
Communicating TILCO: a Model for
Real-Time System Specification

Pierfrancesco Bellini Paolo Nesi
Dipartimento Sistemi e Informatica, University of Florence

Via S.Marta, 3 50139, Firenze - Italy
+39-0554796523, nesi@dsi.unifi.it, http://www.dsi.unifi.it/"nesi

A B S T R A C T
Formal techniques for the specification of real-time sys-
tems must be capable of describing a set of relation-
ships expressing the temporal constraints among events
and actions: properties of invariance, precedence, pe-
riodicity, liveness and safety conditions, etc. This pa-
per describes CTILCO, an extension of TILCO (Tem-
poral Interval Logic with Compositional Operators).
CTILCO introduces the Communication among com-
ponents specified in TILCO and allows the adoption of
decomposition/composition mechanisms. TILCO has
been expressly designed for the specification of real-
time systems. CTILCO is based on time intervals
and can concisely express temporal constraints with
time bounds, such as those needed to specify real-time
systems. It can be used to verify the completeness
and consistency of specifications, as well as to validate
system behavior against its requirements and general
properties. CTILCO has been formalized by using the
theorem prover Isabelle/HOL. CTILCO specifications
satisfying certain properties are executable. CTILCO
is defined in terms of theorems and allows the system
specification and the formal proof of properties includ-
ing composition/decomposition with communications.
An example of system specification and validation has
been also included.

Keywords: formal specification language, first order
logic, temporal interval logic, verification and valida-
tion, real-time systems.

1 I N T R O D U C T I O N
Applications of avionics, robotics, process control, pa-
tient monitoring, etc., frequently must meet temporal
constraints in order to avoid critical or degenerative
conditions. These applications are typically modeled as
real-time systems by using suitable specification tech-
niques. For their specification, a set of relationships
expressing temporal constraints among events must be
used - e.g., [l], [2] - for example: properties of in-
variance, precedence among events, periodicity, live-
ness and safety conditions, etc. The specification cor-
rectness in meeting the temporal constraints has to be
demonstrated by using verification and validation tech-
niques.

4
1050-4729/01$1O.OO O 2001 IEEE

For these reasons, formal specification techniques are
presently considered the best tools for the specification
of real-time systems (see [l] for a survey). Most of the
formal methods allow the verification and validation of
the specification with respect to system requirements
and/or to real stimuli by using classical and symbolic
model-checking techniques. These approaches allow
verifying the most critical aspects and use-cases in lim-
ited time. To guarantee the absolute reliability of the
specifications is still an open problem since the costs
of exhaustive verification and validation with model-
checking techniques are often unmanageable. For these
cases, a solution is to demonstrate the satisfactory of
specific system properties and behavior by using theo-
rem prover approaches [3] ,[4].

Composition/decomposition techniques are mecha-
nisms used to cope with the general system complexity.
Most of software development methodologies address
the structural composition/decomposition of the sys-
tems. A composite object is defined in terms of its sub-
object/components and their relationships. Object-
based and object-oriented approaches include and for-
malize composition/decomposition concepts. Differ-
ent communication mechanisms among components, as
shared variables, synchronous or asynchronous commu-
nications are chosen. Components can be separately
developed, tested and then combined to model the
whole system. Problems arise when the combination of
components produces unexpected and, thus, difficulty
controllable and verifiable behavior due to the pres-
ence of communication among components. To this
end, verification and validation criteria for composi-
tional methods are used - e.g., [5] , [7]. These must
address the verification and validation of component-
composition and their relationships with the require-
ments of the composite object.

For complex and large systems, the compositional ap-
proaches are typically accompanied by the availability
of a layering support. The verification of consistency
between the composite object and its components at
each level of the structural hierarchy guarantees the
satisfaction of the abstract specification and therefore
of the system requirements - for example, [6], [7], 181,

http://www.dsi.unifi.it/"nesi

[911 [loll [i l l .

For the specification of real-time systems temporal log-
ics have been profitably used (see [5] for a very large
survey on temporal logics), and they can be used also
for the validation of the system under specification. In
particular, the temporal logic TILCO (Temporal In-
terval Logic with Compositional Operators) has been
defined with a special emphasis on its expressiveness
and conciseness [3]. TILCO has been designed for the
specification of real-time systems, it extends FOL with
a set of temporal operators and can be regarded as
a generalization of the classical temporal logics oper-
ators eventually and henceforth to time intervals [5].
TILCO has a metric for time, the time is discrete and
no explicit temporal quantification is allowed. TILCO
allows the definition of expressions stating the ordering
relationships among events, delays, time-outs, period-
icity, liveness and safety conditions, etc. These features
are mandatory to specify the behavior of real-time sys-
tems.

In this paper, CTILCO (Communicating TILCO, Tem-
poral Interval Logic with Compositional Operators) is
presented. CTILCO has been defined since TILCO
does not provide facilities for the specification of
complex/wide systems. To this end, CTILCO per-
mits the decomposition of the system in a hierar-
chy of communicating processes. Processes communi-
cate using message-passing primitives on synchronous
ports. The communication between processes is based
on typed synchronous input/output ports connected
through channels. The connection is 1:l . Each out-
put port is connected to at most one input port
and vice versa. In the following, the mechanisms
to model CTILCO processes are introduced. In the
next sections, the formalization of communication be-
tween processes in TILCO and the mechanisms used
for reasoning about communicating processes are pre-
sented. The CTILCO theory in Isabelle is available on
http://www.dsi.unifi.it/-pbellini/tilco/ together with
several other details about TILCO family of logic.

This paper is organized as follows. Section 2 briefly
presents TILCO temporal logic. Section 3 presents
a CTILCO overview. Section 4 shows the commu-
nication model used in CTILCO: low-level and the
high-level communication constructs with their seman-
tics expressed in TILCO. Section 5 briefly highlights
the validation methods usable in CTILCO specifica-
tions. Section 6 provides an example of specification
to show the composition/decomposition capabilities of
CTILCO. Conclusions are drawn in Section 7.

2 TILCO OVERVIEW
In TILCO, the same formalism used for system spec-
ification is employed to describe high-level properties
that should be satisfied by the system itself. These

properties must be proven on the basis of the specifi-
cation in the system validation phase. Consequently, a
formalization of TILCO has been implemented in the
theorem prover Isabelle/HOL [4], [3]. Using this for-
malization, a set of fundamental theorems has been
proven and a set of tactics has been built to support
the semi-automatic demonstration of TILCO specifi-
cations’ properties. Causal TILCO specifications are
also executable by using an inferential engine and al-
gorithm.

TILCO’s temporal operators have been added to FOL
by leaving the evaluation time implicit. The meaning
of a TILCO formula is given with respect to the current
time such as in many other logical languages - e.g.,
MTL, TRIO, see [12], [13], [5], [3]. TILCO has been
compared with MTL, TRIO, ITL, IL, PTL, EIL, RTIL,
CTL, RTL, and other temporal logics in [5].

This approach has been demonstrated to be the best
solution for writing simple and reusable specifications
predicates. Time is discrete and linear, and the tem-
poral domain is 2, the set of integers. The current
time instant is represented by 0, whereas positive (neg-
ative) numbers represent future (past) time instants.
In TILCO, the basic temporal entity is the time in-
terval. Intervals can be quantitatively expressed by
using the notation with round, “(”, “)”, or squared,
“[,, , “1” , brackets for excluding and including interval
boundaries, respectively. Time instants are considered
as special cases represented as closed intervals which
are composed of a single point (e.g., [U, a]) . When in-
finite interv’als are used, the extremes are open, then
symbols +m and --oc) are used as interval boundaries.

The basic TILCO temporal operators are:

0 “A@i” is true if formula A is true in every instant
in interval i , with respect to the current time in-
stant;

0 “A?? is true if formula A is true in at least one
instant in the interval i , with respect to the current
time instant;

0 “until A B” is true if either predicate B will al-
ways be true in the future, or it will be true until
predicate A will become true;

0 “since A B”, is true if either predicate B has
always been true in the past, or it has been true
since predicate A has to become true.

A@i is true if formula A is true in every time instant
in interval i , with respect to the current time instant.
Therefore, if t is the current time instant, A@i rep-
resents a constraint on A considering the interval i
with respect to the evaluation time instant t , that is
(A @ i) (t) E Va: E i.A(”+t). The notation used with (t)

is to put in evidence the evaluation time instant. In the
following it is obviously omitted such as in several other
implicit time temporal logics. This approach is called

5

http://www.dsi.unifi.it/-pbellini/tilco

implicit time and is used in RTL, TRIO and in many
other temporal logics [5]. In particular, A@[tl, 1 2) eval-
uated in t means:

VZ E [t 1 , t 2) .A(”’t).

Obviously tl and t2 can be either positive or negative,
thus the interval can be in the past and/or in the fu-
ture, respectively. If the lower bound of an interval is
greater than the upper bound, the interval is null. In
the temporal domain, operators “@” and “?” corre-
spond to FOL quantifiers V and 3, respectively; hence,
they are related by a duality relationship analogous
to that between t/ and 3. operators are
used to express delays, time-outs and any other sort of
temporal constraint that requires a specific quantita-
tive bound. Concerning the other tempoml operators,
until A B (evaluated in t) is true if B will always be
true in the future with respect to t , or if B will be
true in the interval (t , 2 + t) with 2 > 0 and A will be
true in 2 + t . This definition of until does not require
the occurrence of A in the future, so the until opera-
tor corresponds to the weak until operator defined in
PTL [14]. The operators until and since can be ef-
fectively used to express ordering relationships among
events without specifying any numeric constraint.

until A B operator does not consider the evaluation
time instant as an instant where A could happen, then
operator until0 has been introduced. It is defined as:

until0 A B E A V (B A until A B)

“@” and “7” .

and also a “strong” until is sometimes needed.
this reason the operator until’ has been defined as:

For

until’ A B E A?(O, +CO) A until A B

For completeness, the until& has been defined as:

until; A B E A?[O, +CO) A until0 A B

In a similar manner, sinceo, since‘ and since& opera-
tors have been also defined.

In a TILCO specification, predicates and functions
with typed parameters can also be defined. Predicates
return a value of type bool. The body of each predi-
cate must be specified by means of a TILCO formula,
where the only non-quantified (free) variables are the
predicate parameters. Predicates are an instrument
to make formulzwriting simpler; hence, more complex
temporal expressions and formulz can be hidden in
predicates. For example, the two predicates:

rule(A : bool) ‘Ef A@(-CO, +CO)

up(A : bool) gf A A 7A@[-l, -11

where: rule expresses that a predicate A is always true
and up means that A from false becomes true. Pred-
icates with parameters are often used in specifications
to have shorter and easily readable formulz.

AQ[O, t)
A?(% +CO)
AQ[ti I t z]
A?[t i , t z)
- (AQ(-oo, +CO))
A Q [t l , t l] , (t z , t 3]
A Q [t l , t l] ; (t z , t a]
AQ[t , t] A i A Q (0 , t)

A?[O, tl]Q[O, +CO)

(A 5 B)?[O,t]

(A +- B?i)@Dj

A is true from now fort time instants
A will be sometimes true in the future
A is true in [t 1, t z]
A is true in an instant of [t l , t z)
A is not always true
A is true in t l , and in (12,t3]
A is true in t l , or in (t z , t s]
t is the next time instant when A will
be true
A will become true within t l for each
time instant in the future (response)
if A is true within t , then also B will
be true at the same time
A leads to an assertion of B in i for
each time instant of j

Table 1: Examples of TILCO formulae.

In Tab. 1, in order to provide a clearer view of TILCO
expressiveness, some examples of f o r m u k are reported
with an explanation of their meaning, where t stands
for a positive integer number.

3 CTILCO OVERVIEW
In CTILCO, a system specification is a hierarchy of
communicating processes, the specifications of which
are written in TILCO. Many instances of the same
process can be present in the specification. Processes
can have some parameters and every instance has dis-
tinct values. Several temporal logics do not support
the communication. They can be used to define com-
munication protocols. The research presented in this
paper can be used by other research groups to imple-
ment communication mechanisms. Examples can be
recovered in [15], [16], [17]. The novelty of our ap-
proach consists in the fact that CTILCO is supported
by a Theory in Isabelle. Therefore, it can be profitably
used for theorem-based proof of the specification. In
most of the mentioned approaches the verification is
based on Model or History checking.

Communication between processes is based on typed
synchronous input/output ports connected by chan-
nels. CTILCO presents a communication model quite
similar to that of CSP, while asynchronous models
(such as that of CCS) can be build by using a inter-
mediate buffer [l]. The connection is 1:1, each output
port is connected to at most one input port and vice-
versa. In the following, the way in which processes
are modeled in CTILCO is introduced. In the next
sections, the formalization of communication between
processes in TILCO and the methods used to reason
about communicating processes are presented.

In the following, a process represents a class according
to an object-based formalism.

In CTILCO a process is represented by two views:

1. the external vaew that describes the input/output
behavior of the process;

6

I \ +

\ I SvbPmrJ

Figure 1: External and internal representation of a
CTILCO process

2. the internal view that describes the process de-
composition into subprocesses or a low-level for-
malization of the process behavior if it cannot be
furtherly decomposed.

A CTILCO process is externally characterized by:

a set of external input ports used to acquire infor-
mation from the outside;
a set of external output ports used to produce in-
formation to the outside;
a set of external variables used to give some gen-
eral information about the process state or to sim-
plify the external behavior specification;
a set of external parameters used to permit general
process specification to make easy process reuse,
since different process instances may have different
parameters;
a set of external TILCO formula: that describe
the external process behavior by means of mes-
sage exchanging and constraints on the external
variables,

CTILCO is internally characterized by:

a set of CTILCO subprocesses;
a set of internal input ports, used to get informa-
tion from subprocesses;
a set of internal output ports used to send infor-
mation to subprocesses;
a set of internal variables;
a set of internal TILCO formule , which describe
the internal behavior of the process.

The ports of subprocesses can be directly connected to
the containing process ports (of the same type, input
to input and output to output) or can be connected
through channels to the complementary internal ports
(output to input and input to output). In Fig. 1, a de-
composition is exemplified. The use of internal ports
permits the realization of partial decompositions, when
the process behavior is only partially specified by sub-
processes and, thus, some interactions with the subpro-

7

cesses are stated by means of the TILCO f o r m u k of
the internal specification.

In TILCO formulz, the dot notation is used to provide
access to process components. For example, if p is a
process with a variable U , then p.v is used to refer to
the variable of p . Whether process p has a subprocess
s with a variable U , then p.s.v is used to provide access
to the subprocess variable.

Since many instances of the same process can be
present in the system, its specification is valid for all
of them. For example, if the internal specification of
a process with a variable i var includes the following
formula:

: ivar = 1 + (: ivar = 0)@[20,20]

It means that if ivar is equal to 1, then after 20 time
instants ivar will be equal to 0. This will be true in
each process independently. By means of colon opera-
tor, process and local variables it can be easily distin-
guished.

Being in TILCO the time axis infinite in both direc-
tions, there is not any time instant that can be regarded
as the start time instant of the execution process. In
the specification of a system, it is natural to think
about a reference time instant in which the process
starts its work, and before that the signals were stable.
For this reason, a Boolean variable process-start has
been introduced to each process. This variable is true
only in one time instant for each process. It should be
noted that each process has its own start instant and
a formula of the internal specification is used to define
the start time instant of its subprocesses. Typically
when a process starts all its subprocesses start as well.

4 CTELCO COMMUNICATION MODEL
The communication between two processes is struc-
tured in two layers: the low-level communication model
for transmission of typed messages and of acknowl-
edgements (ACKs); and the hzgh-level communication
model that uses the low-level to realize a synchronous
communication protocol. The two layers solution has
been adopted in order to keep separate the level in
which the simple unidirectional actions of sending, re-
ceiving, asking, etc., are used and the high level used in
the effective specifications. This solution allows reusing
the specification predicates in a simpler manner.

Low-level communication
Properties assumed for the low-level are:

no data creation: an arrived message (or ACK)
has been surely sent;
no data loss: a sent message (or ACK) will be
received;
constant delay: a sent message (or ACK) will
be received after a constant delay greater or equal
than zero.

The no data creation assumption is fundamental (with-
out this assumption the communication has no sense).
The no data loss and constant delay assumptions have
been introduced in order to have a deterministic behav-
ior. From these assumptions, the no reorder property
can be derived (messages arrive in the same order as
they are sent).

In this layer, the following temporal predicates have
been defined and, thus, can be used by the higher-level:

<outPort>.send(<expr>)
is true when output port <outport> sends the
value obtained BY evaluating expression <expr>.

<outport>. receiveAck
is true when an ACK has been received by output
port <outport>.

is true when a message has been received by input
port <inport> with the value indicated by <expr>.

<inport>. sendAck
is true when input port <inport> sends an ac-
knowledgement.

<inport>. receive(<expr>)

There is also a connection predicate between ports:

outp 4 inP
that asserts that output port outP is connected to in-
put port i n P and messages (and ACKs) sent are de-
layed of d time instants. Please note that connectzons
are static assertions, design-fixed.

The rules to manage low-level conimunication are re-
ported in the following.

message transmission:
(outP 4: inP) =+

rule(outP.send(k) U inP. receive(k)@[d,d])

This rule states: if port outP is connected to port
inP then in every time instant, outP sends a mes-
sage if and only if inP receives the same message
after d time instants. From this rule, we have that
the message sent is received after d time instants
(no data loss) and that the message received has
been sent d time instants ago (no creation).

ack transmission:
 out^ 4 i n P) j

rule(znP. sendAck outP. receiveAck @[d, d])

This rule is similar to the previous except for deal-
ing with the ACKs and having an opposite direc-
tion (from input port to output port).

rule(outP.send(k) AoutP.send(v) + k = U)

This rule states: if a t the same time instant two
values are sent on the same port these values have
to be equal.

send one value:

0.1

RW 4 4

R
i n p t I ~ I : : : I : ; : ,

"l nr nr nr tu .,r(",+

",l "bA nss n.. "Y ' ,U RW

wr wr wr wr wr Pr(v)

[delay: d = 0)

Figure 2: Examples of synchronous communications
with no delay.

receive one value:
rule(znP.receive(k) A znP.receive(v) =+ k = U)

This rule states: if a t the same time instant two
values are received on the same port these values
have to be equal.

High-level Communication
The high-level layer introduces synchronous ports, the
basic operators on these ports are: Send (!!) and Re-
cezue (??). They are quite easy to remember due to
their similarity with CSP:

<outport> !! <expr> [<whileExpr>] ; ; <thenExpr> sends
through output port <outport> the value ob-
tained by evaluating expression <const expr>.
When the communication ends TILCO expression
<thenExpr> is asserted. During the waiting the
temporal expression <whileExpr> is asserted.

<inport>?? [<whileExpr>] ; ; <thenExpr> waits for a
message (if not already arrived) from input port
<inport>. When the message arrives TILCO ex-
pression <thenExpr> is evaluated as a function of
the value received. During the waiting the expres-
sion <whileExpr> is asserted.

Operators: outP and inP ?? have been introduced in
order to specify that a process must not send a message
on a port nor it must ask for a message. These condi-
tions cannot be specified by using ~ (i n P !! PI [PI ; ; W)
which has a different meaning.

In TILCO, high-level synchronous operators are de-
fined by using the low-level predicates as reported in
the following. In Fig. 2, the only two cases of syn-
chronous communication are reported: (i) the emit-
ting process sends a message, and after the receiving
process asserts that it wants to receive a message; (ii)
the receiving process waits for a message and later the
emitting process sends the message.

operator Send emits the message and waits for an
ACK. While waiting, wait formula W, is asserted

8

0

and no other messages are sent. When the ACK
arrives, the formula P, associated with the end of
communication is asserted. In TILCO, the behav-
ior of Send operator has been specified with the
following axioms:

rule((outP !! w [Ws] ; ; Ps) outP.send(v)A
untilo(outP. receiveAck APs)

(outP. receiveAck V

(ToutP. receiveAck A W ~) A

(YoutP. receiveAck A

until(outP. receiveAck)
(ToutP. receiveAck AoutP!))))

rule(outP!! I -3k.outP.send(k))
the until0 formula is used to state that P, is true
when the ACK is received and W, is true until this
time instant. The other part of the formula states
that during the waiting for the ACK no message
is sent.
operator Receive has two possible situations. If
a message, different than an acknowledged, was
received in the past, then the ACK must be sent
and the "end of communication" formula, P,, is
asserted with the value received. In the other case,
a new message has to be waited asserting wait for-
mula W,. When a message is received (if any), the
"end of communication" formula, P,, is evaluated
with the value received. In TILCO, the behavior
of Receive has been specified with the following
axioms:

rule((znP?? [W,.];; P,.) A inP.RValue v ,=+

rule((ZnP?? [W,.] ; ; P.) A ZnP.RWait ==+
inP. sendAck APr (v))

untilo(3k.ZnP. receive(k) A ZnP. sendAck A P r (k))

(3k.inP. receive(k) v
(~3k .ZnP. receive(k) A Wr)A

(~3k .ZnP. receive(k) A 1 ZnP. sendAck A

(- 3 k . i n ~ . receive(k) A i n ~ F))))

T ZnP. sendAck)

until(3k.ZnP. receive(k))

rule(ZnP v
rule(inP ?? [Wp] ; ; P, A inP 7'7 ==+ I)

where next formula indicates that there exists a
pending w message:

inP.RValue v =
since'(2nP. receive(v) A TinP. sendAck)

(-4nP. sendAck)

and formula

inP.RWait = ~ 3 v . inP.RValue v

states the absence of a pending message to be elab-
orated (the current instant is not considered).

Fig.3 shows the more complex case in which there is a
delay in transmission. In this case, two situations are

9

Figure 3: Examples of synchronous communications
with delay.

possible. The first, when the distance from the Send
and the subsequent Receive is greater than the delay,
thus the message is received prior to the Receive action.
The second and opposite case, when the Send action
is performed after the Receive or before it having a
distance lower than the delay.

CTILCO Communication Theorems
During the definition of CTILCO Communication The-
orems many properties have been proved about the
communication operators. This has been performed
in order to validate the definitions of operators and to
aid the construction of proofs involving these opera-
tors. The proofs were made by using a formalization of
TILCO and CTILCO in Isabelle/HOL [4], please see
http://www.dsi.unifi.it/-pbellini/tilco/ for details.

Theorems proved can be divided in two groups:
0 theorems used to prove internal properties of a

process. They substitute operators Send and Re-
ceive with their semantics;

0 theorems used to prove properties involving con-
nected processes.

In the first group, there are the theorems that can be
used to eliminate a Send from the assumptions of a
goal.

[kt P. send(U)]

k t p !! v [Ws] ; ; P, k t p . receiveAck?[O, +CO)

k t until; P, W,

k t until0 P, W ,

The first theorem states that: if the process wants to
send a message at time t and the message is sent re-
ceiving the ACK, then a time instant exists in which P,
is true. And, until that time instant, predicate W, is

k t p !! 2, [W..];;P,

http://www.dsi.unifi.it/-pbellini/tilco

(NU NR NII NR) R
I n 1 I I I : 5 I ! I I

PHV) I IW [delay:)
d -

O Y I I I ! I I : I : ; 4
(w. w. w. w. w.) Ps

NS NS W NS

(NI):
1 " t : : : : t : I : I I I

(w,dwr)PrIv) IIW

Figure 4: Theorems for synchronous communication

true. This theorem is used to substitute the Send with
a strong until in the assumptions of the goal within the
backward proofs of Isabelle.

The second theorem is similar to the previous without
the assumption that afa message as sent an ACIi wall be
receaved. In this weaker condition, the same condition
with the weak-until has been derived.

For the Receive, similar theorems have been proved:
t(p ? ? [Wr] ; ; P, kt 3k. p . receive(k) ? [O, +CO)

tt 3v. until&Pr(v) W,

kt 3v. until0 P7(u) W,

The first theorem of Receive states that , if a message
will be received the operator Receive may be substi-
tuted with a strong until. The other theorem substi-
tutes the Receive operator with a weak until without
making any assumption about the message arrival.

In Fig. 4, the visual descriptions of the next two proved
theorems are reported. The assumptions of the the-
orems are depicted upon the time axis while conse-
quences are below. In theorems used to prove proper-
ties for connected processes, the R Wazt operator plays
an important role. It summarizes the con~munication

t-tp'?? [Wr];;Pr

status: d 1 p out --t zn
k t 2n ?? [W,] ; ; P,
k t + t s out !! U [W s] ; ; P , -
l-t ?? Q [t , - d , O)
t s < - d

This means in the premises: if two ports are connected
with a delay d , a Receive is asserted at time t , and a
Send is asserted t , instants before the Receive. In the
implication: the message is received at time t , P, is
true after d time instants, the wait formula of Send k
true from the Send time instant to the end of commu-
nication time instant, and at t + l RWait is true stating
that no message is pending.

The following theorem covers the opposite case: in the
absence of pending message, the Send is done after the
Receive or within the delay.

l-t in.RWait

z out 4 in
l-t in ?? [Wr] ; ; Pp
l-t+t, - out !! 21 [Ws]; ;Ps
l-t in ?? q t , - d , O) -
l-t out !! Q[-d , t s)
-d 5 t s

l - t + t , + d Pr(v)
tt+t.+2d ps
bt wr@l[o,ts + d)
Ft+t._W,@l[O, 7 4
l - t i n ? ? Q (O , t , + d)
l - t+t, in !! Q(O,2d)

-
kt+ t r r +d+ 1 in.RWait

Other theorems have been proved: some of them deal
with the RWait operator that permits deducing that:
if RWait is true for an input port and the connected
emitting process is not sending, then RWait will remain
true.

5 CTILCO SPECIFICATION VALIDATION
In order to validate a CTILCO specification, proper-
ties have to be proved by using the Isabelle/HOL the-
orem prover [4] with the formalization of TILCO and
CTILCO. In that environment, theorems reported in
the previous sections and many others make easier the
properties proof either manually or automatically. In
this environment, it should be noted that properties
can be proved for the entire system as well as for single
processes with generic parameters.

Proved properties are typically those of safeness (noth-
ing bad will never happen) or liveness (something good
will happen). Other properties that can be demon-
strated are those aimed at validating the composi-
tion/decomposition of components. The evidence for
the external properties of process is validated by means
of its internal specification (decomposition), or vice
versa (composition), depending on the approach used
for building the system (bottom-up or topdown).

Since TILCO specifications can be executed by using a
causal inferential engine, even a CTILCO specification
can be executed. Obviously, not all the specifications
can be executed, quantifications have to be done on fi-
nite domains, the specifications have to be determinis-

10

tic and no generic parameters have to be present. How-
ever, the specification can be time incomplete, meaning
that the system behavior can be partially specified for
all the time instants.

6 ANEXAMPLE
In this section, an example to highlight the composition
and reuse capabilities of CTILCO is presented together
with some validations.

The system under specification is an abstraction of a
train system that connects a set of stations. Every
train passes from a fixed set of stat,ions with a cyclic
path. A train needs a bounded time duration to go
from a station to the next. The train has to ask for
permission to enter in a station. Once the permission is
granted the train remains in the station for a constant
time duration and then it leaves the station for the next
one. Every station may have only one train inside at
the same time. As an example, we consider the system
shown in Fig.5.

Figure 5: The railway system and its decomposition.

The system is deconiposed with three types of pro-
cesses:

0 process Statzonl (Sa and Sb) manages the access

0 process Stutzon," (Sc) manages the access of two

process Trazn2 (Ta and Tb) models a train that

of only one train.

trains.

reaches two stations.

Please note that the specification at system level con-
sists only of the definition of process relationships and
of a global start predicate.

In order to manage the access to a station, three ports
are needed, one for the request to enter the station
(Rq), another to give access to the station when the
station is free (Ent), and the last one to notify to the
station that the train has left the station (Ext).

Due to the limited space of the article the full specifica-
tion of the system cannot be reported. In the following,
many details are omitted. However, we think that the
parts we chose to report highlight and explain the main
aspects of CTILCO'

Process Station1
Process Station1 has three ports (Rq, Ent, Ext) to
communicate with the train and three Boolean internal
variables:

side.

for a request coming from the train.

for the notification of exit of the train.

0 hasTrain stating that the station has a train in-

0 wuitRq that is true when the process has to wait

0 waztEzt that is true when the process has to wait

When the process starts, it has to wait for a request
and before the starting the station has no train inside
and no communication has been issued:

:process-start ==+ :waitRq A (7 :hasTrain)@(-oo, 0)

:process-sturt =+ (: R q F A : Ent !! A :Ext")Q(-oo,O)
-

The general behavior is specified with the followingfor-
mula: .

:waitRq ==?

: Rq?? [- : hasTrainA : Ent ? A : Ezt?] ; ;
: Ent !! enter [7 : hasTroinA : Rq?? A : Ext?] ; ;
: Ext ?? [: hasTrainA : Rq ?? A : Ent ?] ; ;
: waitRq

-
-

This formula states that if the process must wait for
a request a Receive is performed on port Rq. And,
when a request is received the matching grant is im-
mediately sent. During the waiting for the Receive on
Rq port and the Send on Ent port, the train is not
in the station (7 : hasTrain). When the grant is re-
ceived, the process waits for the exit notification. In
the meanwhile, the train is in the station. When the
notification is received, the waitRq variable is newly as-
serted in order to begin the waiting for a new request.
It should be noted that, during the waiting for a cer-
tain port, the waiting predicate states that the process
is not sending/receiving on the other ports. This is
taken for granted in the following.

Process Station2
Process Station2 has six ports (Rql , En t l , Ex t l ,
Rq2, Ent2, Ext2) to communicate with the two trains
and two Boolean variables: hasTruinl and hasTrain2.

11

These state'that the station hosts train 1 or 2 inside,
respectively.

A general requirement of Station2 consists in allowing
only one train to be inside the station at the same time
inst ant:

(7(:hasTraZnlA : hasTrain2))@(-oo, +CO)

For the internal specification of process Stat ion2, the
following Boolean variables have been used:

f r e e states that the station is free;
waitRql arid waitRq2 - when one of these is true,
the process must wait for an access request by
train 1 or 2, respectively;
reql and reg2 indicate that an access request has
been received for train 1 or 2 , respectively. It is
kept true until t,he train has access t80 the station;
sendEnt1 and sendEnt2 - when one of these is
true, the process must send the enter notification
to train 1 or 2 and wait for the exit not,ification.

According to the system specification, t,lie following
shortcuts were used:

A-B A + BQ[1,1]
inv(A) A il@[-1, -11

The f r ee process variable is defined as:
: f r e e M -, : hasTrain1 A 7 : hasTrain2

When the process starts, it must wait for t,he requests,
until a received request, reql lreq2, is false and when
the received request, reql lreq ' t , becoines true:

:process-start +: waitRqlA : umitRq2A : f r e e 8 (-CO. 01
: process-start +

(:Rql"A : E n t l n A : E r t l -) Q (- w , O)
: processstart j

(: Rq% ??A : Ent2 U A : E z t 2 F) @ (- m , O)

: Rql ?'? [- : reqlA : E n t l ? A ; E z t l ??] ; ;
: r e q l A - :hasTrainlA : E n t l n A :Extl??

: Rq2?'? [- : req9A : Ent2 !! A : Er t3 ??I ; ;
: reg2 A 7 has Train2A : Ent2 E A : Ext3

When no request is received hasTrain l and/or
hasTrain2 remains stable (holding the same value) :

: waitRg1 *

- : waitRq2 *

7 : reql =CO inv(: hasTrain1)
7 : reg2 inv(:hasTrain2)

When the station is free and a request is received for
a train but not for the other the enter notification is
sent:

:free A : regl A 7 : req2
:free A : req2 A 7 ; reql

=CO

=tx,

: sendEntl
; sendEnt2

When two requests are contemporaneously .received,
train 1 has the precedence:

:free A : reglA : reg2- : sendEnt1A : req2A 7 : hasTrain2

When the station is not free and a request is received,
the request is maintained active:

7 :free A : reql=m

7 :free A : req2-
: regl A 7 : hasTrainlA : Rql ??A : Ent l F A : Ezt l

:req2A-, :hasTrain% ;Rq2?A : E n t % n A :Ezt2??

When sen . tE i z t l / (s en tEn t2) is true, the enter notifica-
tion is sent,, and the exit notification is waited. In the
meanwhile, h a s T r a i n l / (h a s T r a i n 2) is true and no re-
quests must be received. When the exit notification is
received, hasTrain l / (hasTrain2) becomes false and,
a t the nest. instant, the process begins to wait again
for a new request (t,o have the possibility to serve a
pending request):
: sendEntl j

: Entl !! enter [: hnsTrain1 A -, : reqlA : Rql '??A : E z t l ??] ; ;
: Est1 ?'? [: hasTrain1 A 7 : reqlA : Rql F A : E n t l U] ; ;
-, : h a s h i n 1 A 1 : reqlA : w 0 2 t ~ q l Q [l, 11

: sendEnt2 j
: Ent2 !! enter [: has Train2 A 7 : req2A : Rq2 ??A : Ezt3 ??] ' 1 , .
: Ext2?? [: hasTrain2A 1 : req2A : Rq2-A : Ent%u] ; ;

7 : hasTrain2A 7 : req2A : wnitRg2O [l , 11

Process Train2
Process Train2 manages the access to two stations. It is
decomposed by using two kinds of processes connected
as depicted in Fig. 6. Processes of t,ype TrainAtSta-
tion manage t.he access to a stmation. Processes of type
MznAIuxDelay are used to model the time spent by the
train t,o reach the next station. A deterministic delay
has t,o be fixed depending on the railway path length.
Since the delay to pass on the path depends on the train
velocity, its value is associated with t,he train aspects.
Please see in the following.

Figure 6: Train2 decomposition.

Ports T o k I n and TokOut are used to sequentially ac-
tivate the processes. When a message is received from
port T o k I n , the process is activated. And, when the

12

process has finished, a message is sent via the T o k O u t
port. It is a sort of token passing mechanism.

Reusing the above-mentioned processes, more complex
configurations can be defined and validated by us-
ing complex and general properties. For example, to
demonstrate that the train will reach the station within
a given time duration.

Process TrainAtStation
Process TrainAtStation manages the access to the sta-
tion, the presence in the station and finally the depar-
ture from the station. It can be decomposed in three
processes as shown in Fig. 7. Process E n t e r s t a t i o n
manages the request of access to the station and the
wait for enter notification. Process M i n M a x D e l a y (al-
ready presented for the upper level) is reused to model
the time spent by the train in the station. Process
E x i t s t a t i o n states the exit from the station.

Figure 7: TrainAtStation decomposition.

The specifications of processes Enters ta t ion and
E x i t s t a t i o n are rather simple. For example, process
E n t e r s t a t i o n must wait for the token, then it sends
the access request, waits the enter notification, sends
the token to the next and waits for the token again.

Process Enters tat ion
This process must wait for the token, then it sends the
access request, waits for the enter notification, sends
the token and waits for the token again.

- : processstart j
: waitTokA (:TokZn?? A : Ent-A :TokOutF) @(-CO, 0)

: waitTok 3

- : processstart =+
: waitTok A (:Tok In ? ? A : E x t U A : TokOut U) @(-CO, 0)

: waitTok =+
:TokIn?? [- :waitingA : E x t U A : T o k O u t y] ; ;
: E z t !! exat [: W Q z h g A : T o k l n ?? A :TokOut E] ; ;
:TokOut !! token [- :waitingA :TokIn?? A : E z t O] ; ;
: waitTok

-
-

Process MinMaxDelay
This process has to wait for the token and to send
the token to the next process after a delay between
MinDelay and MaxDelay . These values can be im-
posed according to Train velocity and path features.

- : processdtart =+
: waitTokA (:TokIn?? A :TokOutR) @(-m,O)

: waitTok j
: T o k l n ?? [- : waatingA : TokOvt U] ; ;
(1 :sendTok @[O, : MznDe1ay)A
: sendTok?[: MinDelay, : MaxDelay]A
until0 : sendTok (7 : waitingA : T o k I n ?? A :TokOut U)) -

:sendTok j

:TokOut !! token [- : waztzngA :TokIn??] ; ;
: waitTok

Validation
Using the proven rules reported in the previous sections
several properties have been proved.

The specification has been formally validated by using
Isabelle theorem prover. In addition, the whole sys-
tems, as well as each single process, have been tested
with the TILCO executor. In this case, several typical
histories for inputs and outputs have been generated
by using a signal editor, and formally verified.

For example, concerning process Stat ion2, the external
mutual exclusion requirement has been derived from
the internal specification, this must be considered as a
decomposition verification and is also a safeness prop-
erty proof.

For example, for the train Ta, the following liveness
property has been proved:

up(:Ta.inStationl) ===+

up(:Ta.inStationl) ? [minT,, m a Z ~ ,]
-

:TokIn?? [- :waitingA : R q ! ! A :Ent"A : T o k O u t n] ; ;
:Rq !! request [:waitingA :Tok in ?? A :Ent"A ;That is, the distance between two successive time in-

stants in which the train enters the first station is : Ent?? [: WQitingA :TokIn?? A : R q U A :TokOutU]; ;
:TokOut !! token [- : ~ a i t i n g ~ :Tok In??A : ~ ~ f i ~ : ~ ~ t ?] ;bounded. In the best case, the minimum time needed
: waitTok to across the path is:

-
-

-

Process Exitstation min-r, = Ta.timelnSl+ Ta.minS1 ToS2+
This process must wait for the token, then it sends
the exit notification, sends the token and waits for the
token again.

Ta. timeInS2 + Tu. minS2ToSI

13

In the worst case, we have:

maxTa = Ta.timeInSl+ Tu.maxSlToS2+
Tb.timeInS2+ Tu.timeInS2 +
Tu. m axS2 ToSl

Where: timeInS1, timeInS2, maxS1 ToS2, maxS2ToS1,
minSl ToS2 and minS2ToSl are generic parameters of
process Train2. These express the time spent in each
station and the maximum/minimum time to pass from
a station to the next. inStation1 is a Boolean variable
indicating that the train is in the first station of its
path.

7 CONCLUSIONS
In this paper, CTILCO (Communicating TILCO) ex-
tension of the TILCO (Temporal Logic with com-
positional Operators) temporal logic has been pre-
sented. CTILCO is well suited for system compo-
sition/decomposition. It permits reusing component
specifications within the same system or for the devel-
opment of other systems. We think CTILCO language
used for the specification is expressive, simple and con-
cise with a limited “time to learn” since it has inherited
conciseness from TILCO [5].

CTILCO has been formalized within lsabelle/HOL
theorem prover [4]. Properties for the whole system
as well as for a single process can be proved. This log-
ical framework permits also the validation of system
decomposition in terms of processes. The possibility to
execute the specification is an important feature since
well-known conditions can be quickly tested.

CTILCO has been successfully used for the formal
specification of critical complex real-time systems. A
prototype of the visual specification tool for CTILCO
has been developed. The tool is called TOTS. It is
based on the available theorem prover, the executor of
TILCO specifications and the signal editor (please see
http://www.dsi.unifi.it/-pbellini/tilco/).

A C K N O W L E D G E M E N T S
The authors would like to thank all the members
of CTILCO and TILCO projects. This work has
been partially supported by the MURST Ex60% and
COFIN.

REFERENCES

[l] G. Bucci, M. Campanai, and P. Nesi, “Tools for
Journal of Real-

[2] A. D. Stoyenko, “The evolution and state-of-the-
art of real-time languages,” Journal of Systems
and Software, pp. 61-84, April 1992.

[3] R. Mattolini and P. Nesi, “An interval logic for
real-time system specification,” IEEE Transac-
tzons on Software Engzneerzng, March-Aprzl, 2001.

specifying real-time systems,”
Tzme Systems, vol. 8, pp. 117-172, March 1995.

L. C. Paulson, Isabelle: A Generic Theorem
Prover. Springer Verlag LCNS 828, 1994.
P. Bellini, R. Mattolini, and P. Nesi, “Temporal
logics for real-time system specification,” ACM
Comp. Suru., vol. 32, N.1, pp.12-42, March 2000.
M. Felder and A. Morzenti, “Validating real-time
systems by history- checking TRIO specifications,”
A C M Trans. on Soft. Eng. And Method., vol. 3,
pp. 308-339, Oct. 1994.
A. Morzenti and P. SanPietro, “Object-oriented
logical specification of time-critical systems,”
A C M Trans. on Soft. Eng. and Method., vol. 3,
pp. 56-98, Jan. 1994.
P. Bellini, M. Bruno, and P. Nesi, “Verification of
external specifications of reactive systems,” ZEEE
Trans. on System Man and Cybern., in press,
2000-2001.
P. Bellini, M. Bruno, and P. Nesi, “Verification
criteria for a compositional model for reactive sys-
tems,” Proc. of the IEEE Intern. Conf. on Com-
plex Computer Systems, Sept. 11-15 2000.
R. Koymans, Specifying Message Passing and
Time-Critical Systems with Temporal Logic.
No. 651, LNCS, Springer-Verlag, 1992.
A. Coen-Porosini, C. Ghezzi, and R. A. Kem-
merer, “Specification of realtime systems using
ASTRAL,” IEEE Trans. on Soft. Eng., vol. 23,
pp. 572-589, Sept. 1997.
C. Ghezzi, D. Mandrioli, and A. Morzenti, “TRIO,
a logic language for executable specifications of
real-time systems,” Journal of Systems and Soft-
wore, vol. 12, pp. 107-123, May 1990.
M. Felder, D. Mandrioli, and A. Morzenti, “Prov-
ing properties of real-time systems through logical
specifications and Petri net models,” tech. rep.,
Politecnico di Milano, 91-072, Milano, Italy, 1991.
M. Ben-Ari, Mathematical Logic for Computer
Science. New York: Prentice Hall, 1993.
Z. Chaochen, “Specifying communicating systems
with temporal logic,” in Proc. of the Intern. Conf.
on Temporal Logic in Spec., (B. Banieqbal, H. Bar-
ringer, and P. Pnueli, eds.), (Altrincham, UK),
pp. 304-323, LNCS 398, 8-10 April 1987.
R. Koymans, “Specifying message passing sys-
tems requires extending temporal logic,” in Proc.
of Temporal Logic Specification Instanted Iiring-
dom, (B . Banieqbal, H. Barringer, A. Pnueli,
eds), pp. 213-223, LNCS 398, April 1987.
G. M. Reed and A. W. Roscoe, “A timed model
for communicating sequential processes,” in Proc.
of ICALP’86, LNCS N . 226, pp. 314-323, 1986.

14

http://www.dsi.unifi.it/-pbellini/tilco

