
Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 1

Modeling a Core Module for MPEG-21 and AXMEDIS
Content Manipulation Tools

P. BELLINI, P. NESI, L. ORTIMINI, D. ROGAI, A. VALLOTTI
DISIT-DSI, Distributed Systems and Internet Technology Laboratory

Department of Systems and Informatics, University of Florence/
Via S. Marta, 3 - 50139 Florence, Italy, Tel: +39-055-4796567, Fax: +39-055-4796363

nesi@dsi.unifi.it, http://www.disit.dsi.unifi.it

Cross media and hypermedia content formats and related tools have to have to take into account aspects related to the

protection and management of intellectually property right along the value chain from content production to content

distribution up to the final user. This trend is provoked by the usage of digital content and rights management in the
business to business transactions and by the fact that final users are becoming every day closer to the content

producers: posting their content, protecting their content and defining rules for its usage, etc. Therefore, new models
and solutions to cope with content packaging and protected content manipulation are needed. On this view, the

relevance of MPEG-21 standard is growing, while little has been performed about the modeling of authoring tools and

players for the production/consumption of MPEG-21 digital objects. The design of MPEG-21 tools presents several
critical points to be solved at architectural and modeling levels to ensure security and flexibility for manipulating any

kind of digital resource that may be contained in an MPEG-21 package. This paper presents the evolution of models

for content packing with a formalization that allows reasoning and verifying the model validity against extended
requirements of the B2B area. The study has produced the AXMEDIS model and metadata (defined on top of MPEG-

21 standard) for which a set of innovative software tools have been produced. The AXMEDIS model and components

for content authoring/integration tools and final users’ players, supports MPEG-21 and extends it according to the
spirit of the standard. The proposed solution provides both data manipulation flexibility and a high level of security

when digital resources are used for creating more complex objects, in the respect of intellectually property right. It can

be used to develop a wide range of tools based on MPEG-21 standard and it is at the basis of the authoring and player
tools realized for the AXMEDIS IST FP6 R&D European Commission Integrated Project (http://www.axmedis.org).

Categories and subject descriptors: D.2.6 [Software Engineering]: Programming Environments-- Integrated
environments; H.5.4 [Information Interfaces and Presentation]: Hypertext/Hypermedia—architectures; K.4.4

[Computer and Society]: Electronic Commerce--security.

General terms: Design, Languages, Verification
Additional Key Words: authoring tools design, content management, content distribution, content packaging, Digital

Rights Management, e-Commerce.

1. INTRODUCTION

The solutions for digital content distribution and e-commerce are mainly grounded on the

state of the art of multimedia content modeling, packaging, protection and distribution.

Presently, there exists a large number of content formats that ranges from basic digital

resources (documents, video, images, audio, multimedia, etc.) to integrated content packages

such as: MPEG-21 ISO [MPEG Group], [Burnett et al., 2005], WEDELMUSIC [Bellini et al.,

2003], SCORM [Mourad et al., 2005], OMA, TV-AnyTime Forum [Hulsen et al., 2004], etc.

These integrated content formats try to wrap different kind of digital resources/files in a

container/package with related information (e.g., content metadata and in general descriptors,

and relationships among those resources), and making them ready for delivering (streaming

and/or downloading), in plain (clear-text) and/or protected forms. In fact, some of the above

mentioned solutions are enabling a large range of business and transaction models and provide

some integrated DRM (Digital Rights Management) solution to cope with Intellectually

Property Right (IPR), such as those based on MPEG-21 REL (MPEG Rights Expression

Language) [Wang., 2003], [Wang et al., 2005] and OMA ODRL (Open Digital Rights

Language) [Iannella, 2001], [Iannella, 2002], and others [Lin et al., 2005], [Lee et al., 2003].

http://www.disit.dsi.unifi.it/
http://www.axmedis.org/

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 2

The definitions and usages of content packages have been mainly due to the needs of

satisfying a set of requirements related to the e-commerce/distribution of digital content from

distributors to consumers (final users): the so called Business to Consumer (B2C) distribution.

The most relevant requirements for B2C are the quality of service (that includes several

features to be provided to the user’s side) and the security of content delivered to maintain in

some measure the control of what the user is consuming in terms of rights. The typical B2C

scenario, which synthesizes the lifecycle of the related packaged content, is shown in Figure.1.

Authoring Tool

Players

Distribution

Digital

resource
Digital

Resource

Content

Package

Content

Package

Figure 1 – Scenario on content package and its usage

The content distributor embeds raw content (digital resources) in order to produce a

package for the distribution (e.g., a photo collection, a set of videos, an educational training

course, a simple digital resource with metadata). The distributor on the basis of the contract

with the producer (that, in turn, it is based on its contract with the content owner/author) should

protect the produced package to maintain a certain control on the rights exploitation. Thus, the

content distributor may make business granting the access to consumers producing specific

licenses, that describe a set of rights granted to the consumers (the rights are the actions that

can be performed on the content, such as play, print, copy, etc.). Once the package has reached

the consumer’s player, he/she may perform some action to exploit the acquired rights, for

example he/she may decide to make a play. Thus, the player, in order to allow performing only

authorized actions, has to verify if it can be authorized on the basis of the license (the license

can be on an authorization server and/or cached/hidden into the player). Then, if authorized,

specific information (typically called Protection Information or IPMP, Intellectually Property

Management and Protection information, such as in MPEG-21 [Prados et al., 2005], [Lin et al,

2005]) have to be obtained to access the package (to unprotect the embedded digital resources)

and, thus, to render/execute the multimedia content according to what has been specified in the

license. To cope with the B2C cases, the content packages have to satisfy a set of basic

requirements of interoperability, flexibility and scalability, and thus with the possibility of

working with different:

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 3

 types of content (e.g., video, audio, documents, learning objects, images, games);

 formats for the embedded resources (e.g., for audio: wav, AIF, MP3; for documents: DOC,

PDF, PS, HTML; and similarly for games, for video, for images, for data, etc.);

 metadata for covering needs of the final users to make queries and indexing and technical

descriptions (e.g., Dublin Core, MPEG-7);

 models of distribution (e.g., streaming, downloading, progressive download);

 distribution channels (e.g., broadcasting, internet, mobile, kiosk);

 final user devices for resource rendering/playing (e.g., PC, STB, PVR, PDA, mobiles);

 business models (e.g., pay per play, all you can eat, renting, monthly rate).

The above requirements have to be combined with the needs of content producers and

distributors that would maintain under control the security of their content, the exploitation of

their rights [Lin et al., 2005], [Koushanfar et al., 2005], [Mourad et al., 2005]. These

requirements are leading to provide different modalities of managing the package structure and

the organization of digital resources and metadata and digital rights management.

According to the B2C model, when the license is not placed in the package with the content, it

is also possible to produce it in a second phase, for example, when the rights are bought. This

permits to produce the content in advance according to a large set of different packages

(covering different resolutions and formats) for delivering it to the end user according to the

needs/capabilities of the final user’s player and preferences. This approach can be used, for

example, by producing the packages applying a large set of digital adaptation and formatting

algorithms to the initial digital resources before their packaging [Vetro and Timmerer, 2005].

With the diffusion of content in digital formats along the whole value chain (from production,

integration, to the distribution and usage) the usage of the digital packages and protected

objects are pervading the business area. Thus producing the needs of associating with the

digital content suitable protection models for Business to Business (B2B) transactions. These

needs are putting in evidence a large set of new requirements that need to be satisfied by the

packaging formats. This evolution is part of the natural migration from traditional to digital

media of the whole value chain and it is bringing a large set of benefits to the whole area of

digital content business. Among the most evident benefits of the adoption of these models for

the B2B we can see the possibility of:

 sharing content as protected packages (with some digital rights management) with other

business actors for which the business transaction and agreement is formalized by means

of a license per package and/or per resource;

 reducing promotion and business distribution costs since the content can be distributed in

protected formats among the business users. The same content package can be

reused/nested by others for creating more valuable packages without the possibility of

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 4

hiding or reducing the evidence and rights of the initial content ownership according to the

license;

 authoring, manipulating and integrating protected and non protected content. This can be

performed to (i) produce added value content and packages (e.g., creating a collection of

audio files from other packages, using packaged content with audio segments into

educational courses), (ii) adapting content packages (which includes protected and/or non

protected digital resources) in real-time for the production of content on demand;

 tracking the origin/path of the digital content along the value chain, along the chain of who

has created/nested packages. Thus increasing the control about exploited rights for the

content owners/authors, producers and integrators with respect to the other actors of the

value chain and to the distributors;

 enabling the final users to produce content and considering them as effective

producers/authors that may produce and provide licenses to other users and companies

(thus, relaxing the difference from producer/distributor and the final users). This is, for

instance, what is going to happen in (i) a very simple manner with Video Google

(http://video.google.com/) in which the final user may post its home-made video on which

he/she may impose some licensing rules about its usage or can give it for free; or (ii) in

many web sites in which content is licensed on the basis of a some Creative Commons

License (http://creativecommons.org/). In the first case, the package model used by

Google allows the management of simple single resource content and the whole solution

permits the enforcement of some DRM rule into the corresponding player, while in the

case of Creative Commons the license is only textual and thus the enforcement of rights

verification on tools is not provided.

In order to provide the above mentioned features, the development of a set of enabling

technologies is needed.

The extension of the package model to cope with B2B requirements and in particular for

addressing:

 any kind of digital resources, including professional formats and cross media formats

integrating different resources: audio, video, document, images, etc.;

 metadata information for B2B and not restricted to any specific content and metadata

formats, and maintaining them permanently associated with the content;

 structure of content/package including and integrating together protected and non

protected content, organizing nesting levels, and maintaining visibility to the metadata;

 indexing and querying of non protected and protected objects in a simple manner;

 protection information, allowing the applications of multiple protection models to different

resources into the same package;

http://video.google.com/
http://creativecommons.org/

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 5

 distribution of content package in a safe and simple manner even when the content

contains nesting levels of packaging;

 licensing, allowing the formalization of business licenses that give the possibility of

exploiting more complex features such as enhancing, adaptation, extraction, copy,

excerpting, and to produce licenses for reselling;

 maintaining the same content package structure and information from the instant or its

production, along the value chain, in all cases in which it is reused, to its final usage on the

end user player according to the licensed rights for each digital resource;

The support of a secure and efficient authoring/player tool architecture with a core

module for supporting the above package and model according to the licensed rights (DRM

rules formalized in the license) for digital resources, allowing

 supporting the above mentioned features for the package model, which has to be portable

on different devices and thus reusable in different contexts;

 compounding packages in larger packages in an easy manner, considering digital resources

together with their metadata for rendering/modifying: layouting content, adapting and

processing digital resources and content, etc. The model has to be extensible in order to

accept new types/models of content (digital resources) and/or metadata and to be ready to

evolve according to the standard updates and extensions;

 protecting simple and nested content packages, leaving the possibility of accessing to

visible metadata of nested included levels;

 enforcing security into software applications (authoring tools and/or players), providing of

an Application Program Interface to access at the functionalities controlling rights

exploitation;

 manipulation of package structure and content (such as nested levels of packaging,

hierarchies) during authoring in a safe manner without permitting at the developers to

create non secure editors, players and devices;

 supporting the production of specialized commands or custom commands for enforcing the

rights corresponding to those imposed by the formal license model of the DRM and rights

data dictionary and semantics.

Among the mentioned packaging models, the MPEG-21 results to be the closer to the above

mentioned needs and allows being customized/extended. The MPEG-21 standard addresses

packaging, adaptation profiles, protection and licensing formats [Burnett et al. 2003] and it is

mainly based on the concept of Digital Item, DI, for the packaging [Burnett et al., 2005]. The

relevance of the standard is growing while little has been done up to now about the modeling

of tools for the production/consumption of MPEG-21 DIs. This is partially due to the fact that,

the design of an MPEG-21 core module for authoring/playing is a complex task presenting

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 6

several critical points. In fact, a core module has to guarantee at the same time (i) easy and fast

access at the modeled information and digital resources; (ii) high security level enforcing the

DRM on the digital resources usage; (iii) usability of the solution for designing and developing

authoring tools and players; (iv) extensibility for accepting new commands and functionalities

(enforcement of rights) for any type and new types of content formats. These requirements

drive the design in opposite directions (accessibility vs. security) making difficult to cope with

these aspects within a unique solution.

Moreover, multimedia and cross-media authoring are complex tasks that involve several

aspects such as composition, layouting, adaptation, synchronization, performance [Bulterman

and Hardman, 2005]. In addition, in a world in which the DRM is needed the accessibility of

digital resources (that may be protected at nesting levels into the data structure), the packaging

model and finally the protection models are also relevant. In fact, protecting a cross-media

content means to protect the single elements and the resources connected to them (e.g., an

HTML/XML page and related digital resources included/connected), this means that the player

has to recover these resources not by following the initial (absolute or relative) links but by

using specific links towards the protected object package.

This paper presents the evolution of models for content packing with a formalization that

allows reasoning and verifying the model validity against functionalities and extended

requirements. The study has produced the AXMEDIS package model as a specialization of

MPEG-21 model. The work has been developed in AXMEDIS (Automating Production of

Cross Media Content for Multi-channel Distribution) which is a large research and

development Integrated Project FP6 of the European Commission (http://www.axmedis.org),

[Bellini and Nesi, 2005]. The package model produced is capable to cope with the above

mentioned requirements/problems and it is supported by an architecture and tools based on a

core module called AXMEDIS Object Model, AXOM. It has been used to develop MPEG-21

as well as AXMEDIS compliant tools coping with the mentioned problems and more

specifically those about flexibility and security. In AXMEDIS, the MPEG-21 has been selected

as the underlying packaging model with some extensions reported in this paper that are

improving its usability in the scenarios in which content packages are protected for their usage

in the B2B and B2C areas along the whole value chain (from the producer to the consumer

passing for the integrators and distributors). Many issues addressed in AXMEDIS are not

replicated into the MPEG-21 standard since the latter has a different purpose. In particular,

aspects related to the definition of a specific software architecture that could support tool

design for consuming digital goods are not in the precise scope of MPEG-21. The proposed

model, architecture and solution presented in this paper are currently used by several

AXMEDIS tools [Bellini at al, 2005].

http://www.axmedis.org/

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 7

2. MPEG-21 Short Overview

MPEG-21 is mainly focused on the standardization of the content packaging and other

formats related to DRM aspects. In particular, MPEG-21 scope is mainly related with the

content package formats leaving completely undefined system architectures, business models,

authoring, etc. The standardization process of MPEG-21 is still under completion [MPEG

Group]; presently most of the parts are mature while others are under evolution. The most

relevant parts for the work described in this paper are: Digital Item Declaration (DID) [MPEG-

21 DID] and the Intellectual Property Management and Protection (IPMP) [MPEG-21 IPMP].

Regarding the DRM capability for granting access to content, other parts to be considered are:

Rights Expression Language (REL) and Right Data Dictionary (RDD) [MPEG-21 RDD]. The

DID defines how DIs (Digital Items) have to be represented. A DI is a structured digital object

and is the fundamental unit of distribution and transaction within the MPEG-21. A DI is a

package for digital resources and related metadata, it is represented as an XML document

which fulfils the DI Declaration Language (DIDL) schema. DIDL provides placeholders for

metadata that can contain any other XML format. IPMP provides the means to include

protected content elements inside a DI. Every DIDL element can be replaced by a protected

version, its corresponding IPMP element. The latter contains the original DIDL element in a

protected form together with some required information to perform un-protection (i.e., applied

protection tools, related license services, etc.).

3. AXMEDIS Package Model and the MPEG-21 standard

The MPEG-21 standard has been defined to satisfy different application domains, ranging from

B2B and B2C; and remains enough abstract to avoid putting restrictions that are needed for the

effective coverage of specific cases as those described above. In this section, the AXMEDIS

model is presented. It is an extension of MPEG-21 DIDL by following the spirit of the standard

that leaves flexibility to expand the model. Thus, the expansion is in some how a natural

operative method of applying/profiling the MPEG-21 formats. In AXMEDIS, extensions to

MPEG-21 model have been realized in order to obtain a specific kind of MPEG-21 Digital

Item that can satisfy the above mentioned requirements in term of package structuring,

managing and mandatory metadata. The authors of this paper, while trying to exploits MPEG-

21 technology, have contributed to extend the standard to allow covering some of the above

mentioned B2B requirements and in particular to remove a limitation that were present in the

previous versions of MPEG-21, to allow the management of metadata for protected objects as

described in this paper. Considering the above mentioned requirements, most of them are

covered by the MPEG-21 package model and elements. In facts: DIDL allows including any

kind of digital resources, including professional formats typically non delivered to the final

users and not only audiovisual; IPMP allows the applications of multiple protection models to

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 8

different resources into the same package; REL/RDD allows the formalization of licenses that

give the possibility of exploiting complex features such as adaptation, extraction, copy,

excerpting, and to produce licenses for reselling. Other requirements mentioned above can be

satisfied only if the package model is extended for addressing:

 metadata information for B2B and not restricted to any specific content and metadata

formats. MPEG-21 is not defining specific metadata for B2B but supports their insertion in

the model;

 structure of content/package including and integrating together protected and non

protected content, organizing nesting levels, while maintaining visibility to the metadata.

MPEG-21 DI and IPMP do not describe how to use the protection models and mechanisms

to preserve the visibility of metadata;

 indexing and querying of non-protected and protected objects in a simple manner. This

requirement can be supported only if both protected (with nested levels of protection) and

non protected objects present a uniform model for indexing the content into the database

by using suitable B2B metadata structure for nested levels. The satisfaction of this

requirement is possible only by the definition of a specific uniform model of metadata

organization for protected and not protected objects, even in the presence of nested levels;

 distribution of content package in a safe manner. This requirement mainly depends on the

distribution tools, and the package manipulation and the visibility of metadata; it is very

relevant for indexing any kind of objects;

 maintaining the same package model from the production in the business area to its final

usage in the end-user player (or authoring tool in the case of business user) according to

the licensed rights for each digital resource. To satisfy this requirement is possible only by

the definition of specific methodology/semantics to cope with metadata when the object is

protected and when is not protected;

These features are concretized in the model with the MPEG-21 extensions described in the next

subsections. Please note that any AXMEDIS object is an MPEG-21 compliant object, while the

opposite is not always true (not all the MPEG-21 objects are AXMEDIS objects).

3.1. B2B Needs and AXMEDIS Information
The B2B content distribution and trading requires the mandatory presence of certain

information in order to have an immediate knowledge of the origin of the newly discovered

content package and facilitate the trading of content without the needs to receive additional

information. The description of the content with B2B metadata allows a better exploitation of

content in a B2B community where new digital products are shared and promoted by Business

parties even via P2P tools and mediations. To this end, in the AXMEDIS model, a set of

metadata have been included such as: Dublin Core for the classification, a number of

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 9

identifications IDs (among them the AXOID is mandatory and unique, AXMEDIS object ID,

while others can be added such as ISRC, ISBN, ISMN, etc.), descriptors in MPEG-7 format

and general XML, etc. In addition, other specific descriptors/metadata to cope with the object

trading have been added and grouped in the so called AXInfo (AXMEDIS Information):

 Identification of the Content Creator: who has produced the digital content, general

information and a specific ID;

 Identification of the Content Owner: who has the original right of the artistic work from

which the content has been created, general information and a specific ID;

 Version code, object status and object type, and other typical information for managing the

evolution of the object state;

 List of potentially available rights that can be acquired for that content object. They are the

formalization (in terms of a simplified MPEG-21 REL) of the rights that potentially can be

bought from the owner/creator for that content;

This information is related to each digital item contained into the object. Each digital object

may be organized according to linear or hierarchical model in which each object may contains

other objects creating in this way several nesting levels. Thus, in general, the model is not

linear and the metadata may be present at each level and the objects can be protected or not

creating nesting levels of protection. This is what typically happen when a complex cross

media content is produced for example to build a training course, a DVD, a multimedia

collection, etc.

3.2. Basic Model for Composition of protected and unprotected objects
The package models are typically structured as an aggregation of descriptors (including

metadata and identification codes), and components (including digital resources and eventually

nested packaged objects) according to a recursive structure. The package model has to allow

protection of the included content and formally can be defined as Package Model PM1:

Type Pack := clear-obj[list Desc, list Comp] | prot-obj[Prot-info, Enc]

Type Desc := …any descriptor…

Type Comp := Res | Pack

Type Res := …any digital resource…

Type Prot-info := …a set of protection information…

Type Enc := …any valid encoding for protection…

The protection is a transformation of the clear object in the corresponding protected form,

where the whole package is encoded (e.g., encrypted) according to the chosen protection

technology [Lin et al., 2005]. This model is typically used for content distribution of single

digital resources with conditional access and DRM even in its simpler non hierarchical version

in which only single components are include into the package -- i.e., Comp := Res

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 10

In MPEG-21, protecting content means to replace the readable DIDL element in “clear-text”

containing the content and digital resources with an IPMP element which is encoded in some

non readable manner.

In some specific structures of content, when nested levels of content/item composition are

present, non protected and protected objects may appear at different nesting levels (and the

latter provoke the substitution of specific IPMP elements). This means that content element can

be protected and included/collected in other items which in turn may be also protected as a

whole, etc. Thus, according to the model defined above, the protection of a package p is

performed by transforming it into protected object prot-obj according to the Protection

Information pi which produces the encoded chunk by using (in this case, for example) the

function encrypt(). The opposite operation of unprotect() allows us to get back the

package p in the original format.

protect(p:Pack, pi:Prot-info) = prot-obj[pi, encrypt(p)]

unprotect(prot-obj[pi, encrypt(p)]) = p

A fundamental feature for the B2B area of the content package is the accessibility of the

metadata in the hierarchy of the content structure. The application of operations

getmetadata() for extracting metadata and for taking the content and content element

produce the following results:

getmetadata(clear-obj[d:list Desc, c:list Comp]) = d

getmetadata(prot-obj[pi:Prot-info, e:Enc]) = Ø

getcontent(clear-obj[d, c], pos:Position) = getelementat(c, pos)

getcontent(prot-obj[pi, e], pos) = Ø

Thus, for package model PM1, content access is prevented by the protection, and the metadata

are not accessible without a previous un-protection of the content package.

Two examples are analyzed in the following for PM1: (i) a simple content package which

embeds a single digital resource with its metadata, and (ii) a more complex package with a

multi-level hierarchy. Both are defined as clear-text objects and then protection is applied.

Let us now analyzing the first case for PM1 in which we start from producing a package:

clear-pack1:

Var clear-pack1:Pack := clear-obj[<d1:Desc, d2:Desc>, <res1:Res>]

Var prot-pack1:Pack := protect(clear-pack1, pi1:Prot-info) =

prot-obj[pi1, e1:Enc]

Where: Var e1 := encrypt(clear-pack1);

Thus: getmetadata(clear-pack1) = <d1, d2>, and getmetadata(prot-pack1) = Ø

As a result, prot-pack1 does not present any accessible information about internal

descriptors contained into the original object. Please note that the only way to retrieve content

description is to unprotect the package.

getmetadata(unprotect(prot-pack1)) = getmetadata(clear-pack1) = <d1,d2>

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 11

Let us now analyzing a second case for PM1 in which we start from producing a complex

package with some nesting levels:

Var o2:Pack := clear-obj[<d3:Desc>, <o3:Pack, res3:Res>]

Where: Var o3:Pack := clear-obj[<d4:Desc>, <clear-obj[<d5:Desc>, <res5:Res>],

clear-obj[<d6:Desc>, <res6:Res>]>]

Thus: getmetadata(o2) = <d3>

getmetadata(getcontent(o2, 0)) = getmetadata(o3) = <d4>

getmetadata(getcontent(getcontent(o2, 0)), 1)) = <d6>

Then, o2-bis object is created by starting from o2 protecting the nested object o3:

Var o2-bis:Pack := clear-obj[<d3>, <protect(o3, pi3:Prot-Info), res3>]

Obtaining: getmetadata(o2-bis) = <d3>

getmetadata(getcontent(o2-bis, 0)) = getmetadata(prot-obj[pi3, e3]) = Ø

Please note when protecting in a content sub-tree the metadata regarding the leaf of the

composed content or those placed in the lower levels of the hierarchy are obviously included in

the protected content (e.g., IPMP). This makes hard to make accessible the metadata

information and could be avoided only by additional processing in copying those metadata

while protecting, thus changing the object structure.

For example, by using the MPEG-21 notation, there are no possibilities to access metadata of

the content parts or of the components of protected objects. Only if IPMP elements are

substituted with the corresponding DIDL elements (by means of IPMP tools to unprotect the

object) the metadata may become accessible again. In the following, an MPEG-21 based

example is reported for an object which contains two leafs resources.

DIDL

 Item

 Descriptors

 Metadata of the composed content

 Item

 Descriptors

 Metadata of content part 1

 Component

 ...

 Item

 Descriptors

 Metadata of content part 2

 Component

That becomes in its protected form:

DIDL

 IPMPDIDL:Item

 IPMPDIDL:Info

 IPMPDIDL:Content

 Encrypted composed content

3.3. Extended Model for Composition of protected and unprotected objects
In order to facilitate the B2B negotiation and transaction, content must provide always

accessible metadata even when the content is protected. Any content producer, interested in

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 12

producing, selling and/or reselling simple of complex content for distribution, should have the

possibility of deciding which metadata have to be accessible (public) to other B2B

customers/users and which of them have to be left protected without making complex their

management and without leaving to other users of its content the possibility of hiding its public

metadata. This is a requirement that cannot be satisfied by using the PM1 model presented

above. In order to satisfy these needs, a more powerful model is needed.

Therefore, two kinds of descriptors modeling respectively public and private content

descriptions have to be present in the structure of the package. Public descriptors can contain

descriptions associated with a whole sub-tree as protected content. Thus, when the object is

protected a “public descriptor tree” structure has been defined in order to describe the content

after its protection respecting the hierarchical tree of the internal nested levels. On this aim, the

following extended package model has been defined and referred to Package Model PM2:

Type Pack := clear-obj[list Desc, list Comp] |

prot-obj[Prot-info, Pub-desc-tree, Enc]

Type Desc := Pub-desc | Priv-desc

Type Pub-desc := …any public descriptor…

Type Priv-desc := …any non public (private) descriptor…

Type Comp := Res | Pack

Type Res := …any digital resource…

Type Prot-info := …a set of protection information…

Type Pub-desc-tree := desc-tree[list Pub-desc, list Pub-desc-tree]

Type Enc := …any valid encoding for protection…

Where: Type Pub-desc-tree represents a tree structure of public descriptors according to

the nested levels. According to this model, a set of functionalities is needed for extracting from

content parts the entire set of related public descriptors:

getpublicdesc(res:Res) = Ø

getpublicdesc(clear-obj[d:list Desc, c:list Comp]) =

desc-tree[<ds:Desc in d. ds is Pub-desc>,

<cp:Pack in c. getpublicdesc(cp)>]

Please note that getpublicdesc() produces a tree of public descriptors by recursively

browsing inner components of the content into the package:

getpublicdesc(prot-obj[pi:Prot-info, pdtree:Pub-desc-tree, e:Enc]) = pdtree

In order to grant accessibility of content description the function for package protection has to

use the descriptor extraction (getpublicdesc()) in order to add the hierarchical

description in the protected element. This allows retrieving metadata and identification from

any protected object.

protect(p:Pack, pi:Prot-info) = prot-obj[pi, getpublicdesc(p), encrypt(p)]

Thus: unprotect(prot-obj[pi, pdtree:Pub-desc-tree, encrypt(p)] = p

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 13

Function getpublicdesc() can now rely on the suitable element of the protected package

to obtain the description that is related to what is protected.

getmetadata(clear-obj[d, c]) = d

getmetadata(prot-obj[pi, pdtree, e]) = pdtree

getcontent(clear-obj[d, c], pos:Position) = getelementat(c, pos)

getcontent(prot-obj[pi, pdtree, e], pos) = Ø

In the following, two similar examples to what has been presented for the PM1 model are

examined for the proposed PM2 model. In both of them, all the descriptors, even those related

to the inner elements are accessible in a protected package without the need of using the

unprotect function.

Let us now analyzing the first case for PM2 mode in which we start from producing a package:

clear-pack1. From this example, the metadata can be easily accessed on the basis of the

model proposed.

Var clear-pack1:Pack := clear-obj[<d1:Pub-desc,d2:Priv-desc>, <res1:Res>]

Var prot-pack1:Pack := protect(clear-pack1, pi1:Prot-info) =

prot-obj[pi1,desc-tree[<d1>, Ø], e1]

Where: Var e1:Enc := encrypt(clear-pack1);

Thus: getmetadata(clear-pack1) = <d1, d2>

getmetadata(prot-pack1) = desc-tree[<d1>, Ø]

Let us now analyze a second case for PM2 in which we start from producing a complex

package with some nesting levels and it is shown that the model allow accessing to the public

metadata even nesting objects into protection nesting layers:

Var o2:Pack := clear-obj[<d3:Pub-desc>, <o3:Pub-desc, res3:Res>]

Where: Var o3:Pack := clear-obj[<d4:Pub-desc>, < clear-obj[<d5:Pub-Desc>,

<res5:Res>], clear-obj[<d6:Pub-Desc, d7:Priv-desc, d8:Pub-desc>,<res6:Res>] >]

Thus: getmetadata(o2) = <d3>

getpublicdesc(o3) = desc-tree[<d4>, < desc-tree[<d5>, < >],

desc-tree[<d6, d8>, < >] >]

According to the PM2, the protection of object o3 into o2 is performed obtaining o2-bis.

This action is performed by transforming the object into prot-obj with the Protection

Information model including the “public” descriptor and the coding of the whole o3:

Var o2-bis:Pack := clear-obj[<d3>, <protect(o3, pi3:Prot-info), res3>] =

 clear-obj[<d3>, <prot-obj[pi3, pdtree3, e3], res3>]

Where: Var pdtree3:Pub-desc-tree := desc-tree[<d4>, < desc-tree[<d5>, < >],

desc-tree[<d6, d8>, < >] >]

Var e3:Enc := encrypt(o3)

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 14

As a result, o2-bis continues to present accessible descriptors of all the elements contained

into the package and the public descriptor tree of the protected version of o3 is structurally

identical to o3 considering all its subcomponents.

getmetadata(o2-bis) = <d3>

getmetadata(getcontent(o2-bis, 0)) = getmetadata(prot-obj[pi3, pdtree3, e3]) =

desc-tree[<d4>, < desc-tree[<d5>, < >], desc-tree[<d6, d8>, < >] >]

3.4. Considerations on PM2 model
Content needs to be protected in order to be safely distributed and exploited under DRM

governance. AXMEDIS exploits MPEG-21 IPMP technology in order to produce protected

content on the basis of PM2 model. Since MPEG-21 IPMP has standardized how to protect

MPEG-21 DI, AXMEDIS has selected which DI tent parts have to be protected. In such a way,

protected AXMEDIS Objects remain valid MPEG-21 DIs. Furthermore, AXMEDIS model

imposes the IPMP component to contain information which is specific for B2B application

domain, as described above. The protected version of AXMEDIS object elements may expose

additional protection information structured. As the DIDL model, the IPMP has been designed

by considering flexibility to deal with any protection mechanism. Also in this case, AXMEDIS

has refined the MPEG-21 standard in order to address B2B aspects. The above presented PM2

model of AXMEDIS has been partially included enhancing the MPEG-21 IPMP standard by

introducing the capability of adding a description to the protected content.

DIDL:Item

DIDL:Descriptor

DIDL:Descriptor

DIDL:Descriptor

DIDL:Descriptor

DIDL:Descriptor

DIDL:Descriptor

DIDL:Descriptor

DIDL:Compoenent

DIDL:Component

public

public

public

public

public

DIDL:Item

DIDL:Item

Composite

AXMEDIS

Object

(clear-text)

overall

description

resource

description

resource

Basic

AXMEDIS

Object

the “public”

descriptors are

those that will be

accessible without

unprotection of the

AXMEDIS Object

IPMPDIDL:Item

DIDL:Descriptor

DIDL:Descriptor

IPMP:ContentInfo

DIDL:Descriptor

DIDL:Descriptor

DIDL:Descriptor

public

public

public

public

public

DIDL:Item

DIDL:Item

Protected

AXMEDIS

Object
public

descriptor

hierarchy

protected

content

DIDL:Item

IPMP:Contents

inner

content

accessible

description

Figure 2 – AXMEDIS Object after protection in terms of MPEG-21 elements

In Figure 2, the content transformation after a protection process in terms of MPEG-

21 elements has been sketched. To make the figure simpler and immediate, only the relevant

MPEG-21 elements have been considered. The Descriptor element, as an example, is not a leaf

since it can contains a Statement as its child element. The diagram puts in evidence which part

of the content structure remain accessible even after the protection. Please note that some

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 15

Descriptor elements have been tagged with “public” attribute. The “public” attribute has been

introduced by AXMEDIS to be sure that some content information will be accessible without

needing an un-protection after any protection process. The attribute “public” allows defining

the Pub-desc of PM2 model. The concept is that even the root level of the AXMEDIS

Object hierarchy is protected, all the “public” metadata will be copied on the appropriate

ContentInfo element, which has been designed to contain description about the protected

content. Since the content structure its hierarchical, it has been decided to mimic the content

structure and use MPEG-21 DIDL hierarchical element Item. AXMEDIS authoring tool is

capable to apply multiple protection algorithms on each content element [Nesi et al., 2006].

4. AXMEDIS Object Manager

The AXMEDIS Object Manager (AXOM) is a module, which addresses MPEG-21 general

modeling and other additional features which have been outlined in the previous sections. The

AXOM can be used to create software tools which handle DIs in the respect of the DRM rules.

The AXOM is used in the AXMEDIS tools that have to cope with content objects and it is

compliant with MPEG-21, extending it with additional features and data structures. Thus, it can

be used as a basis to design and develop a large range of e-commerce applications which are

able of manipulating both MPEG-21 DIs and AXMEDIS Objects, for both editing/authoring

and playing content objects. One of the most important features of the AXOM is to provide the

means to create a trusted environment. Moreover, it is capable to support: MPEG-21 packaging

model; packaging model PM2 of AXMEDIS; manipulation/access of package structure and

content (such as nested levels of packaging, hierarchies) in the respect of DRM licenses;

production of specialized commands or custom commands for enforcing the rights

corresponding to those imposed by the formal license model of the DRM.

The AXOM is capable to guarantee that a tool built on its accessible commands is controllable

with respect to the user actions on content object. Thus, different actions on the content model

should require different grants (i.e., authorizations). Actions can target the content structure,

the resources and the metadata. Thus a unique flow to handle verification of any action

behavior performed on the content has been conceived.

In order to build a reusable and flexible infrastructure, the AXOM has been decomposed in

five parts as shown in Figure 3, separating responsibilities of the several elements: MPEG-21

Object Model responsible of managing the MPEG-21 DI allowing content access and

manipulation; AXMEDIS Object Model a refinement and an extension of MPEG21 DI,

targeting the mentioned requirements and realizing on top of the MPEG-21 the PM2 model

and semantics. It also allows to access and manipulate high-level features in the underlying

MPEG-21 structure; AXMEDIS/MPEG-21 XML Loader to load MPEG-21 as well as

AXMEDIS Objects from a given input source as a byte stream. The source can be textual XML

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 16

or in a corresponding binary form. The Loader has the responsibility of validating the correct

structure of the input source; AXMEDIS/MPEG-21 XML Saver to write to an output

destination an MPEG-21 DI, thus also a valid AXMEDIS Object. This module is optional since

it is not needed to build a player; AXMEDIS Command Manager to provide an Application

Program Interface for accessing to the content package elements. The interface is used for both

playing and authoring AXMEDIS, and MPEG-21 content packages. The Command Manager

allows transparent manipulation of content in respect to DRM rule and directly accessing to the

Servers for the acquisition of the License and of Protection Information. It allows to access or

to manipulate content with a built-in authorization check on the basis of MPEG-21 REL.

View

DIDL

XML

View

Command Manager

AXMEDIS

Object Model

MPEG-21

Object Model

LoaderSaver

AXMEDIS/MPEG-21 Application

AxObjectManager

Figure 3 – AXMEDIS Object Manager (AXOM) layers

Defining features on object model that manage MPEG-21 content packages grants to the

system the ability to deal with all kinds of MPEG-21 objects and not only with AXMEDIS

content packages. Provided AXOM API is capable to cope with MPEG-21 object model

directly (as shown in the diagram) to allow manipulation of MPEG-21 DIs.

The AXOM architecture supports extendibility, new types of objects based on MPEG-21

model can be easily managed in MPEG-21 Object Model without changes in present structure.

Moreover, only minor changes are needed to process content models that extend MPEG-21 or

AXMEDIS elements definitions. Hooks to perform operations on content packages are

provided by the upper level layer by means of AxObjectManager and AxCommand set. These

classes offer: (i) a range of executable commands targeting the manipulation of both

AXMEDIS and MPEG-21 object models, (ii) coordination of functionalities of lower levels

modules to organize a reliable and protected execution flow.

The set of commands is easily extendable to manage future needs of upper level applications as

shown in the sequel. Execution of defined commands is performed using class

AxObjectManager as shown in the sequel.

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 17

AxObjectManager

AxCommand

ProtectionProcessor

«uses»

AxGrant AxIndexManagerAxIndex

1
0..*

AxModelContainer

«private»

1
1

AxObject DIDLDocument

1
1

AxCommand 1

AxCommand 2

AxCommand n

1

111..*

1*

AxObjectElement

MPEG21Element

1

1..*

1

*

1

*

1
*

«uses»

«uses»«uses»

Axmedis

Object Model
MPEG-21

Object Model

Protection

and Trustness

DRM

enforcement

Memory

protection

Figure 4 – AXOM class hierarchy

As depicted in Figure 4, the Command pattern has been applied [Gamma et al., 1995]. The

controller is the AxObjectManager which exposes the AXOM API. The AxObjectManager is

an intermediate layer between the application views and the object models (i.e., the

object/package model with resources and descriptors). A view cannot directly manipulate the

object model, while it has to issue commands to the AxObjectManager class. The latter is in

charge of performing the requested actions on the model. In particular, each conceivable

command has been realized as a class which implements the interface AxCommand. It exposes

two main methods: execute and getRequiredGrants. The execute method of AxCommand has to

be implemented by each specialized class to actually perform the action on the object model.

The command execution method is able to directly access to the data model without any

restriction, since the command is executed only if the authorization is obtained. The

getRequiredGrants method of AxCommand allows the verification of the requested grants.

Thus, the AxObjectManager class is able to handle the request received by the user and the set

of conceivable commands can be augmented without any impact on the current architecture.

The AxObjectManager has few control points, the code to verify the commands can be

easily inserted in. In fact, the AxObjectManager class is not in charge of verifying the grants,

while it has been designed in order to provide hooks to easily create control mechanisms. The

DRM enforcement is modeled by the declaration of the requested rights which has to be stated

by each AxCommand inherited class. In fact, to each command is associated a list of AxGrant,

which are the basic arguments for issuing the request to the authorization service. In that way,

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 18

the AxObjectManager is able to generically handle any request issued by the user, respecting

governance. Please note that, the AxObjectManager is not in charge of verifying the grants,

since it has been designed to provide hooks, by means of which it is possible to enforce control

mechanisms. In fact, it delegates to an authorization service the task of determining if the user

has been authorized or not on the basis of the license. The AxObjectManager exposes

functionalities for: creating new content; opening existing content by indicating a URI;

browsing content structure; accessing metadata and resources embedded or referred to by the

content; manipulating content structure, metadata and resources; saving the content;

adding/modifying protection information associated to any content element.

By using model encapsulation, a good level of security has been achieved in terms of

robustness against developer’s malicious content handling preventing direct manipulation from

the views. Thus, views are not allowed to target content elements by using pointers. Command

targets have to be indicated using logical references that prevent the access to the physical

addresses referring to the digital resources. Thus, the view interacts with the model using

instances of the class AxIndex. These are used like pointers, while they can be actually resolved

only by the AxObjectManager which generated them.

All the security aspects are demanded to Protection Processor class. This class has two

basic roles: (i) performing verification on the component which is using AxObjectManager

(i.e., the content manipulation application) to allow detecting typical tampering activities, thus

to be confident on the software integrity; (ii) protect/unprotect content elements and to query

for authorization of requested manipulations in a transparent manner with respect to the

connected services. When digital resources have to be accessed (e.g., for their rendering on a

rendering component/module view) the chain of un-protection tools is activated, thus allowing

to establish a direct stream from the encapsulated resource and the rendering

component/module view. Command execution returns content elements information, providing

a reference to a clone. When an action expects object elements as results, AxObjectManager

provides clones of them to the view. Since the view does not obtain the direct reference to the

content element contained in the package, the action targets, like the source and the destination

of a move command, have to be indicated using indexes: i.e., logical references to the real

content elements.

4.1. MPEG-21 and AXMEDIS Data Models
The MPEG-21 Object Model (reported in Figure 5) consists of a set of class hierarchies

representing the standardized XML model of MPEG-21. The design has been modeled on the

basis of the DIDL hierarchy, as it is the infrastructure on which the other hierarchies lean on

(see for example IPMP and DII). The model has been designed to be expandable and flexible

thus allowing to cope with standard metadata and to accept the introduction of new MPEG-21

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 19

standard parts. In particular, MPEG21Element class provides model expandability, since it

exposes the basic functions to browse the model and for its manipulation at structural level.

Moreover, MPEG21Element class presents virtual functions to allow identifying classes on the

basis of the namespace and the name of the corresponding XML element. Sub-hierarchies of

MPEG21Element have been already produced. For example, DIDLElement sub-hierarchy to

represent DIDL XML elements and IPMPElement sub-hierarchy to represent protected

elements standardized in IPMP DIDL.

AxObject

AxObjectElement

AxMetadataAxContent

AxInfo

AxDublinCore

AxOID

AxResource

MPEG21Element

DIDLElement

IPMPElement

DIDLItem

DIDLComponent

DIDLDescriptor

«uses»

«uses»

«uses»

MPEG21ElementCollection

1 1

MPEG21NodeElement

MPEG21LeafElement

1

1

AxClearObject

AxProtectedObject

AxReferredObject
IPMPItem

XInclude

XIElement

«uses»

«uses»

Figure 5 – AXMEDIS and MPEG-21 Object Models relationships

 MPEG21ElementCollection has been designed to provide a common mechanism to

manage child elements. Since each XML element has structural constraints, the

MPEG21ElementCollection provides functions to manage children respecting the given

constraints. This class is used by MPEG21Element to maintain references to its children. The

MPEG-21 Object Model provides some listener interface -- i.e., interfaces which has to be

implemented by those classes which want to be warned every time something change in the DI.

In particular, the following events have been provided: structure event (remove, add, etc.);

property event (attribute value changed); and content event (text content changed).

Since AXMEDIS Objects have specific features with respect to a generic DIs, AXMEDIS

Object Model has been created. The AXMEDIS Data Model design represents only an

instance of what can be performed by using the AXOM to realize a customized model to cope

with a specific MPEG-21 profile.

AXMEDIS Data Model presents a set of features: (i) realize the PM2 package model;

(ii) present a recursive structure, i.e., an AXMEDIS Object could contain others AXMEDIS

Object; (iii) may refer to one or more digital resources; (iv) each object has a unique identifier

AXOID; (v) each object contains Dublin Core metadata; (vi) each object contains business-

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 20

level metadata, AXInfo; (vii) each object may contain any MPEG-7 metadata and other

descriptors in the spirit of PM2 package model. The AXMEDIS Object Model leads on the

MPEG-21 Object Model providing simpler and specific interfaces to manage AXMEDIS

Objects. In fact, the AXMEDIS Object Model can also be seen as a “specific view” of a

corresponding MPEG-21 Object Model, while structurally remain a full MPEG-21

implementation. While the AXMEDIS Object Model leads on the MPEG-21 one, the latter is

independent from the former and could be reused in other applications. However, this choice

brings a hard problem which is the synchronization of the AXMEDIS Object Model with

respect to the modifications made on the MPEG-21 Object Model. This problem has been

solved using an event-driven approach. That is, exploiting the listener interfaces provided by

the MPEG-21 Object Model, an AXMEDIS Object is able to coherently modify its structure

with respect to the underlying DI. If the DI (e.g., after a modification) does not match the

AXMEDIS Data Model, the AXMEDIS Object will try to fit the DI as much as possible

discarding those parts which are not complaint to the model.

5. Using AXOM, AXMEDIS Object Manager

As stated, the AXOM can be used to build a large set of content manipulation

applications/systems obtaining trusted behavior encapsulated in a clear use of

AXMEDIS/MPEG-21 Objects. The developer can use the API exposed by the AXOM for

object loading, browsing and navigation in the object structure, obtaining streams for

embedded digital resources according to the rights defined in the licenses. Every action

performed on the content is related to a set of rights, which have to be owned at consumption

time to enable the action. The result is a transparent DRM-including manipulation of the

underlying content package. The API is organized in two main subsets: Object Model Access

– functionalities for browsing and reading content elements; i.e. getting metadata, components,

reading content element attributes such as resource descriptors, technical information: MIME-

type; Object Model Manipulation – functionalities for modifying content package according

to DRM rules by using a set of executable commands to add, remove, copy, move content

elements such as metadata or resources, to change content elements attribute.

The Object Model Access API covers the basic functionalities presented in Section 3.3 to

explore and retrieve information from the content package; some of them are listed in the

following:

 AxObjectElement getAxObjectElement(AxIndex index) – to obtain information about a

content element, it provides a clone of the element included in the package;

 vector AxIndex getAxChildIndexes(AxIndex index) – to realize getcontent() of the PM2

model. It gets the list of indexes of the package component when applied to the root level or

to an inner sub-package;

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 21

 vector AxIndex getAxMetadataIndexes(AxIndex index) – to realize getmetadata() of the

PM2 model. It gets the list of indexes of the package descriptors;

 DataSource getResourceAsset(AxIndex index, string right, string details) – to realize the

digital resource extraction, providing a byte stream that can be used for different purposes

such as rendering, printing, content processing. This method can used for different

purposes. The second and third parameters allow to impose of the action to be performed

on the resource in terms of rights and related details —e.g., play for 15 minutes;

 AxPublicMetdataTree getPublicMetadataTree(AxIndex index) – to realize extract-pub-

desc() of PM2 model from a given package (root or sub-tree).

The Object Model Manipulation API has been kept minimal; while an extensible set of

elementary command classes have been provided. Thus the content manipulation looks like a

sequence of commands targeting the AXMEDIS Object.

5.1. AXOM Commands and usage
In the following, a subset of the commands which are at disposal in the AXOM is presented.

Each command models a specific manipulation on the content package. The important aspects

of each class, inherited by AxCommand, are the constructors, which are needed for setting the

operation parameters, and additional methods defined in order to get the execution results. The

results typically may contain additional information not directly accessible in the modified

package.

 AxCommandAdd– this command class has been defined to add AxObject elements. It

presents constructors to impose the entry point of the addition:

AxCommandAdd(AxObjectElement newElement, AxIndex parentIndex) to add an element

at the end of the list of descriptors or components; AxCommandAdd(AxObjectElement

newElement, AxIndex parentIndex, AxIndex referenceIndex, bool insertBefore) to insert a

new content element before or after a given element in the list AxIndex

getIndexOfAddedElement() to obtain after the execution the logical reference of an added

new element

 AxCommandDelete – command class defined to reduce the content package by deleting

descriptions, digital resources or inner packages. A constructor is needed in order to select

the target element to be removed: AxCommandDelete(AxIndex deleteIndex)

 AxCommandEdit – command class defined to edit the attributes included in the content

elements of the package:. AxCommandEdit(AxObjectElement dataElement, AxIndex

editIndex) change the attributes of the target element by copying them from dataElement;

The usage of AXOM functionalities is quite simple. For the manipulation of content package

the creation of a new command and its execution are needed. The AXOM is responsible of

providing indexes for the root level or for any sub-tree of the package hierarchy.

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 22

// creating a manager to manipulate a new AXMEDIS object

AxObjectManager myEmptyObject = new AxObjectManager();

// creating a resource element targeting to a digital resource URL (a

jpeg image)

AxResource myDigitalRes = new AxResource();

myDigitalRes.load(“bar.jpg”);

// performing the addition of the created resource in the empty object

// step1: creation of the suitable command object

AxCommandAdd addCmd = new AxCommandAdd(myDigitalRes,

myEmptyObject.getRootIndex());

// step2: execution of the command

myEmptyObject.executeCommand(addCmd);

// step3: (optional) gathering of the results: the index of the added

element

AxIndex addedResIndex = addcmd.getIndexOfAddedElement();

The usage of the AXOM hides the DRM verification of grants which can be needed to

authorize the manipulations. The AXOM is capable of controlling the execution of the above

mentioned commands, delegating to them the specification of the grants needed and the

accesses to the content elements. On the other hand, only the AXOM can (i) request the grant

authorization from the Authorization Service, and can (ii) unprotect the content package.

5.2. Defining custom commands for using AXOM
The proposed solution has been designed to speed-up the creation of AXMEDIS-

compliant tools, which can easily exploit the provided functionalities and can also extend the

command set to their specific need. A custom new command can be defined by taking into

account its fundamental aspects: authorization, un-protection and behavior implementation. By

specializing from AxCommand class the custom command class presents getRequiredGrants,

getAccessedIndexes and execute that have to be implemented according to the desired

semantics and manipulation logic. The personalizations have to define one or more

constructors to give arguments to the manipulation (e.g., target elements) and to introduce

specific methods in order to obtain back information after a performed execution.

An example of an extension set of manipulation commands could be one for resource

processing. Let us consider a command for processing an image performing a mirror

transformation (left to right) and replace the resource with the result of the processing.

Command AxCommandImageMirror defines a constructor which accepts the target image as

an argument. The constructor can be defined as AxCommandImageMirror(AxIndex

imageIndex). The following pseudo-code provides and example about the definition of the

command, including the declaration of the required rights and what has to be unprotected. The

method execute() sketching the command implementation is also reported. Each proposed

custom command has to be certified and approved to be compliant with the semantics of the

rights. This means that the enforcement of the rights into the authoring and player tools has to

be performed in according to a rights data dictionary – e.g., MPEG-21 RDD [MPEG-21 RDD]

and that defined by Mi3P [MI3P DICT].

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 23

class AxCommandImageMirror : public AxCommand

{ private AxIndex targetIndex;

 //constructor

 AxCommandImageMirror(AxIndex imageIndex)

 { targetIndex = imageIndex;

 }

 //declaration of required granted rights the operation “modify” has to

 // be authorized with details “apply mirror filter”

 vector AxGrant getRequiredGrants()

 { return new vector { new AxGrant(targetIndex, “modify”,

 “apply mirror filter”) };

 }

 //declaration of content elements to be unprotected

 //only the target resource has to be unprotected

 vector AxIndex getAccessedIndexes()

 { return new vector { targetIndex };

 }

 void execute(AxModelContainer model,

 AxIndexManager indexManager, AxStatusManager s)

 { //since the model has been already unprotected it is possible to

 //have direct access to the target resource (located by targetIndex)

 AxResource res = (AxResource) indexManager.resolveIndex(targetIndex);

 string mime res.getMIMEType();

 //processing

 inputstream bytes, res.getAsset().getInputStream();

 inputstream mirrorbytes = applyMirrorFilter(mime, bytes);

 res.getAsset().setInputStream(mirrorbytes);

 }

};

Please note that targetIndex is used to store the location of the target resource, which is set

only at construction time. This index is returned as the unique “accessed index” of the grant

authorization. The index is used at command execution time to retrieve the resource in the

object model.

Figure.6 – AXMEDIS Editor. Please note that the editor is capable of showing the object as an AXMEDIS hierarchy,

or an MPEG-21 hierarchy. In this case an MPEG-21 hierarchy is shown.

6. CONCLUSIONS

The multimedia and cross media content formats and related tools have support protecting and

manipulating in several manners, in order to allow distribution in which some digital rights

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 24

management and/or other action control solution-technology are used. These new needs come

from the usage of the DRM technologies into the B2B area and also for the fact that the final

users are becoming content producers, shortening de-facto the value chain and bringing the

needs of having package models capable of supporting nesting levels of content and protection,

reuse of non-protected and protected objects for the production/distribution of other content

products. This paper presented the evolution of models for content packing with a

formalization that allows verifying the model validity against operations performed on the

content models. The study has produced the AXMEDIS model and metadata, which have been

defined extending MPEG-21. On the basis of the AXMEDIS model presented a software core

called AXMEDIS Object Manager, AXOM, has been designed and realized. The AXOM

supports high flexibility and permits the production of software application without allowing

the violation of rights. The AXOM is currently used in all AXMEDIS content authoring and

players tools of AXMEDIS to cope with AXMEDIS and MPEG-21 objects (see Figure 6). The

AXOM solution can be used to develop a wide range of tools based on MPEG-21 standard (for

PC on Windows and Linux, for PDA and Set Top Boxes). To retrieve additional details on

the presented work, please refer to public reports and deliverables of the AXMEDIS.

7. ACKNOWLEDGMENTS

The authors would like to thank all AXMEDIS partners such as TISCALI spa, HP

Italy, EUTELSAT (France), University Pompeo Fabra (Spain), SEJER (France),

GIUNTI (Italy), FHG-IGD (Germany), University of Leeds (UK), EPFL (Ch),

University of Reading (UK), EXITECH, etc., for their contributions, funding and

collaborations, and a warm thanks to the AXMEDIS User Group that followed and

supported the project evolution with several suggestion and validation. A specific

acknowledgment to EC IST FP6 for the partial funding of AXMEDIS project.

8. REFERENCES

 AXMEDIS, “Framework and Tools Specifications”, http://www.axmedis.org

 Bellini, P., Barthelemy, J., Bruno, I., Nesi, P., Spinu, M., “Multimedia Music Sharing

among Mediatheques, Archives and Distribution to their attendees”, Journal on Applied

Artificial Intelligence, Vol.17, N.8-9, pp.773-796, 2003.

 Bellini, P., Nesi, P., “An Architecture of Automating Production of Cross Media Content

for Multi-channel Distribution”, in Proc. of first International Conference on automated

production of cross media content for multichannel distribution, AXMEDIS 2005, IEEE

Computer Soc. Press., Florence, Italy, November 2005.

 Bellini, P.; Nesi, P.; Rogai, D.; Vallotti, A., “AXMEDIS tool core for MPEG-21

authoring/playing”, Proc. Of the first International Conference on Automated Production

of Cross Media Content for Multi-Channel Distribution, IEEE Computer Soc. Press, Nov.

2005, Florence, Italy, AXMEDIS 2005.

 Bulterman D. C. A., Lynda Hardman, “Structured multimedia authoring”, ACM

Transactions on Multimedia Computing, Communications, and Applications, TOMCCAP,

Vol.1, Issue 1, February 2005.

 Burnett, I.; Van de Walle, R.; Hill, K.; Bormans, J.; Pereira, F., “MPEG-21: goals and

achievements”, IEEE Multimedia, Vol.10, Issue 4, pp.60-70, Oct-Dec 2003.

http://www.axmedis.org/

Modelling a Core Module for MPEG-21 and AXMEDIS Content Manipulation Tools (August 2006) 25

 Burnett, I.S., Davis, S.J., Drury, G. M., "MPEG-21 digital item declaration and

Identification-principles and compression", IEEE Transactions on Multimedia, Vol.7, N.3,

pp.400-407, 2005.

 Chiariglione, L., MPEG Group, “The MPEG Home Page”, www.chiariglione.org/mpeg.

 Gamma, E., R. Helm, R. Johnson, J.Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.

 Hulsen, P.; Kim, J.-G.; Lee, H.-K.; Kang, K.-O., “Delivering T-learning with TV-anytime

through packaging”, Proc. of the IEEE International Symposium on Consumer Electronics,

pp.614-619, Sept. 1-3, 2004.

 Iannella, R., “Open Digital Rights Language (ODRL)”, Version 1.1 W3C Note, 19

September 2002, http://www.w3.org/TR/odrl .

 Iannella, R., “Standards for Digital Rights Languages”, PlanetEBook, August 24, 2001.

 Koushanfar, F., Inki Hong, Miodrag Potkonjak, “Behavioral synthesis techniques for

intellectual property protection”, ACM Transactions on Design Automation of Electronic

Systems (TODAES), Vol.10, Issue 3, ACM Press, July 2005.

 Lee, J., Hwang, S.O., Jeong, S.-W., Yoon, K.S., Park, C.S., Ryou, J.-C., “A DRM

Framework for Distributing Digital Contents Through the Internet”, ETRI Journal, Vol.25,

N.6, pp.423-435, December 2003.

 Lin, E.T., Eskicioglu, A.M., Lagendijk, R.L., Delp, E.J., “Advances in Digital Video

Content Protection”, Proceedings of the IEEE, Vol.93, N.1, pp.171-183, January 2005,

 Mi3P, Music Industry Integrated Identifier Project, http://www.mi3p-standard.org/, MI3P-

DICT-10-FDS - The MI3P Data Dictionary Standard - Final Draft Standard

http://www.mi3p-standard.org/specification/MI3P-DICT-10-FDS.pdf RDD

 Mourad, M., Hnaley, G.L., Sperling, B.B., Gunther, J., “Toward an Electronic

Marketplace for Higher Education”, Computer of IEEE, pp.58-67, June 2005.

 MPEG Group MPEG-21 DID, “Introducing MPEG-21 DID”,

www.chiariglione.org/mpeg/technologies/mp21-did/

 MPEG Group MPEG-21 IPMP, “Introducing MPEG-21 IPMP Components”,

www.chiariglione.org/mpeg/technologies/mp21-ipmp/

 MPEG Group MPEG-21 RDD, “Introducing MPEG-21 RDD”,

www.chiariglione.org/mpeg/technologies/mp21-rdd/

 Nesi, P., Rogai, D., Vallotti, A., “A Protection Processor for MPEG-21 Players”, Proc. of

the IEEE International Conference on Multimedia and Expo, Toronto, Canada, 9-12 July

2006.

 OMA http://www.openmobilealliance.org/

 Prados, J., Rodriguez, E., Delgado, J., "Interoperability between different rights expression

languages and protection mechanisms", in Proc. of the 1st International Conference on

Automated Production of Cross Media Content for Multi-Channel Distribution,

AXMEDIS 2005, Florence, Italy, 30 Nov.-2 Dec. 2005.

 SCORM: http://www.adlnet.org/

 TvAnyTime: http://www.tv-anytime.org/

 Vetro, A., Timmerer, C., "Digital item adaptation: overview of standardization and

research activities", IEEE Transactions on Multimedia, Vol.7, N.3, pp.418-426, 2005.

 Wang, X., “MPEG-21 Rights Expression Language: enabling interoperable digital rights

management”, IEEE Multimedia, Vol.10, Issue 4, pp.60-70, Oct-Dec 2003.

 Wang, X., De Martini, T., Wragg, B., Paramasivam M., Barlas C., "The MPEG-21 rights

expression language and rights data dictionary", IEEE Transactions on Multimedia, Vol.7,

N.3, pp.408-417, 2005.

 WEDELMUSIC: http://www.wedelmusic.org

http://www.chiariglione.org/mpeg
http://www.w3.org/TR/odrl
http://www.planetebook.com/mainpage.asp?webpageid=208
http://www.mi3p-standard.org/
http://www.mi3p-standard.org/specification/MI3P-DICT-10-FDS.pdf
http://www.mi3p-standard.org/specification/MI3P-DICT-10-FDS.pdf
http://www.chiariglione.org/mpeg/technologies/mp21-did/
http://www.chiariglione.org/mpeg/technologies/mp21-ipmp/
http://www.chiariglione.org/mpeg/technologies/mp21-rdd/
http://www.openmobilealliance.org/
http://www.adlnet.org/
http://www.tv-anytime.org/
http://www.wedelmusic.org/

