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Abstract

Counting the number of people crossing a public area can be very useful for properly scheduling
the frequency of a service. Mechanical and photosensitive systems, such as rotating tripod gates, short
iron doors, weight-sensitive boards, and photoelectric cells, have often been used for such estimates.
Since these methods are not efficient in critical conditions, vision-based approaches have been provided.
Many of them 1dentify moving objects through a segmentation process. Once the objects are identified,
they are tracked in the sequence of images and counted. These approaches have some drawbacks when
they are used in critical conditions such as for counting the people getting on and off a public bus.
In this paper, a new technique for counting passing people which is based on motion estimation
and spatio-temporal interpretation of the estimated motion i1s proposed, with its implementation on
prototype DSP-based architecture.

Index terms: counting system, people’s flow, feature flow field, spatio-temporal optical flow inter-

pretation.

1 Introduction

Estimating the number of people getting on and off a given place is of interest in many contexts, among
these: public services as buses and metros, to properly scheduling the frequence of service; museums, to
limit the number of people in certain areas; shops and supermarkets, to control the consumers’ interest
with respect certain products, etc..

Technical solutions have often used mechanical systems, such as rotating tripod gates, and short iron
doors. These methods are not recommended when the flow of people high, as usually occurs at the exit
of public places or when people try to catch a bus, because such methods could create a slowing down in
the flow, and this in turn could cause accidents. Alternative solutions are based on photoelectric cells or
weight-sensitive boards placed on the ground, but these solutions are not robust enough when the people
flow is not constant in direction and intensity — e.g., when people arrive under the sensor, stay without

motion for some time instants, and then move in the same or opposite direction afterward.



A different approach for counting moving people for solving the above-mentioned problems is the
use of a microprocessor-based system connected to a camera. Several experiences have been reported in
literature, in which vision systems for counting moving objects are used. Many of these identify moving
objects through a segmentation process. Once the objects are identified, they are tracked in the sequence
of images, and counted according to their behavior.

The segmentation process may be based on either (i) traditional algorithms for image segmentation,

or (ii) the estimation of an approximated projection on the image plane of 3D object motion (usually
called “image flow” or “optical flow” [1], [2]).
The main drawback to the first approach is its high computational complexity due to the fact that edges
must be extracted [3]. Since, the edges which belong to non-moving objects are also detected, it is even
more difficult to select the moving objects. Several different techniques using the second approach have
been proposed: cumulative differences among frames have been used in [4], and [5] to extract the moving
objects’ shape; the clustering of image brightness features having the same optical flow field has been
proposed in [6], [7]. Bayesian and entropy formulations for moving object segmentation starting from the
image sequences [8], or from the motion fields [2], have also been reported in literature.

Most of these motion-based segmentation approaches are not completely satisfactory. Typically, when
different objects having the same velocity are very close or connected to each other, they are recognized
as a single object. In addition, these are strongly sensitive to noise.

As to tracking segmented objects, one problem is related to the fact that shapes representing bodies
of moving people cannot be regarded as rigid objects, and therefore object tracking cannot be simply

based on shape matching.

As an alternative approach, spatio-temporal reasoning has often been applied to analyse pedestrian
and vehicle flows. Several researchers have studied the spatio-temporal surfaces of selected objects under
motion [9], [10], [11]; works based on the Epipolar Plane Image (EPI) [12], [13], [14], [15], [16]. have been

also presented.

Limitations on the use of the above techniques partially depend on the constraining assumptions
that are to be made. Most of the techniques require that the moving objects be completely visible
(i.e., their size is much smaller than the view area of the acquisition system), and that the moving
objects never stop (in order to maintain the conditions for motion-based tracking). In an uncontrolled
outdoor environment both these two assumptions are usually false. A further limitation, regarding most
of the above-mentioned approaches is that they are computationally too complex to be implemented in

a low-cost automatic counting system.

In this paper, we present the principles and experimental proofs of a system for counting moving

people in order to estimate input/output flow on city buses. It is a substantial improvement on the



prototypical version described in [17]. The system proposed is based on optical flow field estimation [1],
[2], and follows a new method for spatio-temporal analysis of optical flow fields, so that the previously
presented problems concerning shape visibility, and behavior of people flow are avoided. The system
was developed in a joint project involving industries in the Florence area and was partially sponsored
by CESVIT (Agency for Technology Development of Industry in the Florence Area). A prototype of a
DSP-based embedded system was developed.

The paper is organized as follows. In Sec.2, the system’s working conditions and general architecture
are discussed. In Sec.3, the fundamentals of optical flow estimation with some techniques for motion
estimation are briefly reviewed. In the same section the algorithm for motion estimation employed in our
system is described, and some experimental results are given. In Sec.4, the features of spatio-temporal
domain are explained, and the algorithm for counting moving people who pass under the image acquisition
system is proposed. In Sec.5, a brief description of system implementation is given. Conclusions are drawn

in Section 6.

2 System Architecture and Working Environment

In this section, the environmental conditions necessary to proper functioning of the system will be dis-

cussed. Moreover, a brief overview of the system architecture will be given.

2.1 System requirements

A vision system for counting people getting on/off a bus must satisfy the following requirements:

1. low-cost. This guarantees wide applicability. This requirement is mainly satisfied by limiting the

computational complexity of the algorithm used for counting people in real-time;

2. robustness with respect to critical conditions in the acquisition system, such as noise in the image

acquisition system, and out-of-focus moving regions;
3. robustness with respect to the optical flow estimation problems discussed in Sec.2;

4. robustness with respect to changes in environmental conditions (i.e., illumination, weather, etc.).
The system must work both under sunlight and the artificial light generated inside the bus after

sunset;

5. robustness with respect to the people size, because the moving people are not completely included

in the image acquisition view area and cannot be considered as rigid objects;

6. robustness with respect to people’s behavior.



4 short term

t-1 e temporal window
image acquisition
system

T

9 MOTION ESTIMATION

long ternm

-1 4-p __ temporol window
T ten
[ f

||II;;éé=====;—-

l
) messages of

SPATIO-TEMPORAL REASONING | —> counting

low fields

Figure 1: The overall process.

2.2 System operation

In our approach requirements expressed in Sec.2.1 are coped through motion estimation with an optical
flow technique and spatio-temporal domain analysis. In Fig.1, the general schema of the counting process
is reported.

Optical flow is obtained by analysing the image sequence on a short-term temporal window. It
provides support for the identification of image features velocity. The collection of optical flow fields
on a long-term temporal window is considered to be the spatio-temporal description of object behavior.
Spatio-temporal domain analysis supports the counting of people getting on/off the bus through tracking
of image features traces. Since this information is too noisy to be automatically interpreted for counting
moving objects, the spatio-temporal domain is smoothed by means of a regularization-based approach
for rejecting noise [18]. Tracking of simple features on a discrete version of the smoothed spatio-temporal
is performed in order to understand if the moving objects observed are getting on/off the bus or are
standing still under the image acquisition view area.

The optical flow estimation technique is expounded in Sec.3. Spatio-temporal domain analysis is



reported in Sec.4.

2.3 Working environment

The working environment is shown in Fig.2. In order to count people getting on and off a bus, two image
acquisition systems (CCD-based cameras) are placed on the bus’s ceiling, just over the stairs, one for
each entrance lane divided by an iron barrier.

It is reasonably assumed that only one person at a time can go through each entrance lane, but several
people can be present at the same time in the view area more or less close to each other (this is what
usually occurs in crowding conditions). These people can be doing different things (such as getting on
or getting off the bus from the same door), either without stopping in the view area or stopping in the
view area (and perhaps swinging), and moving again to get on or off the bus. Since image acquisition
systems are very close to the heads of moving people, the image acquisition view area cannot include the
full shape of the moving objects.

The sequence in Fig.3 shows a person which is getting onto a bus. The stair steps and the metallic
barrier dividing the door into two lanes can be noted. The shapes of the passing people are not completely
focused and are only partially included in the image frames; their form also changes in the sequence of

frames.

3 Optical Flow Estimation

3.1 Fundamentals of optical flow

Optical flow techniques provide a solution for the motion estimation problem starting from the observation
of brightness changes in the image plane [1], [19], [20], [21], [22], [23], [24], [2], [25].

The optical flow is the field of the image brightness feature velocities, and therefore, differs from
the perspective projection of 3D motion on the image plane (i.e., the velocity field) [26], [22], [25].
However, the estimation of an approximate velocity field, such as optical flow, can be very useful for
many applications not requiring precision as in our case.

Most of the techniques described in literature for estimating optical flow fields use the so-called
Optical Flow Constraint (OFC) equation, which derives from the observation that the changes in image
brightness F(z(t),y(t),t) of each point in the image are supposed to be stationary with respect to the
time variable (i.e., dF2/dt = 0):

Fou+ Eyo+ B =0, (1)

in which the abbreviation for partial derivatives of image brightness has been introduced, and u,v cor-

respond to dx/dt, dy/dt, and represent the components of the local velocity vector V along the z and y



Figure 2: A two lane bus door and the view areas.



Figure 3: Typical sequence of images where people are getting on a bus (frames: 2, 6, 10, 14, 18, 22, 26,
30, 34, 38, 42, 46) (image resolution: 128 x 128 pixels).



directions on the image plane, respectively.

In the literature, two main approaches for optical flow estimation are identified: the regularization-
and the multiconstraint-based approaches.

The regularization-based approaches consider optical flow estimation as an ill-posed problem. Solu-
tions are obtained by minimizing a functional where a smoothness constraint is appropriately weighted
to regularize the solution. The functional is minimized by using calculus of variations, and leads to define
iterative solutions [1], [19], [27], [28].

The multiconstraint-based approaches for estimating optical flow fields are based on the fact that it
is usually possible to define more than one constraint equation [29], [30]. They can be used to define
an over-determined system of equations with w and » as unknowns evaluated at the same point in the
image [20], [21], [23], [24], or considering that all the constraint equations which can be defined in the
neighborhood around the estimation point represent the same optical flow field [31], [32], [2], [33]. The
latter approach is commonly referred to as a “multipoint” approach. The overdetermined system of

equations can be solved by using the least-square technique or by other means [18], [2], [34].

In general, optical flow estimations present two main problems.

The first is the presence of discontinuities in the optical flow field: these are due to image brightness
discontinuities which are originated by the presence noise, too crisp patterns on the moving object
surfaces, occlusions between moving objects, and object velocities which are too fast for the measuring
system. Generally speaking, the presence of discontinuities can be overcome (or at least attenuated) by
filtering the image with a 2D or 3D Gaussian smoothing operator at the expense of computational effort
[35].

The second problem is the so-called “problem of aperture”, found in the human vision, too. It derives
from the impossibility to recover the direction of motion univocally if the object is observed through
an aperture which is smaller than the object size. In this context, the references of the object under
observation (such as textures — e.g., patterns) are not enough to make perception of the transversal
component of the object motion, and only the component of apparent velocity which is parallel to VF

can be detected [36], [37].

3.2 Estimation technique

In our counting system we use a multipoint-based technique for optical flow estimation. Robustness with
respect to noise and behavior coherent with the human vision in the presence of aperture conditions have
been discussed by the authors in [38], [37], and [33].

The multipoint approach for optical flow estimation used in the system is based on the fact that,

considering that the optical flow changes follow a law which is approximatively linear, a smoothed solution



for optical flow estimation can be obtained from a linear approximation of the OFC equation in the
neighborhood of the point under consideration [31], [32], [2] (this assumption is valid only if the optical
flow field under observation is smooth). Consequently, a set of similar constraints in the neighborhood
of a pixel yields an over-determined system of equations.

A multipoint solution based on the OFC equation (1) is obtained in the discrete domain at the
finite differences. Thus, for the estimation of velocity components for the pixel under consideration, an

over-determined system of N X N constraint equations in 2 unknowns, is defined,

Et(i,j,t) + Ex(i,j,t)u + El/(i,j,t)v =0.

for all (¢,7) in an N x N neighborhood of the estimation point; where N is the dimension of the image
segment side of the neighboring pixels, and N > 2.

In this technique, a large value of N will lead to smooth optical flow estimations, and loss in resolution
in the estimation of velocity vectors.

The over-determined system of equations is solved by using a least-squares technique. In particular,
after the estimation of image brightness derivatives in each pixel an over-determined system of N x N

OFC equations in 2 unknowns is defined:
AV 4+ K =0,

where V is the optical flow vector with components u, v; A € Rz matrix of coefficients, with a, 1 = F,,
and a,2 = F, ; and K € Ry2 vector with known terms k, = i, for r = 1, N2

The solution of the over-determined system of equations by means of the least-squares technique can
be obtained by using the pseudo-inverse technique, which transforms the above system of equations into

a determined system of equations:

AV + K =0, (2)
where A = ATA, and K = ATK (i.e., AT is the transpose of A). This system of equations can be solved
by using traditional techniques such as LU decomposition, Gauss Jordan, etc.. In our case the system
(2) is composed of 2 equations in 2 unknowns, and the direct solution is used.

Among the N? OFC equations, those which have the F; under a chosen threshold are ignored and
considered as insignificant constraints. Moreover, the constraint equations which have too large values
for £, and P, are also neglected, hypothesising that there is a high probability that such large values

are originated by noise.

3.2.1 Computational complexity

The explicit complexity of the solution proposed for estimating an optical flow field on an M X M image

on a sequential machine is:



M 512 | 256 | 128 | 64 | 32 16 8

OFC-based | 70 | 17.5 | 4.3 | 1.1 | 0.27 | 0.068 | 0.017

Table 1: Millions of floating point operations (MFLOP), with G = 1, N = 5, for different image

dimensions.

C()=3M?*+8N? [MT_drM[MG_dr, (3)

where d = 2(1 + %) is due to the image boundaries, and the first term is due to the estimation of the
partial derivatives of image brightness, which are obtained by using central differences.

The second additive term of (3) is due to the least-squares technique for calculating é@;; and ki (for
i=1,2,and j = 1,2), where (i is the distance between two spatially consecutive estimation points, and
[z] is the greatest integer number lower than z; and the third term is determined by the method for
solving the final system of equations (2). By improving the (& value, less smooth optical flow fields are
obtained.

As can be seen from (3), the asymptotical complexity of the solution proposed is:

2 72

The computational cost in terms of floating point operations is reported in the following table. This
cost is useful in order to evaluate the computational power required for performing optical flow estimation
with the proposed solution. In Tab.l the number of floating point operations (expressed in millions,
MFLOP), with G = 1, and N = 5 as a function of the image dimension M, is reported. In this
case, (M — 6)% velocity vectors are estimated at each time interval. It has been used G = 1, N =5
since these values represent a good compromise between the estimation quality, noise robustness and the
computational cost. For this reason, these values have been used in our experiments.

Tab.2 shows the number of MFLOP per second (MFLOPS) needed to estimate optical flow fields in
real-time — i.e., at video-rate frequency, 25 optical flow estimations per second — as a function of the
dimension of the image, M.

Figures in Tab.2, show that it is possible to implement both the algorithm proposed by using low-cost
processors with a floating point unit such as Analog Device ADSP 21020, Motorola 96000, Intel 1860,
etc., provided that the image size is not too large. The number of MFLOPS should be divided by at

least G if the estimation of velocity vectors is required only every  pixels, in both # and y direction.

10



M 512 | 256 | 128 | 64 | 32 | 16 8

OFC-based | 1750 | 437 | 107 | 27.5 | 6.7 | 1.7 | 0.42

Table 2: Millions of floating point operations for second (MFLOPS), with G = 1 and N = 5, for different

image size.
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Figure 4: Optical flow fields estimated from the sequence of images presented in Fig.2 by using the
proposed solution with G =1 and N =5 (frames: 6 and 18 with resolution of 32 x 32) .

3.2.2 Results of optical flow estimation

In order to test the robustness of the optical flow estimation technique used, several experiments were
performed. Particular attention was given to testing algorithm responses with respect to changes in
illumination and weather, deformations due to non-rigidity of moving objects, and critical effects due to
the out-of-focus and the incomplete vision of the moving objects’ shape in the view area.

Fig.4 illustrates optical flow fields estimated by using the method proposed on the sequence reported
in Fig.3.

As can be seen, the shape of the moving person is not immediately detectable from the optical flow
fields. This is mainly due to the fact that the body of the person is non-completely focused and included
in the view area of the image acquisition system. In addition, the moving object is non-rigid and its
parts are moving at different velocities in intensity and direction. In such conditions, the same moving
object has regions of its shape characterized by contrasting velocities which change from one image to

the successive. Therefore, segmentation process based on the optical flow fields leads to estimate moving

11



object shapes in one image which are strongly different with respect to those obtained in the successive
one, and is not suitable to be used as a basis to track the moving objects.

In addition, optical flow estimation cannot solve the problems related to all moving objects’ behaviors,
as required by a system that performs people counting. These problems can be solved only by long-term
analysis which interprets optical flow fields in time. People’s flow should be interpreted as a flow of
elementary moving particles (each of which has its own optical flow vector) and not as a sequence of
single passages of large objects. Then, the number of passing people should be estimated by knowing
the geometry of the acquisition system (i.e., distance from moving objects, etc., as in our case) and the
dimensions (in terms of projected shape) of moving people. The sum of the flow of particles divided by
the median flow due to a person should give the number of people passed through the door. This subject

is addressed in detail in the next Section.

4 Interpreting Optical Flow Fields in Time

Let V; ;) with components u and v(; ;) be the velocity in an image point with coordinates ¢, j, at

0,5,t)?
the time ¢. In the working environment taken into consideration, the flow of the people is constrained
by metallic barriers along the direction of the y-axis of the image plane (see Sec.2), and therefore, the
motion of interest is only described by the component v(; ;) of optical flow.

The problem of counting moving objects which only move along a direction parallel to the y-axis
has been solved by estimating the flow of the image brightness features in time through a transversal
section S on the image plane, usually called slit [16], [39] (this could be performed by using a simple
linear CCD placed along section 5). By collecting these sections in time, an EPI is obtained [14], [15],
[16]. Unfortunately, this type of spatio-temporal image is not suitable for solving the above-mentioned
problems. In fact, in such images it is not possible to distinguish between two consecutive and fast moving
objects which cross the view area without stopping from a  single object which enters in the view area,
stops its motion and then restarts, which both are common situations when entering a bus. It is evident
that this approach should lead to incorrect results in counting people.

To solve this problem, a different form of spatio-temporal reasoning is proposed, which makes it is

possible to measure feature flow and analyze the spatio-temporal behavior of moving objects.

4.1 Spatio-temporal feature flow domain

The feature flow at time ¢ through a section 5, which is parallel to the z-axis, can be estimated by:

Fsoy = [ V(D)5 da )

where ¥ is the unit vector of the y-axis. In the discrete field, a measure of features’ flow can be obtained

12
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Figure 5: Optical flow field segments in the image plane at time ¢.

by dividing the optical flow field into s horizontal segments (rows along the y-axis, s = [(M — d)/G], see

Fig.5), and by collecting one value for each segment:

B
fon = Zv(m‘,t), for j=1,..,s,

=1
where h is the number of optical flow vectors present in each row of the full optical flow field (h =
[((M — d)/G] = 26 in the optical flow fields presented in Fig.4). This approximation is obtained when the
dimension of each segment along the section S is taken to be unitary, while smoother feature flows can
be computed by considering multiple rows for each estimation of f(; 4.

In Fig.6, the spatio-temporal behavior of f(; ;) for the test sequence of Fig.3 is reported. Positive hills
correspond to people who are getting onto a bus (e.g., around frame 20), while negative hills correspond
to people who are getting off a bus (e.g., around frame 150). In Fig.6, they can be recognized 4 people
who get into a bus (around the 20th, 71st, 110th, and the 120th frame, the last two people are very close
connected to each other (see Fig.7)), and 3 people who are quickly getting off (around the 141th, 150st,
and the 160th frame).

Simply counting peaks in a transversal slice fs ) (e.g., Fig.8 shows a transversal slice of the surface
of Fig.6) of J(j,¢) that are higher than a predefined threshold leads to incorrect results when people stop
in the view area, because each restart produces a new peak. To avoid this problem, and understand what
people are really doing when they cross the view area, it is necessary to analyse a large spatio-temporal
window of a feature flow surface. A threshold for identifying the most prominent feature flow regions can
also be defined on this surface. Fig.9 illustrates the map representing F{; ;) obtained from surface f(;;
of Fig.6 according to:

+1 if f) > Din  “entering”
Finy =9 =1 if fj) < Dow ‘“exiting”
0  otherwise “motionless”;
two different thresholds D;, and D,,; were imposed for the feature flow values generated by inputs and

outputs, respectively. This map was obtained by coloring the entering flow of gray, the absence of flow

13
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Figure 6: The spatio-temporal behavior of f(; ;)

black, and the exiting flow white. The moving objects are identified by transversal segments (referred to
as traces in the rest of the paper) connecting the upper and lower map limits.

Nevertheless, even when the thresholds are imposed carefully, the maps obtained are affected by too
much noise to allow automatic interpretation (see Fig.9). Hence, a smoothing action must be performed
on feature flow f(;) before its transformation into the map, ;. Then, the smoothed map obtained
can be interpreted in order to count the passing people.

Please note, that imposing a threshold on the feature flow f(;; is very different from imposing a
threshold on the optical flow field itself. In the latter case, threshold imposition leads to neglecting
objects which are moving slower than a given value (this condition in not acceptable for the application
proposed, because people usually get on a bus very slowly). On the contrary, threshold imposition on
the feature flow f; ), leads to neglecting objects which generate a feature flow lower than a given value.
This limitation is not restrictive because people’s dimensions do not change significantly, therefore only
the presence of very small objects (even if they are moving very quickly) is neglected.

We observed in our experiments that a suitable value for such thresholds is about 1/3 of h; with
these values, people moving very slowly are detected even when they are very small. Lower values make
noise too prominent, while high threshold values must not be set because they lead to losing people’s
movements, such as when a passing person swings under the view area. Since people usually get off a
bus faster than they get onto it, it is appropriate to impose different values on threshold D;, and Dy

in order to detect the entering and the exiting conditions.

14
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Figure 7: Sequence in which two close people are getting on a bus (frames: 106, 110, 114, 118, 122, 126,
130, 134, 138) (image resolution: 128 x 128).
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Figure 9: Map F(; ) of feature flow obtained with Dy = 10 and Doy = —10 from f(; ), of Fig.6.

In Fig.10 an ideal noise-free map f(;) is illustrated. It has been obtained by using a synthetic image
sequence in which a rigid object crosses the view area. It contains several traces corresponding to typical
object behaviors. The first trace refers to an object entering in the view area and standing still before
going out of it later. The second trace refers to a moving object which stops during the crossing and
then moves again in the same direction. The last trace is very fragmentary, and corresponds to a crossing

object which makes various stops and direction changes (swinging) under the view area.

In order to count people reliably we must be able to manage common ambiguous situations such as
those in which there are two closely connected objects crossing the view area (such as around the 115th

frame in Fig.7). To this end, it could be useful to have a measure of the moving object velocity and

1st trace | 2nd trace | 3rd trace

Figure 10: Typical behaviors in the spatio-temporal feature flow domain.
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Figure 11: Traces of moving objects in the spatio-temporal feature flow domain.

dimension to find out when the trace under observation is due to a slow single object or to two objects
moving at normal velocity.

Object velocity can also be determined from a feature flow map. Fig.11 illustrates a map in which an
object, having constant dimensions, crosses the view area when getting off the bus, at different velocities.
The slope of a trace corresponds to the object’s velocity. The first trace represents an object which crosses
the view area at a velocity equal to 1 pixel/frame, in the second trace the object goes at 2 pixel /frame,
and, in the third it goes at 3 pixel/frame. Thus, considering the acquisition system geometry is possible

to recover the true moving object velocity from a feature flow map.

If the moving objects have a constant area size, [ (i.e., if we assume that do not change their dimension
with time), integrating Fs,) on a generic section 5 the area dimension of the moving object going through
the section S on the image plane is obtained. In the discrete domain the integration is m; 7y = ZtT:to TG0
and thus m(j,T)/l could be interpreted as the number of objects getting on, minus the number of objects
getting off during the time interval T — ¢,.

This technique cannot be used in our working environment, because the objects to be counted do
not have a constant dimension. Moreover, due to the approximations adopted to estimate the first-order
partial derivative of the image brightness, with gradient-based techniques produce reliable estimations of
optical flow only when object displacements between two consecutive frames are not wider than 1 pixel.
Therefore, to have a reliable detection of a moving object crossing the view area, the corresponding trace
in the feature flow domain must be “tracked” in time.

In the following Section the techniques used for smoothing the feature flow domain and tracking traces

with continuous labeling are expounded in detail.

4.2 Smoothing the feature flow domain

The presence of noise on a map can be reduced by using a traditional low-pass filter (e.g., average,
median, etc.) directly on the Fg4), or by using stochastic relaxation with clips [40], [2], [7] on F{g). The
first method does not permit an adequate control of smoothing in different ways along the y- and t-axes

of map, without a strong reduction of the signal level; the latter method could solve these problems but

17



is computationally heavy.
We propose a deterministic relaxation as a solution for these problems, that is a regularization-based

approach: the problem is posed as the minimization of the functional:

//(F W) 4 aB(W, ) 4 BAW? dy d, (5)

where F' = Fgy is the feature flow; W = Wg,) is the smoothed feature flow function; (W,)?, (W;)?

are the smoothness constraints on Ws4); a, § are the weighting factors which are used to handle the
smoothing at different intensities along y- and t-axes.

The functional (5) is minimized by using the calculus of variations [41]; this leads to the partial

derivative equation:
F—W +a*W,, + B*W, =0,

which can be solved by using natural boundary conditions. By discretizing the above equation, by means

of the finite difference method we obtain:

Wiy = Witz = Wii—1/2,0

Wiinwy = Wi, = 2Wi0 + Wii—1)-

Hence, the iterative solution is obtained:

wotl f(njﬁ T a2(W(Z’+Lt) T W] 1,1) )+ BH(W, Jt+1 ) F W(Jt 1)) (6)
(4:1) 202 + 252 1 ’

in which the same finite difference technique is also used along the ¢t axis. In the estimation, the discrete

version of Fg, that is f(; ), is considered, and f&t) = W&t). This smoothing equation is used for

regularizing the function f(; ;. The regularization process is performed on a running window of a map

having a AT X s dimension during its production in time as depicted in Fig.12. Since the regularization

process is performed on the running window, the number of iterations performed on a given neighborhood

is equal to TAT, where [ is the number of iterations preformed at each time instant in the window AT
in time, by using (6).

Fig.13 shows the surface W(;), obtained by smoothing function f(;y), of Fig.6. After smoothing,

thresholding is performed on the W; ;) domain to obtain a discrete map W(;; preserving the main

moving objects’ traces (see Fig.14):

+1 if W(]ﬁ) > Dy
W(]ﬁ) = -1 if W(]ﬁ) < Doyt

0 otherwise
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As can be noted comparing the map of Fig.14 with that of Fig.9, the weighting factors o and 3 are used
to obtain a propagation effect with good regularization along the j-axis and a slight regularization along
the t-axis. In this way, each trace crossing the view area is evidenced. By our experiments we have been
observed that a good effect of smoothing rejecting noise without to loss too much in resolution is to adopt
I=2AT=4,8=02and a =2.

In the regularized map of Fig.14 we can count four objects getting on the bus, at different velocities,
and three objects getting off the bus at a higher velocity (as usually happen when people leave the bus).

After having obtained W(; ;) the detection and tracking of traces on the map make it possible to count

the moving people. Trace tracking is based on continuous labeling as shown in the next subsection.

4.3 Tracking with continuous labeling

The tracking of traces in the map is performed by means of the technique of continuous labeling. Fig.15(a-
c) illustrates the typical result of the continuous labelling technique applied to a fragmented map with
s=9.

Each label is activated when a new arrival from the lower or upper limits appears in the map. The
labeling process (see Fig.15(b)) consists in comparing an old labelled slice of the map, L;), with the
feature flow map, W; ), at time ¢ — AT — 3 at each time instant (see Fig.12). With this mechanism
a trace is followed also when the object stay motionless (see label 1 in the history of the labelled slices
Fig.15(c)), because positions are stored in the slice of labels, L(;). The same label, that has been used
to track a crossing object, can be used again later.

Simple rules based on label movements in L ;), are applied for counting the passing people. In other
words the passage of a person results in the labelled space as a simple segment which connects the lower

with the upper limits of the map, even if the trace was very fragmented.

4.4 Computational complexity

The computational cost of interpreting the optical flow fields at each time instant (considering s = h =

[(M — d)/G]), is given by the summation of distinct sequential costs related to:

o estimating of the feature flow map, f; ), for j = 1,..,s: O([(M — d)/GT*);

e spatio-temporal smoothing of f;;), to obtain W, for j = 1,..;s; this process consists in [

iterations on a temporal window of AT instants: O(JAT [(M — d)/G]);
o thresholding of W(; ), in order to obtain W; ), for j = 1,..,s: O([(M - d)/G]);

e continuous labelling, which consists in comparing the position of the labels in Lj with Wi t—aT—3),

forj=1,..,s: O([(M — d)/G)).

20



(a) several instants of a fragmented

map W(;;_a7—-3), (b) labels associated with the map, (c) history values for the slice of labels, L),
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Figure 15: Typical history of the continuous labelling process:

corresponding to the time instants of (b).



M 512 | 256 | 128 64 32 16 8

OFC-based | 7.13 | 1.92 | 0.549 | 0.168 | 0.054 | 0.017 | 0.003

Table 3: Millions of floating point operations per second (MFLOPS), with G =1, N =5, =2, AT =4,

for different image sizes.

According to this, the asymptotical complexity of optical flow interpretation for counting moving

objects is an
M2
O(E)v

where M /G > IAT because in our experiments: I = 2 and AT = 4 while G =1, N =5, and M = 32.

It can be noted that, the computational complexity of interpretation is negligible compared to the
complexity of optical flow estimation, which is an O(M?N?/G?). This can be seen comparing Tab.2 with
Tab.3, in which the number of MFLOP per second (MFLOPS) needed for interpreting the optical flow

at a video-rate frequency as a function of the dimension of the image are shown.

5 Notes on Hardware Implementation

A general schema of the hardware architecture of our system is shown in Fig.16. The system is based on
a floating point DSP, the Analog Device ADSP 21020, which sustains 66 MFLOPS. In our application,
it processes images of 64 x 64 pixels (i.e., M = 64) with 8 bits per pixel. The image acquisition system
(a CCD with a low cost lens) is directly integrated in the architecture.

Synchronisms used for the CCD are not consistent with neither the standard PAL nor NTSC, but
are custom-defined. The generation of synchronisms is delegated to a specialized hardware (instead of
using the DSP itself), in order to save CPU time and support a regular rate of 20 frames per second.
The analog to digital converter (ADC) receives the signal /STR to start the analog to digital conversion
directly by the synchronism generator, and only when conversion is terminated it sends an interrupt to
the DSP, which reads the pixel value.

An RS232 serial interface communicates the number of people which passed through the supervised
door to the system which controls the vehicle. A reset of the counting can be forced through this port.
In a regular city bus, 6 of these sensors are mounted, one for each door lane. A microprocessor-based
system for each bus collects the information from these and other sensors, and sends these data to the

monitoring center of the town by means of a radio transmitter.
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Figure 16: Physical system architecture. Only the main signals are reported.

6 Conclusions

In this paper, a system for solving the problem of counting people getting on/off a public bus has been
presented; the system is based on optical flow estimation with associated spatio-temporal analysis. The
system proposed can count passing people with high confidence even when they are not completely
focused, and visible within the view area. Moreover, it is very robust with respect to noise due to image
acquisition and people’s behavior.

The low computational effort associated with the used technique allowed its implementation on a

DSP based hardware architecture which is currently under testing.
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