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Agenda

• Prologue

• Apache Hadoop

• Monitoring

• Apache HBASE

• Apache Phoenix

• Case studio
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44

Data Never Sleeps 7.0 2019 Report
https://www.domo.com/learn/data-never-sleeps-7

Data Never Sleeps 5.0 2017 Report
https://www.domo.com/learn/data-never-sleeps-5

https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.domo.com/learn/data-never-sleeps-7
https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.domo.com/learn/data-never-sleeps-5
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Big Data Problem: Twitter Data Analytics

5

Twitter is an example big data source

BI on Twitter & social data is growing in demand

Possibile problems: 

➢ Count the number of tweets containg occurrence of one or 
more  search string (e.g. «pippo pluto», «pippo OR pluto» ) per 

day in a given time interval  

➢ NLP (Keywords, Keyphrase extraction and grammatical analysis 
on natural language text)

➢ Data Analytics…



DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Big Data Problem: Twitter Data Analytics

6

➢ Collect users’ information about quality of services

➢ Event Monitoring - crowd size estimation, voting results, 
predicting TV audience etc.

➢ Early Warning - monitoring critical situations for alerts 
providing (weather alerts, spread of contagious diseases, natural 

disasters etc.)

Many different contexts and application areas:
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Xfactor 9

Pechino Express 2015

Crisci, A., Grasso, V., Nesi, P., Pantaleo, G., Paoli, I., Zaza, I. (2017), “Predicting TV programme 

audience by using Twitter based metrics”, in Multimedia Tools And Applications, pp. 1-30, ISSN:1380-

7501.

Correlazione tra numero di Tweets e Audience TV
Research @ DISIT Lab
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➢ 511,000 Tweets are sent every minute (2019)

➢ In 2016, Twitter has 310 million monthly active users
(almost the same as the U.S. population)

➢ A total of 1.3 billion accounts have been created

➢ Of those, 44% made an account and left before ever 
sending a Tweet

Big Data Problem: Twitter numbers
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What we need ?
• A system which crawls

Twitter for tweets 
matching our queries

• A system storing
collected tweets

• Metric processing 
procedures and 
Analytics

• Visual Analytics of 
processed Big Data 
(Dashboards, graphs
etc…)

9
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Single Host 

I. Develop a data model 

II. Use an RDBMS as data backend

III. Use SQL as query language
wrappred in java or php … 
application

10
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Problem

• Tweets collected grows fast

– > Computation time degrade

– > Reliability and Avalibility depends merely on 
hardware

13
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Single Host
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Agenda

• Prologue

• Apache Hadoop

• Monitoring

• Apache HBASE
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• A computer cluster is a group of linked computers, working
together closely so that in many respects they form a single
computer.

• The components of a cluster are commonly, but not always,
connected to each other through fast local area networks.

• Clusters are usually deployed to improve performance and/or
availability over that provided by a single computer, while
typically being much more cost-effective than single computers
of comparable speed or availability.

16

Cluster
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Cluster (cont.)

17

Cluster consists of:

• Nodes (master + slaves)

• Network

• OS

• Cluster middleware which permits the computation
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Pigsty
• 4 «pigs»

– 3 pigs
• 4GB Ram , dual core, 1TB disk 

– 1 pig
• 8GB ram, dual core, 1TB disk

• 3 Virtual Servers
– 1 vm

• 4GB Ram, dual core, 700GB disk

– 1 vm
• 2GB Ram, Dual core, 700GB disk

– 1 vm
• 1GB Ram, Dual core, 700GB disk

18
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HDFS MapReduce
ProcessingStorage

The Apache™ Hadoop® project develops open-source 
Software for reliable, scalable, distributed computing
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Apache Hadoop 

Storing data @hadoop

20
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Hadoop Ecosystem

21
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HDFS Architecture

22
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HDFS Architecture

23

Namenode

Breplication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/user/data,6. ..

Block ops
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Namenode and Datanodes
 Master/slave architecture

 HDFS cluster consists of a single Namenode, a master server that manages 
the file system namespace and regulates access to files by clients.

 There are a number of DataNodes usually one per node in a cluster.

 The DataNodes manage storage attached to the nodes that they run on.

 HDFS exposes a file system namespace and allows user data to be stored in 
files.

 A file is split into one or more blocks and set of blocks are stored in 
DataNodes.

 DataNodes: serves read, write requests, performs block creation, deletion, 
and replication upon instruction from Namenode.

 New Paradigm: Data Locality →Moving Computation is Cheaper than 
Moving Data 

24
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File system Namespace

25

• Hierarchical file system with directories and files

• Create, remove, move, rename etc.

• Namenode maintains the file system

• Any meta information changes to the file system is 
recorded by the Namenode.

• An application can specify the number of replicas of 
the file needed: replication factor of the file. This 
information is stored in the Namenode.
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Example

26
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Interaction with hdfs

• Web interface

– Web application bundled with hadoop

– Hue

• Console Interface

• Java API

27
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Basic Interface

28
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Advanced Interface

29
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Console Interface: some commands
• Create directory 

hdfs dfs -mkdir <hdfs_path>

• List directory 
hdfs dfs -ls <hdfs_path>

• Delete  file 
hdfs dfs –rm <hdfs_path>
/file

• Delete directory
hdfs dfs –rm –r –f <hdfs_path>

• Upload file to hdfs
hdfs dfs –put file.txt <hdfs_path>

• Download file from hdfs
hdfs dfs –get <hdfs_path>/file.txt

30
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Data Replication

32

 HDFS is designed to store very large files across machines in a 
large cluster.

 Each file is a sequence of blocks.

 All blocks in the file except the last are of the same size.

 Blocks are replicated for fault tolerance.

 Block size and replicas are configurable per file.

 The Namenode receives a Heartbeat and a BlockReport from 
each DataNode in the cluster.

 The Hertbeat report contains all information about metadata 
on each Datanode

 BlockReport contains all the blocks information on a 
Datanode.
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• The HDFS namespace is stored by Namenode.

• Namenode uses a transaction log called the EditLog to 
record every change that occurs to the filesystem meta 
data.

– For example, creating a new file.

– Change replication factor of a file

– EditLog is stored in the Namenode’s local filesystem

• Entire filesystem namespace including mapping of blocks 
to files and file system properties is stored in a file 
FsImage. Stored in Namenode’s local filesystem.

Filesystem Metadata

33
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Namenode

34

 Keeps image of entire file system namespace and file 
Blockmap in memory.

 4GB of local RAM is sufficient to support the above data 
structures that represent the huge number of files and 
directories.

 When the Namenode starts up it gets the FsImage and 
Editlog from its local file system, update FsImage with 
EditLog information and then stores a copy of the 
FsImage on the filesytstem as a checkpoint.

 Periodic checkpointing is done. So that the system can 
recover back to the last checkpointed state in case of a 
crash.
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Datanode

35

A Datanode stores data in files in its local file 
system.

Datanode has no knowledge about HDFS filesystem

 It stores each block of HDFS data in a separate file.

Datanode does not create all files in the same 
directory.

When the filesystem starts up it generates a list of 
all HDFS blocks and send this report to Namenode: 
Blockreport. 
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The Communication Protocol

36

 All HDFS communication protocols are layered on top of 
the TCP/IP protocol

 A client establishes a connection to a configurable TCP 
port on the Namenode machine. It talks ClientProtocol
with the Namenode.

 The Datanodes talk to the Namenode using Datanode 
protocol.

 RPC abstraction wraps both ClientProtocol and Datanode 
protocol.

 Namenode is simply a server and never initiates a 
request; it only responds to RPC requests issued by 
DataNodes or clients. 
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HDFS maintance (Cli)
• Reports basic filesystem information and statistics. 

Optional flags may be used to filter the list of displayed 
DataNodes.

hdfs dfsadmin –report

• Re-read the hosts and exclude files to update the set of 
Datanodes that are allowed to connect to the 
Namenode and those that should be decommissioned 
or recommissioned.

hdfs dfsadmin –refreshNodes

37
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HDFS maintance (Cli)
• HDFS data might not always be be placed uniformly across the DataNode. 

One common reason is addition of new DataNodes to an existing cluster. 
While placing new blocks (data for a file is stored as a series of blocks), 
NameNode considers various parameters before choosing the DataNodes to 
receive these blocks. Some of the considerations are:

– Policy to keep one of the replicas of a block on the same node as the node that is 
writing the block.

– Need to spread different replicas of a block across the racks so that cluster can 
survive loss of whole rack.

– One of the replicas is usually placed on the same rack as the node writing to the 
file so that cross-rack network I/O is reduced.

– Spread HDFS data uniformly across the DataNodes in the cluster.

hdfs balancer -policy blockpool

38
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Robustness 

• Primary objective of HDFS is to store data 
reliably in the presence of failures.

• Three common failures are: Namenode failure, 
Datanode failure and network failure.

40
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DataNode failure and heartbeat
• A network partition can cause a subset of Datanodes to 

lose connectivity with the Namenode.

• Namenode detects this condition by the absence of a 
Heartbeat message.

• Namenode marks Datanodes without Hearbeat and does 
not send any IO requests to them.

• Any data registered to the failed Datanode is not 
available to the HDFS.

• Also the death of a Datanode may cause replication 
factor of some of the blocks to fall below their specified 
value.

41
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Data Integrity
• Consider a situation: a block of data fetched from 

Datanode arrives corrupted.
• This corruption may occur because of faults in a 

storage device, network faults, or buggy software.
• A HDFS client creates the checksum of every block 

of its file and stores it in hidden files in the HDFS 
namespace. 

• When a clients retrieves the contents of file, it 
verifies that the corresponding checksums match.

• If does not match, the client can retrieve the block 
from a replica.

42
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Metadata Disk Failure
• FsImage and EditLog are central data structures of HDFS.

• A corruption of these files can cause a HDFS instance to be non-
functional. 

• For this reason, a Namenode can be configured to maintain multiple 
copies of the FsImage and EditLog.

• Multiple copies of the FsImage and EditLog files are updated 
synchronously.

• Meta-data is not data-intensive.

• Prior Hadoop 2.x -> The Namenode could be single point failure: 
automatic failover is NOT supported!

• Hadoop bigger > 2.x  has HA (High-Availability) Feature 
– nfs share 

– Journal Node with Zookeeper 

43
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Hadoop HA

03/05/2017DISIT Lab (DINFO UNIFI), 03/05/2017

44

• Journal nodes are distributed system to store 
edits.

• Active Namenode as a client writes edits to 
journal nodes and commit only when its 
replicated to all the journal nodes in a 
distributed system. 

• Standby NN need to read data from edits to be 
in sync with Active one. 

• ZKFC will make sure that only one Namenode
should be active at a time. 
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Hadoop HA Cont.
• However, when a failover occurs, it is still possible that the previous Active NameNode

could serve read requests  to clients, which may be out of date until that NameNode
shuts down when trying to write to the JournalNodes. 

03/05/2017DISIT Lab (DINFO UNIFI), 03/05/2017

45

we should configure fencing methods even when 
using the Quorum Journal Manager.
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Fencing Method
• Journal manager uses epoc numbers. 
• Epoc numbers are integer which always gets increased and have 

unique value once assigned. Namenode generate epoc number using 
simple algorithm and uses it while sending RPC requests to the QJM. 
– When you configure Namenode HA, the first Active Namenode will get 

epoc value 1. In case of failover or restart, epoc number will get 
increased. The Namenode with higher epoc number is considered as 
newer than any Namenode with earlier epoc number.

– Quorum journal manager stores epoc number locally which are called 
promised epoc. Whenever JournalNode receives RPC request along with 
epoc number from Namenode, it compares the epoch number with 
promised epoch. If request is coming from newer node which means epoc
number is greater than promised epoc then it records new epoc number 
as promised epoc. If the request is coming from Namenode with older 
epoc number, then QJM simply rejects the request.

46
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Data Blocks
• HDFS support write-once-read-many with reads 

at streaming speeds.

• A typical block size is 64MB (or even 128 MB).

• A file is chopped into 64MB chunks and stored.

47
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Staging
• A client request to create a file does not reach 

Namenode immediately.
• HDFS client caches the data into a temporary file. 

When the data reached a HDFS block the client 
contacts the Namenode.

• Namenode inserts the filename into its hierarchy 
and allocates a data block for it.

• The Namenode responds to the client with the 
identity of the Datanode and the destination of the 
replicas (Datanodes) for the block.

• Then the client flushes it from its local memory.

48
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Staging (contd.)
• The client sends a message that the file is 

closed.

• Namenode proceeds to commit the file for 
creation operation into the persistent store.

• If the Namenode dies before file is closed, the 
file is lost.

• This client side caching is required to avoid 
network congestion; 

49
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Replication Pipelining
• When the client receives response from 

Namenode, it flushes its block in small pieces 
(4K)  to the first replica, that in turn copies it to 
the next replica and so on.

• Thus data is pipelined from Datanode to the 
next.

50
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Application Programming Interface
• HDFS provides Java API for application to use.

• Python access is also used in many applications.

• A C language wrapper for Java API is also 
available.

• A HTTP browser can be used to browse the files 
of a HDFS instance.

51

http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example-java
http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example


DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

An example of read write java program
to hdfs

52

Prerequesite

I. The classpath contains the Hadoop JAR files and its client-side dependencies.

II. The hadoop configuration files on the classpath

III. Log4J on the classpath along with a log4.properties resource, or commons-

logging preconfigured to use a different logging framework.
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First step
Create a FileSystem instance by passing a new Configuration

object. 

Configuration conf = new Configuration(); 

FileSystem fs = FileSystem.get(conf);

53
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Next ?
Given an input/output file name as string, we construct inFile/outFile Path 

objects. Most of the FileSystem APIs accepts Path objects.

Path inFile = new Path(argv[0]); 

Path outFile = new Path(argv[1]);

Some sanitazing (Validate the input/output paths before reading/writing.)

if (!fs.exists(inFile)) 

printAndExit("Input file not found"); 

if (!fs.isFile(inFile)) 

printAndExit("Input should be a file"); 

if (fs.exists(outFile)) 

printAndExit("Output already exists");

54

http://hadoop.apache.org/core/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/core/api/org/apache/hadoop/fs/Path.html
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Final step
i. Open inFile for reading.

FSDataInputStream in = fs.open(inFile);

ii. Open outFile for writing.
FSDataOutputStream out = fs.create(outFile);

iii. Read from input stream and write to output stream until EOF.
while ((bytesRead = in.read(buffer)) > 0) { 

out.write(buffer, 0, bytesRead); }

Close the streams when done.
in.close(); 

out.close();

55
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Compile

• Mkdir <DIR_for_jar>

• Javac –cp $(hadoop classpath) –d <DIR_for_jar> 
<ClassNameFile.java>

• Jar cvfe <Dest>.jar org/disit/ClassName –C 
<DIR_for_jar> .

56
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launch

• Hadoop jar <Dest>.jar

57
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Apache Hadoop

Map Reduce 

Parallel Computing@hadoop

58
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Issue

• Fundamental of map reduce in practice!

• Working example bundle with hadoop
documentation: wordcount

59
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Map Reduce paradigm
• MapReduce is the heart of Hadoop. It is this programming paradigm that

allows for massive scalability across hundreds or thousands of servers in a
Hadoop cluster.

• The Map function in the master node takes the input, partitions it into
smaller sub-problems, and distributes them to operational nodes.

• In the Reduce function, the root/master node take the outputs/results of all
the sub-problems, combining them to output the answer to the problem it is
trying to solve.

• See Yahoo! Hadoop tutorial: 
https://developer.yahoo.com/hadoop/tutorial/index.html

60

https://developer.yahoo.com/hadoop/tutorial/index.html
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61
Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Review Map/Reduce Flow

https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf
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Map Reduce paradigm
• Mapper

– map(inputs) → list(key1, value1a)

• Reducer:

– reduce (key1, list (value1a, value1b,…)) → list(key2, value2)

• When the mapping phase has completed, the intermediate (key, value) pairs
must be exchanged (Shuffle & Sort phase) among machines to send all values
with the same key to a single reducer.

62

list(key1, value1b)

[. . . .]
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Real Word Count Example

63

• Simple word counting program

• Document1.txt Queste sono le slide di Pippo XYZ

• Document2.txt         Le slide del corso di Big Data Architecture

• Expected Output:
Queste 1
sono 1
le 1
slide 2
di 2
Pippo 1
XYZ 1
Le 1
del 1
corso 1
Big 1
Data 1
Architecture 1
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Real Word Count Example
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• mapper (filename, file-contents):

• for each word in file-contents:

• emit (word, 1)

•

• reducer (word, values):

• sum = 0

• for each value in values:

• sum = sum + value

• emit (word, sum)



DISIT Lab, Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies

Department of Information Engineering (DINFO)

http://www.disit.dinfo.unifi.it

Real Word Count Example
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• WordCount.java → simple word counting Java program to be executed
trhough MapReduce in a Hadoop Cluster.

• SampleDoc.txt → Input text file (programma del corso di Sistemi Distribuiti):

Programma del corso
dettagli e slide possono essere ottenuti da social network, smart city.
Overview parte 0, ver:0.6: una vista generale al corso
Introduzione (Parte 1, ver:2.0): (versione 2.4) Cosa sono i sistemi distribuiti, Tecnologie dei sistemi distribuiti, Internet e sua 
Evoluzione, Intranet, Penetrazione di internet, Crescita, Sistemi Mobili, Condivisione delle risorse, Web Server and Web Services, 
Caratteristiche: Eterogenei, aperti, sicuri, trasparenti, architetture, n-tier.
XML (parte 1b): fondamenti di XML, uso avanzato dell'XML
PHP e Drupal: Parte 1cI, Parte 1cII, architetture web server, programmazione in PHP, costrutti dell linguaggio, operatori, get/post, 
esempi; Parte II: Content Management Systems, CMS, moduli, call back, ruoli, etc. WEB services e REST remote invocation via Web 
Services and REST architectures, strumenti per i WEB services, verifica, SOAP.

[…]
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NLP in Hadoop – A Real Case 
package org.disit;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper  extends Mapper<Object, Text, 
Text, IntWritable>{

//  [. . .]

}

public static class IntSumReducer extends Reducer<Text, IntWritable, 
Text, IntWritable> {

//  [. . .]

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}
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NLP in Hadoop – A Real Case 

Map Class

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { 

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());     // Tokenizzazione del file di testo

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}

}

}  
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NLP in Hadoop – A Real Case 

Reduce Class

public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { 

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get(); /* Somma i valori unitari del conteggio di ogni singola parola
iterando su tutte le parole */

}

result.set(sum);
context.write(key, result);

}

}  
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Real Word Count Example
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• Make executable jar:

$ javac -cp $(hadoop classpath) -d ./jar WordCount.java

$ jar cvfe wordCount.jar org/disit.WordCount -C ./jar .

• Copy input text file sampleDoc.txt in HDFS: hadoop fs –copyFromLocal

<file_to_be_copied> <HDFS_Folder_Path>

$ hadoop fs –copyFromLocal sampleDoc.txt /users/studenti/
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Real Word Count Example
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• Browsing HDFS Filesystem→ http://<dedicatedHueHostIP>:8000
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Real Word Count Example

71

• Execute the Word Count program (wc.jar) in HDFS: 
hadoop jar <jarFile.jar> <input_File_HDFS_Path> <output_HDFS_Folder> 

$ hadoop jar wordCount.jar /user/studenti/sampleDoc.txt /user/studenti/output
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Real Word Count Example
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Real Word Count Example
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• Monitoring Running Apps and Resoruces→ http://<masterNodeHostIP>:8080
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Real Word Count Example
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• Monitoring Running Apps and Resoruces→
http://<dedicatedHueHostIP>:8000/jobbrowser
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Real Word Count Example
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• Browsing the Output in HDFS:
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Real Word Count Example
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Advanced NLP in Hadoop Fashion

77

Main Class Declaration

package principale; 

import gate.Corpus;

import gate.creole.ExecutionException;

import gate.creole.ResourceinstantiationException;

import gate.util.GateException;

import java.io.IOException;

import java.io.PrintStream;

import java.net.MalformedURLException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.filecache.DistributedCache;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.JobPriority;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Mapper.Context;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.Reducer.Context;

import org.apache.hadoop.mapreduce.lib.input.TextinputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 

public class KeywordExtraction

{ 
I I [ ... ]

}
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public static void main(String[] args) throws Exception 

{

Configuration conf = new Configuration(); 

conf.set("mapred.Job.priority", JobPriority.VERY_HIGH.toString()); 

Path localGateTreeTaggerApp = new Path("/home/hduser/GATETreeTagger.zip"); 

Path hdfsGateTreeTaggerApp = new Path("/tmp/GATE-app.zip"); 

Path inputFile = new Path("/home/hduser/input6.txt"); 

Path hdfsInputFile = new Path("tmp/inputFile.txt"); 

FileSystem fs = FileSystem.get(conf);

fs.copyFromLocalFile(localGateTreeTaggerApp, hdfsGateTreeTaggerApp); 

DistributedCache.addCacheArchive(hdfsGateTreeTaggerApp.toUri(), conf); 

fs.copyFromLocalFile(inputFile, hdfsinputFile);

DistributedCache.addCacheArchive(hdfsinputFile.toUri(), conf); 

Job job = new Job(conf); 

job.setJarByClass(KeywordExtraction.class); 

job.setJobName("Keyword Extraction"): 

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class); 

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class); 

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class); 

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class); 

TextinputFormat.addInputPath(job, new Path("/tmp/inputFile.txt"));

TexcOutpucFormat.setOutputPath(job, new Path("mnt/bigdsk/new_data "+ args[0])); 

boolean success - job.waitForCompletion(true);

if (success) { 

FileSystem.get(job.getConfiguration ()).deleteOnExit(hdfsGateTreeTaggerApp);

}

System.exit(success? 0  : -1); 

}

Advanced NLP in Hadoop Fashion
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Main Implementation
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public static class Map

extends Mapper<LongWritable, Text, Text, Text> 

{

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException

{

try

{ 

String line = value.toString(); 

String domainString = "";

String parsedText = "";

if (line.contains(" TEXT:: ")) 

{

domainString = getHost(line.split(" TEXT:: ")[0].split("URL:: ")[1]); 

parsedText = "";

if (!line.endsWith(" TEXT:: ")) {

parsedText - line.split(" TEXT:: ")[1]; 

}

else {

domainString line;

parsedText = "";

} 

context.write(new Text(domainString), new Text(parsedText)); 

}

catch (IOException e) 

{ 

e.printStackTrace(); 

}

catch (InterruptedException e) 

{ 

e.printStackTrace();

} 

Advanced NLP in Hadoop Fashion
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Map Class Implementation

URL:: http://www.domain.com TEXT:: this is a text…
URL:: http://dom.org TEXT:: this is another text from…

public String getHost(String url) 

{ 

if ((url == null) || (url.length() == 0)) {

return "";

} 

int doubleslash = url.indexOf("//"); 

if (doubleslash == -1) {

doubleslash = 0;

} else {

doubleslash += 2;

}

int end = url.indexOf('/', doubleslash);

end = end >= 0 ? end : url.length(); 

int port= url.indexOf(':', doubleslash);

end = (port > 0) && (port < end) ?  port : end; 

return url.substring(doubleslash, end);

}
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Reduce Class Implementation

pub1ic static class Reduce

extends Reducer<Text, Text, Text, NulllWritable>

{

private static GATEApplication gate; 

protected void setup()

throws IOException, InterruptedException

{

if (gate == null) 

{ 

Configuration c = context.getConfiguration();

Path[] localCache = DistributedCache.getLocalCacacheArchives(c); 

try

{ 

gate= new GATEApplication(localCache[0].toString(}); 

}

catch (GateException e) 

{ 

throw new RuntimeException(e);

}

}

}

}
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Reduce Class Implementationpublic void reduce(Text key, Iterable<Text> values, Context context) 

throws IOException, Ineerrupted.Exception

{

for (Text v : values) 

String parsedText = v.toString(); 

try

{ 

String POSKeywords = gate.POSKeywordsAnnotation(parsedText); 

SimpleDateFormat sdf = new SimpleDateFormat();

sdf.applyPattern("yyyy-MM-dd"); 

String dataStr = sdf.format(new Date()); 

String[] lines = POSKeywords.split(System.getProperty ("line.separator")); 

for (int i = 0; i < lines.length; i++) { 
if (lines[i] .cont.ai.ns("KPH")) 

{ 

String[] keyphrase = lines(i].split(" KPH"); 

String st = key + ", " + keyphrase [0] + " (KPH), " + dataStr;

Text t = new Text(); 
t.set(st); 

context.write(t, NullWritable.get()); 

}

else if ((lines[i].contains("NOM")) || (lines[i].contains("ADJ") || (lines[i].contains("VER"))) 

{ 

String[] keyword = lines[i] .split(" "); 

String st = key + ", " + keyword[0] + " (" + keyword[1] + ") " + dataStr;

Text t = new Text(); 

t.set(st);

context.write(t, NullWritable.get()); 

}

}

}

catch (ResourceInstantiationException localResourceInstantiationException) {}

catch (ExecutionException e) 

{

System.out.println(key + "execution exception" + e + "\n"); 

gate.corpus.clear(); 

}

catch (MalformedURLException localMalformedURLException) {}

catch (IOEexception e) 

{ 

System.out .println (key + "IO exception" + e + "\n"); 

gate.corpus.clear();

}

}


