Reengineering Analysis of Object-Oriented Systems via
Duplication Analysis

F. Fioravanti, G. Migliarese, P. Nesi
Dept. of Systems and Informatics University of Florence
V. S. Marta, 3 50139 Florence, Italy
+39 055 4796425, +39 055 4796365, +39 055 4796523
fioravan@dsi.unifi.it, giuseppe@hpen.dsi.unifi.it, nesi@dsi.unifi.it

ABSTRACT

All software systems, no matter how they are designed,
are subject to continuous evolution and maintenance
activities to eliminate defects and extend their
functionalities. This is particularly true for object-oriented
systems where we may develop different software
systems using the same internal library or framework.
These systems may evolve in quite different directions in
order to cover different functionalities. Typically there is
the need to analyze their evolution in order to redefine the
library or framework boundaries. This is a typical
problem of software reengineering analysis. In this paper
we describe metrics, based on duplication analysis, that
contribute to the process of reengineering analysis of
object-oriented systems. These metrics are the basic
elements of a reengineering analysis method and tool. A
duplication analysis at file, class and method levels have
been performed. A structural analysis using metrics that
capture similarities in class structure has been also
exploited. In order to identify the best approach for the
reengineering analysis of object-oriented systems a
comparison between the two approaches is described. In
this paper a case study based on real cases is presented, in
which the results obtained by using a reengineering
process with and without the analysis tool is described.
The purpose of this study is to discover which method is
the most powerful and which time reduction can be
obtained by its use.

Keywords: Clones detection, Code Duplication, Object-
oriented, Metrics, Reengineering.

1 INTRODUCTION

‘Software systems are subject to continuous evolution and
maintenance activities in order to eliminate programming
errors and defects and to extend their functionalities [13].

Frequently, software systems developed from scratch,
although starting from the same internal class library or
framework, evolve in different directions. During this
evolution process, we may need to set checkpoints in

0-7695-1050-7/01 $10.00 © 200! [EEE

\

577

order to verify if and when the original class framework
or library needs to be corrected or improved in order to
simplify the maintenance of applications that have
evolved from it. This process often compels to redefine
the class library or framework boundaries. This is a
typical problem of reengineering analysis.

In general, the planning of a reengineering activity begins
with the analysis of the system structure and its
functionalities and ends with code modification.
Reengineering of a common class framework/library is a
typical reengineering activity and often requires
modifications to the code under analysis.

During software class framework/library reengineering
the ability to localize code duplications can greatly
improve the effectiveness of any modifications performed
on the code. Since code analysis can be a time consuming
activity tools able to improve the speed and effectiveness

of this process are desirable [7], [11].

The work presented in this paper focuses on the particular
task of reengineering analysis via duplication analysis.
Clones represent duplicated codes and therefore can be
considered good candidates to be examined in the
reengineering process of a class library or framework and
its beta applications. Clone Detection in medium/large
sofiware systems has been investigated in the past, as in
[2], [3], [5], [81,[10]; while clone elimination has been
presented in [1], [8]. Several techniques have been
reported in the literature to approach the clone
identification problems [1]}, [3], [4], [8], [12], and several
results have also been presented [1], [2), [3], [4], [5], [6],
[9). In particular, several approaches give only
information on the amount and location of clones [3], [5],
[11], [14], while other works present results also on the
aspects of clone similarities [1], [2], [10].

As other studies have shown [2], [10], sofiware systems
having a large size in terms of lines of code, cannot be
manually analyzed without considering specific metrics.
An automatic mechanism to determine where the more
relevant duplications are present, is a recommended way
to proceed. In this paper, the duplication analysis is
performed by the tool TREND (Tool for ReEngineering
aNd code Duplication) that allows detecting clones or
parts of code that are very similar. The tool has been
designed paying particular attention to object-oriented
systems realized especially in C++. It allows detecting

duplication at the level of files, classes and methods and
producing several high-level metrics for duplication
analysis, increasing the detection’s power with respect to
approaches already present in the literature. The presence
of high level metrics increases the tool power and
simplifies the process of analysis of the huge amount of
data generated by an automatic tool for duplication
detection and thus of reengineering analysis.

In this paper, the approach followed is to adopt a specific
set of metrics for duplication analysis. These metrics are
the basic elements of the reengineering analysis method
and tool. A structural analysis has been also performed by
means of metrics that capture similarities in the class
structure.

The research performed, besides the implementation of
the tool TREND, has involved the definition and
validation of: (i) structural and functional metrics for
detecting code duplication at file, class and method level;
(ii) algorithms for code preprocessing and for code
duplication detection to be adopted in the code analysis
phase to produce metric values.

Several different approaches to code duplication have

been considered (duplication detection at file, class,
method; structural similarities among classes, etc.). In this
paper, the comparison among these approaches has been
reported in order to show the best approach for
reengineering analysis of object-oriented systems. The
approach suggested has been validated against real cases.
In particular, this paper reports a case study in which the
results obtained by performing the reengineering process
with and without the TREND tool are discussed and
compared. A skilled object-oriented team has
reengineered a software suite of programs, without the aid
of the TREND tool, while at the same time an automatic
analysis to detect code duplication by means of the
TREND tool has been carried out. The comparison
between the two approaches has been performed in order
to highlight the method’s power and the time reduction
that could be obtained with the tool adoption. An a-
posteriori analysis of the reengineering performed by the
team has also been reported in order to verify if all the
duplications were detected by manual code inspection.

This paper is organized as follows: in Section 2 the
general problem description, the preprocessing and code
analysis algorithms adopted are reported; Section 3
reports the adopted metrics for duplication analysis;

Evolution

Domain Analysis or
framework/library

volution

T
Nabi¥

Section 4 reports the reengineering analysis manually
performed and comments on this process; in Section 5 the
analysis performed by the tool TREND on a case study is
reported together with obtained results and comments;
Section 6 reports an a-posteriori analysis of the manually
performed reengineering, while in Section 7 conclusions
are drawn.

2 A SPECIFIC REENGINEERING ANALYSIS
Problem Description)

In this paper, a problem of software reengineering is
analyzed and discussed together with techniques for its
management. The specific problem is related to the
reengineering activity for maintaining or building class
framework or class libraries. '

Typically class frameworks are generated from a common
framework of several applications developed in the same
company. Under these conditions, it is frequent to take
decisions for the inclusion or not of other components in
the common framework or library. This process is
typically manually performed. A similar problem occurs
when two or more software systems, originated in the
same application domain or from the same library or
framework, have evolved in different directions during
their life. '

In order to increase the maintainability of these systems, it
can be often necessary to extract the common part from
the systems in order to create or reengineer the class
library or framework to be shared among them and other
applications of the same software company.

This process is summarized in Fig. 1, in which the
systems A and B have been evolved from a common
application domain or class library or framework. For this
reason, they share a common part of the class framework
which has been partially modified during the evolution.
The reengineering process needs to merge the common
part in a single class framework that will be shared
between the new versions of the systems being created.

This described reengineering process covers several

different aspects such as:

- structural analysis of the classes of the evolved
system in order to identify similar classes in terms of
data structure definition (i.e., attributes scope and
types). Classes may have different names but
modeling the same entity of the application domain.
Classes may have attributes with different names and
identical types that model the same class features;

Reengineering New System A
\> New
/ framework/libr

Reengineering

Reengineering Process

Fig. 1. Reengineering process for software system evolving from the same analysis domain or framework library.

578

- detection of functional duplications among classes of
the systems in order to detect both self-duplications
and duplications between the two systems;

- redefinition of the boundaries of the class library or
framework, that is the creation of a new library on the
basis of the shared classes or functionality of the
evolved systems or the improvement of the present
library;

- Generalization of the library classes in order to make
them more reusable by other applications sharing the
same application domain.

In order to suitably manage the reengineering process,
several activities have to be performed on code after a
very deep analysis of the system structure and
functionality. At low-level the needed operations can be
(i) deletion of methods or classes, (ii) modification of
method or classes, (iii) moving of method or classes in the
library or framework. All these activities deal with code
manipulation, and therefore a program understanding and
a careful changing plan have to be performed. During this
reengineering process, a large amount of time is spent in
looking for identical or quite similar classes and methods.
After this work a phase of reengineering analysis is
needed. In that phase, the detected duplications and
similarities are organized on the basis of their relevance in
the system according to prefixed goals. This means that a
very complex and long work of analysis of the data
produced from the duplication analysis process is needed.
Finally, the decisions about the reengineering actions to
be performed are taken on the basis of the (i) results of the
duplication analysis, (ii) structural analysis at class level,
and on the (iii) planned goals to obtain the final result.

In order to reduce the time for the reengineering analysis,
tools for detecting duplications can be used. Most of them
produce a very huge amount of information and this
cannot be easily manipulated to identify the real system
problems. For this reason we have defined a set of metrics
and a methodology for shortening the process of
duplication and data analysis of the reengineering
analysis. The proposed process covers the phases of
duplication detection with metric estimation, and the
corresponding analysis of produced results. It can be used
for fast identification of classes, files and methods that
have to be manipulated in order to reach the final results.
The process also allows eliminating or reducing at an
acceptable level the duplication among the classes
involved in the systems under analysis.

Preprocessing and Duplication estimation

Even if the duplication analysis can be performed by
using one of the several algorithms, which are present in
the literature, new algorithms have been produced to
speed up the processing time. The real problems are (i)
the code preprocessing, (ii) the extraction of high-level
features and duplication related metrics that are on the
basis of the reengineering analysis, and the (iii)
identification of the most critical problems. In all of these,
the solution proposed can be of great help for shortening
time and automating the process.

579

In order to make more effective the code duplication
analysis, a preprocessing phase is recommended. This
phase tries to eliminate all the noise factors (comment,

.blank lines, different formatting styles, etc.) which are

typically present in the source code. Since the code has to
be analyzed line by line, it is also possible to extract
structural information, such as the number and the types
of class attributes, the number and structure of methods,
etc.

The tool TREND uses, for the preprocessing, the
algorithms presented in Tab.l, which are typically
executed in the reported order.

NAME DESCRIPTION
SPA Eliminates comments and
(Source Processing preprocesses instructions by the
Algorithm) means of GNU C++ preprocessor.
SFA Writes one instruction per line
(Source Formatting considering each brace as a single
Algorithm) instruction.
VSA Substitutes the variable names
(Variable Substitution with the corresponding type. This
Algorithm) operation make it possible to
detect as clones fragments
obtained by cut, paste and
renaming operations. See also [5].

Tab. 1. Preprocess'ing algorithms with descriptions.

The detection of duplicated fragments highlights groups
of consecutive lines of each file/class/method that are
present also in other files. The adopted algorithm is a
general-purpose algorithm for duplication detection
applicable not only to C++. The algorithm has been
enforced into the tool and allows the extraction of metrics
described in the next sections.

After the preprocessing phase, the code is independent of
the formatting and of variable names. This allows
performing a more precise code duplication detection and
analysis. This phase prepares the code to be correctly
processed in order to extract code duplication information.
The duplication algorithm is capable to automatically
perform the following activities:

- Metrics evaluation with consumptive value at system,
file, class and method levels;

- Identification of the sequences (fragments composed
by consecutive lines) of duplicated lines;

- Identification of structural similarities at class level;

- Production of metrics and flow chart of methods and
functions.

3 METRICS FOR DUPLICATION ANALYSIS

In order to quantify the similarities among classes at code
and structural levels several specific metrics have been
defined. Let us now suppose to have a software system
composed of a set F of files, these contain in turn a set C
of classes and a set M of methods. Thus, we have (X, X))
€ {F xF uC xC v M x M}, where a couple (X, X)) is an
element considered in the duplication analysis.

On this basis, the following metrics have been defined:

- NL;: Number of Lines of entity X;,

- NLID,; (Number of Llnes Duplicated) number of
code lines of X; which are also present in X;

- NLIDS;: (Number of Lines In Duplicated Sequences)
length of the sequence of lines of X; that are also
present in Xj, A sequence of lines is a set of three or
more consecutive lines.

- 1ID; : (ldentity Index of Duplication) equals to /00
NLD;y/NL;: Duplication index of X; with respect to X;.

- 1ID_S; (Identity Index of Duplication in
Sequences) equals to /100 NLIDS;/NL;: Duplication
index of X; with respect to X}, by considering only the
sequences of duplicated lines.-

Similar metrics have been defined also for the symmetric
couple (X}, Xy.

An index of the duplication at system level can be easily
calculated by using SI (System Identity) metric:

Vije 8§;US,: SI = mean{lIDy}

In order to have a consumptive metric at file, class and
method levels, the Harmonic Mean (HM) among 1ID,,,
1ID,,, 1ID_S;; and 1ID_S;; metrics has been adopted. The
HM of a set of non null values A={a;, ..., a,} is defined
as:

1

1 1
mean{ —,-+,—
a, a,

HM definition gives greater weight to lower terms. Note
that HM is always lower than the arithmetic mean. This is
an useful feature to produce more conservative
estimations. In our estimations HM is also a percentage
since it is the mean of values that are percentages.

HM =

Some other metrics have been defined at class level for
the analysis of structural similarities among classes:

- NAL;: Number of local attribute of the i-th class;

- NALST: (Number of Attribute Locally defined with
the Same Type) number of identical in type attributes
between two classes, independently of the access
qualifier (i.e., private, protected and public);

Several other metrics at system level have been adopted to
take in account the different measurable aspects of an
entire system.

- TNAL: Total Number of Attributés Locally defined;
- TLOC: Total number of Lines Of Code;

- NCL: Number of classes;

- TNML: Total Number of Method Locally defined.

- Nbyvte: Total Number of bytes of the source files of
the system;

- Mfile: Total Number of source Files of the system.

580

4 A REENGINEERING PROCESS

In this section, the case study of a real system is
presented. The system under analysis has been developed
at the Department of Systems and Informatics of the
University of Florence with CESVIT (Center for Software
Quality) for project TAC. It has been completely written
in C++ adopting the object-oriented paradigm. The main
functionality of the system deals with software quality
evaluation of object-oriented systems. Its main purpose is
the visualization of graphical diagrams (such as histogram
and Kiviat) and tables summarizing the metrics values
calculated by other tools. The tool is named MWB/VM
(that stays for Metric WorkBench and View Manager).
The system is well suited for applying the above
described reengineering process, since:

e The first version of the system was comprised of 2
applications (MWB and VM). The two programs
have been developed by different teams but operate
in the same context and share the same applicative
domain analysis. Several classes covering the same
functionality are present in both systems. Note that
the two teams started with a kernel or framework
with functionally similar classes and the analysis and
design were performed by the same person for both
the applications.

e The two systems needed a reengineering to collect in
a unique class library or framework common classes
and functionality.

The reengineering of these applications for reorganizing
the common class -framework, was manually performed
by skilled people with the support of a simple tool for
duplications detection, without preprocessing phase and
without metrics estimation with 1 man month spent in
analyzing the classes in order to perform reengineering
activities.

Results of the reengineering process

In order to distinguish the system before and after the
reengineering, the following names have been assumed:
MWB/VM old for the version before the reengineering (a
prefix MO_ has been adopted for all the involved files)
and MWB/VM new for the version after the reengineering
(a prefix MN_ has been adopted).

The target of the reengineering was to obtain two
executable files sharing a common class framework
reducing or possibly eliminating the redundant and
duplicated code. In the following, the reengineering
process adopted for passing from MWB/VM old to the
new version is described. The team that has operated the
reengineering has identified the functionality offered by
each class and by each method of the several classes. This
has been performed by analyzing the source code and the
available documentation in order to highlight the common
functions and the duplication level. This operation has
been manually carried out with the aid of a simple tool for
code duplication and spending a quite large effort (6
man/months).

In Fig.2, the classes of the system under-analysis are
reported in alphabetic order.

MO_VM MO_MWB
AddMetricDialog _CustomMetricList
Attribute _CustomMetric
Class _MetricMember
Class_Custom_Metric_Parser Attributo
ClassDialog Class
Container Contenitore
Custom_Metric Contenitore_Value
Dato DrawList
||&lo_C0ntainer ErrorDialog
[ErorDialog File
IFile Global
[[Function GnuDialog
[[Global_Variable GnuPlotDialog
{tnfoOpen Info
Line InfoDialog
}Eessaggio InfoOpen .
[[Method Line
{[Method_Called LISTA
[Method_Called_By_Method Lista_TAC
[Metric Lista UKDM
Metric_Container ListMetric
Metric_Value Method
Metric_Value_Container Metriche
MetricInfoDialog MyTopAppWindow
INew_Class_Metric NLOCDialog
[New_Sys_Metric Parametro
{[Parent PlotDialog
(PlotDialog ProjectinfoDialog
{[Procedure_Called Single_Metric
ProgressDialog Sistema
Selected_Metric UkdmDialog
System Value
System_Custom_Metric_Parser Variable
Value_Container VMDialog
VarDialog VMGnuPlotDialog
Variable
View
View_Container
ViewDialog
ViewTopApp

Fig. 2. Classes of MWB/VM system before the reengineering

A preliminary analysis of Fig.2 highlights that some
classes of MO_MWB have the same name of those
belonging to MO_VM,; i.e., File and Line of MO_list.hxx
are present also in MO_VM.hxx, such as Class, InfoOpen,
ErrorDialog, Method, PlotDialog, Variable are in
MO_MWB.hxx and MO_VM.hxx. Several other classes
have very similar names (i.e., an Italian Translation of the
corresponding English term, etc.) such as Auributo,
Contenitore, Contenitore_Value, Metodo, Metriche and
Sistema of MO_MWB.hxx, with respect to Auribute,
Container, Value_Container, Method, Metric, System of
MO_VM.hxx. This kind of analysis cannot guarantee that
the classes are equal or partially duplicated, but it has
been a good starting point for the analysis performed by
comparing the classes with an editor in order to verify if
the name matching corresponds also to the source code

581

partial matching.

In Tab.2, a comparison between the two systems has been
reported. It can be noted that the total number of classes
for the new version is decreased, highlighting that a
certain level of duplication were effectively present in the
system. Note that the reengineering process, in order to
produce a reusable library of classes, has produced a
different organization of the source code augmenting the
number of files from 7 to 10. The increment in the number
of bytes is due to the addition of several comments that
are not considered in LOC (that is decreased). Note that
several classes were collected together in the same file,
while a reengineering process based on the building of a
reusable library should consider to place one class per file
in order to better maintain the library.

TLOC | NBYTE

System NFile [NCL | TNML | TNAL

MWB/VM |7 76 589 674 12.016 | 389.921
old

MWB/VM | 10 62 530 640 11.708 | 4156.659
new

Tab. 2. MWB/VM systems status before and after the reenginering
process, :

In Tab. 3, a detailed analysis of the operations performed
on the system classes after the reengineering process is
depicted. In particular, comparing these values with NCL,
TNML and TNAL reported in Tab. 2, it could be deduced
that of 14 classes with a mean of about 4-5 methods with
5 lines of code and 2-3 attributes have been removed. This
sentence is not completely correct since 20 classes have
been modified, and some lines of code have been added in
order to rearrange the functionality.

OPERATION PERFORMED NUMBER OF CLASSES
Deleted 14
Modified and moved in the library | 13
[Modified 7
Moved in the library 10
Unchanged 32

Tab. 3. Details of the operation performed on the system.

Fig. 3, depicts the modifications performed by the
reengineering team. In a more detailed manner, these
operations can be summarized, at file level, as follows:

e A library identified with MN_sys_dati.cxx has been
produced;

e MO_list.hxx has been deleted and the corresponding
parts in MO_VM.cxx/hxx have been moved in the
library;

e The part of MO_MWB.cxx that was duplicated in
MO_VM.cxx has been eliminated and, after some
small modifications, the part of MO_VM.cxx has
been moved into the library;

e Some other similar changes have been performed on
other files, with a smaller impact with respect to the
system size;

e The library has been used by both the new versions of
VM and MWB.

Criticism of the Manual Reengineering Process

An a-posteriori analysis of the performed reengineering
has highlighted that not all the possible duplications have
been eliminated. This fact has been shown by applying the
tool TREND for duplication detection on the new versions
of MWB and VM. The reengineering team has failed to
perform some activities that can be summarized as
follows:

- Classes InfoOpen and ErrorDialog are still present in
the two executables and especially for InfoOpen (that
is similar at 95% between the two executables) a
deletion of one copy of the class and the modification
-and moving of the other in the shared library should
be performed;

- The class hierarchy has not been modified in depth
and therefore inside the library some classes such as
New_Sys Metric and New_Class_Metric, are quite
similar. The same situation can be highlighted also
for VMDialog and UkdmDialog classes;

- Classes as System, Class, Method, Function and .

Variable have still a lot of similar methods and the
use of a template can eliminate a lot of duplications;

MN_MWB.cxx MN_sys_dati.cxx 19 18 24
MN_MWB.cxx MN_Vdialog.cxx 15 23 24
MN_MWB.hxx MN_sys_dati.hxx 17 23 23
MN_MWB.cxx MN_MetricDialog.c 9 49 23
XX

1MN_Metricha|og.c MN_VM.cxx 29 9 22
XX

[[MN_MWB.cxx MN_gpro.cxx 13 22 22
MN_MetricDialog.c|MN_gpro.cxx 32 10 21
XX
MN_Vdialog.cxx |MN_VM.cxx 24 9 20
MN_gpro.cxx MN_sys_dati.cxx 20 13 20

Tab.4. Residual duplication after manual reengineering. Files with

HM > 20% are reported.

MWB old

MO_MWBh | MO_MWB.c ﬁ

o

The duplication analysis at file level has highlighted that a
certain level of duplication (also if HM is lower than
40%) is still present in the system. In Tab. 4, the
duplication level in the new system is reported,
confirming that a certain level of duplication is still
present in the system. For brevity, only the files with HM
greater or equal to 20% have been reported in the table. It
can be noted that a part of VM is also present in the
library, and MWB and VM share some functional parts
(these lines have been marked in gray on the table).

The results of this analysis has also been presented to the
team that performed the manual reengineering, and the
results obtained confirmed the impression they had at the
end of the reengineering that probably not all possible
actions were taken during the manual reengineering, since
a so deep analysis is quite impossible to be performed by
hand.

5 TREND BASED REENGINEERING ANALYSIS
PROCESS
In this section, the reengineering analysis and process
performed by using the tool TREND is reported. The
analysis can be performed at file and class levels. At the
class ievel the tool allows one to take into account the
structural similarities and the duplications among
methods. As a result of the reengineering analysis some
interesting suggestions on what should be performed on
the basis of the tool TREND for reengineering the
applications are reported. Note that about 8 person- days
have been spent to process and analyze the results of the
tool, since the row data needed an organization in
spreadsheets in order to provide graphs and all the other
stuffs necessary for the evaluation of the system

duplication. The analisys of the results needed about 2
person-days

Preprocessing

Such as previously reported, the preprocessing phase has
a strong role in the duplication identification. Several
experiments have been carried out for analyzing the
effects of the different algorithms of preprocessing. In
Tab.5, a summary of the different strategies is reported.

VM old

‘ MO_VM.hxx l MO_VM.cxx | ' Other files |

r

\ 4

v

l MN_sys_dati.h | MN_sys_dati.c \

| Other files \

MN_VM.hxx

MO_VM.cxx

MWB new,

Fig. 3. Reengineering process performed by the team

582

VM new

Note that different values of the duplication index, Sl,
have been obtained for different preprocessing algorithms.
The highest value of duplication has been obtained by
applying all steps reported in Tab.1. The values produced
by the algorithms have been compared by those obtained
by a manual inspection. The comparison has confirmed
the results obtained by the application of SPA, SFA and
VSA algorithms.

Algorithm S
No Preprocessin 6.88
SPA 8.38
SFA 10.63
SPA+SFA 13.50
SPA+SFA+VSA 17.25

Tab. 5. Duplications at system level by preprocessing strategy,
where S1 the System duplication Index.

From the analysis of Tab.5, it is evident that a great
improvement to the duplication detection is obtained by
substituting variable names with the corresponding types
(VSA algorithm). The application of this algorithm has
increased the recognition capability of the tool from
13.5% to 17.25% at system level. This fact means that this
step is quite relevant to obtain a good duplication analysis,
since the name replacing during cut and paste duplication
is a quite frequent operation that otherwise would
masquerade the real duplication level. For this reason, the
old version of the system has been analyzed by using code
preprocessed by SPA, SFA and VSA algorithms.

File Level Analysis

The first analysis was focused in the identification of
duplications between the old versions of MWB and VM at
file'level

MWB File (1) |VM File (2) liDs2 |NIDs2UN |HM
MO_list.hxx MO_VM.cxx 85 83 70
MO_list.hxx |[MO_Vdialog.cxx |60 35 35
MO_MWB.cxx [MO_VM.cxx 56 31 33
MO_MWB.hxx [MO_VM.hxx 54 34 33
MO_list.hxx |[MO_gpro.cxx 57 28 30
MO_list.hxx MO_VM.hxx 52 26 25
MO_MWB.cxx [MO_VDialog.cxx |43 12 18

Tab. 6. Comparison at file level between MO_MWB and MO_VM
systems. Couples having HM > 14%.

In the first two columns of Tab.6, the files related to
MWB and VM system before the reengineering are
reported, while in the other columns the functional
duplication metrics values obtained at file level are
reported; Note that only couples of files with HM greater
than 14% have been reported. By the analysis of Tab.6, it
can be highlighted that MO_list.hxx is duplicated at 85%
(1ID) and at 70% (considering HM) in MO_VM.cxx. This
fact suggests that a strong duplication exists between
these files. Note that the comparison has also been
performed between a header file, listhxx, and several
source code files, because the header file contained all the
methods as inline. In particular, MO_list.hxx is partially
duplicated in MO.VM.cxx, MO_Vdialog.cxx,
MO_gpro.cxx, and MO_VMhxx files, . while

583

MO_MWB.hxx and MO_MWB.cxx has a partial
duplication in the corresponding MO_VM files. This fact
confirms the analysis performed by the expert team that
has totally deleted MO_list.hxx and partially deleted
MO_MWB files moving the common parts of the
corresponding MO_VM files into the class library.

In order to have a clear picture of the comparison among
all files, the histogram of HM metric for all the possible
couple of files has been depicted in Fig.4. Note that in the
figure the duplication of files belonging to the same
system is also considered, while in the previous table only
the comparison among files of different systems is taken
into account. A threshold of 20% has been identified for
extracting possible duplications at file level. This
conservative decision reduced the number of modules to
be analyzed at class or method level. By checking the
previous table it can be noted that only 6 couples of files
reached this value.

~ @ = LN
v - NN NN o

Comparison Number

Fig. 4. Histogram of HM values for comparison at file level.

Class Level Analysis

The identification at file level is too coarse to verify
whose classes present a strong duplication, then an
analysis at class level has been also performed.

The TREND tool can automatically determine the
duplications at class level, such as previously performed
at file level. An analysis at class level can give more
valuable suggestions on how the duplications are
distributed.

The analysis at class level can be performed by taking into
account two different aspects of class similarities:
structural similarities (that is the attributes number and
types) and functional duplication (that is how the code is
duplicated in methods). These two aspects can give
complementary suggestions on how the reengineering has
to be performed.

By analyzing the structural similarities (as depicted in
Tab.7), it has been noted that several classes have the
same structure in terms of attributes. Most of them have a
very low number of attributes, in this case it is not correct
to automatically states that they are similar or identical.
On the other hand, some other classes have a very similar
structure, even if not identical, with a larger number of
attributes that confirm the detection of structural
duplications.

It can be highlighted that a : large part of possible
duplications is not between the MWB old and VM old,
but they have a self-duplication as highlighted by the first

9 rows of Tab. 7.

ICLASSz (FILE)
; s 4

highlighted also in Tab.9, in which the duplication of
several of the previously analyzed classes performed
among methods (functional) is reported. The same
analysis has been conducted also for MWB producing the
results reported in Tab.10.

o mwe 1) Mo vm by, lup,, b s, lup s,
IFite File 9 los oo 2
[[Line Line T o6
InfoOpen InfoOpen P1 100 1 100
[Value Selected_Maetric |75 1 65 3
ISingle_Metric [Value 65 75 44 65
ErrorDialog [ErrorDialog 61 |89 7 81

Tab. 8. Comparison at class level between MO_MWB and MO_VM.
Couples with 1iDy; > 60%.

Contenitore::] :
MO:-MWB:h 5

PlotDialog Variable 5 4 4
MO_MWB.hxx) (MO_VM.hxx)

Attributo Variable 3 4 3
(MO_MWB.hxx) MO_VM.hxx)

Method View (MO_VM.hxx) 16 6 5
(MO_MWB.hxx) _

Attributo Parent (MO_VM.hxx) |3 2 2
(MO_MWB.hxx)

Contenitore_Value Global_Variable 3 2 2
(MO_MWB.hxx) (MO_VM.hxx)

Info (MO_MWB.hxx) |Parent (MO_VM.hxx){3 2 2
InfoDialog Variable 6 4 4
(MO MWB.hxx) (MO _VM.hxx)
“LISTA Container 2 13 |2
(MO_MWB.hxx) (MO_VM.hxx)

Method Variable 6 4 4
(MO_MWB.hxx) (MO_VM.hxx)

Tab 7. Structural comparison among classes (HM >= 80). Self-

duplications inside the same system are highlighted by gray rows.

The analysis at class level can produce interesting
information for the reengineering phase, not only at
structural level, but also at functional level. In Tab.8, the
functional duplications between MWB and VM classes
are reported, and in particular in the first two columns are
reported the classes of MWB and VM before the
reengineering, while the other columns contain the values
of the duplication metrics. Only classes with 11D, values
greater than 60% are reported. By analyzing the metric
values, classes that need to be reengineered can be easily
detected. Some classes of the two systems have a
percentage of duplication greater than 90%, such as File,
Line and InfoOpen class. This fact suggests that a large
part of methods have the same source code and then the
same functionalities. The analysis at method level, not
reported for brevity, has confirmed this first impression.
The two systems have several classes that are very similar
and also some functionalities have been replicated by cut
and paste technique in other classes. The preprocessing
phase has allowed to detect that some methods have been
duplicated with internal variable renaming.

The self-duplication of VM at functional level is

584

Class, Class; NL; |NL; |lID_S,; |lID_S2 |HM
New_Class_M|New_Sys_Metri| 824 | 776 91 96 94
etric [

[Class_Custo [System_Custo | 200 | 147 74 98 84
m_Metric_Par |m_Metric_Pars

ser er

Fi tion Method 194 | 228 74 78 75
“Attribule Variable 110 60 76 67 74
|[Class Function 189 | 194 74 76 73

Tab. 9. Class level functionali comparison for self-duplication
detection among MO_VM classes, sorted by HM (HM >=70).

The analysis at class level allowed to automatically detect
all the classes that have been identified also by the
reengineering team, but spending a lower effort for the
analysis phase (the time to perform the same analysis has
been reduced by 70%). Most of the changes performed by
the reengineering team have been also identified by the
tool TREND with the metric values. A large part of the
classes with a duplication percentage detected by the tool
greater than 50% have been strongly modified and
reduced by the working team. It is evident that to perform
only the analysis at file level cannot result in a reduction
of the reengineering time since a deep analysis at class
level has to be performed to identify single pieces of code
that have to be modified.

lpTass, Class; NL; |NL; |lID_Sy; "D_Sn HM
UkdmDialog |VMDialog 139 [114 |62 81 71
CustomMetric {MetricMember (105 198 |49 58 59
i§ingle_Metric Value 34 20 44 65 51

Tab. 10. Class level functional comparison for self-duplication
detection among MO_VM classes, sorted by HM (HM >=50).

Once the analysis at class level is performed, an automatic
analysis at method level among the identified classes can
be also operated in order to identify with a great accuracy
the parts of classes that need a massive phase of
reengineering without spending time for manual code
inspection.

How to interpret metrics and tables

In this section, some comments on how the values in the
tables can be read are reported. Note that for brevity only
a selection of the complete tables have been reported and
therefore not all the duplications detected by the tool are
highlighted by the reported tables. The first analysis that
has to be typically performed is to verify if structurally
similar classes are also similar from the point of view of
method implementation. For example, by the comparison

of Tab. 7 with Tab. 9, it has been identified that
New_Class_Metric and New_Sys_Metric have about
100% of equal attributes, while the functional part is equal
at 94%. This is a strong evidence of the duplication of
these classes. One of these classes should be eliminated
and the other moved in the shared library. Another similar
example is that of Function and Method classes or that of
Class and Function classes.

The analysis of Tab. 8 can bring to deduce other
interesting facts, such as the almost complete functional
duplication of classes File, Line, -InfoOpen and
ErrorDialog. These classes are not present in Tab. 7
because of their low number of attributes. They are in
effect duplications of the same class and could be
implemented as a unique template.

Several other duplications have been identified by the
analysis of the full tables, producing data to be used for
the operative phase of the reengineering process. A
summary of this data is reported in Tab. 11.

OPERATION TO PERFORM NUMBER OF CLASSES
Deletion 20
Moving in the library 20

Tab.11. Details of the actions to be performed on classes produced
by the analysis of results of the tool TREND.

In Tab. 12, the structure of the system after the
reengineering analysis performed by means of the tool is
compared with the values already reported in Tab. 2. It
can be noted that the number of files is increased because
it has been hypothesized to split the code in order to have
one class for each Axx and cxx file, and therefore the
double of the class number. The number of classes and of
their methods and attributes is decreased because the
possible duplications have been detected, and therefore
eliminated.

System Nfile | NCL | TNML | TNAL
MWB/VM old 7 76 589 674
MWB/VM new 10 62 530 640
MWB/VM TREND | 112 |56 ~500 ~620

Tab. 12, Manual reengineering process against TREND
suggestions..

6 ANALYSIS OF REENGINEERING PROCESS
Another useful application of the tool TREND is the
analysis of the reengineering process. In particular, with
the tool TREND it is possible to analyze the movements
of the code during a reengineering by means of an a-
posteriori analysis. For this kind of analysis a graphical
view of the HM values of the table has been adopted. It is
very useful to identify which part of the files before the
reengineering have moved and where. In Fig. 5, an
example of this analysis at file level is reported; the
reported Code Movements Table from the old to the new
version of the system is evaluated on the basis of HM
evaluated on 11D, and IID_S,, metrics.

In general, the full graph can be interpreted in the
following way: taking a row (representing a file in the
new system), we can deduce from which file of the old
system the source code comes. If the row contains a great
part of white boxes and no dark gray or black boxes, the
file can be considered completely new, otherwise a certain

part of other files has moved the code in it. On the other
hand, by analyzing the columns we can deduct that a file
of the old version has been eliminated if the column
contains only white boxes.

g.c

MQO_gpro.cxx
MO_listhxx
MO_MWB.cxx
MO_MWB.hxx
MO_VDialo:
MO_VM.cxx
MO_VM.hxx

MetricDialog.cxx
MN_MetricDialog.hxx
MN_MWB.cxx .
MN_MWB.hxx e
MN_sys_dati.cxx .

MN_sys_dati.hxx
MN_Vdialog.cxx
MN_VM.cxx
MN_VM.hxx 1

I .
HM between 1% and 20%
- HM between 21% and 50%

HM between 51% and 80%

HM between 81 % anc 100%

Fig. 5. Code Movements Table from the old to the new version of
the system. evaluated on the basis of HM between the 1IDy; and
IID_S;; metrics.

- For example, file MN_sys_dati.cxx derives its code from

MO_MWB.cxx and MO_VM.cxx, while
MN_Metric_Dialog.cxx/hxx are quite completely new.
= - o o T [y mw mmm =
. 5
Em h '.‘ L -
ﬁ -
P] ' !
-
. »
R -
.
]
'y - ™
- ' L
.

Fig. 6. Comparison at class level between the two versions of the
system.

At class level, a similar analysis can be also performed,
and the result is depicted in Fig.6, where a more precise
estimation of classes evolution between the two versions
is reported. The interpretation is similar to that at file
level. For this last table the rows and columns represent

585

classes. Classes corresponding to light-colored columns
have been eliminated, while classes belonging to light-
colored rows have been created as new.

Concluding the analysis, it has been shown how the tool is
automatically capable of identifying duplications and aids
the reengineering process. The analysis of results
provided by the tool has highlighted that not all the
possible duplications have been eliminated by the
reengineering team and a low level of duplication among
classes still exists.

7 CONCLUSIONS

This paper has presented a case study in the field of
duplication analysis particularly focussed on the process
of reengineering of systems originated in the samé
application domain and sharing the same class framework
or library. A manual approach to the reengineering has
been compared against a tool-aided approach,
highlighting the time saving (8 man/days against 1
man/month) and the amount of duplications undiscovered
by the manual analysis. It has been stated that a tool for
duplication detection can drastically reduce the time to
identify the duplication in software systems at file, class
and method level only if suitable metrics and duplication
analysis support are available. On the other hand, the

adoption of a tool only at file level does not guarantee a -

better identification with respect to what can be performed
manually by an expert system engineer. The inspection at
class and method levels reduces the time to perform the
analysis and allows identifying several activities to be
performed during the code manipulation phase. In
particular the analysis at method level permits identifying
where the duplications are present at code level with high
precision. The functional duplication may fail several
times in the identification of very similar classes in which
the code has been manipulated, leaving unchanged the
class structure. These classes have to be carefully
inspected since the structural similarity may remain
undetected by a functional analysis. All these inspections
have been supported by means of specific metrics for
duplication analysis at structural and functional level. The
metric approach guarantees a strong time reduction for the
analysis of the huge amount of data that is generated by
an automatic tool also for small/medium systems. In
conclusion, the adoption of a tool that allows performing
structural and functional duplication analysis with specific
metrics can improve the reengineering process of the class
library or framework by reducing the analysis time and by
increasing the quality of the analysis itseif.

ACNOLEDGMENT

This work was partially supported by MURST Ex60%
govern Ministry of University and Scientific and
Technologic Research, and by CESVIT, High-Tech
Agency, Center for Software Quality, Florence. A warm
thank to the reviewers that have helped us to polish and
technically improve the article.

REFERENCES
1. 1. D. Baxter, A. Yahin, L. Moura, M. SantaAnna, L.
Bier. Clone Detection Using Abstract Sybtax Trees.

586

(2

10.

11,

12.

In Proc. of ICSM 98. 1IEEE 1998.

J. Mayrand, C. Leblanc, E. M. Merlo. Experiment on
the Automatic Detection of Function Clones in a
Software System Using Metrics. In Int. Conf. on
Software System Using Metrics. IEEE Nov. 1996.

S. Ducasse, M. Rieger, S. Demeyer. A Language
Independent Approach for Detecting Duplicated
Code. In proc. of the Int. Conf on Sofiware
Maintenance, Sept. 1999, IEEE.

K. Kontogiannis, R. DeMori, E. Merlo, M. Galler and
M. Bernstein. Pattern Matching for clone and
Concept Detection. Journal of Automated Software
Engineering 3, 1996, Kluwer Academic Publishers.

Brenda Baker. On Finding Duplication and Near-
Duplication in Large Software Systems. Working
Conf. on Reverse Engineering, IEEE 1995.

Brenda Baker. A Program for Identifying Duplicated
Code. Computing Science and Statistics, vol 24,
1992.

J. Howard Johnson. Substring Matching for Clone
Detection and Change Tracking. In proc. of the int.l
Conf. on software Maintence, 1994.

J. Howard Johnson. Identifying Redundancy in
Source Code using fingerprints. In Proc. of CASCON
93, 1993.

Udi Manber. Finding Similar Files in a Large File
System. /n PROC. 1994 Winter Usenix Tecnical
Conf., 1994,

Kostas Kontogiannis. Evalutation Experiments on the
Detection of Programming Patterns Using Software
Metrics. In Proc. Fourth Working Conf. on Reverse
Engineering, Ira Baxtern, A. Quilici and C. Verhoef,
Eds. 1997, IEEE Computer Society.

B. Lauge, D. Proulx, E. Merlo, J. Mayrand, J.
Hudepohl. Assessing the Benefits of Incorporating
Function Clone Detection in a Development Process,
Int.l Conf. on Software Maintenance, 1997. 1IEEE.

P. Barson, N. Davey, S. Filed, R. Frank, D.S.W.
Tansley. Dynamic Competitive Learning Applied to
the Clone Detction Problem. /n Proc. of Int.
Workshop on Applications of Neural Networks to
Telecommunications 2, Lawrence Erlbaum, Mahwah,
NJ 1995.

. F. Fioravanti, P. Nesi, F. Stortoni. Metrics for

Controlling Effort During Adaptive Maintenance of
Object oriented System. In proc of the Intl Conf. on
Software Maintenance, Sept. 1999, IEEE.

. M. Balazinska, E. Merlo, M.Dagenais, B.Lagtle, K,

Kontogiannis. Measuring Clone Based reengineering
opportunities. In Int. Symp. on Software metrics,

November 1999, IEEE.

