, Chapman and
Hall/CRC press, ISBN 978-1-46-657837-1, 2013

[Bellini et al., 2013b] P. Bellini, M. Benigni, R. Billero, P. Nesi and
N. Rauch, "Km4City Ontology Bulding vs Data Harvesting
and Cleaning for Smart-city Services", International Journal

of Visual Language and Computing, Elsevier,
http://dx.doi.org/10.1016/j.jvlc.2014.10.023, 2013
[Berners-Lee, 2006] T. Berners-Lee, “Linked Data”,

http://lwww.w3.0rg/Designlssues/LinkedData.html, 2006.

[Bizer et al., 2009] C. Bizer, A. Schultz. “The Berlin SPARQL
Benchmark”. International Journal on Semantic Web &
Information Systems, Vol. 5, Issue 2, Pages 1-24, 2009

[Bizer et al., 2011] Bizer, C., Jentzsch, A., Cyganiak, R.: State of the
LOD cloud. http://lod-cloud.net/state/ Retrieved July 5,
2014.

[Erling et al., 2015] O. Erling, A. Averbuch, J.L. LarribaPey, Hassan
Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc Pham, Peter

Boncz, The LDBC Social Network Benchmark: Interactive
Workload. Proceedings of SIGMOD 2015, Melbourne.
[GOmez-Pérez, 2004] GoOmez-Pérez, A. Ontology Evaluation.
Handbook on Ontologies. S. Staab and R. Studer Editors.
Springer. International Handbooks on Information Systems.

Pp: 251 — 274. 2004.

[Grosan and Abraham, 2011] Grosan, C., and A. Abraham. Intelligent
Systems: A Modern Approach, Springer-Verlag, Berlin, 2011.

[Guo et al., 2005] Y. Guo, Z. Pan, and J. Heflin. “Lubm: A
benchmark for owl knowledge base systems”. J. Web
Semantics, 3(2-3):158-182, 2005.

[Hartig et al., 2009] O. Hartig, C. Bizer, J.-C. Freytag. 20009.
Executing SPARQL Queries over the Web of Linked Data. In
Proc. of ISWC '09, Springer, pp.293-309.

[Isele, Bizer, 2013] R. Isele, C. Bizer. “Active learning of expressive
linkage rules using genetic programming”. Web Semantics:
Science, Services and Agents on the World Wide Web 23
(2013): pp.2-15

[Klein et al., 2002] M. Klein, D. Fensel, A. Kiryakov, and D.
Ognyanov. “Ontology versioning and change detection on the
web”. In Procs of the 13th European Conf. on Knowledge
Engineering and Knowledge Management (EKAWO02), pages
197-212. Springer, 2002.

[Klyne and Carrol, 2004] G. Klyne, J. Carroll, “Resource Description
Framework (RDF): Concepts and Abstract Syntax - W3C
Recommendation”, 2004

[Lopez, 1999] M. Fernandez Lopez, “Overview of Methodologies for
Building Ontologies”, in: 1JCAI99 Workshop on Ontologies
and Problem-Solving Methods: Lessons Learned and Future
Trends, Stockholm, 1999.

[Milette 2012] L. Milette, Improving the Knowledge-Based Expert
System Lifecycle, UNF report, 2012.

[Ngomo, 2011] Ngomo, A. C. N., & Auer, S. Limes-a time-efficient
approach for large-scale link discovery on the web of data.
integration, 15, 3. (2011).

[Noy and McGuinness, 2001] Noy, Natalya F., and Deborah L.
McGuinness. "Ontology development 101: A guide to
creating your first ontology." Technical Report SMI-2001-
0880, Standford Medical Informatics. 2001.

[Noy and Musen, 2004] N. F. Noy and M. A. Musen. “Ontology
versioning in an ontology management framework”. IEEE
Intelligent Systems, 19(4):6-13, 2004.

[Rector et al., 2004] Rector, A., Drummond, N., Horridge, M.,
Rogers, J., Knublauch, H., Stevens, R.,; Wang, H., Wroe, C.
"Owl pizzas: Practical experience of teaching owl-dl:
Common errors and common patterns”. In Proc. of EKAW
2004, pp: 63 — 81. Springer. 2004.

[Schmidt et al., 2009] M. Schmidt, T. Hornung, G. Lausen, and C.
Pinkel. “Sp2bench: A spargl performance benchmark”. In
ICDE, pages 222-233, 2009.

[Tzitzikas et al.,, 2008] Tzitzikas, Yannis; Theoharis, Yannis;
Andreou, Dimitris, On Storage Policies for Semantic Web
Repositories That Support Versioning, pp.705-719, LNCS
5021 The Semantic Web: Research and Applications,
Springer, 2008

[Volkel et al., 2005] M. Volkel, W. Winkler, Y. Sure, S. R. Kruk, and
M. Synak. "SemVersion: A Versioning System for RDF and
Ontologies”. In Procs. of the 2nd European Semantic Web
Conf., ESWC’05., Heraklion, Crete, May 29 June 1 2005.

[Zegins et al., 2007] D. Zeginis, Y. Tzitzikas, and V. Christophides.
“On the Foundations of Computing Deltas Between RDF
Models”. In Procs of the 6th Intern. Semantic Web Conf,,
ISWC/ASWC’07, pages 637-651, Busan, Korea, November
2007.



