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Abstract The gradient-based methods for optical flow estima-
tion are based on a constraint equation which is defined for
each image pixel. The structure of constraint equation make
the problem ill-posed so in the past have been proposed some
solutions based on regularization. On the contrary, under the
assumption that in the immediate neighbourhood of a pixel
the optical flow field is smooth, the constraint equations in
that neighbourhood should have a common solution, in this
case the problem is not ill-posed. Following this reasoning, an
algorithm for evaluating the optical flow, which is suitable for
parallel implementation is proposed in this paper. Moreover,
parallel implementations of selected algorithms from the liter-
ature, for optical flow estimation, are presented in this paper
with the intention of comparing their complexity and perfor-
mance with respect to the proposed approach on a Connection
Machine-2.

I. Introduction

The main problem of sequence analysis in vision is the
estimation of the apparent motion usually called “velocity
field” or “motion field” [1], which is the perspective pro-
Jjection of the 3D real velocity on the image plane. The
estimation of the apparent velocity in a regular grid of
the image is useful in solving many problems related to
dynamic scene analysis such as 3D motion estimation and
3D object reconstruction, robot navigation, etc..

Recently, the necessity to perform motion analysis in
real-time for robot navigation and other applications has
provoked an interest in real-time estimation of the ap-
parent motion. Parallel implementation is one way to
achieve it. Presently, there are only few examples of par-
allel implementation for motion estimation in the litera-
ture, though, many computational approaches for motion
estimation are highly parallelizable.

Three main approaches for solving the motion estima-
tion problem, which are suitable for parallel implementa-
tion, can be identified in literature: matching (correspon-
dence), spatio-temporal filtering, and the gradient-based.

In the first, local matching techniques are used to eval-
uate the displacements in subsequent frames for each el-
ement of the moving object (lines, corners, patterns) [2].
In {3] the matching approach has been implemented on a
pyramidal processing architecture. The process starts at
the coarsest level where the displacements are less than
‘one pixel, passing from a level to a finer one by using a
matching-based algorithm. Matching-based approach is
also utilized in [4] as a first step for defining an algorithm
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for motion estimation on Connection Machine in close-to-
real-time.

In the second approach, the estimation of motion is
obtained by filtering both in the temporal and frequency
domains. Filtering is tuned in frequency and space in or-
der to detect the components of the motion. Typically,
algorithms of this approach do not operate on local infor-
mation, but use the global information contained in the
image sequence [5], [6]. Though this approach is compu-
tationally complex, it fits well a pyramidal architecture,
where a multi-resolution set of images from the scene un-
der observation can be easily obtained [7], [8].

The third approach (i.e., gradient-based) provides a
solution to motion estimation from the observation of
brightness changes in the image plane, thus leading to
motion estimation of image brightness features [9], [10],
[11], [12]. The flow field of these features is normally
called “optical flow”. Generally, optical flow differs from
the velocity field. On the other hand the estimation of an
approximated velocity field such as an optical flow can be
very useful in many cases. The gradient-base approach is
suitable for parallel implementation since it requires ac-
cess only to local image information. An example of is
the fully pyramidal implementation presented by Enkel-
mann in [13]. As a first step, a pyramid of images of dif-
ferent resolutions is obtained by using a Gaussian filter.
Then, starting from the lowest resolution images process-
ing moves to higher resolutions, improving the optical flow
estimation at each step. A parallel implementation on
the Connection Machine-2 architecture (CM-2) of the al-
gorithm presented by Tretiak and Pastor in [10] has been
presented by Tistarelli in [14], providing quasi-real-time
estimations. An example of hardware implementation can
be found in Danielsson and al. {15], where a SIMD ma-
chine composed of 512 processors is proposed to estimate
(512 x 512) optical flow fields in real-time.

The gradient-based approaches evaluate the optical
flow by using the so called Optical Flow Constraint (OFC)
equation:

(1

where the abbreviation for partial derivatives of the im-
age brightness has been introduced, and u, v correspond
to dz/dt, dy/dt, and represent the components of the lo-
cal velocity vector V along the » and y directions, re-
spectively. The definition of the OFC is derived from
the observation that the changes in the image brightness
E(z(t),y(t),t) are supposed to be stationary with respect

Ezu+ Ejv+ E, =0,




to the time variable (i.e., dE/dt = 0). In general, bound-
ary and smoothness constraints are needed to obtain a
computational solution for the OFC.

Optical flow estimation is susceptible to two main dif-
ficulties. The first involves the discontinuities in the lo-
cal velocity, relating to image brightness discontinuities,
which are originated by the presence of noise, too crisp
patterns on the moving object surfaces, occlusions be-
tween moving objects. Generally, this difficulty can be
overcome (or attenuated) by convolving the image with
a 2-D or 3-D Gaussian smoothing operator. The second
difficulty is the so-called “problem of aperture”, which is
also present in the human vision [9].

In this paper, a new algorithm for optical flow estima-
tion in real-time and its parallel implementation is pro-
posed (Sec. IV). In addition, new parallel implementa-
tions of two well-known algorithms for optical flow esti-
mation, selected from the literature, are presented (Sec.
IT and IIT). All the three algorithms are compared on a
SIMD architecture such as the CM-2 (Sec. V). The ma-
jor features of these three algorithms are summarised as
follows:

(a) the approach of Horn and Schunck [9], is a
regularization-based algorithm, where the optical flow es-
timation problem, by using the OFC (i.e., dE/dt = 0);
(b) the approach of Tretiak and Pastor [10], is a
multiconstraint-based algorithm, where the optical flow is
obtained by solving a determined system of constraint
equations (i.e., dVE/dt = 0) at each image pixel;

(c) the proposed approach is a multipoint-based algo-
rithms. This approach is derived from the multipoint
technique for solving partial differential equation.

The reference machine used for the parallel implemen-
tations of these algorithms is the CM-2, a SIMD machine
with a processing element (PE) for each image pixel, and
an efficient communication among processing elements.
On such machine all the calculations involved in the al-
gorithms described are performed simultaneously by the
PEs assigned to the image pixels.

1. Regularization-Based Algorithm

The regularization-based approaches consider the op-
tical flow estimation an ill-posed problem [9], [16], [17].
Solutions are obtained minimizing a functional, where a
smoothuness constraint is appropriately weighted to reg-
ularize the solution. Usually, these methods lead to it-
crative solutions, and the velocity is evaluated in every
point of the image. The drawbacks of these approaches
arc related to the fact that difficulties occur in the pres-
ence of object occlusions, and the depth of propagation of
the field depends on the number of iterations and on the
weighting factor. Horn and Schunck solution [9] is taken
as representative of this class of algorithms. The defined
functional in this case is:

"= // [( Fow+ Fo.o+ I‘,',)2 + n2(uf, + ui + 'vf, + 'uz)] drdy,

(2)
where the first term is the OFC, the second term is taken
as a measure of the goodness of OFC approximations, and
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o is a weight factor to control the influence of the smooth-
ness constraint. This functional was minimized by using
calculus of variations. That approach leads to a system
of two coupled differential equations from the Euler La-
grange equations. These equations can be decoupled and
solved iteratively by using the discrete approximation of
the Laplacian, whereby a couple of iterative equations is
obtained by using a finite difference method. These are
then used to estimate the optical flow components:
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where: Eg; ;.. Ey; ;. and Ey; ;. are estimated by using
equations:

Erije= (Big15— Bic14)/2,
Eyije=Eijere— Eijo1,)/2, (4)
Etiji=(Eiji+1 — Eije-1)/2,

where, only the estimations of Ey; ; ,, and E,, ;¢ Tequire

the communication of the pixel data from neighbouring
PEs; and:

A0, = (Bicty—1,e + Bica j41,e + Yig1—1, + Bipr,541,6)/12 4
(wic1 5,0 + Wig1 50 + uij—1,e + wij41,6)/6,

B = (Vic1j-10 + Vem1541¢ + Vig1, o1, + Vg1 j41,0)/12 +
(vie15,0 + wigr,50 + vijo1e + vi541,6)/6,

where n is the iteration number. In this iterative solution
a guessed value for optical flow estimation at time t can be
obtained from the previous time-step (i.e., &, , = uf; ,_,,
where w is the number of iterations executed at the pre-
vious time step).

Complezity

The parallel solution of Horn and Schunck algorithm
is composed of two phases. In the first estimations of the
image brightness derivatives are calculated. The second
is an iterative calculation process defined by equations
(3). It should be noted-that both these phases involve
communication of data among neighbouring PEs.

The explicit complexity of this solution is strongly de-
pendent on the number of the iterations, I;, and results
on a sequential machine in C() = 3M? + I, M?, where
M is the image dimension; the first term is due to the
estimation of the partial derivatives for the image bright-
ness, and the second to the iterative process for evaluating
equations (3). On a mesh-connected parallel architecture
like the CM-2 with M x M processing elements the asymp-
totical complexity is O(1;). The number of floating point
operations (FLOP) which have to be executed at each
iteration by each PE is only 49.

II1. Multiconstraint-Based Algorithm



The multiconstraini-based approaches for optical flow
estimation are based on the observation that the condition
dF/dt = 0 can be made valid for any motion-invariant
function F such as contrast, entropy, average, variance,
etc., instead of the image brightness, E, in the OFC. By
using a set of these constraints, which are evaluated at the
same point in the image, an over-determined set of equa-
tions with u and v as unknowns can be obtained [18].
Other methods derive constraint equations which can be
regarded as obtained by taking the first-order derivatives
of OFC with respect to z, y and ¢ [10], [11], [12]. These
multiconstraint-based approaches use traditional numer-
ical methods for the inversion or pseudo-inversion of the
coefficient matrix of the set of equations. In general,
most of the multiconstraint-based algorithms are suitable
for parallel implementation on SIMD architectures, since
they use only local information.

The solution of Tretiak and Pastor [10] adopts a couple
of constraint equations which can be obtained by taking
the derivative of the OFC equation with respect to z and
y, and neglecting the first-order derivatives (uz, 4y, vz,
vy) of the velocity components [15] or through a different
path by using the equations of motion components such
as in [11]:

Ezsu+ Egyv+ Ezy =0,

Epyt+ Eyyv + Eyy = 0. (5)

The solution is obtained directly through the inversion
of the matrix of coefficients H (i.e., the Hessian). Thus,
only for those points where the determinant of H (g. =
E..Eyy — E':,y2 ) is different from zero a solution of the
optical flow is provided. The components of the optical
flow field are estimated is each pixel by using:

Exyi 'zEyti it Eyy:' 'tEtri,J'.t
U= s s Js
1,2, — ]
Gei jt
_ Buyij i Braiin — Beaijafy 6
Vi = =y , )
ci,gt

where the second-order partial derivatives of the image
brightness are estimate by using the central difference on
the first-order derivatiyes - e.g., E_«,wy]-‘t = (Ezijt1,6 —
Ez; j—1,.)/2. This solution is very sensitive to discontinu-
ities, since it uses the second-order derivatives of the im-
age brightness. To improve performance, an image convo-
lution with a Gaussian filtering was adopted in [10], [15],
[14], and also in our experiments.
Complezity

The parallel solution to this algorithm is composed of
three phases: the first is the convolution of the images
with a Gaussian filter, the second is the estimation of the
first- and second-order image brightness derivatives, and
the third is the estimation of the velocity components
from equations (6). The first two phases involve data
communication among neighbouring PEs.

The explicit complexity of this solution is strongly de-
pendent on the dimension of the Gaussian pattern which
is usually convolved with the image, prior to the optical
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[ F [5]7]7 9 11 T]13]
[ Time in msec. | 22 [ 60 [ 108 [ 183 ] 291 |

Table 1: Timing expressed in milliseconds for the cony
lution of the #mage with a pattern with dimension F' x
on CM-2 with vp-ratio 1:4.

flow estimation. At any time instant only one new im:
is filtered, while the optical flow estimation is calcula
for the previous sequence. The explicit complexity
volved on a sequential machine is C() = 2F2M? +3M
5M2 + M? , where M is the image dimension, and f
the dimension of the Gaussian filtering pattern. The f
term of the above equation is due to the Gaussian filteri
the second to the estimation of the first-order derivat
of the image brightness, the third to the estimatior
the second-order derivatives of the image brightness (1
Eyy, Ezy, Eiz, Ety), and the forth to the estimatio:
the optical flow by using equations (6). The asympi
cal complexity on a parallel architecture such as a n
of M x M PEs is O(F?). The number of floating p
operations that must be executed by each PE to estir
the optical flow and filter the results are 2F2+27. As
be seen in Table 1, increasing the dimension of the 1
mask, the filtering stage becomes the dominant (dv
the intensive communication required among PEs w
the filtering mask boundaries), compared to the cal
tion effort in image brightness derivatives and optical
estimation which takes only about 22 msec. on a (
with 64 floating point unit and a vp-ratio of 1:4.

IV. Multipoint-Based Algorithm

Considering that the optical flow changes follow
which is approximately linear, a smoothed solution fc
tical flow estimation can be obtained from a linear ap
imation of the adopted constraint in the neighborhc
the point under consideration. This assumption is
only if the optical flow field under observation is sn
Then, the constraints evaluated in a set of neight
pixels at a certain point represent the same veloc
a first approximation. This approach was called
point, and in literature several cases are presentec
[20], [12].

In this section, an improved version of the mult’
based algorithm proposed by Del Bimbo, Nesi, an
in [21] has been presented and parallelized. Consid:
generic point p on the image planc having velocit,
ponents (u, v). If the optical flow changes followin,
which is approximately linear in z,y, then each p
the neighbourhood of p has approximatively the sz
locity components of p [21], hence, an over-dete

system of N x N OFC equations:_
Evijoy + Bz o+ By v =0

can be defined, where N is the dimension of !
age neighbourhood around the point p (if N is
i=—(N=-1)/2, ,(N=-1)/2,j = —(N-=-1)/2,...(
). This over-determined system of N x N equati
2 unknowns (N > 2), which are the velocity com




(u,v) of p. The solution of this over-determined system
of equations is obtained by means of a least-squares tech-
nique in each estimation point.

Augmenting the neighbourhood dimension, NV, around
the pixel under consideration smoother optical flow fields
can be obtained. On the other hand, large N values lead
to a loss in resolution on the moving object boundaries.

The presented algorithm is less sensitive to the dis-
continuities than the methods which use the second-order
partial derivative of the image brightness with the same
neighbourhood dimension, N [21]. On the other hand, in-
accurate results can be obtained, since the estimation of
the optical flow field is computed in a pixel neighbour-
hood, disregarding the possible difference in velocities.
Therefore, it can be used safely only when the optical
flow is smooth.

Parallel implementation

The multipoint-based algorithms work locally on the
immediate neighbourhood of each pixel, and thus can be
profitably mapped on a mesh architecture, where a PE is
assigned to each pixel of the image. Corresponding pix-
els of three consecutive images which belong to the same
time window used (to estimate the partial derivatives of
the image brightness in (4)) are stored in each PE. Thus
each PE can directly manages the time history of the cor-
responding to its pixel (4¢).

After the estimation of the image brightness derivatives,
each PE (pixel) has an OFC equation. Then, each PE
receives from the N x N neighbouring PEs the coefficients
of their OFC equations. Every PE has in this way an over-
determined set of N x N OFC equations in 2 unknowns:

AV + K =0.

where V is the optical flow vector with components wu, v;
A € Rpyz:ya matrix of cocfficients, with a,, = E,, and
apy = Iy and N € Ry= vector with known terms k, =
I fore = 1, .., N2 Anincrease in N, the neighbourhood
size considered, leads to a significant increase in memory
requirements to store the matrix and vector elements at
cach PE (for instance, with N = 7, 147 memory locations
are required for storing the coefficients of matrix A and
veetor Koabove).

The solution of the over-determined system of equa-
tions by using the least-squares technique consists of min-

mizing the norm: 1AV + K|
: Vi~

This is performed by using the psendo-inverse technique
transforming the above system of equations into:

AV 4N =0, (7
where 4 = A7 4 and & = AR (ie., AT is the transpose
of A). This systent of equations can be solved by using
traditional teehniques such as LU decomposition, (Gauss
Jordan, ete.. In our case the system (7) is composed of
2 equations in 2 unknowns, and the direct solution was
adopted. In particular, the coefficients of the matrix A
and of the vector N oare estimated by nsing:
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[N

[ Time in msec.

[3[ 5 [ 719 |
[45 [ 122 | 268 | 469 |

Table 2: Execution time expressed in milliseconds and
number of operations for the multipoint algorithm de-
pending on the dimension of the neighborhood area di-
mension N, with vp ratio 1:4.

N2 N?
5. — T L e
aij = A rQrj = Qr,ilrj,
r=1 r=1

N? N?
ki = Tk = ik
i a; rKr = Qrikr.
r=1 r=1

The estimation of the a;; and k; (for i = 1,2 ; j =
1,2) can be performed by accumulating one term at
a time, from the r-th neighbouring OFC equation (for
r = 1,..,N?), to obtain the final sum, thereby avoiding
the need to store the entire set of N2 QFC coefficients at
each PE’s memory.

In the process of accumulation an OFC which has an F,
less than a chosen threshold is ignored as an insignificant
constraint equation. Also the constraints which have too
large values for E; and F, are neglected.

Complezity

The explicit complexity for the presented multipoint
solution on a sequential machine to estimate a veloc-
ity vector for each pixel in an M x M image is C() =
3M? 4+ 3M*>N? 4 8M?, where the first term corresponds
to the estimation of the partial derivatives of the image
brightness; the second term is due to the least-squares
technique for calculating a; ; and Ll (for t = 1,2, and
J = 1,2); and the third is due to the method for solving
the final system of equations (7). The asymptotical com-
plexity of the multipoint solution on a sequential machine
is of O (M2N?).

On a parallel architecture, such as the CM-2, with
one PE per image pixel, the asymptotical complexity is
reduced to O (N?), obtaining a respective Speed-Up of
about M?Z. Table 2 presents the dependence of the ex-
ecution time of the algorithm on N, the neighbourhood
size considered. The number of floating point operations
required does not depend on the dimension of the im-
age. For N = 5 about 270 FLOP (floating point oper-
ations) are made by each PE in estimating the optical
flow value. To estimate the optical flow at video rate (25
times per second) the calculations should be completed
within 40msec., demanding a capability of 67560 FLOPS
from each PE for a real-time implementation.

V. Experimental Comparisons

In this section a performance evaluation is provided for
the three algorithms discussed in previous sections. Qual-
itative comparison of the results obtained by the three
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Figure 1: Sequence of images where two synthetic objects
with superimposed plaid pattern move in opposite direc-
tions, (180 and 45 degrees with respect to the X-axis,
respectiveiy), (1st and 8th frame, with 128 x 128 image
resolution).

iy LR 3

Faxgum 2 'Seqmce of images where real objects are mov-
ing in different directions (2nd, and:'12th frame, with
128 x 128 image resolution).

RS

algorithms when applied to the test images is offered for
selected test cases, along with a comparison of their com-
plexity and the efficiency of their parallel implementation
on the CM-2.

The first test sequence is that of two synthetic objects
with ‘a superimposed plaid pattern, which are moving in
opposite directions. The plaid pattern consists in the
combination of two sinusoidal patterns with orthogonal
directions. This sequence was designed to test the perfor-
mance in the case of occlusion (see Fig.1). The second test
sequence (see Fig.2), presents two moving objects which
are moving of translational motion in opposite directions
(e.g., the toy dog and the little parallelepipedos). This
test sequence has been chosen to test the performance in
the case of noisy images.

The multiconstraint-based solution of Tretiak and Pas-
‘or [10], is highly sensitive to noise, using the second-order
lerivatives of the image brightness. This is clearly demon-

trated in Fig.3. The optical flow estimation obtained
vith this algorithm is inaccurate at the objects’ bound-
ries, particularly at the boundary between the occluding
bjects.

The regularization-based solution of Horn and Schunck

], may produce a smooth optical flow estimation in the -

nesepce iof noise by increasing the number of lteraﬁxons
:the o value (see Fig. 4).
However, doing so has a negative effect at objects
undaries, which are obtained diffused and with erro-
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Figure 3: Result obtained by means of the Tretiak and
Pastor algorithm (i.e., multiconstraint-based) with re-
spect to the first test case (7th frame), (F =9,

neous optical flow estimation (see Fig.5).

For the test . case of Fig.2, the multipoint-based tech-
nique produces_an.accurate segmentation of the :moving
objects (sharp boundaries) in image areas where signal to
noise ratio is high (see Fig.6).

A smoother solution can be obtained with the mul-
tipoint algorithm by augmenting the dimension of the
neighborhood around each pixel used in the estimation.
However, this is also the cause of a loss in resolution at the
objects boundaries, and an increase in the computational
effort. This technique is less sensitive to discontinuities
with respect to the multiconstraint-based approach (see
Fig.6).

In the presence of occlusion, at the border between
two moving objects, the two objects contribute conflicting
velocities, and taking the least-squares estimation yields
an inaccurate optical flow estimation, deviating from both
(see Fig.7).

Table 3 provides a comparison of the algorithms in
terms of complexity and efficiency of implementation. For
the multipoint-based algorithm real-time performance is
obtained, and the complexxty is of N2, with N the dimen-
sion of image segment used in the opt.lcal flow estimation.
The optical flow estimation with Tretiak and Pastor al-
gorithm is obtained in real-time, but overall efficiency is
degraded by the need to filter the images with a large
Gaussian filter. ‘

By using the algorithm of Tretiak and Pastor, it is
needed to use large values of F' to produce qualitatively
comparable results with respect to those obtainable by
means of the proposed multipoint algorithm (N- = 5,
F =.9).: The complexity of Horn and Schunck algorithm
is proportional to the number of iterations required to
achieve a stable estimation, which is normally of the or-
der of 100 (larger than N?2).
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Figure 4: Result obtained by means of the Horn and Figure 6: Result obtained by means of the multipoint-
Schunck algorithm with respect to the second test case  based algorithm with respect to the second test sequence
(50 iterations, o = 2.0), (7th frame). with N = 7 (5th frame).

(100) 5 7

Figure 5: Result obtained by means of the Horn and Figure 7: Result obtained by means of the multipoint-
Schunck algorithm with respect to the first test case (100  based algorithm with respect to the first test sequence
iterations, o = 2.0), (5th frame). with N = 5 (7th frame).
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[O() | E.Time | Time | FLOP/PE | MFLOPS |

Mult. N? 120 30 136 19.4
T&P | F? 130 32.5 108 13.6
H&S | I 151, 3.751, | 6+ 491, 53.5

Table 3: A comparison of the presented algorithms,
in terms of complexity and execution time: E_Time -
elapsed time (in millisecond) on the CM-2 with vp-ratio
1:4 (i.e., 4096 PE); Time elapsed PE time that could
be obtained having one PE per pixel. Parameters: the
multipoint-based algorithm N = 5 and G = 3; Tretiak
and Pastor algorithm F = 9.

Referring to the other entries of Table 3, the best per-
formance in terms of number of computations involved
(floating point operations - FLOP) is obtained by Tretiak
and Pastor algorithm. The Horn and Schunck algorithm
requires few FLOPs/PE per iteration, but generally the
number of iterations required is large (e.g., I; = 100).
The best rate of computations (MFLOPS) is obtained by
Horn and Schunck algorithm.

With images produced at a video rate (i.e., 25 frames
per second, or 0.04 sec./frame), real-time performance
entails the calculation of optical flow estimation each
40msec. On the CM-2 this target is met by the
multipoint-based with least-squares estimation algorithm,
and by the Tretiak and Pastor algorithm (in the latter,
when only the optical flow estimation and a light filtering
are considered).

VI. Conclusions

A multipoint-based approach for optical flow estima-
tion has been presented together with its parallel im-
plementation. Moreover, parallel implementation of two
representative algorithms of the gradient-based approach
for optical flow estimation have been presented. All
three parallel implementations have been profitably im-
plemented on the SIMD architecture of the Connection
Machine-2. Real-time performance has been obtained
for the proposed multipoint-based algorithm and for the
multiconstraint-based algorithm of Tretiak and Pastor.
In terms of qualitative results, it has been found that
the multipoint-based is less susceptible to object occlusion
and noise than the other algorithms discussed, while the
multiconstraint-based algorithm of Tretiak and Pastor has
been found the most susceptible to these difficulties.
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