Visual Programming of Content
Processing Grid

Paolo Nesi

DISIT-DSI, Distributed Systems and Internet Technology Lab

Department of Systems and Informatics, University of Florence
nesi@dsi.unifi.it, paolo.nesi@unifi.it
http://www.dsi.unifi.it/~nesi, http://www.disit.dsi.unifi.it

DMS 2009, San Francisco, USA




O

Rationales
Application domain

General requirements for grid media
processing

AXCP overview

Analysis of the GRID rules

The visual language and model
Applications




o Content processing grid/parallel infrastructures are becoming
every day more needed and diffuse,

¢ cloud computing.

o Several requirements are stressed for those grids:
¢ Program Flexibility

Reconfigurability

Integration with workflow management systems

Visual programming

Large/huge number of functionalities

Integration of many functionalities from data processing to taking
decision engine, semantic processing, etc.

¢ Distributed debugging, Etc.

to solve a part of those nro
'Jul L 1

1T LTIV P \J

® & & o o

=3
(D

3
T
o

¢ visual programming tool for media on grid processing has been
defined and validated

¢ Starting from the AXMEDIS grid and model, AXCP grid.




AXMEDIS
Rule Editor

User and Device

profile
. A
use rules

info
Activate
Rule
1] Personalized Content on
8= (][] Demand

AXMEDIS
DRM

Content: Search, Selection, Acquisition,
Production, Adaptation, Transcoding,
Formatting, Packaging, Protection,
Publication and Licensing on Demand

APPLICATIONS: balancing,
UGC, repurposing, publication,
recommendations, integration
with SN, redistribution, crawling

Other DRM || 4¢

YouTube, ..

A

P2P, ....




Author Producer / Aggregator / Distributor / Facilitator User >
Production pistribution Usage
: AXP2P
AX Editors

o AXMEDIS GRID language and tools for

¢

® & & O O O o o

Automated Content Ingestion and Gathering

Automated Content Query and Retrieval

Automated Content Load and Storage: databases and files
Automated Content and Metadata Processing, enrichment
Automated Content and Data processing

Automated Content Filtering and Repurposing

Automated Content Composition, Formatting

Automated Content Protection and Licensing

Automated Content Publication/Download on/from any channel

tArmatad CAntant vilhs W+ hr\nnf\l

I‘\ULUI 1 IQLCU \/OI ILTIIL LJIDLI IUULIUI 1 Vla IVIUILIL,I al ll i<l
Automated Profiles management and processing
Automated Production of Content on Demand

Automated semantic processing, recc, taking decisions, etc..

9 © & oo o

%*D:. 5
&

»a‘-f




visual programming of
¢ single process flow on the single executing node and hierarchies;
visual processing of media, including Blocks/Functions:

¢ content processing, communication, semantic processing, taking
decision engine, reasoning, transcoding, adaptation, etc.;

hierarchical structure of the processes

¢ aprocess may activate other processes on other Grids or on the
same Grid;

¢ Complex and branched flows composed by several different
processes, allocated on different Grid nodes;

error code reporting

Nnctrire
1oLl uu il

on
¢ Storing/retrieving them on/from database,
¢ allocation on the grid nodes according to scheduling strategies.

N
|V

S, e
3 S5
1% DG 1T

@, . § S g?




--------- Workflow - AXCP

Front end @ V manager Visual DeS|gner

servers, , \ /
VOD, prod
on demand AXMEDIS

\ 3 Rule Editor V'S;ELEFLTJE‘;NS
_ AXCP
Quick | Scheduler || +—
Starter B
/ \ —| AXCP GRID

Rules

- - - — AXCP nod_es

P
AXMEDIS

Database

Distribution
Channels
and servers




Il AXMEDIS Rule Editor 1.0 - ANSC_instruments_photogallery_smil-notex-PDA-audio-4.axr - [15 Script Editor - _main]
File Edit Wiew Insert AXCP Script Command Debug Tools  Workflow  Window 7
@ =d| s e 2w £ G R VR
== 1 A main =
=3 musen_stumentale_immaginiZteso - 2 var tex = false;
1:‘ Header = 3 if {glolzalPDAl /Y get the PDA-sSpecific icons background stc. and disable tex
@ Schedule 4 B
Ea“j Defiritian 5 tex = false:
B3 Dependences G conmonResourcesFilesDir = commonResourcesFilesDic + "\4WFDL":
B2 |mageProcessing_1.001 7 H
.[: Ringtoneddaptation_1.001 =] /f see the arguments for the following parsmeters:
EIE Arguments 9 instrumentsToProcess = iwageFilesTolInstrument {(instruwentPhotosDir, audiolir):
B globalFDA 10 /¢ thiz can be delated in release
IB ingtrumentPhotosDir 11 smilFiletutputRoot = "c:ihhsmilPhotoTemp™
~[B commanR esourcesFilesDir 12 /4 create SHIL sources
~[B nbigctx!]utputﬁc-nt 13 preparesourceFiles (swilFileoutputRoot,instrumentsToProcess, globalPDA,tex )
~[B) audIDD". 14 /¢ create LEIMEDIS chijects and save them to disk
% Ezzﬁlﬁligtulm 15 createChijects {(instrumentsToProcess,smilFileCutputBoot  comuonBFesourcesFilesDir objectsOutputFoot, globhalPD
B distribute 16 /¢ upload the ohjects to the LE-datshase
B DBuplaad 17 if {DBupload})
[P 1 18 By
Instrument_object 18 a&llhxoids = new LArravy ():
[T Instument_functions — z0 allixoids = uploadbirTolkb {ohjectsOutputRoot, "#%.axm™")
getfilelist 21 for each {(uploadedCOhjAXOID in alllxoids)
8] stipFilenarne 2z H { b
stripE stersion 23 | if {({uploadedOhijiX0ID 1= false) &&k distribute)
P8 createDir 29 H {
] testToGif 25 print ("Creating license for "+uploadedOhiAXoID);
splitp3TtoResource 26 distributezTiscali {uploadedChiiXOID) :
5] mp3Getlength =| 27 1
Ruleview |!] Libraly"-fiewl « B wairfenonds {23 : | Llj

= x
j Mame | Type | value | | j adding instrument: 287 violina stadivan toscana ﬂ
Creating SMIL Sources for 007
Creating SMIL Sources for 011
Creating SMIL Sources for 057
Creating SMIL Sources for 090
Creating SMIL Sources for 172
Creating SMIL Sources for 177
Creating SMIL Sources for 182
Creating SMIL Sources for 261
Creating SMIL Sources for 263

Call Stack | ocal Vanables | W atches | Breakpoints E] Output |a Searchl

| Ln 34 ol 23 IS




A. 75% single rules with linear structure,
a sequence of activities to be performed.
¢ when one of the activity fails the whole rule execution has to falil.

¢ To this category belong rules for automated content production
on demand, licensing, content publication and/or repurposing,
etc. Return sync or async.

B. 9% rules activated by other Rules on the Grid In
asynchronous manner.

¢ mother rule does not need to wait for the result to continue its
running. are structurally realized as rules of type A.

¢ they start asynchronously and do not need to keep blocked the
main rule.

c. 16% rules activating/invoking other processing Rules by
creating synchronous/asynchronous derived Rules
waiting/or-not for their completion to continue their
execution.




O

O

almost all rules present JS segments of functional blocks

¢ working on single or on lists of content elements
¢ performing specific activities such as:

content ingestion, query actualization, content retrieval,
storage, adaptation, extraction and processing descriptors,
transcoding, synchronisation, fingerprint estimation,
Indexing, summarization, metadata manipulation, com..etc.

AXVD Visual Language allows to compose:

¢ single elements of the process (called JSBlock) to create

composed Rules allocated on the same processor node (covering
rule of type A and B)

branching activities (collection of RuleBlocks) which are allocated
and executed on the Grid infrastructure according to their
dependency by the scheduler. The Rules capable to activate
other Rules cover the specific semantic of rules of type C,
identified in the analysis.

8, L&

S0,
Y
2 3 &
3

K Y
- %




O

A JSBlock is characterized by a name (type name and
Instance) and a set of in/out parameters. A parameter can
be marked as:

¢ IN when it Is consumed into the Rule,

Types of elements works on list of elements reducing the
needs for explicit iterations.

¢ OUT when it is consumed into the rule and can be used to pass
back a result to the next processing segments, that is IN/OUT,

¢ SETUP (static) when it is a reserved INput to set up block specific
behaviour. This parameter type is used to force different
operating conditions in the Block. For example, to pass the ID of
the database to be used, the temporary directory, etc.

Each JSBlock brings the processing flow towards one of

Ny P PG < Ao ot =

the two possible directions of execution:
¢ (i) without errors, or
¢ (ii) with error occurrence.




The scope of IN/OUT parameters
IS passed along the hierarchy.

Only one leaf is reached in the
graph at the execution.

The generator produces the code
for the GRID and can put in
execution the RuleBlock on
debug

Each JSBlock can activate other
RuleBlocks as well.

In the visual editor red/green

VVMIA

~AadinA 10 Anian A tha A o
bUUIIIg 19 UIVCII LU LULIIT AQlluUVVO

error/success completion.




o Iterations are internally managed into the single JSBlocks.

¢ The IN/OUT parameters have types based on collections and
lists of items

¢ For example, a JSBlock performing transcoding works
Indifferently receiving in input a single file reference or a list;

¢ Conceptually, for the users, the single element is only a specific
case of an array of them.

o decisions can be taken into the single JSBlock.

¢ A JSBlock can be regarded as a visual implementation of a
selection and/or of a sequence of actions.

¢ A single JSBlock can be used to evaluate any kind of Boolean
condition, which allows to take a decision.

¢ Multiple decisions can be implemented as chains of JSBlocks as
In the if-then-else-if—then-else construct.

¢ Thus a JSBlock can implement complex firing conditions as one
can do in Petri Nets.




O

A new version of the language and model has been defined
extending the described version with diamond connections
among JSBlocks. This allows to

¢
¢
¢

access at a larger scope of variables coming from several blocks
avoid duplicating JSBlocks in the same diagram

Better manage the errors codes that could come from multiple
JSBlocks as well and thus it could be used to realize RuleBlocks
which could define recovering paths into the graph




o ManRuleBlocks are used to define the allocation and
branching of Rules on grid nodes.
o A different visual semantics has been used
¢ Parallel and sequential execution of processes

¢ child blocks as synchronous (blocked) or as asynchronous (non-
blocked) processes

o E.Q.
¢ Zrule is a ManRuleBlocks that presents recursive behavior.




IN/OUT parameter management and
editing, a ManRuleBlock follows the
same semantics of the RuleBlock

The production implies

¢ The access to database to get the Block description, compose
them and verify consistency

¢ The errors are reported as results/OUT parameters. Thus they
may be more complex that simple fault/nofault as in the JSBlocks

The generation and execution implies

¢ The production and allocation on the grid of a Managing Rule
capable of organising the execution of those blocks on the whole
GRID

¢ The allocation of all the components rules and the interchange of
their parameters on the GRID network.




A Visual Block is
¢ asegment of a JavaScript (JSBlock) or

¢ a full RuleBlock (which in turn is created as a set of JSBlock or
directly coded in JavaScript).

JSBlock::=<defined in JS as JS block>
RuleBlock::= {JSBlock} | <defined in JS as JS rule>

ManRuleBlock::= {RuleBlock | ManRuleBlock} |
<defined in JS as JS rule>

This modeling allows to generate the code but also to manually
produce it.




M axcpProva.axv | ||E||X|
File Edit Miew Buld Command Help
-
Ous,ﬁa@@wu = O ™
F'r_u:En:IurF' List Visual Procedure Editor o
- el i
¥ L e
153 i i
L e+ —o o
% ‘_,/) Crestez CreateT... WriteTa
—0
i~ —0
..... Lj WiteFils ) StartPo Crearbez.
=[5 AXCP Ruls y %%1_ %%t.. %%L
..... @ aecpProva
----- @ compilazicns — D —0 'l.lman
- [}
..... @ CreaisDir CreateDir CreateT..,
..... i creatsDirFilad: Writs g
..... |} CreatsTxiFils % - %%‘-
..... [ CreatsZiWithFils %
»—>
..... [d) dirfFithTxiFile — D —0
..... @_ apen dirWith,..
..... @ openNotspad = -
=
..... [ CreatsTxiFils = %% %% %%‘ %%
..... 3 proar P - - o -—r P
..... @ provalnstallindRun proof CresteDir provatc... provaPa...
----- @. provaParam 3z
@' provalcoop v € il | B
Project Table ®
Mame Type | D Date of Production Last Modification Affiliation LRL Author
|axcpProva AXCP Rule Procedure axcprule:3ae25f2e- 1'-'4n—l 2008-06-13 !EEIIIIE-IEI-II !n:lisit - disit !url.n:n:-m !antr:nnu:n
CreateTxtFile Java Script Procedure axcprule;892e2e50-270e- 2008-08-19 2008-08-19 disit URL diprova antanio 5
CreateZiWwithFile Java Script Procedure axcprule;668f4ad 2-f3df-4 2008-05-05 2008-05-05 z_affiliation e_url c_antonio 0
dirWithTxtFile Java Script Procedure axcprule:680490da-67da- 2008-06-17 2008-06-17 asd url di prova anto
provascoop Java Script Procedure axcprule;6d4cb8ad-1a5d- 2008-05-22 2008-05-22 z_affiliation cvb_url g_antonio D
és‘f“"af\ sample2 Java Script Procedure axcprule;ccfasfde-1075-4 2008-06-04 2008-06-04 s_affiliation url_di_prova antonio b
A K 11T’ ¥
@, -




o Applications are in the area of content processing
¢ Fingerprint extraction and collection for audio processing
Fingerprint recognition for audio track monitoring
P2P monitoring and network balance
P2P monitoring for audio/visual IPR monitoring and accounting

User generated content management according to different and
dynamically changing kind of content and needs

¢ Back office multichannel content production and distribution
according to device and user profile, dynamic decisions have to
be taken with GRID integrated taking decision systems

¢ Etc.
o Itis agood instrument for

¢ highly dynamic back offices

¢ Students development on media processing (stand alone node,
single node, multiple nodes, hierarchical solutions).

® & & o




#3150.217.15.88 - desktop remoto ] |

e 2% AXCP Grid Node HEH ﬂ

Recyele Bin
invalid new backstep 515 Mewshortcutz

invalid new backstep 517
invalid new backstep 5i6

27r AXCP Grid Node

Punto di partenza: Bsec

ﬁ invalid new hackstep 514 Punto di fine: 135sec
BT sl ey backetey o1 A s s 1o1 20 07000
Ew3anorLCyl i i H
noalid new ’ﬁ:ﬁtiii}: eia "d°b§%eader Input #8, mp3, from ’istream:@56314C8° :

Duration: BB:05:28.25, start: B.00000E,. bhitrate: 127 khr/s
Stream #8.8: Audio: mp3. 44180 Hz,. stereo, 128 kbhrs

Output H#B, wav, to ‘ostream:BL5631A6G8 :

Stream #8.8: Audio: pcm_sib6le, 22858 Hz. mono. 3%2 kbh/s

invalid new backstep 517
invalid new backstep 519
q' Punto di partenza: Bsec

Punto di fine: 29%zec E-l-! Punto d:i. pal\rtenza: Beec
AdobeReader | 15 32768 482 2048 ©.743839 axcpGrid  fPunte di fine: 328sec
7.0 Bending message: 83 Mode

15 32768 441 20848 @.7430839

Sending message: 53

Input #8, mp3. from 'istream:B5744A608° :

Duration: BB:B2:48.57, start: B.880BBB, bhitrate: 128 khss
um #8.8: Audio: mp3. 44168 Hz,. stereo. 128 khss

Input #8. mp3. from 'istream:B7843AA68° :
Duration: BB:03:00.36, start: 0.POBAOA,. hitrate: 96 kh/s
- Stream #8.8: Audio: mp3. 44188 Hz, stereo. 96 kbh/s
a"-’! Output #A,. wav, to ’ostream:B70440EQ° : —
Stream #8.8: fAudio: pem_si6ble, 22858 Hz, mono, 352 kbh/s

AXCP Grid H - I. wav, to ’ostream:@54DBB5A’ :
Node funto di partenza: Bsec B}~ #0.6: Audio: von_si6le, 22056 Hz. mono. 352 kbrs
15 32768 242 2048 ©.743839 n fine: 168sec
@ i 226 2P48 B8.743839
axeptool-pz. ..

{no metadat 98 n1-AXCP - Remote Desktop M= B

¥¥ AXCP Grid Node

55 "~ oue JPunto di partenza: Bsec invalid new hackstep 518

- s e i lid new hackstep 518
Duration: PAP:B4:48.20, start: O.P@AgPunto di fine: 293sec Einval
Stream #B.0: Audic: mp3, 44160 Hz invalid new hackstep 513

i lid new backstep 516
Output #8, wav, to ’ostream:BA239FF@’ § 15 32768 394 2948 0.743039 e i -
Strean #0.0: Audio: pem_sible. 22 funto di partenza: Osec

Sending message: 138 -l

Punto di partenza: Bsec IHEUt A, mlﬂgé g‘l}“023'égtPeam:Bnggzaggééa b Punte di Fine: ZiBsec

Punto di fine: 288sec uration: 80:09:43.86, start: 0. » bitrate: 7 15 32768 282 2048 0.743839
Stream H#0.0: Audio: mp2, 44188 Hz, stereo,. 128 tl fsending message: 47

15 32768 387 2848 B.743839 Output #B8. wav, to ’'ostream:BAFC2IF28’: 3 ; ;
Strean #8.08: fAudio: pem si6le, 22058 Hz, mono. JAdobediniut #8. mp3. from 'istream:@B8F129@°:

Bending message: 118 = H @3: : i H
Input #8, mp3, from *istream:BH300408 JPunto di partenza® Bsec 7. Dug:ﬁ;g; ug?a?%ﬁgiﬁ'mgg?r241géaﬁg?agéekégfafgs :]I.(%gskh/s

Dugztiﬂn:ugaéa3a43:23. Sgariiigéaﬁa Punto di fine: 583sec Output #8, wav, to ’'ostream:BB982018° :
rean -8 Audio: mp3. = H io:
output. §8. wav. to o ostreamiBA3@DBIS. ] 15 32768 784 2048 B.743039 Puntgtsiagaﬁségza?ug;gc pcm_s16le,. 22850 Hz. mono,. 352 khr/s
Stream H#B.60: Audio: pcm_sible,. 22 Punto di fine: 2@8sec
Punto d:i. partenza: Bsec
Punto di fine: 227sec 15 32768 279 2048 @.743839
Sending message: 48
15 32768 385 2343 A T C T T 2 Input #8, mp3,. from 'istream:@BADEI8R’ :
Sending message: 119¥d SHECHEE Duration: @@:82:35.38, start: B.800008. hitrate: 127 kb/s
Input #8, mp3. from R o f Stream #8.0: ﬂudlo- mp3. 44100 Hz, stereo, 128 khss
Duration: B@: @3 =24 ﬂ Output #8. wav, to ’ostream:BBADEIEG’ :
Stream #8.0: Aud ) 2 2 5 ) tar ID Start Tim Stream #0.8: Audio: pcm_sible. 22058 Hz. mono,. 352 kbhrss
Output H#B,. wav, to " N "
Stream #8.60: Aud . 4 g L] d
running
running
running

Recycle

SUPER 1) TETHOMT KEY.[E]
Connections
o 2
= ud
SUPER © FERMew, axr BACP Grid
Uninstall Mode
P = IS
sniffier Shorteut ko AP Rule

ipAddr.exe Scheduler

b5
- 5
H

Logs

SUPERsetup  ip-tools.exe  alberoDario...




The Visual language for programming grid processing has
been defined and validated against several applications

A new version of the AXVD language and model has been
also defined extending the described version with diamond
connections among JSBlocks

The tool realizing the AXVD is integrated into the AXCP IDE
grid processing tools of AXMEDIS solution for content
processing

¢ They are freely distributed as freeware and are accessible free of
charge for any no-profit institutions.

¢ An open source (dual licensing) version will be published in the
next months for any no-profit institutions

AXCP It is presently in use on some projects, see AXMEDIS
portals and on the web




