

Maintenance and Emergency Management with an Integrated indoor/outdoor Navigation Support

Pierfrancesco Bellini, Paolo Nesi, Matteo Simoncini, Alessandro Tibo

Dipartimento di Ingegneria dell'Informazione, DINFO

Università degli Studi di Firenze Via S. Marta 3, 50139, Firenze, Italy Tel: +39-055-4796567, fax: +39-055-4796363

DISIT Lab

http://www.disit.dinfo.unifi.it alias http://www.disit.org paolo.nesi@unifi.it

Proc. of the 20th International Conference on Distributed Multimedia Systems, Pittsburgh, USA, August 2014

Context

- Complex and large systems of buildings with activities of maintenance and emergency
 - implies movements of people in a non fully known environment.
 - Hospitals, industrial plan, airports, etc.
- **Personnel does not know** the position of every room and service device or tool (POI, Point of Interest) that can be needed to perform activities of rescue or maintenance
- Conditions and positions can change, and teams and people may be not aware about those changes in real time

State of the art

- Digital documentation → Aug. Reality, ...
- Present solutions for navigation
 - Tables and books for navigation
 - RFID, QR codes for making points and devices
 - Paper and wall maps for indoor navigation
 - Navigators for outdoor navigation
 - Pedometer for indoor inertial navigator

• Lack of:

- integrated indoor/outdoor navigation
- Precision in the indoor inertial navigation

Overview and aim of Mob Emerg.

Managing team and singles

 Communication, collaborative work, access to on line documentation, recovering people, Creating Teams, etc.

Moving teams and singles

- pushing them towards meeting points,
 POI, emergency points, recalling them,
 etc.
- help them to get the exists !!

• Aim:

- Reduction of Costs!!
- Reduction of the intervention time!!
- Access to updated information in real time!! (maps, manuals, guidelines, ...)

How they use

- Improving the coordination among personnel (medical and/or for maintenance)
 - Sending instruction to form teams and join other colleagues
 - Signaling about critical conditions and intervention
 - Continuous connection and communication with the central station for monitoring and emergency
- Delivering fresh and updated information
 - Documentation, exits,
 - positions of POI and colleagues

General Architecture

Central Station

- receives alarms/requests for intervention with a suitable protocol
- supports people involved in the event:
 - Providing: event status, viable exits, position of personnel, POIs,
 - Moving people and patients, moving materials, establishing teams
- Sends messages in push via APN, or polling to recall personnel, interrupts, etc.

Recovering emergency status

collaboration discovering aspects

integrated navigation aspects

Mobile Emergency

Mobile Emergency

14.1 14.2 14.3

Indoor / Outdoor Navigation

- Outdoor navigation based on GPS: Google Map,
 Open Street view, etc.
- Indoor navigation based on Markers and Fields:
 - RFID, QR, Laser, Wi-Fi, images,...
- Detection of Indoor/outdoor passages:
 - changes in signal power of GPS
 - presence of markers: QR, NFC (on android)
 - Hyp: Access to specific knowledge and maps integrating outdoor and indoor connected points (doors, windows, etc.)

Get position

QR code aspect

Description and meaning of the QR code for location, an example

Map provided to standard QR readers

"00039": position identifier of QR

"n": control code based on SHA-1

algorithm.

String BarCode:

http://mobmed.axmedis.org/me/ID00

<u>039n</u>

Indoor navigation

- Once marked a point in an indoor Map, a precise inertial navigation support is needed to reach the successive point,
 - for example by using internal sensors of the mobile device:
 - gyroscopes, magnetic compass, accelerometers
 - as an Inertial Navigation System
- → STOA lead to cumulative error in space and time:
 - step counters, dead reckoning
 - traditional Kalman filter

Inertial Navigation

Kalman Filtering, in "short"

$$x_k = Ax_{k-1} + w_{k-1}$$

A = state transition model

$$z_k = Hx_k + v_k$$

H= observation model: true state space into observed space

- · Wk, Vk model the noise of process and measure, respectively
- $p(w_k) \sim N(0, Q_k)$, $p(v_k) \sim N(0, R_k)$, white and normal distrib of noise
- Q and R are covariance of noise on state and measure, respectively

Predict, estimate next:

- state: $\hat{x}_{k|k-1} = A\hat{x}_{k-1|k-1}$
- covariance: $P_{k|k-1} = AP_{k-1|k-1}A^T + Q_k$

Update (a posteriori):

- gain: $K_k = P_{k|k-1}H^T(HP_{k|k-1}H^T + R_k)^{-1}$
- state: $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(z_k H\hat{x}_{k|k-1})$
- covariance: $P_{k|k} = (I K_k H) P_{k|k-1}$

error covariance matrix

 $Q_k \rightarrow 0$ (full trust) $Q_k \rightarrow \infty$ (no trust)

Q can be heuristically estimated or dynamically

notes

- Once derotated
- two Kalman filters have been applied for the accelerations along the x and y axes
- State vector are the positions, velocity and accelerations
- Hyp. acceleration is constant A \rightarrow
- H = (0,0,1) observation model
- $A = \begin{pmatrix} 0 & \Delta T & \frac{1}{2} \Delta T^2 \\ 0 & 1 & \Delta T \end{pmatrix}$ R = 0.00064 measured observing sys. of meas.
- initially supposed to be constant diagonal matrix
- heuristically estimated \rightarrow adaptive

Dear Reckoning vs Kalman filtering

Extended Kalman Filtering

- First Kalman was with costant Q
- Extended Kalman addresses the non linearity
- Adaptive Ext. Kalman adapted Q using
 - Q at the previous time instant and a corrective scale factor (estimated on the basis of the ratio from the innovation covariance and the predicted value)
 - Q reported at Qo when singularity are detected.

Conclusions

- A solution for integrated indoor/outdoor inertial navigation has been proposed, addressing
 - map and knowledge modeling
 - adaptive Extended Kalman filtering
- Compared with state of the art solutions, the proposed solution obtained
 - errors < 20 cm at the end of the path, 40mt.</p>
 - saving 18% in time to reach the target point for team that do not know the area

References

- Levy G, Blumberg N, Kreiss Y, Ash N, Merin O., "Application of information technology within a field hospital deployment following the January 2010 Haiti earthquake disaster", Journal Am Med Inform Assoc. 2010 Nov 1;17(6):626-30.
- José H. Canós, Gustavo Alonso, Javier Jaén, "A Multimedia Approach to the Efficient Implementation and Use of Emergency Plans", IEEE Multimedia, Vol.11, N.3, pp.106-110, 2004.
- Bellini P., I. Bruno, D. Cenni, A. Fuzier, P. Nesi, M. Paolucci, "Mobile Medicine: Semantic Computing Management for Health Care Applications on Desktop and Mobile Devices", Multimedia Tools and Applications, Springer, Vol.58, n.1, pp.41-79, May 2012.
- Protogerakis, M.; Gramatke, A.; Henning, K., "A System Architecture for a Telematic Support System in Emergency Medical Services", ICBBE 2009. 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009, 11-13 June 2009 Page(s):1–4.
- P. Bellini, S. Boncinelli, F. Grossi, M. Mangini, P. Nesi, L. Sequi, "Mobile Emergency: supporting emergency in hospital with mobile devices", Theme Issue Media Tablets & Apps (Guest editors: Pinciroli & Pagliari), JMIR RESEARCH PROTOCOLS, 2013
- Hui Li; Xiangyang Gong, "An approach to integrate outdoor and indoor maps for books navigation on the intelligent mobile device," Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on , vol., no., pp.460,465, 27-29 May 2011.
- Pengfei Zhou, Yuanqing Zheng, Zhenjiang Li, Mo Li, and Guobin Shen. 2012. IODetector: a generic service for indoor outdoor detection. In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems (SenSys '12). ACM, New York, NY, USA, 113-126.
- G.N. DeSouza and A.C. Kak, "Vision for Mobile Robot Navigation: A Survey," IEEE Trans. Pattern Analysis and Machine Intelligence, Feb. 2002, pp. 237–267.
- Schindhelm, C.K.; Gschwandtner, F.; Banholzer, M., "Usability of apple iPhones for inertial navigation systems," Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on , vol., no., pp.1254,1258, 11-14 Sept. 2011
- Kougori, M. and Kurata, T. 2003. Personal Positioning based on walking locomotion Analysis with self-contained sensor and a wearable camera. In Proceedings of ISMAR2003, pp. 103-112.
- Woodman, O. and Harle, R. 2008. Pedestrian Localisation for Indoor Environments. In Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp), Seoul, Korea, ACM 2008, 114-12
- K. Okuda, S. yuan Yeh, C. in Wu, K. hao Chang, and H. hua Chu. The GETA Sandals: A Footprint Location Tracking System. In Workshop on Location- and Context-Awareness (LoCa 2005, also published as LNCS 3479: Location- and Context-Awareness, pages 120-131. Springer, 2005.
- Chang Y.J., Tsai S. K., Wang T. Y and Chou L. D. A novel way finding system based on geo-coded QR codes for individuals with cognitive impairments. In Proceedings of the 9th international ACM SIGACCESS conference on Computers and accessibility, Arizona, USA, 2007, 231 232.
- Gehring S., Löchtefeld M., Schöning J. and KrügerA. Exploring the Usage of an Electronic Compass for Human Navigation in Extreme Environments. Haptimap 2010: Multimodal Location Based Techniques for Extreme Navigation, In conjunction with Pervasive 2010, Helsinki, Finland, 2010.
- Mulloni A., Wagner D., Barakonyi I., Schmalstieg D., Indoor Positioning and Navigation with Camera Phones, IEEE Pervasive Computing, vol. 8, no. 2, pp. 22-31, Apr.-June 2009
- Serra A., Dessi T., Carboni D., Popescu V., Atzori L., Inertial Navigation Systems for User Centric Indoor Applications, in Proceedings of NEM Summit Towards Future Media Internet Barcelona, Spain 2010.
- Kalman, R. E. (1960). "A New Approach to Linear Filtering and Prediction Problems". Journal of Basic Engineering 82 (1): 35–45.
- A. Almagbile, J. Wang, and W. Ding Evaluating the Performances of Adaptive Kalman Filter Methods in GPS/INS Integration, ournal of Global Positioning Systems (2010)
- Shi-Kuo Chang, "A General Framework for Slow Intelligence Systems", International Journal of Software Engineering and Knowledge Engineering, Volume 20, Number 1, February 2010, 1-16.

Thank you!

http://www.disit.dinfo.unifi.it

Paolo Nesi

Dipartimento di Ingegneria dell'Informazione, DINFO Università degli Studi di Firenze Via S. Marta 3, 50139, Firenze, Italy

Tel: +39-055-4796567, fax: +39-055-4796363

DISIT Lab

http://www.disit.dinfo.unifi.it alias http://www.disit.org paolo.nesi@unifi.it