
Chapter 03

Page 128

data from the buffer at its leisure without losing any data from the port. Likewise, a typi-
cal interrupt-driven output system (that gets an interrupt whenever the output device is
ready to accept more data) can remove data from a buffer whenever the peripheral device
is ready to accept new data.

3.6 Laboratory Exercises

In this laboratory you will use the “SIMX86.EXE” program found in the Chapter
Three subdirectory. This program contains a built-in assembler (compiler), debugger, and
interrupter for the x86 hypothetical CPUs. You will learn how to write basic x86 assembly
language programs, assemble (compile) them, modify the contents of memory, and exe-
cute your x86 programs. You will also experiment with memory-mapped I/O,
I/O-mapped input/output, DMA, and polled as well as interrupt-driven I/O systems.

In this set of laboratory exercises you will use the SIMx86.EXE program to enter, edit,
initialize, and emulate x86 programs. This program requires that you install two files in
your WINDOWS\SYSTEM directory. Please see the README.TXT file in the CH3 subdi-
rectory for more details.

3.6.1 The SIMx86 Program – Some Simple x86 Programs

To run the SIMx86 program double click on its icon or choose run from the Windows
file menu and enter the pathname for SIMx86. The SIMx86 program consists of three main
screen that you can select by clicking on the Editor, Memory, or Emulator notebook tabs in
the window. By default, SIMx86 opens the Editor screen. From the Editor screen you can
edit and assemble x86 programs; from Memory screen you can view and modify the con-
tents of memory; from the Emulator screen you execute x86 programs and view x86 pro-
grams in memory.

The SIMx86 program contains two menu items: File and Edit. These are standard Win-
dows menus so there is little need to describe their operation except for two points. First,
the New, Open, Save, and Save As items under the file menu manipulate the data in the
text editor box on the Editor screen, they do not affect anything on the other screens. Sec-
ond, the Print menu item in the File menu prints the source code appearing in the text edi-
tor if the Editor screen is active, it prints the entire form if the Memory or Emulator
screens are active.

To see how the SIMx86 program operates, switch to the Editor screen (if you are not
already there). Select “Open” from the File menu and choose “EX1.X86” from the Chapter
Three subdirectory. That file should look like the following:

mov ax, [1000]
mov bx, [1002]
add ax, bx
sub ax, 1
mov bx, ax
add bx, ax
add ax, bx
halt

This short code sequence adds the two values at location 1000 and 1002, subtracts one
from their sum, and multiplies the result by three ((ax + ax) + ax) = ax*3), leaving the result
in ax and then it halts.

On the Editor screen you will see three objects: the editor window itself, a box that
holds the “Starting Address,” and an “Assemble” button. The “Starting Address” box
holds a hexadecimal number that specifies where the assembler will store the machine
code for the x86 program you write with the editor. By default, this address is zero. About
the only time you should change this is when writing interrupt service routines since the
default reset address is zero. The “Assemble” button directs the SIMx86 program to con-

System Organization

Page 129

vert your assembly language source code into x86 machine code and store the result
beginning at the Starting Address in memory. Go ahead and press the “Assemble” button
at this time to assemble this program to memory.

Now press the “Memory” tab to select the memory screen. On this screen you will see
a set of 64 boxes arranged as eight rows of eight boxes. To the left of these eight rows you
will see a set of eight (hexadecimal) memory addresses (by default, these are 0000, 0008,
0010, 0018, 0020, 0028, 0030, and 0038). This tells you that the first eight boxes at the top of
the screen correspond to memory locations 0, 1, 2, 3, 4, 5, 6, and 7; the second row of eight
boxes correspond to locations 8, 9, A, B, C, D, E, and F; and so on. At this point you should
be able to see the machine codes for the program you just assembled in memory locations
0000 through 000D. The rest of memory will contain zeros.

The memory screen lets you look at and possibly modify 64 bytes of the total 64K
memory provided for the x86 processors. If you want to look at some memory locations
other than 0000 through 003F, all you need do is edit the first address (the one that cur-
rently contains zero). At this time you should change the starting address of the memory
display to 1000 so you can modify the values at addresses 1000 and 1002 (remember, the
program adds these two values together). Type the following values into the correspond-
ing cells: at address 1000 enter the value 34, at location 1001 the value 12, at location 1002
the value 01, and at location 1003 the value 02. Note that if you type an illegal hexadecimal
value, the system will turn that cell red and beep at you.

By typing an address in the memory display starting address cell, you can look at or
modify locations almost anywhere in memory. Note that if you enter a hexadecimal
address that is not an even multiple of eight, the SIMx86 program disable up to seven cells
on the first row. For example, if you enter the starting address 1002, SIMx86 will disable
the first two cells since they correspond to addresses 1000 and 1001. The first active cell is
1002. Note the SIMx86 reserves memory locations FFF0 through FFFF for mem-
ory-mapped I/O. Therefore, it will not allow you to edit these locations. Addresses FFF0
through FFF7 correspond to read-only input ports (and you will be able to see the input
values even though SIMx86 disables these cells). Locations FFF8 through FFFF are
write-only output ports, SIMx86 displays garbage values if you look at these locations.

On the Memory page along with the memory value display/edit cells, there are two
other entry cells and a button. The “Clear Memory” button clears memory by writing
zeros throughout. Since your program’s object code and initial values are currently in
memory, you should not press this button. If you do, you will need to reassemble your
code and reenter the values for locations 1000 through 1003.

The other two items on the Memory screen let you set the interrupt vector address
and the reset vector address. By default, the reset vector address contains zero. This means
that the SIMx86 begins program execution at address zero whenever you reset the emula-
tor. Since your program is currently sitting at location zero in memory, you should not
change the default reset address.

The “Interrupt Vector” value is FFFF by default. FFFF is a special value that tells
SIMx86 “there is no interrupt service routine present in the system, so ignore all inter-
rupts.” Any other value must be the address of an ISR that SIMx86 will call whenever an
interrupt occurs. Since the program you assembled does not have an interrupt service rou-
tine, you should leave the interrupt vector cell containing the value FFFF.

Finally, press the “Emulator” tab to look at the emulator screen. This screen is much
busier than the other two. In the upper left hand corner of the screen is a data entry box
with the label IP. This box holds the current value of the x86 instruction pointer register.
Whenever SIMx86 runs a program, it begins execution with the instruction at this address.
Whenever you press the reset button (or enter SIMx86 for the first time), the IP register
contains the value found in the reset vector. If this register does not contain zero at this
point, press the reset button on the Emulator screen to reset the system.

Immediately below the ip value, the Emulator page disassembles the instruction found
at the address in the ip register. This is the very next instruction that SIMx86 will execute
when you press the “Run” or “Step” buttons. Note that SIMx86 does not obtain this

Chapter 03

Page 130

instruction from the source code window on the Editor screen. Instead, it decodes the
opcode in memory (at the address found in ip) and generates this string itself. Therefore,
there may be minor differences between the instruction you wrote and the instruction
SIMx86 displays on this page. Note that a disassembled instruction contains several
numeric values in front of the actual instruction. The first (four-digit) value is the memory
address of that instruction. The next pair of digits (or the next three pairs of digits) are the
opcodes and possible instruction operand values. For example, the mov ax, [1000] instruc-
tion’s machine code is C6 00 10 since these are the three sets of digits appearing at this
point.

Below the current disassembled instruction, SIMx86 displays 15 instructions it disas-
sembles. The starting address for this disassemble is not the value in the ip register.
Instead, the value in the lower right hand corner of the screen specifies the starting disas-
sembly address. The two little arrows next to the disassembly starting address let you
quickly increment or decrement the disassembly starting address. Assuming the starting
address is zero (change it to zero if it is not), press the down arrow. Note that this incre-
ments the starting address by one. Now look back at the disassembled listing. As you can
see, pressing the down arrow has produced an interesting result. The first instruction (at
address 0001) is “****”. The four asterisks indicate that this particular opcode is an illegal
instruction opcode. The second instruction, at address 0002, is not ax. Since the program
you assembled did not contain an illegal opcode or a not ax instruction, you may be won-
dering where these instructions came from. However, note the starting address of the first
instruction: 0001. This is the second byte of the first instruction in your program. In fact,
the illegal instruction (opcode=00) and the not ax instruction (opcode=10) are actually a
disassembly of the mov ax, [1000] two-byte operand. This should clearly demonstrate a
problem with disassembly – it is possible to get “out of phase” by specify a starting
address that is in the middle of a multi-byte instruction. You will need to consider this
when disassembling code.

In the middle of the Emulator screen there are several buttons: Run, Step, Halt, Inter-
rupt, and Reset (the “Running” box is an annunciator, not a button). Pressing the Run but-
ton will cause the SIMx86 program to run the program (starting at the address in the ip
register) at “full” speed. Pressing the Step button instructs SIMx86 to execute only the
instruction that ip points at and then stop. The Halt button, which is only active while a
program is running, will stop execution. Pressing the Interrupt button generates an inter-
rupt and pressing the Reset button resets the system (and halts execution if a program is
currently running). Note that pressing the Reset button clears the x86 registers to zero and
loads the ip register with the value in the reset vector.

The “Running” annunciator is gray if SIMx86 is not currently running a program. It
turns red when a program is actually running. You can use this annunciator as an easy
way to tell if a program is running if the program is busy computing something (or is in
an infinite loop) and there is no I/O to indicate program execution.

The boxes with the ax, bx, cx, and dx labels let you modify the values of these registers
while a program is not running (the entry cells are not enabled while a program is actually
running). These cells also display the current values of the registers whenever a program
stops or between instructions when you are stepping through a program. Note that while
a program is running the values in these cells are static and do not reflect their current val-
ues.

The “Less” and “Equal” check boxes denote the values of the less than and equal
flags. The x86 cmp instruction sets these flags depending on the result of the comparison.
You can view these values while the program is not running. You can also initialize them
to true or false by clicking on the appropriate box with the mouse (while the program is
not running).

In the middle section of the Emulator screen there are four “LEDs” and four “toggle
switches.” Above each of these objects is a hexadecimal address denoting their mem-
ory-mapped I/O addresses. Writing a zero to a corresponding LED address turns that
LED “off” (turns it white). Writing a one to a corresponding LED address turns that LED

System Organization

Page 131

“on” (turns it red). Note that the LEDs only respond to bit zero of their port addresses.
These output devices ignore all other bits in the value written to these addresses.

The toggle switches provide four memory-mapped input devices. If you read the
address above each switch SIMx86 will return a zero if the switch is off. SIMx86 will
return a one if the switch is in the on position. You can toggle a switch by clicking on it
with the mouse. Note that a little rectangle on the switch turns red if the switch is in the
“on” position.

The two columns on the right side of the Emulate screen (“Input” and “Output”) dis-
play input values read with the get instruction and output values the put instruction
prints.

For this first exercise, you will use the Step button to single step through each of the
instructions in the EX1.x86 program. First, begin by pressing the Reset button22. Next,
press the Step button once. Note that the values in the ip and ax registers change. The ip
register value changes to 0003 since that is the address of the next instruction in memory,
ax’s value changed to 1234 since that’s the value you placed at location 1000 when operat-
ing on the Memory screen. Single step through the remaining instructions (by repeatedly
pressing Step) until you get the “Halt Encountered” dialog box.

For your lab report: explain the results obtained after the execution of each instruc-
tion. Note that single-stepping through a program as you’ve done here is an excellent way
to ensure that you fully understand how the program operates. As a general rule, you
should always single-step through every program you write when testing it.

3.6.2 Simple I/O-Mapped Input/Output Operations

Go to the Editor screen and load the EX2.x86 file into the editor. This program intro-
duces some new concepts, so take a moment to study this code:

mov bx, 1000
a: get

mov [bx], ax
add bx, 2
cmp ax, 0
jne a

mov cx, bx
mov bx, 1000
mov ax, 0

b: add ax, [bx]
add bx, 2
cmp bx, cx
jb b

put
halt

The first thing to note are the two strings “a:” and “b:” appearing in column one of the
listing. The SIMx86 assembler lets you specify up to 26 statement labels by specifying a sin-
gle alphabetic character followed by a colon. Labels are generally the operand of a jump
instruction of some sort. Therefore, the “jne a” instruction above really says “jump if not
equal to the statement prefaced with the ‘a:’ label” rather than saying “jump if not equal to
location ten (0Ah) in memory.”

Using labels is much more convenient than figuring out the address of a target
instruction manually, especially if the target instruction appears later in the code. The
SIMx86 assembler computes the address of these labels and substitutes the correct address

22. It is a good idea to get in the habit of pressing the Reset button before running or stepping through any pro-
gram.

Chapter 03

Page 132

for the operands of the jump instructions. Note that you can specify a numeric address in
the operand field of a jump instruction. However, all numeric addresses must begin with
a decimal digit (even though they are hexadecimal values). If your target address would
normally begin with a value in the range A through F, simply prepend a zero to the num-
ber. For example, if “jne a” was supposed to mean “jump if not equal to location 0Ah” you
would write the instruction as “jne 0a”.

This program contains two loops. In the first loop, the program reads a sequence of
values from the user until the user enters the value zero. This loop stores each word into
successive memory locations starting at address 1000h. Remember, each word read by the
user requires two bytes; this is why the loop adds two to bx on each iteration.

The second loop in this program scans through the input values and computes their
sum. At the end of the loop, the code prints the sum to the output window using the put
instruction.

For your lab report: single-step through this program and describe how each instruc-
tion works. Reset the x86 and run this program at full speed. Enter several values and
describe the result. Discuss the get and put instruction. Describe why they do
I/O-mapped input/output operations rather than memory-mapped input/output opera-
tions.

3.6.3 Memory Mapped I/O

From the Editor screen, load the EX3.x86 program file. That program takes the follow-
ing form (the comments were added here to make the operation of this program clearer):

a: mov ax, [fff0]
mov bx, [fff2]

mov cx, ax ;Computes Sw0 and Sw1
and cx, bx
mov [fff8], cx

mov cx, ax ;Computes Sw0 or Sw1
or cx, bx
mov [fffa], cx

mov cx, ax ;Computes Sw0 xor Sw1
mov dx, bx ;Remember, xor = AB’ + A’B
not cx
not bx
and cx, bx
and dx, ax
or cx, dx
mov [fffc], cx

not cx ;Computes Sw0 = Sw1
mov [fffe], cx ;Remember, equals = not xor

mov ax, [fff4] ;Read the third switch.
cmp ax, 0 ;See if it’s on.
je a ;Repeat this program while off.
halt

Locations 0FFF0h, 0FFF2h, and 0FFF4h correspond to the first three toggle switches
on the Execution page. These are memory-mapped I/O devices that put a zero or one into
the corresponding memory locations depending upon whether the toggle switch is in the
on or off state. Locations 0FFF8h, 0FFFAh, 0FFFCh, and 0FFFEh correspond to the four
LEDs. Writing a zero to these locations turns the corresponding LED off, writing a one
turns it on.

System Organization

Page 133

This program computes the logical and, or, xor, and xnor (not xor) functions for the
values read from the first two toggle switches. This program displays the results of these
functions on the four output LEDs. This program reads the value of the third toggle
switch to determine when to quit. When the third toggle switch is in the on position, the
program will stop.

For your lab report: run this program and cycle through the four possible combina-
tions of on and off for the first two switches. Include the results in your lab report.

3.6.4 DMA Exercises

In this exercise you will start a program running (EX4.x86) that examines and oper-
ates on values found in memory. Then you will switch to the Memory screen and modify
values in memory (that is, you will directly access memory while the program continues
to run), thus simulating a peripheral device that uses DMA.

The EX4.x86 program begins by setting memory location 1000h to zero. Then it loops
until one of two conditions is met – either the user toggles the FFF0 switch or the user
changes the value in memory location 1000h. Toggling the FFF0 switch terminates the pro-
gram. Changing the value in memory location 1000h transfers control to a section of the
program that adds together n words, where n is the new value in memory location 1000h.
The program sums the words appearing in contiguous memory locations starting at
address 1002h. The actual program looks like the following:

d: mov cx, 0 ;Clear location 1000h before we
mov [1000], cx ; begin testing it.

; The following loop checks to see if memory location 1000h changes or if
; the FFF0 switch is in the on position.

a: mov cx, [1000] ;Check to see if location 1000h
cmp cx, 0 ; changes. Jump to the section that
jne c ; sums the values if it does.

mov ax, [fff0] ;If location 1000h still contains zero,
cmp ax, 0 ; read the FFF0 switch and see if it is
je a ; off. If so, loop back. If the switch
halt ; is on, quit the program.

; The following code sums up the “cx” contiguous words of memory starting at
; memory location 1002. After it sums up these values, it prints their sum.

c: mov bx, 1002 ;Initialize BX to point at data array.
mov ax, 0 ;Initialize the sum

b: add ax, [bx] ;Sum in the next array value.
add bx, 2 ;Point BX at the next item in the array.
sub cx, 1 ;Decrement the element count.
cmp cx, 0 ;Test to see if we’ve added up all the
jne b ; values in the array.

put ;Print the sum and start over.
jmp d

Load this program into SIMx86 and assemble it. Switch to the Emulate screen, press
the Reset button, make sure the FFF0 switch is in the off position, and then run the pro-
gram. Once the program is running switch to the memory screen by pressing the Memory
tab. Change the starting display address to 1000. Change the value at location 1000h to 5.
Switch back to the emulator screen. Assuming memory locations 1002 through 100B all
contain zero, the program should display a zero in the output column.

Switch back to the memory page. What does location 1000h now contain? Change the
L.O. bytes of the words at address 1002, 1004, and 1006 to 1, 2, and 3, respectively. Change

Chapter 03

Page 134

the value in location 1000h to three. Switch to the Emulator page. Describe the output in
your lab report. Try entering other values into memory. Toggle the FFF0 switch when you
want to quit running this program.

For your lab report: explain how this program uses DMA to provide program input.
Run several tests with different values in location 1000h and different values in the data
array starting at location 1002. Include the results in your report.

For additional credit: Store the value 12 into memory location 1000. Explain why the
program prints two values instead of just one value.

3.6.5 Interrupt Driven I/O Exercises

In this exercise you will load two programs into memory: a main program and an
interrupt service routine. This exercise demonstrates the use of interrupts and an interrupt
service routine.

The main program (EX5a.x86) will constantly compare memory locations 1000h and
1002h. If they are not equal, the main program will print the value of location 1000h and
then copy this value to location 1002h and repeat this process. The main program repeats
this loop until the user toggles switch FFF0 to the on position. The code for the main pro-
gram is the following:

a: mov ax, [1000] ;Fetch the data at location 1000h and
cmp ax, [1002] ; see if it is the same as location
je b ; 1002h. If so, check the FFF0 switch.
put ;If the two values are different, print
mov [1002], ax ; 1000h’s value and make them the same.

b: mov ax, [fff0] ;Test the FFF0 switch to see if we
cmp ax, 0 ; should quit this program.
je a
halt

The interrupt service routine (EX5b.x86) sits at location 100h in memory. Whenever an
interrupt occurs, this ISR simply increments the value at location 1000h by loading this
value into ax, adding one to the value in ax, and then storing this value back to location
1000h. After these instructions, the ISR returns to the main program. The interrupt service
routine contains the following code:

mov ax, [1000] ;Increment location 1000h by one and
add ax, 1 ; return to the interrupted code.
mov [1000], ax
iret

You must load and assemble both files before attempting to run the main program.
Begin by loading the main program (EX5a.x86) into memory and assemble it at address
zero. Then load the ISR (EX5b.x86) into memory, set the Starting Address to 100, and then
assemble your code. Warning: if you forget to change the starting address you will wipe out
your main program when you assemble the ISR. If this happens, you will need to repeat this proce-
dure from the beginning.

After assembling the code, the next step is to set the interrupt vector so that it contains
the address of the ISR. To do this, switch to the Memory screen. The interrupt vector cell
should currently contain 0FFFFh (this value indicates that interrupts are disabled).
Change this to 100 so that it contains the address of the interrupt service routine. This also
enables the interrupt system.

Finally, switch to the Emulator screen, make sure the FFF0 toggle switch is in the off
position, reset the program, and start it running. Normally, nothing will happen. Now
press the interrupt button and observe the results.

System Organization

Page 135

For your lab report: describe the output of the program whenever you press the inter-
rupt button. Explain all the steps you would need to follow to place the interrupt service
routine at address 2000h rather than 100h.

For additional credit: write your own interrupt service routine that does something
simple. Run the main program and press the interrupt button to test your code. Verify that
your ISR works properly.

3.6.6 Machine Language Programming & Instruction Encoding Exercises

To this point you have been creating machine language programs with SIMx86’s
built-in assembler. An assembler is a program that translates an ASCII source file contain-
ing textual representations of a program into the actual machine code. The assembler pro-
gram saves you a considerable amount of work by translating human readable
instructions into machine code. Although tedious, you can perform this translation your-
self. In this exercise you will create some very short machine language programs by encod-
ing the instructions and entering their hexadecimal opcodes into memory on the memory
screen.

Using the instruction encodings found in Figure 3.19, Figure 3.20, Figure 3.21, and
Figure 3.22, write the hexadecimal values for the opcodes beside each of the following
instructions:

You can assume that the program starts at address zero and, therefore, label “a” will be at
address 0003 since the mov cx, 0 instruction is three bytes long.

 m ov cx , 0

a: get

 put

 a dd ax , ax

 put

 a dd ax , ax

 put

 a dd ax , ax

 put

 a dd cx , 1

 c mp cx , 4

 jb a

 halt

Binary Opcode Hex Ope rand

Chapter 03

Page 136

For your lab report: enter the hexadecimal opcodes and operands into memory start-
ing at location zero using the Memory editor screen. Dump these values and include them
in your lab report. Switch to the Emulator screen and disassemble the code starting at
address zero. Verify that this code is the same as the assembly code above. Print a copy of
the disassembled code and include it in your lab report. Run the program and verify that
it works properly.

3.6.7 Self Modifying Code Exercises

In the previous laboratory exercise, you discovered that the system doesn’t really dif-
ferentiate data and instructions in memory. You were able to enter hexadecimal data and
the x86 processor treats it as a sequence of executable instructions. It is also possible for a
program to store data into memory and then execute it. A program is self-modifying if it
creates or modifies some of the instructions it executes.

Consider the following x86 program (EX6.x86):

sub ax, ax
mov [100], ax

a: mov ax, [100]
cmp ax, 0
je b
halt

b: mov ax, 00c6
mov [100], ax
mov ax, 0710
mov [102], ax
mov ax, a6a0
mov [104], ax
mov ax, 1000
mov [106], ax
mov ax, 8007
mov [108], ax
mov ax, 00e6
mov [10a], ax
mov ax, 0e10
mov [10c], ax
mov ax, 4
mov [10e], ax
jmp 100

This program writes the following code to location 100 and then executes it:

mov ax, [1000]
put
add ax, ax
add ax, [1000]
put
sub ax, ax
mov [1000], ax
jmp 0004 ;0004 is the address of the A: label.

For your lab report: execute the EX7.x86 program and verify that it generates the
above code at location 100.

Although this program demonstrates the principle of self-modifying code, it hardly
does anything useful. As a general rule, one would not use self-modifying code in the
manner above, where one segment writes some sequence of instructions and then exe-
cutes them. Instead, most programs that use self-modifying code only modify existing
instructions and often only the operands of those instructions.

System Organization

Page 137

Self-modifying code is rarely found in modern assembly language programs. Pro-
grams that are self-modifying are hard to read and understand, difficult to debug, and
often unstable. Programmers often resort to self-modifying code when the CPU’s architec-
ture lacks sufficient power to achieve a desired goal. The later Intel 80x86 processors do
not lack for instructions or addressing modes, so it is very rare to find 80x86 programs that
use self-modifying code23. The x86 processors, however, have a very weak instruction set,
so there are actually a couple of instances where self-modifying code may prove useful.

A good example of an architectural deficiency where the x86 is lacking is with respect
to subroutines. The x86 instruction set does not provide any (direct) way to call and return
from a subroutine. However, you can easily simulate a call and return using the jmp
instruction and self-modifying code. Consider the following x86 “subroutine” that sits at
location 100h in memory:

; Integer to Binary converter.
; Expects an unsigned integer value in AX.
; Converts this to a string of zeros and ones storing this string of
; values into memory starting at location 1000h.

mov bx, 1000 ;Starting address of string.
mov cx, 10 ;16 (10h) digits in a word.

a: mov dx, 0 ;Assume current bit is zero.
cmp ax, 8000 ;See if AX’s H.O. bit is zero or one.
jb b ;Branch if AX’x H.O. bit is zero.
mov dx, 1 ;AX’s H.O. bit is one, set that here.

b: mov [bx], dx ;Store zero or one to next string loc.
add bx, 1 ;Bump BX up to next string location.
add ax, ax ;AX = AX *2 (shift left operation).
sub cx, 1 ;Count off 16 bits.
cmp cx, 0 ;Repeat 16 times.
ja a
jmp 0 ;Return to caller via self-mod code.

The only instruction that a program will modify in this subroutine is the very last jmp
instruction. This jump instruction must transfer control to the first instruction beyond the
jmp in the calling code that transfers control to this subroutine; that is, the caller must store
the return address into the operand of the jmp instruction in the code above. As it turns
out, the jmp instruction is at address 120h (assuming the code above starts at location
100h). Therefore, the caller must store the return address into location 121h (the operand
of the jmp instruction). The following sample “main” program makes three calls to the
“subroutine” above:

mov ax, 000c ;Address of the BRK instr below.
mov [121], ax ;Store into JMP as return address.
mov ax, 1234 ;Convert 1234h to binary.
jmp 100 ;”Call” the subroutine above.
brk ;Pause to let the user examine 1000h.

mov ax, 0019 ;Address of the brk instr below.
mov [121], ax
mov ax, fdeb ;Convert 0FDEBh to binary.
jmp 100
brk

mov ax, 26 ;Address of the halt instr below.
mov [121], ax
mov ax, 2345 ;Convert 2345h to binary.
jmp 100

halt

23. Many viruses and copy protection programs use self modifying code to make it difficult to detect or bypass
them.

Chapter 03

Page 138

Load the subroutine (EX7s.x86) into SIMx86 and assemble it starting at location 100h.
Next, load the main program (EX7m.x86) into memory and assemble it starting at location
zero. Switch to the Emulator screen and verify that all the return addresses (0ch, 19h, and
26h) are correct. Also verify that the return address needs to be written to location 121h.
Next, run the program. The program will execute a brk instruction after each of the first
two calls. The brk instruction pauses the program. At this point you can switch to the
memory screen at look at locations 1000-100F in memory. They should contain the
pseudo-binary conversion of the value passed to the subroutine. Once you verify that the
conversion is correct, switch back to the Emulator screen and press the Run button to con-
tinue program execution after the brk.

For your lab report: describe how self-modifying code works and explain in detail
how this code uses self-modifying code to simulate call and return instructions. Explain
the modifications you would need to make to move the main program to address 800h
and the subroutine to location 900h.

For additional credit: Actually change the program and subroutine so that they work
properly at the addresses above (800h and 900h).

3.7 Programming Projects

Note: You are to write these programs in x86 assembly language code using the
SIMx86 program. Include a specification document, a test plan, a program listing, and
sample output with your program submissions

1) The x86 instruction set does not include a multiply instruction. Write a short program that
reads two values from the user and displays their product (hint: remember that multipli-
cation is just repeated addition).

2) Create a callable subroutine that performs the multplication inproblem (1) above. Pass the
two values to multiple to the subroutine in the ax and bx registers. Return the product in
the cx register. Use the self-modifying code technique found in the section “Self Modifying
Code Exercises” on page 136.

3) Write a program that reads two two-bit numbers from switches (FFF0/FFF2) and
(FFF4/FFF6). Treating these bits as logical values, your code should compute the three-bit
sum of these two values (two-bit result plus a carry). Use the logic equations for the full
adder from the previous chapter. Do not simply add these values using the x86 add instruction.
Display the three-bit result on LEDs FFF8, FFFA, and FFFC.

4) Write a subroutine that expects an address in BX, a count in CX, and a value in AX. It
should write CX copies of AX to successive words in memory starting at address BX.
Write a main program that calls this subroutine several times with different addresses.
Use the self-modifying code subroutine call and return mechanism described in the labo-
ratory exercises.

5) Write the generic logic function for the x86 processor (see Chapter Two). Hint: add ax, ax
does a shift left on the value in ax. You can test to see if the high order bit is set by checking
to see if ax is greater than 8000h.

6) Write a program that reads the generic function number for a four-input function from the
user and then continually reads the switches and writes the result to an LED.

7) Write a program that scans an array of words starting at address 1000h and memory, of
the length specified by the value in cx, and locates the maximum value in that array. Dis-
play the value after scanning the array.

8) Write a program that computes the two’s complement of an array of values starting at
location 1000h. CX should contain the number of values in the array. Assume each array
element is a two-byte integer.

9) Write a “light show” program that displays a “light show” on the SIMx86’s LEDs. It
should accomplish this by writing a set of values to the LEDs, delaying for some time

