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Abstract— Graph databases are taking place in many different 
applications: smart city, smart cloud, smart education, etc. In 
most cases, the applications imply the creation of ontologies and 
the integration of a large set of knowledge to build a knowledge 
base as an RDF KB store, with ontologies, static data, historical 
data and real time data. Most of the RDF stores are endowed of 
inferential engines that materialize some knowledge as triples 
during indexing or querying. In these cases, deleting concepts 
may imply the removal and change of many triples, especially if 
the triples are those modeling the ontological part of the 
knowledge base, or are referred by many other concepts. For 
these solutions, the graph database versioning feature is not 
provided at level of the RDF stores tool, and it is quite complex 
and time consuming to be addressed as black box approach. In 
most cases the indexing is a time consuming process, and the 
rebuilding of the KB may imply manually edited long scripts that 
are error prone. Therefore, in order to solve these kinds of 
problems, this paper proposes a lifecycle methodology and a tool 
supporting versioning of indexes for RDF KB store. The solution 
proposed has been developed on the basis of a number of 
knowledge oriented projects as Sii-Mobility (smart city), 
RESOLUTE (smart city risk assessment), ICARO (smart cloud). 
Results are reported in terms of time saving and reliability.  

Keywords — RDF Knowledge base versioning, graph stores 
versioning, RDF store management, knowledge base life cycle.  

I. INTRODUCTION 

Large graph databases are getting a strong push in their 
diffusion for setting up new kind of big data services for smart 
cities, digital libraries, competence modeling, health care, 
smart education, etc. This fact is mainly due to their capability 
in modeling knowledge and thus on creating Knowledge-
Based, KB, systems [Grosan and Abraham, 2011]. Graph 
databases may be implemented as RDF stores (Resource 
Description Framework) [Klyne and Carrol, 2004], to create 
interactive services in which reasoning and deductions can be 
elaborated including inference engines on top of the store. An 
RDF store is grounded on the concept of triple that puts in 
relationship two entities. For example, Carl knows Paolo, 
consisting of a subject, a predicate and an object, which in turn 
are represented with URI. Predicates, as “knows”, may be 
specified by using vocabulary that defines relations. A 
vocabulary defines the common characteristics of things 
belonging to classes and their relations. A vocabulary, also 
called ontology, is defined by using RDFS (RDF Schema, 
RDF Vocabulary Description Language) or the OWL 
extension (Ontology Web Language). Recently RDF store 
have been also addressed as noSQL stores for big data [Bellini 

et al., 2013a]. A large set of ontologies and related data sets 
are now accessible, see for example the large number of LOD 
(linked open data) accessible and related each other via URI 
[Berners-Lee, 2006], [Bizer et al., 2011]. RDF stores may be 
made accessible via an entry point to pose semantic queries 
formalized for example in SPARQL [Hartig et al., 2009] 
(SPARQL Protocol and RDF Query Language, recursive 
definition). Non trivial RDF stores based solutions are 
typically produced by exploiting multiple ontologies, loading 
data triples and testing/validating the obtained results. This 
means that they are built by using some ontology building 
methodology [Noy and McGuinness, 2001], [Lopez, 1999], 
integrated with a knowledge base development life cycles.  
The RDF store may grow over time adding new triples, and 
may have the capacity to learn if endowed of an inferential 
reasoner/engine, i.e., producing new knowledge that are new 
triples. Thus, the inferential engine associated with the RDF 
store materializes new triples during reasoning (for example at 
the time of indexing or querying). These facts are the main 
motivations to low performances in indexing, and critical 
performances in deleting triples of RDF stores as graph 
databases since they are involved in removing the materialized 
triples in the store. These features impact on store 
performances, and thus, in literature, many benchmarks for the 
evaluation of RDF stores are present. Some of them use real 
data as from dbPedia, UniProt, WordNet, other use 
synthetically generated data as LUBM [Guo et al., 2005]  
(university domain),  BSBM [Bizer et al., 2009] (e-commerce 
domain), SP2Bench [Schmidt et al., 2009] (library domain). 
More recently, in Linked Data Benchmark Council LDBC EU 
project, two new benchmarks have been developed: one based 
on Social Network [Erling et al., 2015] and the second on 
Semantic Publishing. While LUBM and SP2Bench  
benchmarks are based on real data, and evaluate only the 
queries performed after the data load. BSBM and LDBC 
benchmarks evaluate a mix of insert/update/delete/query 
workloads. When RDF stores are used as a support for a KB, 
some of the changes in the RDF store can be destructive for 
the graph model, such as changes in the triples modeling the 
ontology on which millions of instances are related. In order to 
keep the performance acceptable, the RDF store has to be 
rebuilt from scratch or from some partial version to save time 
in releasing the new version. Thus, the lifecycle may present 
multiple cycles in which the RDF store is built incrementally 
via progressive refinements mediating among: (i) reusing 
ontological models, (ii) increasing the capability of making 
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locations; OWL-Time for temporal modeling; OTN for transport 
aspects; GIS Dictionary, to represent the spatial component of 
geographic features; etc. [Bellini et al., 2013b]. The combined 
ontology is reviewed and possible problems may lead to more 
or less deep redefinition of the process. 

Static Data Ingestion: this phase is related to the loading of 
the data instances of the ontological classes and attributes. 
Despite their name, static data may change rarely over time, for 
example, the position of bus stops may be considered static data 
even if they change seasonally. They come from several 
sources (static, statistical, historical, etc.), and have to be 
converted in triples according to the KB-O coming from the 
previous phase. Then, they are finally indexed by using several 
sets of triples, maybe thousands. The indexing produces a KB 
including the former KB-O, plus many data instances; thus, 
allowing performing the Verification and Validation, V&V, of 
the RDF KB.  

The V&V phase may be the moment in which some 
problems are detected. They may constrain the expert to: (i) 
wrong data or incomplete data to need a review of the data 
mapping to the ontology (restart from the first step of this phase 
of data collection), (ii) missing ontology aspects and classes, 
thus leading to the review of the ontology built (returning to 
Ontology Review), (iii) problems in data collected that may be 
wrongly mapped to ontology classes (returning to Data 
Analysis and Mining), (iv) mistake in data mapping that may 
lead to revise the whole Domain Analysis, and successive steps. 
If this phase is passed, the RDF Store passes to the phase of 
RDF Store Usage and Maintenance. Additional static data sets 
may be added to the KB-O if the ontological model supports 
them without deletion, otherwise a review is needed.  

Enrichment and Improvement, E&I: this phase allows 
solving problems that may be present in the produced RDF 
Store. E&I processes may take advantage from the access to the 
partially integrated KB, exploiting for examples solutions of 
Link Discovering [Ngomo, 2011], [Isele, Bizer, 2013], and/or 
making tuned semantic queries. Additional processes of E&I 
may be added to the RDF Store if the model supports them 
without performing some delete otherwise a model review is 
needed.   

Dynamic Data Ingestion: when the RDF store is in use, 
collected data from real time information (for example, bus 
delay with respect the arrival time, weather forecast, likes on 
the user profile, status of sensors, status of cloud processes, 
etc.) can be added to the RDF Store and saved into the 
repository of the historical triples. Additional dynamic data 
sources may be added to the RDF Store if the model supports 
them without performing some delete otherwise a model review 
is needed.  Please note that dynamic data should not need to 
validate and verify process since the data to be added in real 
time are new instances of data already mapped and integrated 
as historical data.  

A. Data & Domain Analysis and Ontology Construction 

Brief descriptions of major interesting blocks pertaining to the 
proposed life cycle and methodology (see Figure 1) are now 
provided. 

Data Analysis and Mining: Each data set (static or real-time) 
to be addressed in the RDF KB is analyzed and checked to 
assess if the information related to each single data field is 
well described in terms of type, range, and context. The data 
collected is analyzed to understand the concepts in terms of 
their structure, relationships and information in domain.   
Domain Analysis: this step is executed in parallel or in 
alternative to the above data analysis steps. In this phase, the 
concepts of the domain addressed by the application are 
studied to understand concepts, terminology, their 
relationships, and the general rules that are related to them. 
Several methodologies are accessible to help the analysts in 
identifying concept from the literature review of the domain – 
as well as thumb rules: substantive are classes, verbs are 
relationship, details are attributes, etc.  
Available Ontology Review: This phase is very important. 
Once the major aspects of the domain have been identified. 
The phase consists of studying other related ontologies at the 
state of the art to see if they can model the whole identified 
domain and data concepts or at least a part of them. The 
realistic solution is to start from one or a set of available 
ontologies and complete the expected model with some 
specific classes and relationships. This task, it could be 
performed every time new static and/or dynamic data kind 
have to be addressed, or for addressing identified problems. 
When this ontology review is performed starting from an 
active domain ontology (in the RDF KB), it may happen that 
the expert may discover that no changes are needed at 
ontological level (e.g., a new class is not needed since the 
concept for hosting data is already in place), thus resulting in a 
direct jump to the phases of static or dynamic data 
management.    
Ontology Selection: on the basis of the actions previously 
performed on concepts and data against ontologies, it is 
possible to make a selection of the most suitable ontologies to 
be taken as seeding concepts. The process of selection has to 
take into account also the licensing aspects, which impose 
some constraints. For example, some of licenses of the 
ontologies do not allow being tuned/modified. If the study has 
not led to any results, it is always possible to write a specific 
domain ontology. 
Ontology Integration: as a result of the previous steps the 
main ontologies have been identified and thus they have to be 
integrated/glued with each other. In addition, the missing 
concepts have to be formalized by completing the fitting of the 
KB with the domain analysis performed. Ontology Review: 
Once the ontology was created/modified, a first revision took 
place even without the massive loading of instance. Thanks to 
tools like Protégé [http://protege.stanford.edu/], which allow 
to apply a reasoner to the ontology in order to verify that 
knowledge is modeled as desired. A number of metrics and 
criteria may be also applied to verify if the ontology has been 
developed with common criteria. E.g., [Noy and McGuinness, 
2001], [Gómez-Pérez, 2004], [Rector et al., 2004].    
Knowledge Base Indexing Onto, KBIO: the task in which the 
RDF Store index containing the selected ontologies, 
vocabularies, and custom defined concepts are integrated as 



triples. They may be some files and some tens of classes. This 
process usually starts from an empty RDF store and takes a 
few seconds since the ontologies are comprised of a small 
number of triples and the RDF is empty; differently from what 
happen when millions of triples of data sets are indexed and 
they lead to many materialized triples.  

B. From Ontology to KB via Data Ingestion, major tasks 

Static Data Collection: on the basis of the created domain 
ontology, the analysed data (addressed in task Data Analysis 
and Mining) have to be processed. Static data are typically 
obtained from open data, statistical data, private data that do 
not change over time so rapidly. The process of static data 
ingestion may be performed by means of parallel and 
distributed architectures executing processes as ETL (Extract, 
Transform and Load), Java, microgrid, harvesting, crawling, 
etc. It may include: file access, REST/WS calls, data mapping, 
quality improvement, e.g., [Bellini et al., 2013b]. Data 
Triplification: A task in which the data (static, dynamic) are 
mapped to triples on the basis of the domain ontology model.  
Knowledge Base Enrichment: task focused on enriching the 
RDF KB Store by adding links to external LOD. For example, 
referring from the street title to VIP to its dbPedia definition 
(from Avenida Winston Churchill, to its page on dbPedia: 
http://live.dbpedia.org/page/Winston_Churchill). For example 
for the Km4city KB a tool has been created, that allows to 
identify famous names inside the KB and search for the same 
name on dbPedia, to finally create triple cite/isCitedBy thanks 
to the CITO Ontology [http://purl.org/spar/cito]. 
Concept Reconciliation: task related to solve the lack of 
coherence among indexed entities referring to the same concept 
but coming from different data sets. This process is a critical 
step during the KB realization and helps to create new 
knowledge and new connections between data that would 
otherwise remain unconnected. For example, different services 
located at the same street number, several profile aspects of the 
same person, different representations of the same part of the 
brain. This task typically produces a number of triples solving 
the problem of missing links possible. Triples includes 
relationships of owl:sameAs.  
Dynamic Data Collection: Dynamic data are subject to a 
lighter ingestion process with respect to static data. In fact, 
they are picked up and immediately mapped into RDF triples, 
in order to speed up as much as possible the process that 
allows making them available to users adding them to the RDF 
store (Knowledge Base Adding RT Data). At the same time, 
Real Time triples are stored as Historical Dynamic Data for 
successive construction of versioned data stored.  
Knowledge Base Indexing Data, KBID: This task takes in 
charge a high number of triples coming from different data 
sets: 
 Static data: for example one or more file containing  a set 

of triples for each single data set; 
 Historical Dynamic data: several files and triples for each 

real time data collection channel. For example, the 
collected weather forecasts of the past two months, the last 
200 measures of traffic flow sensor DG32453165, the data 
regarding the Cloud  Host and VM in the last week; 

 Reconciliated data: triples connecting concepts and data 
into the RDF KB; 

 Enrichments data: triples connecting data entities of the 
RDF KB to external LOD RDF stores. When the 
enrichment tasks are performed on real time data, they 
have to be performed in real time as well. For examples if 
the enrichment is performed on an Opera Name, or about a 
VIP person name.  

In order to pass from the ontological model to a real RDF KB 
store, many data sets (static, statistical and historical), should 
be included / indexed in the RDF KB. Very often, indexing 
process of large files may take several hours. Often files of 
triples are linked each other and the order of indexing of these 
data may becomes essential. In some cases, the historical data 
can lead to very huge number of triples, thus compromising / 
influencing the performance of the whole RDF Store. This 
implies that the RDF KB has to be periodically polished by 
removing most of the cumulated historical data. This activity 
is quite natural for smart city and smart cloud applications. For 
example in cloud monitoring systems as NAGIOS, data are 
dense in the close time and sparse in the past.  

C. RDF Store Verification and Validatiton, V&V 

Once the RDF KB Store containing triples coming from data 
(static, historic, reconciliation and enrichment) has been 
produced, it is possible to precede with the validation and 
verification of the RDF Store vs the ontological definition. 
Please note that, the RDF store index has to be accessible to 
perform the following V&V processes via semantic queries 
end analyzing consistency. They can be automatically 
performed through a set of validation processes implemented 
as SILK [Isele, Bizer, 2013] as well as SPARQL processes.  
The verification and validation process has the duty to detect 
inconsistencies and incompleteness: (i) verify if the data 
indexing has been correctly performed, (ii) detect eventual 
reconciliations to be performed identifying missing 
connections, (iii) identify eventual enrichments to be 
performed, (iv) identify eventual mismatch from data loaded 
and the ontology (for example counting the  triples to be 
indexed and those indexed in reality), (v) verify if the expected 
inferences are exploited at the query time, etc. The above 
mentioned criteria allow identifying different kind of problems 
that may lead to revise the ontological model, the data 
ingestion process, etc. etc.  

III. RDF INDEXING FLOW AND REQUIREMENTS 

As described in the previous section, there are several reasons 
for which into the RDF KB life cycle the process may lead to 
(i) revise the ontology (and thus to revise the data mapping and 
triplification invalidating the indexing and the materialization 
of triples); (ii) revise the data ingestion including a new data 
mapping, quality improvement, reconciliation, enrichment and 
triplification.  As stated in the previous section, the life-cycle 
model foresees two steps where the Knowledge Base Indexing 
has to be performed: KBIO, KBID. On the other hand, as 
pointed out in the introduction, in most of the RDF store 
models, the versioning is not an internal feature.  This is due to 
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disk space in 
Mbyte  96  4276  4466  4643  5714 

Table 1 – Saving time using Index Manager with respect to rebuilding. Data 
collected on Ubuntu 64bit, 16 core x 2 Ghz, 500 Gbyte HD 

VI. CONCLUSIONS 

Graph databases are used in many different applications: smart 
city, smart cloud, smart education, etc., where large RDF KB 
store are created with ontologies, static data, historical data 
and real time data. Most of the RDF stores are endowed of 
inferential engines that materialize some knowledge as triples 
during indexing or querying. In these cases, the delete of 
concepts may imply the removal and change of many triples, 
especially if the triples are those modeling the ontological part 
of the knowledge base, or are referred by many other concepts. 
For these solutions, the graph database versioning feature is 
not provided at level of the RDF stores tool, and it is quite 
complex and time consuming to be addressed as black box 
approach. In most cases, the RDF store rebuilt by indexing is 
time consuming, and may imply manually edited long scripts 
that are error prone. In order to solve this kind of problem, in 
this paper, a lifecycle methodology and our RIM tool for RDF 
KB store versioning are proposed. The results have shown that 
saving time up to 95% are possible depending on the number 
of triples, files and cases to be indexed.   
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