
Graph Databases Lifecycle Methodology

and Tool to Support Index/Store Versioning

Pierfrancesco Bellini, Ivan Bruno, Paolo Nesi, Nadia Rauch
DISIT Lab, Dep. of Information Engineering, University of Florence, Italy

http://www.disit.dinfo.unifi.it , {pierfrancesco.bellini, ivan.bruno, paolo.nesi, nadia.rauch}@unifi.it

Abstract— Graph databases are taking place in many different
applications: smart city, smart cloud, smart education, etc. In
most cases, the applications imply the creation of ontologies and
the integration of a large set of knowledge to build a knowledge
base as an RDF KB store, with ontologies, static data, historical
data and real time data. Most of the RDF stores are endowed of
inferential engines that materialize some knowledge as triples
during indexing or querying. In these cases, deleting concepts
may imply the removal and change of many triples, especially if
the triples are those modeling the ontological part of the
knowledge base, or are referred by many other concepts. For
these solutions, the graph database versioning feature is not
provided at level of the RDF stores tool, and it is quite complex
and time consuming to be addressed as black box approach. In
most cases the indexing is a time consuming process, and the
rebuilding of the KB may imply manually edited long scripts that
are error prone. Therefore, in order to solve these kinds of
problems, this paper proposes a lifecycle methodology and a tool
supporting versioning of indexes for RDF KB store. The solution
proposed has been developed on the basis of a number of
knowledge oriented projects as Sii-Mobility (smart city),
RESOLUTE (smart city risk assessment), ICARO (smart cloud).
Results are reported in terms of time saving and reliability.

Keywords — RDF Knowledge base versioning, graph stores
versioning, RDF store management, knowledge base life cycle.

I. INTRODUCTION

Large graph databases are getting a strong push in their
diffusion for setting up new kind of big data services for smart
cities, digital libraries, competence modeling, health care,
smart education, etc. This fact is mainly due to their capability
in modeling knowledge and thus on creating Knowledge-
Based, KB, systems [Grosan and Abraham, 2011]. Graph
databases may be implemented as RDF stores (Resource
Description Framework) [Klyne and Carrol, 2004], to create
interactive services in which reasoning and deductions can be
elaborated including inference engines on top of the store. An
RDF store is grounded on the concept of triple that puts in
relationship two entities. For example, Carl knows Paolo,
consisting of a subject, a predicate and an object, which in turn
are represented with URI. Predicates, as “knows”, may be
specified by using vocabulary that defines relations. A
vocabulary defines the common characteristics of things
belonging to classes and their relations. A vocabulary, also
called ontology, is defined by using RDFS (RDF Schema,
RDF Vocabulary Description Language) or the OWL
extension (Ontology Web Language). Recently RDF store
have been also addressed as noSQL stores for big data [Bellini

et al., 2013a]. A large set of ontologies and related data sets
are now accessible, see for example the large number of LOD
(linked open data) accessible and related each other via URI
[Berners-Lee, 2006], [Bizer et al., 2011]. RDF stores may be
made accessible via an entry point to pose semantic queries
formalized for example in SPARQL [Hartig et al., 2009]
(SPARQL Protocol and RDF Query Language, recursive
definition). Non trivial RDF stores based solutions are
typically produced by exploiting multiple ontologies, loading
data triples and testing/validating the obtained results. This
means that they are built by using some ontology building
methodology [Noy and McGuinness, 2001], [Lopez, 1999],
integrated with a knowledge base development life cycles.
The RDF store may grow over time adding new triples, and
may have the capacity to learn if endowed of an inferential
reasoner/engine, i.e., producing new knowledge that are new
triples. Thus, the inferential engine associated with the RDF
store materializes new triples during reasoning (for example at
the time of indexing or querying). These facts are the main
motivations to low performances in indexing, and critical
performances in deleting triples of RDF stores as graph
databases since they are involved in removing the materialized
triples in the store. These features impact on store
performances, and thus, in literature, many benchmarks for the
evaluation of RDF stores are present. Some of them use real
data as from dbPedia, UniProt, WordNet, other use
synthetically generated data as LUBM [Guo et al., 2005]
(university domain), BSBM [Bizer et al., 2009] (e-commerce
domain), SP2Bench [Schmidt et al., 2009] (library domain).
More recently, in Linked Data Benchmark Council LDBC EU
project, two new benchmarks have been developed: one based
on Social Network [Erling et al., 2015] and the second on
Semantic Publishing. While LUBM and SP2Bench
benchmarks are based on real data, and evaluate only the
queries performed after the data load. BSBM and LDBC
benchmarks evaluate a mix of insert/update/delete/query
workloads. When RDF stores are used as a support for a KB,
some of the changes in the RDF store can be destructive for
the graph model, such as changes in the triples modeling the
ontology on which millions of instances are related. In order to
keep the performance acceptable, the RDF store has to be
rebuilt from scratch or from some partial version to save time
in releasing the new version. Thus, the lifecycle may present
multiple cycles in which the RDF store is built incrementally
via progressive refinements mediating among: (i) reusing
ontological models, (ii) increasing the capability of making

ded
ma
per
ser
mo
mo
hav
con
20
pro
pro
pro
In
the
Th
al.
ont
sto
RD
usi
Th
trip
ver
the
and
lev
ma
ver
app
ind
20
bet
com
pro
In
int
RD
eac
(iii
file
the
ma
ind
ind
qu
wit
res
rec
som
wh
pap
big
sto
OW
oth
Km
RD

ductions and
aintaining acc
rformances, (
rvices, (v) sa
odels and/or c
odel to build K
ve tried to
nventional so
13]. In genera
ocess and p
ototyping strat
oposed specifi
the lifecycle m

e review and r
he problem of
, 2002], [Noy
tology is not

ore. Moreover
DF KB has bee
ing command

he differences
ples. Thus, [Z
rsioning RDF
e delta betwee
d deletes to a
vel, the key pe
anagement are
rsion [Tzitzi
proaches cou
dependent trip
04], [Volkel e
tween two
mputationally
ocesses to mai

this paper, a
tegrate both (a
DF stores by:
ch version, (ii)
i) providing a
es, description
e versioning o
anual error pro
dexing version
dexing (as O
erying (as
thout influen
sulting time
construction o
me of the RD
hile other do n
per presents a
g data graph d
ores that has
WLIM and Vi
her RDF stor
m4City projec
DF KB oriente

d reasoning
ceptable que
(iv) simplifyin
atisfying the
corrections, et
KBs is not av
embed KB

oftware lifecyc
al, developme

proceeds itera
tegy. A numb
ically for KB s
model, a chan
regeneration o

f ontology ver
and Musen, 2
used as a bas

r, in [Volkel
en addressed s
s as: commit,
 are compute
Zegins et al.,
 models assum

en two RDF m
model to tran

erformance asp
e the storage sp
ikas et al
uld be to s
ples store [Kle
et al., 2005];
consecutive

y expensive
intain and app
a versioning s
a) and (b) sol
(i) keeping tr
) storing each
an automated
ns for store b
of the RDF K
one operation
ning for RDF
OWLIM [htt

Virtuoso [h
ncing the R
for returning

of a new one
DF stores are v
not allow the d
an RDF KB m
databases, and
 been develo
irtuoso; and th
res. The solu
ct [Bellini et a
ed projects as

on the know
ry performan
ng the design
arrival of a

tc. A common
vailable yet an

development
cle models [B
ent of KB sys
atively, using
ber of lifecycle
systems [Mile
nge in the onto
of a wide amo
sioning as add
2004] can be e
sis for creatin
et al., 2005]

similarly to th
update, branc

ed at semanti
2007] presen

ming the possi
models by perfo
nsform it to the
pects of an RD
pace and the t
l., 2008]. T
tore: (a) eac
in et al., 2002
(b) the deltas
versions and
and time co

ply deltas [Zeg
system for RD
lutions. It man
race of the se
 version and r
tool for keep

building and s
KB store, (v) r
ns. This approa
 stores that m
tp://www.onto
http://virtuoso

RDF store re
to a previo

is satisfactory
very time cons
deletion of tri

methodology lif
d a versioning
oped and tes
hus it can be

utions have b
al., 2013b], an

Sii-Mobility

wledge base,
nce and rend
n of the fron

additional data
nly agreed life
nd many resea
t steps into
Batarseh, Gon
stems is a mu
g an evoluti
e models have
ette 2012].
ology may ge

ount of RDF tr
dressed in [Kl
easily applied

ng a large RD
, the versioni

he CVS solutio
ch, merge, an
ic level on fi
nted a solutio
ibility of estim
orming a set o
e other. At dat

DF KB store v
time to create

Therefore, po
ch version a

2], [Noy and M
s in terms of t
d implementi
onsuming cha
gins et al., 200
DF KB propo
nages version
t of triples to

related set of t
ping trace of
tores, (iv) all

reducing the c
ach allows to

materialize trip
otext.com/])
o.openlinksw.c
econstruction.

ous version a
ry and viable,
suming in ind
iples. Therefor
fe-cycle suitab
g tool for RD
sted for SES
simply extend

been develope
nd adopted for
Smart City na

, (iii)
dering
nt-end
a and

fecycle
archers

some
nzalez,
ultistep
ionary
e been

enerate
riples.
lein et

d if the
DF KB
ing of
ons by

nd diff.
iles of
on for
mating
of adds
tabase

version
a new

ossible
as an

Musen,
triples
ing a
ain of
7].

oses to
ing of

o build
triples,
f triple
owing

critical
make

ples at
or at

com/])
. The
and to
 since

dexing,
re, the
ble for

DF KB
SAME
ded to
ed for
r other
ational

proj
Proj
sma
Lab

T
RD
dev
requ
pres
deta
inde
repo
and
VI.

Bui
defi
enti
than
the
prob
in t
cum
The
repo
and
and
crea
real

The

the
pos
(Kn
onto
mod
grou
org
Goo

ject and RE
oject. They are
art cloud, sma
b of the Unive
The paper is o

DF Knowledge
velopment. In
uirements fo
sented. Sectio
ailing the arc
ex descriptor
orted providin

d managed co

II.

ilding a RDF K
fined methodo
ire developme
nks to a cycle
advances mad
blem is identi

this paper has
mulated while
e proposed m
orted in Figur

d one horizont
d Maintenan
ation to the R
l time data are

F

e pillars refer t
Ontology con
RDF Store co

ssible addition
nowledge Bas
ology reuses:
deling metada
ups; schema
anizations; wg
odRelations fo

ESOLUTE H
e large KB ori
art railway do
rsity of Floren
organized as
e Base life-cy

Section III, t
or the RDF
on IV describe
chitecture, an
rs. In Section
ng data related
omplexity. Co

A KNOWLED

KB is a challe
ology and life
ent process. R
approach that

de, and if need
ified. As state
been derived
developing a

methodology
re 1. The life
tal block that r
ce. The life-c

RDF Store usa
e added.

Figure 1. RDF K

to the:
nstruction, fro
ontaining tripl
nal triples to
se O, KB-O)
dcterms to s

ata; foaf dedica
a.org for a
gs84_pos repr
or a descriptio

H2020 Europ
ented projects

omains, devel
nce http://www
follows. Secti
cle model and
the RDF KB

Indexing M
es the RDF In
nd the XML
n V, experim
d to real case

onclusions are

DGE BASE LIFE

enging practice
cycle to keep

RDF KBs are
t allows check
ded, to make a
ed above, the

from the DIS
number of big
and lifecycle
-cycle present
represents the
cycle spans f
age on the fro

KB Life Cycle Mo

om domain an
es of the selec

o complete th
). For examp

set of properti
ated to relation

description
resenting latitu
on of business

pean Commi
s in the Smart
oped at the D
w.disit.org/656
ion II present
d methodolog
indexing flow

Manager tool
ndex Manager

formal mode
mental results
s, in terms of
 drawn in Se

E-CYCLE

e that needs a
p under contro

mainly devel
king and valid
adjustments w
lifecycle prop

SIT Lab exper
g data RDF KB
e for RDF K
ts 4 vertical p
RDF Store u

from the onto
ont-end where

odel

nalysis the set
cted ontologie
he domain m
ple, the Km4
ies and classe
ns among peop

of people
ude and longi
s entities and

ission
City,

DISIT
68 .
ts the

gy for
w and
l are
r tool,
el for
s are
f time
ection

well-
ol the
loped

dating
hen a
posed
rience
Bs.

KB is
pillars
usage
ology
e also

tup of
es and
model
4City
es for
ple or

and
itude;
their

locations; OWL-Time for temporal modeling; OTN for transport
aspects; GIS Dictionary, to represent the spatial component of
geographic features; etc. [Bellini et al., 2013b]. The combined
ontology is reviewed and possible problems may lead to more
or less deep redefinition of the process.

Static Data Ingestion: this phase is related to the loading of
the data instances of the ontological classes and attributes.
Despite their name, static data may change rarely over time, for
example, the position of bus stops may be considered static data
even if they change seasonally. They come from several
sources (static, statistical, historical, etc.), and have to be
converted in triples according to the KB-O coming from the
previous phase. Then, they are finally indexed by using several
sets of triples, maybe thousands. The indexing produces a KB
including the former KB-O, plus many data instances; thus,
allowing performing the Verification and Validation, V&V, of
the RDF KB.

The V&V phase may be the moment in which some
problems are detected. They may constrain the expert to: (i)
wrong data or incomplete data to need a review of the data
mapping to the ontology (restart from the first step of this phase
of data collection), (ii) missing ontology aspects and classes,
thus leading to the review of the ontology built (returning to
Ontology Review), (iii) problems in data collected that may be
wrongly mapped to ontology classes (returning to Data
Analysis and Mining), (iv) mistake in data mapping that may
lead to revise the whole Domain Analysis, and successive steps.
If this phase is passed, the RDF Store passes to the phase of
RDF Store Usage and Maintenance. Additional static data sets
may be added to the KB-O if the ontological model supports
them without deletion, otherwise a review is needed.

Enrichment and Improvement, E&I: this phase allows
solving problems that may be present in the produced RDF
Store. E&I processes may take advantage from the access to the
partially integrated KB, exploiting for examples solutions of
Link Discovering [Ngomo, 2011], [Isele, Bizer, 2013], and/or
making tuned semantic queries. Additional processes of E&I
may be added to the RDF Store if the model supports them
without performing some delete otherwise a model review is
needed.

Dynamic Data Ingestion: when the RDF store is in use,
collected data from real time information (for example, bus
delay with respect the arrival time, weather forecast, likes on
the user profile, status of sensors, status of cloud processes,
etc.) can be added to the RDF Store and saved into the
repository of the historical triples. Additional dynamic data
sources may be added to the RDF Store if the model supports
them without performing some delete otherwise a model review
is needed. Please note that dynamic data should not need to
validate and verify process since the data to be added in real
time are new instances of data already mapped and integrated
as historical data.

A. Data & Domain Analysis and Ontology Construction

Brief descriptions of major interesting blocks pertaining to the
proposed life cycle and methodology (see Figure 1) are now
provided.

Data Analysis and Mining: Each data set (static or real-time)
to be addressed in the RDF KB is analyzed and checked to
assess if the information related to each single data field is
well described in terms of type, range, and context. The data
collected is analyzed to understand the concepts in terms of
their structure, relationships and information in domain.
Domain Analysis: this step is executed in parallel or in
alternative to the above data analysis steps. In this phase, the
concepts of the domain addressed by the application are
studied to understand concepts, terminology, their
relationships, and the general rules that are related to them.
Several methodologies are accessible to help the analysts in
identifying concept from the literature review of the domain –
as well as thumb rules: substantive are classes, verbs are
relationship, details are attributes, etc.
Available Ontology Review: This phase is very important.
Once the major aspects of the domain have been identified.
The phase consists of studying other related ontologies at the
state of the art to see if they can model the whole identified
domain and data concepts or at least a part of them. The
realistic solution is to start from one or a set of available
ontologies and complete the expected model with some
specific classes and relationships. This task, it could be
performed every time new static and/or dynamic data kind
have to be addressed, or for addressing identified problems.
When this ontology review is performed starting from an
active domain ontology (in the RDF KB), it may happen that
the expert may discover that no changes are needed at
ontological level (e.g., a new class is not needed since the
concept for hosting data is already in place), thus resulting in a
direct jump to the phases of static or dynamic data
management.
Ontology Selection: on the basis of the actions previously
performed on concepts and data against ontologies, it is
possible to make a selection of the most suitable ontologies to
be taken as seeding concepts. The process of selection has to
take into account also the licensing aspects, which impose
some constraints. For example, some of licenses of the
ontologies do not allow being tuned/modified. If the study has
not led to any results, it is always possible to write a specific
domain ontology.
Ontology Integration: as a result of the previous steps the
main ontologies have been identified and thus they have to be
integrated/glued with each other. In addition, the missing
concepts have to be formalized by completing the fitting of the
KB with the domain analysis performed. Ontology Review:
Once the ontology was created/modified, a first revision took
place even without the massive loading of instance. Thanks to
tools like Protégé [http://protege.stanford.edu/], which allow
to apply a reasoner to the ontology in order to verify that
knowledge is modeled as desired. A number of metrics and
criteria may be also applied to verify if the ontology has been
developed with common criteria. E.g., [Noy and McGuinness,
2001], [Gómez-Pérez, 2004], [Rector et al., 2004].
Knowledge Base Indexing Onto, KBIO: the task in which the
RDF Store index containing the selected ontologies,
vocabularies, and custom defined concepts are integrated as

triples. They may be some files and some tens of classes. This
process usually starts from an empty RDF store and takes a
few seconds since the ontologies are comprised of a small
number of triples and the RDF is empty; differently from what
happen when millions of triples of data sets are indexed and
they lead to many materialized triples.

B. From Ontology to KB via Data Ingestion, major tasks

Static Data Collection: on the basis of the created domain
ontology, the analysed data (addressed in task Data Analysis
and Mining) have to be processed. Static data are typically
obtained from open data, statistical data, private data that do
not change over time so rapidly. The process of static data
ingestion may be performed by means of parallel and
distributed architectures executing processes as ETL (Extract,
Transform and Load), Java, microgrid, harvesting, crawling,
etc. It may include: file access, REST/WS calls, data mapping,
quality improvement, e.g., [Bellini et al., 2013b]. Data
Triplification: A task in which the data (static, dynamic) are
mapped to triples on the basis of the domain ontology model.
Knowledge Base Enrichment: task focused on enriching the
RDF KB Store by adding links to external LOD. For example,
referring from the street title to VIP to its dbPedia definition
(from Avenida Winston Churchill, to its page on dbPedia:
http://live.dbpedia.org/page/Winston_Churchill). For example
for the Km4city KB a tool has been created, that allows to
identify famous names inside the KB and search for the same
name on dbPedia, to finally create triple cite/isCitedBy thanks
to the CITO Ontology [http://purl.org/spar/cito].
Concept Reconciliation: task related to solve the lack of
coherence among indexed entities referring to the same concept
but coming from different data sets. This process is a critical
step during the KB realization and helps to create new
knowledge and new connections between data that would
otherwise remain unconnected. For example, different services
located at the same street number, several profile aspects of the
same person, different representations of the same part of the
brain. This task typically produces a number of triples solving
the problem of missing links possible. Triples includes
relationships of owl:sameAs.
Dynamic Data Collection: Dynamic data are subject to a
lighter ingestion process with respect to static data. In fact,
they are picked up and immediately mapped into RDF triples,
in order to speed up as much as possible the process that
allows making them available to users adding them to the RDF
store (Knowledge Base Adding RT Data). At the same time,
Real Time triples are stored as Historical Dynamic Data for
successive construction of versioned data stored.
Knowledge Base Indexing Data, KBID: This task takes in
charge a high number of triples coming from different data
sets:
 Static data: for example one or more file containing a set

of triples for each single data set;
 Historical Dynamic data: several files and triples for each

real time data collection channel. For example, the
collected weather forecasts of the past two months, the last
200 measures of traffic flow sensor DG32453165, the data
regarding the Cloud Host and VM in the last week;

 Reconciliated data: triples connecting concepts and data
into the RDF KB;

 Enrichments data: triples connecting data entities of the
RDF KB to external LOD RDF stores. When the
enrichment tasks are performed on real time data, they
have to be performed in real time as well. For examples if
the enrichment is performed on an Opera Name, or about a
VIP person name.

In order to pass from the ontological model to a real RDF KB
store, many data sets (static, statistical and historical), should
be included / indexed in the RDF KB. Very often, indexing
process of large files may take several hours. Often files of
triples are linked each other and the order of indexing of these
data may becomes essential. In some cases, the historical data
can lead to very huge number of triples, thus compromising /
influencing the performance of the whole RDF Store. This
implies that the RDF KB has to be periodically polished by
removing most of the cumulated historical data. This activity
is quite natural for smart city and smart cloud applications. For
example in cloud monitoring systems as NAGIOS, data are
dense in the close time and sparse in the past.

C. RDF Store Verification and Validatiton, V&V

Once the RDF KB Store containing triples coming from data
(static, historic, reconciliation and enrichment) has been
produced, it is possible to precede with the validation and
verification of the RDF Store vs the ontological definition.
Please note that, the RDF store index has to be accessible to
perform the following V&V processes via semantic queries
end analyzing consistency. They can be automatically
performed through a set of validation processes implemented
as SILK [Isele, Bizer, 2013] as well as SPARQL processes.
The verification and validation process has the duty to detect
inconsistencies and incompleteness: (i) verify if the data
indexing has been correctly performed, (ii) detect eventual
reconciliations to be performed identifying missing
connections, (iii) identify eventual enrichments to be
performed, (iv) identify eventual mismatch from data loaded
and the ontology (for example counting the triples to be
indexed and those indexed in reality), (v) verify if the expected
inferences are exploited at the query time, etc. The above
mentioned criteria allow identifying different kind of problems
that may lead to revise the ontological model, the data
ingestion process, etc. etc.

III. RDF INDEXING FLOW AND REQUIREMENTS

As described in the previous section, there are several reasons
for which into the RDF KB life cycle the process may lead to
(i) revise the ontology (and thus to revise the data mapping and
triplification invalidating the indexing and the materialization
of triples); (ii) revise the data ingestion including a new data
mapping, quality improvement, reconciliation, enrichment and
triplification. As stated in the previous section, the life-cycle
model foresees two steps where the Knowledge Base Indexing
has to be performed: KBIO, KBID. On the other hand, as
pointed out in the introduction, in most of the RDF store
models, the versioning is not an internal feature. This is due to

the
sto
trip
RD
ver
ma
wit
ver
dep
lay
and

To
nec
“in
sub
cit
the
bu
ont
eng
is
trip
his
tha
scr
sin
dif
“in
con
dep
wh
(Fi
ont
cre

De
are
set
Th
bel
tim
ass
(e.
fun
Mo
fut

e fact that it c
ored triples for
ples materializ
DF KB life c
rsions of inde
ay be very us
th the aim
rsions in gene
ployment. Fo
yered versions
d dynamic dat

o better descri
cessary to pu
ndex” and “in
bstance an “in
ed in the trip
e triples into th
ilt, maybe ma
tological mod
gine adopted.
the collection
ples of ontolog
storical, dynam
at may be used
ript syntax ca
nce their com
fferent. This
ndex” and “i
ntaining triple
pendencies fr
here the reconc
ile 1, ver 1.5)
tology and on
eate a set of tri

Fig

efinition. Let ܨ
e available fo
t of datasets a
he function ݀ݏ
longs to, func

me when it
sociate each tr
g. ontologies)
nction must n
oreover, a fil
ture:

cannot be eas
r their comple
zation by infer
cycle, the mo
exes/RDF Stor
eful to keep u
of saving ti

erating the RD
or example, i
s of the index
ta, historical d

ibe the proces
ut in evidenc
ndex descript
ndex”, while c
les elements.
he RDF store,
aterializing ad
del and the
The recipe to

n of atomic fi
gies as well as
mic), can be c
d to generate a

an be different
mmands for
approach im

index descrip
es with their
rom other file
ciliation of trip
 with respect
n the parking
iples connecte

gure 2. Example

ܨ ൌ ሼ ଵ݂, ଶ݂, ଷ݂
or indexing an
and ontologies
:ݏ ܨ → ܵܦ ass
ction ݁݉݅ݐ: 	ܨ

was created
riple file with
), ℘ሺܺሻ is th
ot introduce a
le should not

ily performed
xity in removi
rence. Accord

odeling of a c
res, with incre
under control
ime by explo
DF Store/index
in the case o
may include

data, etc.

ss of RDF Ind
ce the differe
tor”. An RD
content can be
The index is

, and as a resu
dditional triple

specific RD
o create the RD
files containin
s those related
called as the
a script for ind
t from an RD
loading and

mplies to hav
ptor” also th

versions, last
es. For exam
ples connectin
to civic numb

g area data se
ed with dashed

e of set of file ver

, … ሽ be the se
nd ܵܦ ൌ ሼ݀ݏଵ,
s that are avai
sociate the fil
→ Գ associate

and functio
h a set of files
e power set
a cyclic depen

depend on f

d at level inde
ing them, due

ding to the pro
chain of conn
emental comp
the evolving

oiting interm
x for the succ
of Smart City
the ontology,

dex versioning
ences betwee

DF KB store
e accessed via
created by lo

ult a binary in
es according
F store infer

DF Store index
g triples (incl
d to data sets:
“index descrip
dex generation

DF Store to an
indexing ca

ve aside each
he history of
t update dates

mple, see Figu
ng parking loc
bers depends o
ets. Thus lead
d lines.

sioning

et of triple file
, ,ଶݏ݀ …,ଷݏ݀ ሽ
ilable for inge
le to the data
e each file wi
on ݀݁݌: ܨ →
s that it depen
of set X. Th

ndency among
files created

ex and
to the

oposed
nected
plexity

index
mediate

essive
y, the
 static

g, it is
en the

is in
a URI
oading
ndex is
to the
rential
x, that
luding
static,

iptor”,
n. The
nother,
an be
h pair
f files
s, and
ure 2,
cations
on the

ding to

es that
is the

estion.
aset it
ith the
℘ሺܨሻ

nds on
he dep
g files.
in the

Exa
ࡲ ൌ
࢙ࢊ
ሺݎ
ሺݏ

࢓࢏࢚
ሺݎ

࢖ࢋࢊ
ሺݎ
ሺܾ

Def

Me
data
ሼ݂݇
ܽ݋ݎ

Def
of F
It c

Wh

Exa
Def
pro
asso
fun
file
that
dep
Exa
࢕࢘ࢌ
࢒࢏ࢌ
ሺ݅

Def
set

Exa
ሼ݂݇

Def
mea
diff
inde
߶ሺܥ

Fig
corr
to h
vers

∀݂ ∈ ܨ
ample ࡿࡰ ൌ
ൌ ሼ݇ ଵ݂, ݇ ଶ݂, ݋ ଵ݂
ൌ ሼሺ݇ ଵ݂ → ݇݉
ݎ ଵ݂ → ሻݏ݀ܽ݋ݎ
ݏ ଶ݂ → ݁ܿ݅ݒݎ݁ݏ
ࢋ࢓ ൌ ሼሺ݇ ଵ݂ →
ݎ ଶ݂ → 8ሻ, ሺݏ ଵ݂
࢖ ൌ ሼሺ݇ ଵ݂ → ሼ
ݎ ଶ݂ → ሼ݇ ଶ݂ሽሻ,
ܾ ଵ݂ → ሼ݇ ଵ݂ሽሻ,

finition A sub
∀	݂, ݂

aning that f
asets. Exampl
ଵ݂, ݎ ଵ݂, ݎ ଶ݂ሽ is
 .ݏ݀ܽ

finition The f
F with closure
an be compute

ሺܵܥ

here:

ample ܥሺሼݎ ଵ݂,
finition Let ܫ
duced and ߝ i
ociates an ind
ction ݂݈݅݁ݏ: ܫ
s to be added
t the “from

pendency amon
ample: ࡵ ൌ
࢓࢕ ൌ ሼሺ݅ଵ →
࢙ࢋ ൌ ሼሺ݅ଵ → ሼ
݅ସ → ሼݏ ଶ݂ሽሻሽ

finition Funct
of files that ar

߶ሺ݅ሻ ൌ

ample ߶ሺ݅ଵሻ ൌ
ଵ݂, ݎ ଵ݂, ܾ ଵ݂, ݏ ଵ݂

finition An in
aning that in t
ferent version
exes ݅ଵ, ݅ଶ, ݅ଷ
߶ሺ݅ସሻሻ ൌ ሼ݇ ଵ݂

gure 3 shows p
responding in
highlight that
sions of pair

,ܨ ݏ	∀ ∈ ሺ݂݌݁݀
ሼ݇݉4ܿ, ,݊ݐ݋ ݎ
ଵ݂, ݎ ଵ݂, ݎ ଶ݂, ݏ ଵ݂,
݉4ܿሻ, ሺ݇ ଶ݂ →
, ሺݎ ଶ݂ → ݀ܽ݋ݎ
,ሻݏ݁ ሺܾ ଵ݂ → ݑܾ
→ 2ሻ, ሺ݇ ଶ݂ → 5ሻ
→ 2ሻ, ሺݏ ଶ݂ →
ሼ݋ ଵ݂ሽሻ, ሺ݇ ଶ݂ →
ሺݏ ଵ݂ → ሼ݇ ଵ݂ሽሻ
ሺܾ ଶ݂ → ሼ݇ ଶ݂ሽሻ

bset S of F is in
݂ᇱ ∈ ܵ, ݂ ് ݂′

files need to
le the set ሼ݇ ଵ݂
not indexable

function ܥ:℘ሺ
 of the subset
ed using the re

ሻ ൌ ൜ܵ ∪ ሺ݀ܥ
∅

ሺܵሻ݌݁݀ ൌ

, ݏ ଶ݂ሽሻ ൌ ሼ݇ ଵ݂
ܫ ൌ ሼ݅ଵ, ݅ଶ, ݅ଷ, …
s the empty in

dex with the in
→ 	℘ሺܨሻ asso

d to the index
” function m
ng indexes.
ൌ ሼ݅ଵ, ݅ଶ, ݅ଷ, ݅ସሽ
,ሻߝ ሺ݅ଶ → ݅ଵሻ,
ሼ݇ ଵ݂ሽሻ, ሺ݅ଶ → ሼ

tion ߶: ܫ → ℘
re indexed, it i

ൌ ൜߶ሺ݂݉݋ݎ
ሺ݅

∅
ൌ ሼ݇ ଵ݂ሽ, ߶ሺ݅ଶሻ
ሽ, ߶ሺ݅ସሻ ൌ ሼ݂݇

ndex ݅ ∈ is	ܫ
the closure of
ns of files of

are correct w
, ݇ ଶ݂, ݋ ଵ݂, ݎ ଵ݂,

possible evolu
dex-descriptor
simultaneous

rs: index, in

݂ሻ. ሻݏሺ݁݉݅ݐ ൏
,ݏ݀ܽ݋ݎ ܿ݅ݒݎ݁ݏ
, ݏ ଶ݂, ܾ ଵ݂, ܾ ଵ݂,
݇݉4ܿሻ, ሺ݋ ଵ݂
,ሻݏ݀ ሺݏ ଵ݂ → ݁ݏ
,ሻݏ݁ݏݏݑ ሺܾ ଶ݂ →
ሻ, ሺ݋ ଵ݂ → 1ሻ, ሺ

→ 8ሻ, ሺܾ ଵ݂ → 3
→ ሼ݋ ଵ݂ሽሻ, ሺݎ ଵ݂
ሻ, ሺݏ ଶ݂ → ሼ݇ ଶ݂
ሻሽ

ndexable iff
′ → ሺ݂ሻݏ݀ ് ݀

be associat
, ݋ ଵ݂, ݎ ଵ݂, ݏ ଵ݂ሽ
e because ݀ݏ

ሺܨሻ → ℘ሺܨሻ a
with respect t
ecursive funct
ሺܵሻ\ܵሻ݌݁ ܵ

ܵ

ራ݀݁݌ሺݏሻ
௦∈ௌ

, ݇ ଶ݂, ݋ ଵ݂, ݎ ଵ݂,
… ሽ ∪ ሼߝሽ be t
ndex. The fun
ndex it was st
ociate an inde

x we are starti
must not in

ሽ
ሺ݅ଷ → ݅ଶሻ, ሺ݅ସ
ሼݎ ଵ݂, ܾ ଵ݂ሽሻ, ሺ݅ଷ

ሺܨሻ provides
is defined recu
݅ሻሻ ∪ ሺ݅ሻݏ݈݂݁݅

ሻ ൌ ሼ݇ ଵ݂, ݎ ଵ݂, ܾ
ଵ݂, ݎ ଵ݂, ܾ ଵ݂, ݏ ଶ݂

correct if ܥሺ
files in the ind
the same data

while ݅ସ is no
ܾ ଵ݂, ݏ ଶ݂ሽ is no

utions of an RD
rs and indexes
sly can be ca
dex-descriptor

 ሺ݂ሻ݁݉݅ݐ
,ݏ݁ ,ሽݏ݁ݏݏݑܾ
ܾ ଶ݂, ሽ,
→ 	,ሻ݊ݐ݋
 ,ሻݏ݁ܿ݅ݒݎ݁
→ ሻሽݏ݁ݏݏݑܾ
ሺݎ ଵ݂ → 3ሻ,	
ሻ, ሺܾ ଶ݂ → 8ሻሽ
→ ሼ݇ ଵ݂ሽሻ,
ሽሻ,	

 ሺ݂ᇱሻݏ݀
ted with diff
ሽ is indexable w
ሺݎ ଵ݂ሻ ൌ ݂ݎሺݏ݀

associates a s
to the dep func
tion:
ܵ ് ∅
ܵ ൌ ∅

ݏ ଶ݂ሽ
the set of ind
nction ݂݉݋ݎ: ܫ
tarted from an
ex with the s
ing from. Con
ntroduce a c

→ ݅ଶሻሽ
ଷ → ሼݏ ଵ݂ሽሻ,

for each inde
ursively as:
݅ ് ߝ
݅ ൌ ߝ

ܾ ଵ݂ሽ, ߶ሺ݅ଷሻ ൌ
ଶ݂ሽ

߶ሺ݅ሻሻ is index
dex are not pr
aset. Exampl
ot correct bec
ot indexable.

DF Store with
s. The figure w
arried out diff
r, each of w

ferent
while
ଶ݂ሻ ൌ

subset
ction.

dexes
ܫ → ܫ

nd the
set of
nsider
cyclic

ex the

xable
resent
le the
cause

h their
wants
ferent
which

con
tha
evo
con
inc
pai
fro
sto
nee
bu
by
fro
tha
by
des

In
new
ver
is a
has
or
ver
con
sna
sin
int
gen
cha
for

A.

On
ind
me






ntaining diffe
at each index
olution with
nsidering the
cluding ontolo
irs number 1

om version 1
ops; and versi
ed to create a
s stops chang
 adding geogr

om that versio
at version 1.2
 starting from
scriptor, and a

Fig
r

this last scen
w generated d
rsions of data
an evolving pr
s to keep a sp
not. Any sm

rsion, while th
nsolidated po
apshots. Mor
ngle data se
termediate ve
nerating triple
ange, most of
r the same data

Requirement

n the basis o
dexing version
eans of an RD

Keep tracin
files of tripl

Maintaining
stored and r

Selecting a
to examine
base for bui

erent data. Th
may contain
which it ha

index, index-d
ogies and voca
.1 could be i

by adding g
ion 1.1.1 by a
another altern

ged positions,
raphic informa
on 1.2.1 addin
.2, represents
m version 1.2
adding other d

gure 3. RDF KB
reporting index-de

nario, an exist
data set or upd
and/or ontolo
rocess, it is no
pecific previou

mall change co
he suggestion

oint is availab
reover, since
t are access
ersions are a
es. Furthermo

f triples must b
aset, more trip

ts for RDF Ind

of the above
ning activities
F Index Mana
g RDF KB Sto

les, index-desc

g a repository
retrieved;

RKBSV from
changes and t

ilding a new v

he different in
different dat

as been crea
descriptor pai
abularies, we
incrementally
geographic in
adding service
native branch
and thus vers
ation and the

ng again the se
an example o

2 by cloning
data set triples.

B store index vers
escriptors and ind

ting index may
dated by inclu
ogies. Since th
ot possible to p
usly created v
ould be used

n is to save ve
ble similarly
the triples as

sible, reconst
also possible

ore, each time
be generated a
ples versions c

dex Manager

presented mo
s described ca
ager (RIM), th
ore Versions,
cription, and R

of RKBSVs w

m the repositor
the history ve

version;

ndex colors in
ta, according
ated. For exa
ir version labe
can assume th
generated, st

nformation an
es. Subsequent

occurred sinc
ion 1.2 was c
new bus stop
ervices. Pleas
of index gene

g index and i
.

ioning:
dexed

y be extended
uding new cor
he RDF KB bu
predict wheth

version of the
to generate a

ersions every t
to virtual ma

ssociated with
truction of p
e, saving tim
es some onto
again, and ther
could exist.

Tool

odel, the RD
an be support

hat should allow
RKBSV, in ter

RDF Index;

where they cou

ry for modific
ersion, to be u

ndicate
to the

ample,
eled 1,
hat the
tarting

nd bus
tly the
ce the

created
ps; and
e note

eration
index-

d with
rrected
uilding
er one
index

a new
time a
achine
h each
partial
me in
ologies
refore,

F KB
ted by
w:
rms of

uld be

cation,
sed as











The
requ
of
inde
des
rela
The
buil
onto
whe
(inc
con
star
of t
data
The
foll
inde
new
trip
pare
load
with
sam
allo
inde
from
(on
vers
Imp
that
Gen
and
RD
reco
Ind
of d
indi
pro
data
stat

Managing th
triples;

Generating a
independentl
in particular

Monitoring t
state;

Suggest the
the demande

Avoiding ma
since it is tim

IV

e RDF Index
uirements, cre
triples, and
exes independ
criptor, as m

ated data sets
e chosen appr
ld the entire
ologies and re
en only new
cremental buil
nsolidated RD
rting from an o
triples to load
a loading supp
e main functio
lowing: Setup
ex descriptor;

w version that
ples version of
ent RDF inde
ding the new
h updated ver

me data sets o
ows speeding
ex descriptor.
m scratch; E
tology, static,
sion; update tr
port/Export th
t could be us
neration by pr
d Linux) accor

DF store kind.
onstructing th

dex Generation
data set to be
icators (time
gression and
a related to
tistical and ver

he index descr

a RDF KB in
ly from the RD
for SESAME

the RDF KB i

closest versio
ed new index i

anually mana
me consuming

V. RDF INDE

x Manager to
eates and man

generates au
dently from t

mentioned befo
described wi

roach with g
index (build

elated data set
w data sets a
lding), (iii) m

DF index whe
older consolid
d in the index
ported by man
onalities provi

of a new inde
 Clone a prev
t it is populat
f the parent wi
ex is made an

additional da
rsions to creat
of parent and
up the creati
A new RDF i
dit the index
, historical an
riples version

he index descr
ed for backup
roducing a sc
rding to the in
. The procedu
he index from
n by controllin
loaded, the da
spent, max ti
output of buil
RDF store b
rification analy

riptor as a list

ndex on the b
DF store kind
 OWLIM and

index generati

on of the RKB
in terms of file

ging the scrip
and an error p

EX MANAGER T

ool satisfy th
nages index de
utomatically t
the RDF stor
ore, is a list
ith their triple
generation and
d all) by loa

change, (ii) e
and triples h
ake a physica
en an index
dated descripto
x suggested e

ny RDF stores.
ided by the to
ex descriptor,

vious index de
ted with the s
ith some addit
nd used to bu
ata sets; Copy
te a new versi
d new version
ion of an upd
index will be

x descriptor t
nd reconciliati

of a data set;
riptions as XM
p/restore and
cripted proced
ndex descripto
ure may be i

m scratch; Mo
ng the store fee
ata set already
ime to upload
lding process;

building for f
ysis).

of files conta

basis of an RK
automatically

d Virtuoso;

ion and the fee

BSV with respe
es of triples;

pt file of inde
prone process.

TOOL

he above pres
escriptors, and
the correspon

re type. The
of ontologies

e files and ver
d update is to
ading triples w
extending the i
have to be a
al copy (clone)
descriptor is
or. The big am
exploiting the
.
ol are describ
to create an e

escriptor to cre
same data sets
tion. A clone o
uild the new
y a previous i
ion populated
ns of triples.
date version o
created and lo
to add a dat
ions), select tr
remove a dat

ML representa
share; RDF I

dure (for Win
or and the sel
incremental o
onitoring the
eding as: the q
y in the store,
d a data set, e
; Logging bui
further access

aining

KBSV
y, and

eding

ect to

exing,
.

ented
d files
nding
index
s and
rsion.
o: (i)
when
index
added
) of a
built

mount
bulk

bed as
empty
eate a
s and
of the
store

index
d with

This
of the
oaded
ta set
riples
ta set;
ations
Index

ndows
lected
or for

RDF
queue
 time
etc..),
ilding
s (i.e.

A.

Th
com
ver
pro
Ma
int
and
mo
ma
Th
RE
RD
sta
acc
ont
ide
ind
add
wa
fro
the

Fo
pro
RD
ste
bu
fin
ind
com
Th
app
Fig
scr
pan
dat
com
the
Sto

In
the
bu

Architecture,

he RDF Inde
mponents. Th
rsions of RDF
ovides the trip
anager Applic
terface for cre
d putting in
onitoring the w
anagement, us
he Index Mana
EST calls to b
DF store buil
atus. The Ind
cording to the
tologies/file
entifier corres
dex, the versio
d, update, rem
as inherited by
om other sectio
e triples to use

F

or the RDF
oduces a scrip
DF store targ
eps: (i) setup
lk uploading

nalization, (v)
dexes, geogra
mmands, and

he RDF Index
plication with
gure 4 show
ript is runnin
nels: the outp
ta set to inser
mmitted data
e time necess
ores.

Table 1, exam
e comparison
ilding a Smar

, RDF Index G

x Manager i
he RDF Stor

F Stores explo
ples files versio
cation Server
eating, loading

execution th
whole creatio
ser control ac
ager API RES
be invoked by
lding to keep
dex Builder
e RDF Store ki
and each fil
sponding to t
on of triples

move and com
y a cloning (C
on for the pres
e (date and tim

Figure 4. RDF In

Index genera
pt according
et. The scrip
of script, (ii)

of triples i
create possib

aphical indexe
(vi) update in
Manager has

h MySQL sup
ws the Buildin
ng. This view
put of script in
rt, the progres

set. Such inf
ary to build a

V. EXPERI

mples of resul
of the usage

rt City RDF

Generation an

is constituted
re Manager
iting the Vers
on for all the d
r and GUI w
g and editing
he scripts for
n process. It

ccess and con
ST Interface c
y the indexin

p trace of the
Manager gen
ind. The secti
le is describ
the name, th
to use, the op

mmit, and an en
Clone). The hi
sence of time

me for TripleSt

ndex Buidling Mo

ation the RD
to the index
t is structure
initialization

into the store
ble additional
es that need
dex building s
been realized

pport running
ng Monitor V
w provides di

n real-time on
s and the tota
formation allo
a repository u

IMENTAL RESU

lts are reporte
e of the RIM
store. The RD

d evolution

d by the follo
manages dif

ion Manager
data sets. The

which is the
the index, bu

r RDF store
also provides

nfiguration se
consists of a

ng script durin
e indexing pr
nerates the s
on contains a
ed by: an u

he reference t
peration to pe
ntity for settin
istorical data d
interval that d
tart and Triple

onitor

DF Index Ma
descriptor an

d in the follo
of RDF store

e, (iv) RDF
 indexes as t
additional dat
status.
as a PHP 5.5.
under Ubuntu

View when a
fferent inform
n top, the que

al time spent f
ows also evalu
using the two

ULTS

d. The data re
M and versioni

DF stores cur

owing
fferent
which
Index
 user

uilding
feed,

s users
ttings.
set of

ng the
rocess
scripts
list of

unique
to the
erform
ng if it
differs

defines
eEnd).

anager
nd the
owing
e, (iii)

store
textual
tabase

x web
u. The

batch
mation
eue of
for the
uating

o RDF

efer to
ing in
rrently

man
com
mea
incr
The
onto
to t
enri
for
inde
incr
RD
Gra
dete
i.e.,
case
is v
For
thus
vers

Ind

Fi

Fi

w
pr

Ad

pr

OW

w

% o
R

Fi
tri
g

VIR

w

% o
R

Fi
tri
geo

Gra

w

% o
R

Fi
tri
g

naged are Vir
mmercial OW
asures reporte
remental build
e building s
ologies (first c
the added trip
ichment and r

1 month). T
exing include
remental inde

DF store kind
aphDB create
ermines a high
, 73.4 wrt 46.2
es, the percen

very high, grea
r small stores,
s it could be
sioning.

O
g

dexing process

inal number of
triples

inal number of
Files

Added triples
with respect to
evious version

dded Files with
respect to

evious version

WLIM SE 4.3

Indexing Time
without RIM (s)

Indexing Time
with RIM (s)

of saved time,
RIM versioning

nal Number of
ples (including
geo + inferred)

disk space in
Mbyte

RTUOSO 7.2

Indexing Time
without RIM (s)

Indexing Time
with RIM (s)

of saved time,
RIM versioning

nal Number of
ples (including
o, no inferred)

disk space in
Mbyte

aphDB 6.1

Indexing Time
without RIM (s)

Indexing Time
with RIM (s)

of saved time,
RIM versioning

nal Number of
ples (including
geo + inferred)

rtuoso 7.2 as
WLIM SE ver

ed have been
ding of the RD
tarted with
column), then
ples/files (stre

reconciliations
The time est
e: create, lo

exing include:
ds have a dif
e inferred t
her number of
2 million; and

ntage of saved
ater than the 22

Virtuoso can
e better to r

Ontolo
gies

+ street
graphs

15809 335475

12 1

15809 335316

12 1

18 65

11 60

38,9 7

16062 574869

310 86

146 8

156 8

‐6,8 ‐3

21628 354526

68 14

9 78

2 67

77,8 13

15809 574864

open source R
r. 4.3 and G
n performed
DF Store for t
12 files of

n each column
eet graphs, sm
s, historical da
timated for t
oad, finalize;

clone, load,
fferent behav
triples at th
f triples with r
d a higher inde

time, for non
2% up to the 9

n be indexed in
rebuild instea

+ smart
city
Services

01 34462930

37 178

92 915429

25 41

36 6198

29 514

7,8 91,7

56 59395432

69 8936

06 964

33 421

3,3 56,3

13 36301322

50 1632

18 7929

91 454

3,1 94,3

15 59394891

RDF store an
GraphDB 6.1.

by means o
the three solut

triples inclu
n of the table r
mart city serv
ata of real time
the cases of

while those
finalize. The

vior. OWLIM
he indexing;
respect to Virt
exing time. In

n small RDF st
97% of saved
n shorter time

ad of cloning

+Enrich&
Reconcili
ations

+Hist
l dat
mon

34557142 442

185

94212 96

7

7516

343

95,4

59486748 734

9039

1000

296

70,4

36420445 462

1631

7671

214

97,2

59487551 734

nd the
The

of an
tions.
uding
refers
vices,
e data

total
e for
three

M and
this

tuoso,
n both
tores,
time.

e, and
g and

torica
ta 1
nth

18719

27794

661577

27609

12093

5745

52,5

441126

13110

2487

1932

22,3

32510

2294

12915

4849

62,45

441929

disk space in
Mbyte 96 4276 4466 4643 5714

Table 1 – Saving time using Index Manager with respect to rebuilding. Data
collected on Ubuntu 64bit, 16 core x 2 Ghz, 500 Gbyte HD

VI. CONCLUSIONS

Graph databases are used in many different applications: smart
city, smart cloud, smart education, etc., where large RDF KB
store are created with ontologies, static data, historical data
and real time data. Most of the RDF stores are endowed of
inferential engines that materialize some knowledge as triples
during indexing or querying. In these cases, the delete of
concepts may imply the removal and change of many triples,
especially if the triples are those modeling the ontological part
of the knowledge base, or are referred by many other concepts.
For these solutions, the graph database versioning feature is
not provided at level of the RDF stores tool, and it is quite
complex and time consuming to be addressed as black box
approach. In most cases, the RDF store rebuilt by indexing is
time consuming, and may imply manually edited long scripts
that are error prone. In order to solve this kind of problem, in
this paper, a lifecycle methodology and our RIM tool for RDF
KB store versioning are proposed. The results have shown that
saving time up to 95% are possible depending on the number
of triples, files and cases to be indexed.

ACKNOWLEDGMENT

The authors would like to thank to the coworkers that have
contributed to the experiments in the several projects, and in
particular to Km4City: Giacomo Martelli, Mariano Di Claudio.
Thanks also to Ontotext for providing a trial version of their
tools.

REFERENCES

[Batarseh, Gonzalez, 2013] Batarseh, Feras A., and Avelino J.
Gonzalez. "Incremental lifecycle validation of knowledge-
based systems through CommonKADS." IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol.43, n.3,
2013, pp.643-654.

[Bellini et al., 2013a] P. Bellini, M. Di Claudio, P. Nesi, N. Rauch,
"Tassonomy and Review of Big Data Solutions Navigation",
as Chapter 2 in "Big Data Computing", Ed. Rajendra Akerkar,
Western Norway Research Institute, Norway, Chapman and
Hall/CRC press, ISBN 978-1-46-657837-1, 2013

[Bellini et al., 2013b] P. Bellini, M. Benigni, R. Billero, P. Nesi and
N. Rauch, "Km4City Ontology Bulding vs Data Harvesting
and Cleaning for Smart-city Services", International Journal
of Visual Language and Computing, Elsevier,
http://dx.doi.org/10.1016/j.jvlc.2014.10.023, 2013

[Berners-Lee, 2006] T. Berners-Lee, “Linked Data”,
http://www.w3.org/DesignIssues/LinkedData.html, 2006.

[Bizer et al., 2009] C. Bizer, A. Schultz. “The Berlin SPARQL
Benchmark”. International Journal on Semantic Web &
Information Systems, Vol. 5, Issue 2, Pages 1-24, 2009

[Bizer et al., 2011] Bizer, C., Jentzsch, A., Cyganiak, R.: State of the
LOD cloud. http://lod-cloud.net/state/ Retrieved July 5,
2014.

[Erling et al., 2015] O. Erling, A. Averbuch, J.L. LarribaPey, Hassan
Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc Pham, Peter

Boncz, The LDBC Social Network Benchmark: Interactive
Workload. Proceedings of SIGMOD 2015, Melbourne.

[Gómez-Pérez, 2004] Gómez-Pérez, A. Ontology Evaluation.
Handbook on Ontologies. S. Staab and R. Studer Editors.
Springer. International Handbooks on Information Systems.
Pp: 251 – 274. 2004.

[Grosan and Abraham, 2011] Grosan, C., and A. Abraham. Intelligent
Systems: A Modern Approach, Springer-Verlag, Berlin, 2011.

[Guo et al., 2005] Y. Guo, Z. Pan, and J. Heflin. “Lubm: A
benchmark for owl knowledge base systems”. J. Web
Semantics, 3(2-3):158–182, 2005.

[Hartig et al., 2009] O. Hartig, C. Bizer, J.-C. Freytag. 2009.
Executing SPARQL Queries over the Web of Linked Data. In
Proc. of ISWC '09, Springer, pp.293-309.

[Isele, Bizer, 2013] R. Isele, C. Bizer. “Active learning of expressive
linkage rules using genetic programming”. Web Semantics:
Science, Services and Agents on the World Wide Web 23
(2013): pp.2-15

[Klein et al., 2002] M. Klein, D. Fensel, A. Kiryakov, and D.
Ognyanov. “Ontology versioning and change detection on the
web”. In Procs of the 13th European Conf. on Knowledge
Engineering and Knowledge Management (EKAW02), pages
197–212. Springer, 2002.

[Klyne and Carrol, 2004] G. Klyne, J. Carroll, “Resource Description
Framework (RDF): Concepts and Abstract Syntax - W3C
Recommendation”, 2004

[Lopez, 1999] M. Fernandez Lopez, “Overview of Methodologies for
Building Ontologies”, in: IJCAI99 Workshop on Ontologies
and Problem-Solving Methods: Lessons Learned and Future
Trends, Stockholm, 1999.

[Milette 2012] L. Milette, Improving the Knowledge-Based Expert
System Lifecycle, UNF report, 2012.

[Ngomo, 2011] Ngomo, A. C. N., & Auer, S. Limes-a time-efficient
approach for large-scale link discovery on the web of data.
integration, 15, 3. (2011).

[Noy and McGuinness, 2001] Noy, Natalya F., and Deborah L.
McGuinness. "Ontology development 101: A guide to
creating your first ontology." Technical Report SMI-2001-
0880, Standford Medical Informatics. 2001.

[Noy and Musen, 2004] N. F. Noy and M. A. Musen. “Ontology
versioning in an ontology management framework”. IEEE
Intelligent Systems, 19(4):6–13, 2004.

[Rector et al., 2004] Rector, A., Drummond, N., Horridge, M.,
Rogers, J., Knublauch, H., Stevens, R.,; Wang, H., Wroe, C.
''Owl pizzas: Practical experience of teaching owl–dl:
Common errors and common patterns''. In Proc. of EKAW
2004, pp: 63 – 81. Springer. 2004.

[Schmidt et al., 2009] M. Schmidt, T. Hornung, G. Lausen, and C.
Pinkel. “Sp2bench: A sparql performance benchmark”. In
ICDE, pages 222–233, 2009.

[Tzitzikas et al., 2008] Tzitzikas, Yannis; Theoharis, Yannis;
Andreou, Dimitris, On Storage Policies for Semantic Web
Repositories That Support Versioning, pp.705-719, LNCS
5021 The Semantic Web: Research and Applications,
Springer, 2008

[Volkel et al., 2005] M. Volkel, W. Winkler, Y. Sure, S. R. Kruk, and
M. Synak. ”SemVersion: A Versioning System for RDF and
Ontologies”. In Procs. of the 2nd European Semantic Web
Conf., ESWC’05., Heraklion, Crete, May 29 June 1 2005.

 [Zegins et al., 2007] D. Zeginis, Y. Tzitzikas, and V. Christophides.
“On the Foundations of Computing Deltas Between RDF
Models”. In Procs of the 6th Intern. Semantic Web Conf.,
ISWC/ASWC’07, pages 637–651, Busan, Korea, November
2007.

