
DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Big Data Computing

Paolo Nesi, Gianni Pantaleo, Imad Zaza

DISIT Lab
Dipartimento di Ingegneria dell’Informazione, DINFO

Università degli Studi di Firenze

Via S. Marta 3, 50139, Firenze, Italy

Tel: +39-055-4796567, fax: +39-055-4796363

http://www.disit.dinfo.unifi.it alias http://www.disit.org

1
29 Ottobre 2019

http://www.disit.dinfo.unifi.it/
http://www.disit.org/

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Agenda

• Prologue

• Apache Hadoop

• Monitoring

• Apache HBASE

• Apache Phoenix

• Case studio

2

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Agenda

• Prologue

• Apache Hadoop

• Monitoring

• Apache HBASE

• Apache Phoenix

• Case studio

3

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

44

Data Never Sleeps 7.0 2019 Report
https://www.domo.com/learn/data-never-sleeps-7

Data Never Sleeps 5.0 2017 Report
https://www.domo.com/learn/data-never-sleeps-5

https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.domo.com/learn/data-never-sleeps-7
https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.domo.com/learn/data-never-sleeps-5

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Big Data Problem: Twitter Data Analytics

5

Twitter is an example big data source

BI on Twitter & social data is growing in demand

Possibile problems:

➢ Count the number of tweets containg occurrence of one or
more search string (e.g. «pippo pluto», «pippo OR pluto») per

day in a given time interval

➢ NLP (Keywords, Keyphrase extraction and grammatical analysis
on natural language text)

➢ Data Analytics…

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Big Data Problem: Twitter Data Analytics

6

➢ Collect users’ information about quality of services

➢ Event Monitoring - crowd size estimation, voting results,
predicting TV audience etc.

➢ Early Warning - monitoring critical situations for alerts
providing (weather alerts, spread of contagious diseases, natural

disasters etc.)

Many different contexts and application areas:

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Xfactor 9

Pechino Express 2015

Crisci, A., Grasso, V., Nesi, P., Pantaleo, G., Paoli, I., Zaza, I. (2017), “Predicting TV programme

audience by using Twitter based metrics”, in Multimedia Tools And Applications, pp. 1-30, ISSN:1380-

7501.

Correlazione tra numero di Tweets e Audience TV
Research @ DISIT Lab

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

8

➢ 511,000 Tweets are sent every minute (2019)

➢ In 2016, Twitter has 310 million monthly active users
(almost the same as the U.S. population)

➢ A total of 1.3 billion accounts have been created

➢ Of those, 44% made an account and left before ever
sending a Tweet

Big Data Problem: Twitter numbers

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

What we need ?
• A system which crawls

Twitter for tweets
matching our queries

• A system storing
collected tweets

• Metric processing
procedures and
Analytics

• Visual Analytics of
processed Big Data
(Dashboards, graphs
etc…)

9

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Single Host

I. Develop a data model

II. Use an RDBMS as data backend

III. Use SQL as query language
wrappred in java or php …
application

10

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Single Host

I. Develop a data model

II. Use an RDBMS as data backend

III. Use SQL as query language
wrappred in java or php …
application

11

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Single Host

I. Develop a data model

II. Use an RDBMS as data backend

III. Use SQL as query language
wrappred in java or php …
application

12

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Problem

• Tweets collected grows fast

– > Computation time degrade

– > Reliability and Avalibility depends merely on
hardware

13

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Single Host

14

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7 8

Ti
m

e(
s)

Data size (Milions)

Twitter Metric processing time

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Agenda

• Prologue

• Apache Hadoop

• Monitoring

• Apache HBASE

• Apache Phoenix

• Case studio

15

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

• A computer cluster is a group of linked computers, working
together closely so that in many respects they form a single
computer.

• The components of a cluster are commonly, but not always,
connected to each other through fast local area networks.

• Clusters are usually deployed to improve performance and/or
availability over that provided by a single computer, while
typically being much more cost-effective than single computers
of comparable speed or availability.

16

Cluster

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Cluster (cont.)

17

Cluster consists of:

• Nodes (master + slaves)

• Network

• OS

• Cluster middleware which permits the computation

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Pigsty
• 4 «pigs»

– 3 pigs
• 4GB Ram , dual core, 1TB disk

– 1 pig
• 8GB ram, dual core, 1TB disk

• 3 Virtual Servers
– 1 vm

• 4GB Ram, dual core, 700GB disk

– 1 vm
• 2GB Ram, Dual core, 700GB disk

– 1 vm
• 1GB Ram, Dual core, 700GB disk

18

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

19

HDFS MapReduce
ProcessingStorage

The Apache™ Hadoop® project develops open-source
Software for reliable, scalable, distributed computing

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Apache Hadoop

Storing data @hadoop

20

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Hadoop Ecosystem

21

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

HDFS Architecture

22

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

HDFS Architecture

23

Namenode

Breplication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/user/data,6. ..

Block ops

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Namenode and Datanodes
 Master/slave architecture

 HDFS cluster consists of a single Namenode, a master server that manages
the file system namespace and regulates access to files by clients.

 There are a number of DataNodes usually one per node in a cluster.

 The DataNodes manage storage attached to the nodes that they run on.

 HDFS exposes a file system namespace and allows user data to be stored in
files.

 A file is split into one or more blocks and set of blocks are stored in
DataNodes.

 DataNodes: serves read, write requests, performs block creation, deletion,
and replication upon instruction from Namenode.

 New Paradigm: Data Locality →Moving Computation is Cheaper than
Moving Data

24

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

File system Namespace

25

• Hierarchical file system with directories and files

• Create, remove, move, rename etc.

• Namenode maintains the file system

• Any meta information changes to the file system is
recorded by the Namenode.

• An application can specify the number of replicas of
the file needed: replication factor of the file. This
information is stored in the Namenode.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Example

26

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Interaction with hdfs

• Web interface

– Web application bundled with hadoop

– Hue

• Console Interface

• Java API

27

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Basic Interface

28

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Advanced Interface

29

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Console Interface: some commands
• Create directory

hdfs dfs -mkdir <hdfs_path>

• List directory
hdfs dfs -ls <hdfs_path>

• Delete file
hdfs dfs –rm <hdfs_path>
/file

• Delete directory
hdfs dfs –rm –r –f <hdfs_path>

• Upload file to hdfs
hdfs dfs –put file.txt <hdfs_path>

• Download file from hdfs
hdfs dfs –get <hdfs_path>/file.txt

30

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Data Replication

32

 HDFS is designed to store very large files across machines in a
large cluster.

 Each file is a sequence of blocks.

 All blocks in the file except the last are of the same size.

 Blocks are replicated for fault tolerance.

 Block size and replicas are configurable per file.

 The Namenode receives a Heartbeat and a BlockReport from
each DataNode in the cluster.

 The Hertbeat report contains all information about metadata
on each Datanode

 BlockReport contains all the blocks information on a
Datanode.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

• The HDFS namespace is stored by Namenode.

• Namenode uses a transaction log called the EditLog to
record every change that occurs to the filesystem meta
data.

– For example, creating a new file.

– Change replication factor of a file

– EditLog is stored in the Namenode’s local filesystem

• Entire filesystem namespace including mapping of blocks
to files and file system properties is stored in a file
FsImage. Stored in Namenode’s local filesystem.

Filesystem Metadata

33

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Namenode

34

 Keeps image of entire file system namespace and file
Blockmap in memory.

 4GB of local RAM is sufficient to support the above data
structures that represent the huge number of files and
directories.

 When the Namenode starts up it gets the FsImage and
Editlog from its local file system, update FsImage with
EditLog information and then stores a copy of the
FsImage on the filesytstem as a checkpoint.

 Periodic checkpointing is done. So that the system can
recover back to the last checkpointed state in case of a
crash.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Datanode

35

A Datanode stores data in files in its local file
system.

Datanode has no knowledge about HDFS filesystem

 It stores each block of HDFS data in a separate file.

Datanode does not create all files in the same
directory.

When the filesystem starts up it generates a list of
all HDFS blocks and send this report to Namenode:
Blockreport.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

The Communication Protocol

36

 All HDFS communication protocols are layered on top of
the TCP/IP protocol

 A client establishes a connection to a configurable TCP
port on the Namenode machine. It talks ClientProtocol
with the Namenode.

 The Datanodes talk to the Namenode using Datanode
protocol.

 RPC abstraction wraps both ClientProtocol and Datanode
protocol.

 Namenode is simply a server and never initiates a
request; it only responds to RPC requests issued by
DataNodes or clients.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

HDFS maintance (Cli)
• Reports basic filesystem information and statistics.

Optional flags may be used to filter the list of displayed
DataNodes.

hdfs dfsadmin –report

• Re-read the hosts and exclude files to update the set of
Datanodes that are allowed to connect to the
Namenode and those that should be decommissioned
or recommissioned.

hdfs dfsadmin –refreshNodes

37

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

HDFS maintance (Cli)
• HDFS data might not always be be placed uniformly across the DataNode.

One common reason is addition of new DataNodes to an existing cluster.
While placing new blocks (data for a file is stored as a series of blocks),
NameNode considers various parameters before choosing the DataNodes to
receive these blocks. Some of the considerations are:

– Policy to keep one of the replicas of a block on the same node as the node that is
writing the block.

– Need to spread different replicas of a block across the racks so that cluster can
survive loss of whole rack.

– One of the replicas is usually placed on the same rack as the node writing to the
file so that cross-rack network I/O is reduced.

– Spread HDFS data uniformly across the DataNodes in the cluster.

hdfs balancer -policy blockpool

38

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Robustness

• Primary objective of HDFS is to store data
reliably in the presence of failures.

• Three common failures are: Namenode failure,
Datanode failure and network failure.

40

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

DataNode failure and heartbeat
• A network partition can cause a subset of Datanodes to

lose connectivity with the Namenode.

• Namenode detects this condition by the absence of a
Heartbeat message.

• Namenode marks Datanodes without Hearbeat and does
not send any IO requests to them.

• Any data registered to the failed Datanode is not
available to the HDFS.

• Also the death of a Datanode may cause replication
factor of some of the blocks to fall below their specified
value.

41

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Data Integrity
• Consider a situation: a block of data fetched from

Datanode arrives corrupted.
• This corruption may occur because of faults in a

storage device, network faults, or buggy software.
• A HDFS client creates the checksum of every block

of its file and stores it in hidden files in the HDFS
namespace.

• When a clients retrieves the contents of file, it
verifies that the corresponding checksums match.

• If does not match, the client can retrieve the block
from a replica.

42

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Metadata Disk Failure
• FsImage and EditLog are central data structures of HDFS.

• A corruption of these files can cause a HDFS instance to be non-
functional.

• For this reason, a Namenode can be configured to maintain multiple
copies of the FsImage and EditLog.

• Multiple copies of the FsImage and EditLog files are updated
synchronously.

• Meta-data is not data-intensive.

• Prior Hadoop 2.x -> The Namenode could be single point failure:
automatic failover is NOT supported!

• Hadoop bigger > 2.x has HA (High-Availability) Feature
– nfs share

– Journal Node with Zookeeper

43

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Hadoop HA

03/05/2017DISIT Lab (DINFO UNIFI), 03/05/2017

44

• Journal nodes are distributed system to store
edits.

• Active Namenode as a client writes edits to
journal nodes and commit only when its
replicated to all the journal nodes in a
distributed system.

• Standby NN need to read data from edits to be
in sync with Active one.

• ZKFC will make sure that only one Namenode
should be active at a time.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Hadoop HA Cont.
• However, when a failover occurs, it is still possible that the previous Active NameNode

could serve read requests to clients, which may be out of date until that NameNode
shuts down when trying to write to the JournalNodes.

03/05/2017DISIT Lab (DINFO UNIFI), 03/05/2017

45

we should configure fencing methods even when
using the Quorum Journal Manager.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Fencing Method
• Journal manager uses epoc numbers.
• Epoc numbers are integer which always gets increased and have

unique value once assigned. Namenode generate epoc number using
simple algorithm and uses it while sending RPC requests to the QJM.
– When you configure Namenode HA, the first Active Namenode will get

epoc value 1. In case of failover or restart, epoc number will get
increased. The Namenode with higher epoc number is considered as
newer than any Namenode with earlier epoc number.

– Quorum journal manager stores epoc number locally which are called
promised epoc. Whenever JournalNode receives RPC request along with
epoc number from Namenode, it compares the epoch number with
promised epoch. If request is coming from newer node which means epoc
number is greater than promised epoc then it records new epoc number
as promised epoc. If the request is coming from Namenode with older
epoc number, then QJM simply rejects the request.

46

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Data Blocks
• HDFS support write-once-read-many with reads

at streaming speeds.

• A typical block size is 64MB (or even 128 MB).

• A file is chopped into 64MB chunks and stored.

47

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Staging
• A client request to create a file does not reach

Namenode immediately.
• HDFS client caches the data into a temporary file.

When the data reached a HDFS block the client
contacts the Namenode.

• Namenode inserts the filename into its hierarchy
and allocates a data block for it.

• The Namenode responds to the client with the
identity of the Datanode and the destination of the
replicas (Datanodes) for the block.

• Then the client flushes it from its local memory.

48

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Staging (contd.)
• The client sends a message that the file is

closed.

• Namenode proceeds to commit the file for
creation operation into the persistent store.

• If the Namenode dies before file is closed, the
file is lost.

• This client side caching is required to avoid
network congestion;

49

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Replication Pipelining
• When the client receives response from

Namenode, it flushes its block in small pieces
(4K) to the first replica, that in turn copies it to
the next replica and so on.

• Thus data is pipelined from Datanode to the
next.

50

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Application Programming Interface
• HDFS provides Java API for application to use.

• Python access is also used in many applications.

• A C language wrapper for Java API is also
available.

• A HTTP browser can be used to browse the files
of a HDFS instance.

51

http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example-java
http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

An example of read write java program
to hdfs

52

Prerequesite

I. The classpath contains the Hadoop JAR files and its client-side dependencies.

II. The hadoop configuration files on the classpath

III. Log4J on the classpath along with a log4.properties resource, or commons-

logging preconfigured to use a different logging framework.

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

First step
Create a FileSystem instance by passing a new Configuration

object.

Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(conf);

53

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Next ?
Given an input/output file name as string, we construct inFile/outFile Path

objects. Most of the FileSystem APIs accepts Path objects.

Path inFile = new Path(argv[0]);

Path outFile = new Path(argv[1]);

Some sanitazing (Validate the input/output paths before reading/writing.)

if (!fs.exists(inFile))

printAndExit("Input file not found");

if (!fs.isFile(inFile))

printAndExit("Input should be a file");

if (fs.exists(outFile))

printAndExit("Output already exists");

54

http://hadoop.apache.org/core/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/core/api/org/apache/hadoop/fs/Path.html

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Final step
i. Open inFile for reading.

FSDataInputStream in = fs.open(inFile);

ii. Open outFile for writing.
FSDataOutputStream out = fs.create(outFile);

iii. Read from input stream and write to output stream until EOF.
while ((bytesRead = in.read(buffer)) > 0) {

out.write(buffer, 0, bytesRead); }

Close the streams when done.
in.close();

out.close();

55

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Compile

• Mkdir <DIR_for_jar>

• Javac –cp $(hadoop classpath) –d <DIR_for_jar>
<ClassNameFile.java>

• Jar cvfe <Dest>.jar org/disit/ClassName –C
<DIR_for_jar> .

56

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

launch

• Hadoop jar <Dest>.jar

57

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Apache Hadoop

Map Reduce

Parallel Computing@hadoop

58

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Issue

• Fundamental of map reduce in practice!

• Working example bundle with hadoop
documentation: wordcount

59

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Map Reduce paradigm
• MapReduce is the heart of Hadoop. It is this programming paradigm that

allows for massive scalability across hundreds or thousands of servers in a
Hadoop cluster.

• The Map function in the master node takes the input, partitions it into
smaller sub-problems, and distributes them to operational nodes.

• In the Reduce function, the root/master node take the outputs/results of all
the sub-problems, combining them to output the answer to the problem it is
trying to solve.

• See Yahoo! Hadoop tutorial:
https://developer.yahoo.com/hadoop/tutorial/index.html

60

https://developer.yahoo.com/hadoop/tutorial/index.html

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

61
Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Review Map/Reduce Flow

https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Map Reduce paradigm
• Mapper

– map(inputs) → list(key1, value1a)

• Reducer:

– reduce (key1, list (value1a, value1b,…)) → list(key2, value2)

• When the mapping phase has completed, the intermediate (key, value) pairs
must be exchanged (Shuffle & Sort phase) among machines to send all values
with the same key to a single reducer.

62

list(key1, value1b)

[. . . .]

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

63

• Simple word counting program

• Document1.txt Queste sono le slide di Pippo XYZ

• Document2.txt Le slide del corso di Big Data Architecture

• Expected Output:
Queste 1
sono 1
le 1
slide 2
di 2
Pippo 1
XYZ 1
Le 1
del 1
corso 1
Big 1
Data 1
Architecture 1

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

64

• mapper (filename, file-contents):

• for each word in file-contents:

• emit (word, 1)

•

• reducer (word, values):

• sum = 0

• for each value in values:

• sum = sum + value

• emit (word, sum)

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

65

• WordCount.java → simple word counting Java program to be executed
trhough MapReduce in a Hadoop Cluster.

• SampleDoc.txt → Input text file (programma del corso di Sistemi Distribuiti):

Programma del corso
dettagli e slide possono essere ottenuti da social network, smart city.
Overview parte 0, ver:0.6: una vista generale al corso
Introduzione (Parte 1, ver:2.0): (versione 2.4) Cosa sono i sistemi distribuiti, Tecnologie dei sistemi distribuiti, Internet e sua
Evoluzione, Intranet, Penetrazione di internet, Crescita, Sistemi Mobili, Condivisione delle risorse, Web Server and Web Services,
Caratteristiche: Eterogenei, aperti, sicuri, trasparenti, architetture, n-tier.
XML (parte 1b): fondamenti di XML, uso avanzato dell'XML
PHP e Drupal: Parte 1cI, Parte 1cII, architetture web server, programmazione in PHP, costrutti dell linguaggio, operatori, get/post,
esempi; Parte II: Content Management Systems, CMS, moduli, call back, ruoli, etc. WEB services e REST remote invocation via Web
Services and REST architectures, strumenti per i WEB services, verifica, SOAP.

[…]

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

NLP in Hadoop – A Real Case
package org.disit;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper extends Mapper<Object, Text,
Text, IntWritable>{

// [. . .]

}

public static class IntSumReducer extends Reducer<Text, IntWritable,
Text, IntWritable> {

// [. . .]

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

NLP in Hadoop – A Real Case

Map Class

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString()); // Tokenizzazione del file di testo

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}

}

}

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

NLP in Hadoop – A Real Case

Reduce Class

public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get(); /* Somma i valori unitari del conteggio di ogni singola parola
iterando su tutte le parole */

}

result.set(sum);
context.write(key, result);

}

}

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

69

• Make executable jar:

$ javac -cp $(hadoop classpath) -d ./jar WordCount.java

$ jar cvfe wordCount.jar org/disit.WordCount -C ./jar .

• Copy input text file sampleDoc.txt in HDFS: hadoop fs –copyFromLocal

<file_to_be_copied> <HDFS_Folder_Path>

$ hadoop fs –copyFromLocal sampleDoc.txt /users/studenti/

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

70

• Browsing HDFS Filesystem→ http://<dedicatedHueHostIP>:8000

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

71

• Execute the Word Count program (wc.jar) in HDFS:
hadoop jar <jarFile.jar> <input_File_HDFS_Path> <output_HDFS_Folder>

$ hadoop jar wordCount.jar /user/studenti/sampleDoc.txt /user/studenti/output

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

72

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

73

• Monitoring Running Apps and Resoruces→ http://<masterNodeHostIP>:8080

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

74

• Monitoring Running Apps and Resoruces→
http://<dedicatedHueHostIP>:8000/jobbrowser

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

75

• Browsing the Output in HDFS:

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example

76

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Advanced NLP in Hadoop Fashion

77

Main Class Declaration

package principale;

import gate.Corpus;

import gate.creole.ExecutionException;

import gate.creole.ResourceinstantiationException;

import gate.util.GateException;

import java.io.IOException;

import java.io.PrintStream;

import java.net.MalformedURLException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.filecache.DistributedCache;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.JobPriority;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Mapper.Context;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.Reducer.Context;

import org.apache.hadoop.mapreduce.lib.input.TextinputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class KeywordExtraction

{
I I [...]

}

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

public static void main(String[] args) throws Exception

{

Configuration conf = new Configuration();

conf.set("mapred.Job.priority", JobPriority.VERY_HIGH.toString());

Path localGateTreeTaggerApp = new Path("/home/hduser/GATETreeTagger.zip");

Path hdfsGateTreeTaggerApp = new Path("/tmp/GATE-app.zip");

Path inputFile = new Path("/home/hduser/input6.txt");

Path hdfsInputFile = new Path("tmp/inputFile.txt");

FileSystem fs = FileSystem.get(conf);

fs.copyFromLocalFile(localGateTreeTaggerApp, hdfsGateTreeTaggerApp);

DistributedCache.addCacheArchive(hdfsGateTreeTaggerApp.toUri(), conf);

fs.copyFromLocalFile(inputFile, hdfsinputFile);

DistributedCache.addCacheArchive(hdfsinputFile.toUri(), conf);

Job job = new Job(conf);

job.setJarByClass(KeywordExtraction.class);

job.setJobName("Keyword Extraction"):

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

TextinputFormat.addInputPath(job, new Path("/tmp/inputFile.txt"));

TexcOutpucFormat.setOutputPath(job, new Path("mnt/bigdsk/new_data "+ args[0]));

boolean success - job.waitForCompletion(true);

if (success) {

FileSystem.get(job.getConfiguration ()).deleteOnExit(hdfsGateTreeTaggerApp);

}

System.exit(success? 0 : -1);

}

Advanced NLP in Hadoop Fashion

78

Main Implementation

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

public static class Map

extends Mapper<LongWritable, Text, Text, Text>

{

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException

{

try

{

String line = value.toString();

String domainString = "";

String parsedText = "";

if (line.contains(" TEXT:: "))

{

domainString = getHost(line.split(" TEXT:: ")[0].split("URL:: ")[1]);

parsedText = "";

if (!line.endsWith(" TEXT:: ")) {

parsedText - line.split(" TEXT:: ")[1];

}

else {

domainString line;

parsedText = "";

}

context.write(new Text(domainString), new Text(parsedText));

}

catch (IOException e)

{

e.printStackTrace();

}

catch (InterruptedException e)

{

e.printStackTrace();

}

Advanced NLP in Hadoop Fashion

79

Map Class Implementation

URL:: http://www.domain.com TEXT:: this is a text…
URL:: http://dom.org TEXT:: this is another text from…

public String getHost(String url)

{

if ((url == null) || (url.length() == 0)) {

return "";

}

int doubleslash = url.indexOf("//");

if (doubleslash == -1) {

doubleslash = 0;

} else {

doubleslash += 2;

}

int end = url.indexOf('/', doubleslash);

end = end >= 0 ? end : url.length();

int port= url.indexOf(':', doubleslash);

end = (port > 0) && (port < end) ? port : end;

return url.substring(doubleslash, end);

}

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Advanced NLP in Hadoop Fashion

80

Reduce Class Implementation

pub1ic static class Reduce

extends Reducer<Text, Text, Text, NulllWritable>

{

private static GATEApplication gate;

protected void setup()

throws IOException, InterruptedException

{

if (gate == null)

{

Configuration c = context.getConfiguration();

Path[] localCache = DistributedCache.getLocalCacacheArchives(c);

try

{

gate= new GATEApplication(localCache[0].toString(});

}

catch (GateException e)

{

throw new RuntimeException(e);

}

}

}

}

DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Advanced NLP in Hadoop Fashion

81

Reduce Class Implementationpublic void reduce(Text key, Iterable<Text> values, Context context)

throws IOException, Ineerrupted.Exception

{

for (Text v : values)

String parsedText = v.toString();

try

{

String POSKeywords = gate.POSKeywordsAnnotation(parsedText);

SimpleDateFormat sdf = new SimpleDateFormat();

sdf.applyPattern("yyyy-MM-dd");

String dataStr = sdf.format(new Date());

String[] lines = POSKeywords.split(System.getProperty ("line.separator"));

for (int i = 0; i < lines.length; i++) {
if (lines[i] .cont.ai.ns("KPH"))

{

String[] keyphrase = lines(i].split(" KPH");

String st = key + ", " + keyphrase [0] + " (KPH), " + dataStr;

Text t = new Text();
t.set(st);

context.write(t, NullWritable.get());

}

else if ((lines[i].contains("NOM")) || (lines[i].contains("ADJ") || (lines[i].contains("VER")))

{

String[] keyword = lines[i] .split(" ");

String st = key + ", " + keyword[0] + " (" + keyword[1] + ") " + dataStr;

Text t = new Text();

t.set(st);

context.write(t, NullWritable.get());

}

}

}

catch (ResourceInstantiationException localResourceInstantiationException) {}

catch (ExecutionException e)

{

System.out.println(key + "execution exception" + e + "\n");

gate.corpus.clear();

}

catch (MalformedURLException localMalformedURLException) {}

catch (IOEexception e)

{

System.out .println (key + "IO exception" + e + "\n");

gate.corpus.clear();

}

}

