
Introduction

Cavitation is an important and unpleasant phenomenon
which may occur along stationary parts of hydraulic
machines and/or along moving blades, as in centrifugal
pump impellers [1]. This occurs when, due to a decrease in
local pressure up to the vapor pressure, cavities filled with
water vapor are formed. These cavities grow particularly on
the impeller blade, where there exists the lowest pressure
value, and they tend to increase in size and to be dragged
out by the fluid flow. As soon as the vapor bubbles reach
regions of higher pressure on their path through the
centrifugal pump they collapse by an implosion, producing
the whirlpool of the liquid of the neighboring zone (Figure
1). For phenomenological and thermodynamics studies of
cavitation, please refer to Stepanof [1], Franc et al. [2],
Sulzer Brothers Ltd. [3] and Lobanoff and Ross [4].

Strong cavitation phenomena are usually manifested by
some signs, all of which negatively affect the pump

performance and can even damage pump parts. Noise and
vibration are external detectable signs of cavitation which
are caused by the sudden collapse of vapor bubbles.
Another sign is the strong decrease in pump efficiency, due
to the reduction of its capacity. Moreover, if a pump
operates under cavitation conditions for a sufficient interval
of time, a rapid erosion of blade surfaces (usually named
pitting) occurs. This must be avoided, since damages are
not reversible. The amount of metal loss depends on the
impeller material and on the degree of cavitation. It was
shown by Foettinger [5], that blade pitting is caused solely
by the mechanical action of collapsing vapor bubbles, and
that electrolytic and chemical actions are substantially
insignificant in the cavitation phenomenon. Therefore,
erosion is caused by very strong local values of pressure
(water-hammer). Additional comments on the various
undesirable phenomena related to cavitation (noise,
presence of bubbles, erosion, pressure fluctuations, etc.),
and their implications on industrial machines are reported
by Canavelis and Grison [6]. A study of close interactions
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between fluid mechanics, cavitation and erosion effects has
been presented in the work of Durrer [7].

The phenomenon of cavitation presents two aspects: (i)
the need for early detection of cavitation, and (ii) the
analysis of cavitation conditions. The early detection of
cavitation can be used to avoid damages which change the
operating conditions, and thus cause an uncontrolled
decrease in pump performance. Due to the high velocity of
cavitation inception phenomena, different techniques for
cavitation detection in real-time have been often proposed.
For example, by considering that cavitation in hydraulic
machines is always associated with vibration and noise,
having features and intensity depending on the cavitation
conditions, some methods based on acoustic investigations
have been presented in Varga [8]. Two methods for detect-
ing bubbles in a fluid have been compared in Ceccio [9]:
the former being based on acoustic emission, and the latter
on changes in electrical impedance. Acoustic methods are
too sensitive to noise, since they are based on measuring
vibration in a strongly noisy environment. Usually the
cavitation main frequency is characterized by values higher
than that coming from other mechanical parts. Acoustic
methods are not capable of distinguishing cavitation from
noise and vibrations due to other cavitating components;
thus, their threshold for detecting cavitation inception must
be higher than noise/vibration, and they are not sensitive
enough. Analogous problems and a similar performance
have been observed for methods based on electrical

impedance. Therefore, both techniques are only suitable for
detecting macroscopic cavitation [9].

In general, both intrusive and non-intrusive flow
visualization techniques have been adopted for studying
fluid dynamics. However, in the study of the cavitation
phenomenon flow visualization techniques have an
important role, particularly in the analysis of cavitation
conditions. This means that, in many cases, once the cavita-
tion inception is detected, it can be very useful to analyse an
image of the phenomenon for evaluating in depth the
characteristics of cavitation (see, for example, Merzkirsch
[10] and Yang [11]). Most of these are only qualitative
studies of the cavitation phenomenon, and frequently they
are supported by human analysis of static images. The con-
cept of cavity length and extension, measured by visual
inspection or directly by photo sequences, has become a
standard method for evaluating cavitation conditions. These
have been related to the cavitation erosion rate on the basis
of a large amount of experimental data, thus making it
possible to predict major machinery damages and faults
[6,12–14]. An investigation of the influence of cavity length
on erosion and lack of performance was also carried out by
Stoffel [15]. Some experiments on automatic analysis of
cavitation zones by means of image processing have been
presented by De Lucia [16]. The most diffuse technique for
taking single snapshots of cavitation on each blade is to
employ a stroboscopic or a laser light synchronized with
pump impellers and a TV camera.
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Figure 1. Fluid flow on a blade under cavitation (extracted from Franc et al. [2]).



As a conclusion, several authors in the literature have
adopted image processing techniques to study and to
characterize cavitation, but not to develop a real-time
system for cavitation detection. For such an application,
“real-time” means fast enough to avoid the pump impeller
erosion and to control the machine performance in the con-
text of the system in which the pump is used. The system
presented has a slow control loop which reads the system
sensors and produces the controlled outputs 10 times per
second.

In this paper, an image processing system for real-time
detection of cavitation inception is proposed. The main
goal is to produce an alarm signal indicating in real-time
the occurrence of cavitation. To this end, three different
algorithms have been defined, implemented and compared
in real conditions. Experiments have been performed on a
GE-Nuovo Pignone centrifugal pump. The approaches
proposed are capable of producing results from which
cavity length and extension can be directly evaluated, and
used as a basis for the algorithms defined by one of the
authors [16]. In the next sections, after a description of the
system overview, the algorithms for cavitation detection are
presented. Some aspects of the real-time implementation
are also reported. Finally, the typical results produced by
the experiments performed are presented, showing the
differences among the algorithms proposed.

System Overview

Experiments on cavitation inception and evolution have
been carried out on a single-section, double-volute centri-
fugal pump with a specific speed Ns = 28.8 (m3/s, m, rpm)
and a capacity coefficient φ = 0.126. This pump is manu-
factured by Nuovo Pignone, Italy, for high pressure and
temperature applications. The centrifugal pump has been
extensively tested on the pump-test facility of the
Department of Energy Engineering of the University of
Florence. The pump-test facility is driven by a 250 kW DC-
motor and its performance and operating conditions are
described by Arnone et al. [17]. The pump under test has
six blades on a diameter of 235 mm, and its operating
conditions are 1100 m3/h at 1500 rpm. In order to guarantee
the correct detection of cavitation the fluid must be clear,
even if some contaminations due to the presence of
particles are supported.

In order to make the cavitation flow visible, a clear
Plexiglas tube, which exactly reproduced the original tube
shape, was placed at the inlet side. The design of the trans-
parent tube was particularly critical, since this strongly

influences the image quality. In fact, quality and sharpness
of images are relevant for the success of some of the
following image processing steps, as it will be highlighted
later. The tube supports a small video camera mounted on
the inlet side (Figure 2), in order to view the frontal part of
the pump impeller.

The video camera has been placed so as to focus closely
on the target blade without interfering with the inlet flow.
In order to obtain high-quality images, the layout of the
system was conceived to achieve the intensity and quality
of lighting needed – i.e. without reflections or shadows by
other objects.

Figure 3 shows the system overview. The TV camera
(Sony CCD video camera module XC-77RR-CE, 756 3
581 pixels) can grab image frames on the basis of an exter-
nal synchronization. The acquisition board (Matrix Board,
768 3 512 pixels, endowed with external sync) digitizes
images from the TV camera. The acquisition board is
directly connected with the PC (i486 DX2 66 MHz), which
can process images in real time. In this system, a couple of
monitors have been used to control the video signals
coming from the TV camera and the image acquisition
board, Video and Video Live, respectively.

In order to guarantee the stability of acquired frames
(grabbing the selected blade in the same position at each
time instant) in spite of the high speed of the pump impeller
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section.



and the turbulent nature of bubbles, a very short shutter time
for the TV camera has been used. The lighting system has
been implemented by using a stroboscopic lamp to produce
an intense light only during camera sampling. This avoids a
temperature increase due to the high power needed to
illuminate the blade as required by the small acquisition time
of the TV camera. The stroboscopic lamp and the video-
camera shutter have been driven by an ad hoc signal
synchronization generator (SyncGen in Figure 3). This
synchronizes the TV camera, the frame grabber and the
stroboscopic lamp. By controlling the zero shaft position
signal and producing the delay time, it is possible to select
the periodic sampling of a specific impeller blade. As
depicted in Figure 3, when the shaft reaches the zero refer-
ence position a pulse is sent to the SyncGen. After a
programmable delay SyncGen generates a command for the
lamp and the camera shutter. SyncGen also allows to select
the blade under analysis by introducing a programmable
delay, as shown in Figures 3 and 4. When the rotational
speed changes, the value of delay must be adjusted accord-
ing to the speed measured by means of zero shaft position
signal. Frames grabbed during speed adjusting are neglected.

Please note that, as reported in Figure 3, a video recorder
(VTR Betamax, Sony UVW-l400AP) has been adopted for
our experiments in order to reproduce the same test condi-
tions several times for testing different algorithms and
parameters. To this end, the signal coming from the camera
has been reconstructed by a Genlock to adapt the non-

standard frame frequency produced by the TV camera, and
constrained by the speed of the impeller to that of the VTR
which uses PAL as the broadcasting standard.

Cavitation Detection Algorithms

As was already pointed out, the main goal of our system is
to detect in real time the inception of cavitation. To this
end, a vision-based system has been built; thus, an image
presenting a single blade can be grabbed at selected time
instants. Figure 5 shows four acquired frames of an
impeller blade under different cavitation conditions: (a)
without cavitation, (b) incipient cavitation, (c) and (d)
during the increase in cavitation. As can be observed in
Figure 5, the cavitation is highlighted by a clearer region
with respect to the non-cavitated conditions. This is due to
the fact that the surface of a formed bubble separates two
different optical media, liquid water and water vapor; the
light reaching the bubble surface is partially reflected, and
thus the bubbles appear brighter. Therefore, on the basis of
the previously described image acquisition architecture,
when cavitation occurs a zone, named the cavitation zone,
appears where the brightness of image pixels increases and
changes in intensity very rapidly over time – i.e. the pheno-
menon is turbulent.

According to the needs of the real-time response, three
different algorithms for detecting cavitation inception have
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been defined and tested. In the following, these algorithms
are reported in the order in which they were defined.

In the rest of this paper, images are expressed in terms of
their pixels whose values represent the image brightness,
E(x, y, t), the ratio between the infinitesimal power lighting
an infinitesimal surface extending around point P(x, y) at
time t, and the area of the infinitesimal surface [18]. For the
system described each pixel is represented by 8 bits: 0
(black)–255 (white)

First algorithm

The first method is based on the assumption that a pixel is
in the cavitation zone if its image brightness is greater than
a given threshold tha. Therefore, the inception of cavitation
can be detected by counting the number of pixels in those
conditions. This extremely simple approach is affected by
several drawbacks. The most important problem is due to

the fact that the analysis of the whole image is too heavy to
be performed in real time with low-cost and non-custom
architecture. For this reason, image processing must be
limited to a region of interest (ROI). This region must
obviously be identified before algorithm execution. This is
not a limitation, since the specific blade profile of the
centrifugal pump is known. Therefore, let us now assume
that the ROI, Γ, is known. By using the ROI, Γ, as a refer-
ence, a set of image pixels can be selected from the image
under analysis at time t, saving in this way the time for pro-
cessing the whole image:

ψ(E, Γ, t) = {E(P(x, y), t)  P(x, y) ∈ Γ}

On this set, only pixels having a value higher than a given
threshold are selected by:

Aa(ψ, tha) =

{P(x, y) E(P(x, y), t) ∈ ψ(E, Γ, t) ` E(P(x, y), t) > tha}
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Figure 5. Impeller blade under conditions of: (a) no cavitation; (b) incipient cavitation; and (c), (d) increasing cavitation (acquired by our
system).
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The number of the elements of this set, fa(t), is considered
as a measure of cavitation magnitude:

fa(t) = misure(Aa(ψ, tha), t)

On the other hand, this measure is usually affected by
coarse errors due to noise and to the fact that the 3D profile
of blades has different brightness values in different points
of the blade surface. Too small a value for the threshold tha
leads to the counting also of brighter impeller pixels where
cavitation is absent. These problems can be partially solved
by selecting a suitable threshold tha, as discussed in the
following.

On the basis of the above measure, a detection signal
which states the blade condition – i.e. cavitation or normal
–- is defined as a binary function:

where tda is a threshold used for detecting cavitation incep-
tion from cavitation magnitude.

With this algorithm, the problems due to the non-
uniformity of brightness of the blade are not solved. In fact,
with this method a bubble may not be detected when it
occurs, but only if its brightness rises over the predefined
value. During cavitation, if an area of the blade is too dark,
a bubble does not reach the predefined value of brightness,
and consequently it is not detected. In addition, some
blades can have a given pattern due to previous erosions
which can cause an additional unpredictable noise. For the
same reason, this algorithm is quite sensitive with respect
to changes in image brightness, which can be due to
changes in fluid transparency and light intensity. This prob-
lem is avoided by using a stroboscopic light with a constant
intensity. In order to solve the above discussed problems,
the following algorithms have been defined.

Second algorithm

This algorithm is based on the assumption that bubbles can
grow at different depths (with respect to the TV camera
blade direction) and from blade areas at a different bright-
ness. Therefore, a pixel is considered to be in the cavitation
zone if its value is changed with respect to the corresponding
value before the occurrence of cavitation. Hence, the
analysis is based on the difference in the image brightness of
each blade pixel and not on its value; thus reducing prob-
lems related to changes in image brightness. To this end, a

reference set of image pixels is extracted in the initialization
phase by using the ROI, Γ, in the absence of cavitation:

ψr(Er, Γ, tr) = {Er(P(x, y), tr)  P(x, y) ∈ Γ}

Then the set of pixels under cavitation is described as:

Ab(ψ, ψr, thb) =
{P(x, y) E(P(x, y), t) ∈ ψ(E, Γ, t) ` Er(P(x, y), tr) 
∈ ψr(Er, Γ, t) ` E(P(x, y), t) 2 Er(P(x, y), tr) < thb}

The number of elements of this set, fb(t), is used to evaluate
the cavitation magnitude:

fb(t) = misure(Ab(ψ, ψr, thb), t)

Also, in this case, fb(t) is usually affected by errors due to
noise. Too small a threshold value may also lead to the con-
sideration of noise as cavitated points.

On the basis of the cavitation magnitude, the detection
signal db(t) is defined as a binary function of threshold tdb,
as performed for the previous algorithm.

Both the first and second algorithms can be considered as
quite good criteria for detecting the inception of cavitation,
if suitable th and td thresholds are chosen. These can be
evaluated on the basis of a few measures in the absence of
cavitation by using the same image acquisition system as
discussed in the sequel. On the other hand, both of the
above algorithms are much too sensitive with respect to the
intrinsic stochastic nature of cavitation. This phenomenon
produces a high-frequency component during cavitation,
and thus this effect is reflected in both fa(t) and fb(t), and
sometimes also in da(t) and db(t). This problem can be
strongly reduced by using suitable filters on the cavitation
magnitude as a function of time, as discussed in the follow-
ing. The sets of pixels Aa(ψ, tha) and Ab(ψ, ψr, thb), which
identify the cavitated region, are non-uniformly composed
of pixels due to cavitation conditions. This can be a
problem if the image representing the sets should be used in
a successive phase of analysis in which, for example, the
area of the region must be measured. In order to solve this
problem the following algorithm has been defined.

Third algorithm

Problems which are present on the previously described
algorithms are mainly due to the high frequency component
of cavitation. In order to reduce these effects, the set of
pixels on which the measure is performed can be differently

d t
cavitation f t td

normala
a a( )
( )

=
>




if

otherwise
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defined. To this end, the analysis of cavitation detection has
been performed by considering a temporal window instead
of only the last image. In particular, in this algorithm, pixels
belonging to set Ac(ψ, ψr, thb) are considered; this set is
evaluated as the union of sets Ab(ψ, ψr, thb) in the temporal
window selected:

This means that a pixel is considered to be in the cavitation
zone if it has been found to be cavitated at least once in the
temporal window. This mechanism performs a sort of low-
pass filtering directly in the identification of the pixels
under cavitation. The dimension of the time interval must
be selected for trimming the high-frequency components,
by heuristic analysis or by using a frequency analysis of
cavitation magnitude. Therefore, even in this case the
cavitation magnitude is defined as:

fc(t) = misure(Ac(ψ, ψr, thb), t)

Unfortunately, even in this case fc(t) can be affected by
errors due to noise. The detection signal dc(t) has been
defined as a binary function of threshold tdc.

Algorithm Implementation and Experimental
Results

Our experiments have been carried out by reproducing the
actual operating conditions of the centrifugal pump.
Cavitation conditions have been produced by controlling
the inlet and outlet valves so as to lower the inlet pressure,
while maintaining the stability of the flow rate and the rota-

tional speed, since this is what usually occurs in real condi-
tions. Near the inlet section of the pump impeller the
measure of the inlet flow conditions was performed with
four static taps. For the outlet the measure at the exit of the
volute was obtained with eight static taps.

Each experiment was started in the absence of cavitation
and was carried out for about 4 min. Cavitation inception
was caused after about 35 s by adjusting the inlet and outlet
valves so as to lower the inlet pressure. Cavitation was also
further increased after about 130 s.

In general, the processing procedures resulting from the
algorithms described can be regarded as composed of four
steps: (i) selecting the blade; (ii) choosing the ROI on the
impeller; (iii) imposing suitable values for thresholds th and
td on the basis of the selected algorithm; and (iv) loop
acquiring and monitoring.

According to Figure 5, the straight line of the leading
edge can be used to define a limit of the impeller zone
under analysis, ROI, as depicted in Figure 6.
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Figure 6. Impeller zone under analysis (ROI) of 27 762 pixels,
subimage extracted by a 768 3 512 image.

Figure 7. Impeller zone under analysis and relative histogram
(first algorithm): (a) before cavitation, (b) during cavitation.



In fact, cavitation inception occurs close to the leading
edge, extending its influence in a limited region on the
blade (on the left of the edge); thus, the algorithms were
based on a limited region to improve their performance.

Experiments on the three algorithms were carried out by
using several image sequences in real time in order to
verify their capabilities for detecting cavitation conditions.
Some typical image sequences were also stored on an
analog support to compare the algorithm performance on
the basis of the same image sequences. Each algorithm pro-
duces the cavitation magnitude and the detection signals as
a function of time. The cavitation magnitude is strongly
sensitive to noise and high-frequency components of
cavitation, which in turn were attenuated by using filters.

Experiments based on the first algorithm

According to the first algorithm and on the basis of the
ROI, Γ, a ψ(E, Γ, t) is evaluated at each time instant. This
process is performed by scanning the ROI row by row, and
evaluating at the same time the measure fa(t) of set 
Aa(ψ, tha). This allows fa(t) to be obtained in a unique scan
of ROI, which implies access to the directly related pixels.

The critical phase of this algorithm is the identification
of the threshold; this must be performed on the basis on the
operating conditions – light, blade selected, ROI etc. To
this end, an automatic preliminary phase for evaluating the
threshold was implemented. In this phase, the ROI is
extracted in the absence of cavitation (Figure 7(a)).

The histogram presents two main spikes; the former is
due to the background gray level (the first on the left), and
the latter to the blade surface (the highest spike). Moreover,
a very small spike due to the presence of blade connection
with its support is also present. On these bases the
threshold is selected by trimming the main spikes and
including the small spike due to the blade connection, as
reported in Figure 7(a). The small spike was excluded,
since the cavitation produces a spike close to that value.
The small spike leads to an offset value for the cavitation
magnitude, fa(t). In general, this offset and function fa(t)
also present a small noise, as discussed in the following.

In Figure (7b) the histogram obtained in the presence of
cavitation is reported. It can be noted that the spike due to
the background gray level is still present, while the cavita-
tion zone is quite over the selected threshold. The classical
identification of threshold, frequently adopted for bimodal
histograms [18] – i.e., choosing tha on the basis of the

minimum value between spikes – is not suitable in this
case, since we are interested in detecting cavitation and not
in selecting its area when the cavitation covers the whole
ROI. On the contrary, the method chosen guarantees a high
sensitivity to cavitation detection (number of pixels).

The asymptotic complexity of this first algorithm is
O(R), where R is the ROI dimension.

Figure 8 shows some typical frames where set Aa(ψ, tha)
is highlighted. They have been acquired during: (a) absence
of cavitation (t = 15 s), (b) cavitation (t = 75 s), (c) strong
cavitation (t = 75 s).

Figure 9 shows the value of the cavitation magnitude as a
function of time during the experiment obtained by the first
algorithm in the three different conditions by using tha = 70.
By observing the trend of cavitation magnitude, it is quite
evident that the selection of a suitable threshold tda without
filtering and by using a median filter is quite difficult (many
spikes and glitches are present), and low levels of cavitation
are usually missed. When the mean filtering was adopted, an
easier identification of tda was possible. Median and mean
filters were selected for their low computational cost with
respect to more sophisticated filters. In the diagrams reported,
median and mean filtering was performed on 16 samples.

Experiments based on the second algorithm

According to the second algorithm and on the basis of the
ROI, a reference ψr(Er, Γ, tr) is evaluated at the beginning
of the process, while ψ(E, Γ, t) is evaluated at each time
instant. This is performed by scanning the ROI row by row,
and evaluating at the same time the measure of set 
Ab(ψ, ψr, thb). This allows to obtain fb(t) with a unique scan
of the ROI.
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Figure 8. Aa(ψ, tha) set on frame during: (a) absence of cavitation
(t = 15 s), (b) cavitation (t = 75 s), (c) strong cavitation (t = 170 s).

(a) (b) (c)



The critical phase is the identification of the threshold,
but an automatic preliminary phase for evaluating threshold
thb has been defined. In this case, the histogram is evalu-
ated on the image which is the difference in brightness
between an actual frame and ψr(Er, Γ, tr). The presence of a
difference between images leads to the traditional problems
of misalignment. These are very small on the blade (for its
smooth brightness), while on the leading edge they can pro-
duce coarse errors due to the shadowed zone. This problem
can be avoided by selecting a ROI which does intersect the
leading edge.

The ROI histogram extracted in the absence of cavitation
is presented in Figure 10(a). In this case, the histogram of
image difference presents only one peak due to the variabil-
ity of image brightness. The threshold is selected by
trimming the peak, as reported in Figure 10(a). The absence
of a small peak leads to the lack of an offset value for the
detection function fb(t).

In Figure 10(b) the histogram obtained in the presence of
cavitation is reported. It can be noted that it still presents
only one peak with a larger base due to the cavitation zone;
please note that the scale in these histograms is different.
Thus, the method chosen guarantees a good sensitivity of
cavitation detection (Figure 10(b)).

The asymptotic complexity of this second algorithm is
O(R), where R is the ROI dimension.

Figure 11 shows some sample frames where the set
Ab(ψ, ψr, thb) is highlighted. These have been acquired
during: (a) absence of cavitation (t = 15 s), (b) cavitation 
(t = 75 s), (c) strong cavitation (t = 75 s).

Figure 12 shows the value of the cavitation magnitude as
a function of time during the experiment obtained for three
different conditions by using a threshold thb = 10. In this
case, a quite reliable detection signal can be evaluated only
on the filtered cavitation magnitude signal.
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Experiments based on the third algorithm

According to the second algorithm, the set Ab(ψ, ψr, thb) is
evaluated at each time instant. For each pixel of the ROI a
FIFO structure having dimension equal to the temporal
window is provided. This FIFO is used to memorize the
behavior of the ROI pixels in belonging or not to the set
Ab(ψ, ψr, thb). At each time instant, the overall FIFO struc-
ture is updated by analysing each pixel of the ROI, thus
pushing 1 for pixels in the presence of cavitation and 0
otherwise, according to the second algorithm. The FIFO
structure is updated at the same time as the evaluation of
cavitation magnitude. The magnitude is evaluated by con-
sidering as cavitated the pixels having at least a 1 in the
FIFO. Changing the dimension of the temporal window
increases the asymptotically complexity, which is an O(R W),
where R is the ROI dimension and W is the dimension of the
FIFO. Please note that since the FIFO is implemented by
using data types available in the microprocessor (byte, word,
double word), it assumes discrete values: 8, 16, 32, etc. Total
algorithm costs are different due to cost differences in detect-
ing a non-zero value in the FIFO and shifting the FIFO. Both
these operations can be performed in a number of cycles,
which usually are dependent on the register dimension.

Figure 13 shows sample frames where the set 
Ac(ψ, ψr, thc) is highlighted. These have been acquired
during: (a) absence of cavitation (t = 15 s), (b) cavitation 
(t = 75 s), (c) strong cavitation (t = 75 s).

Figure 14 shows the behavior of cavitation magnitude as
a function of time which was obtained in three different
conditions using a threshold thc = 10. In this case, the
threshold for obtaining the detection signal can be applied
even on the non-filtered cavitation magnitude, producing
reliable and stable results.

Algorithm Comparison

The results obtained for the cavitation magnitude as a func-
tion of time for the algorithms proposed show that the first
algorithm presents the lowest sensitivity to cavitation
conditions. This is mainly due to the presence of an evident
offset. This behavior is also confirmed by the frequency
analysis reported in Figures 15 and 16.

The accurate comparison of the algorithms has pointed
out that the cavitation magnitude produced with the third
algorithm presents a more regular trend. This is mainly due
to the inclusion of a sort of low-pass filter implemented as a
FIFO. A measure of its efficacy is obtained by evaluating
the ratio between the standard deviation and the mean value
of the signal – i.e. s2/m2 obtained by using the data of
Figure 17.

This result is also confirmed by the frequency analysis
(performed by using FFT) reported in Figures 15 and 16. In
these figures, due to the stochastic nature of cavitation,
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Figure 10. Image difference between a frame and a template and
the relative histogram (second algorithm): (a) before cavitation
and (b) during cavitation.

Figure 11. Ab(ψ, ψr, thb) set on frame during: (a) absence of
cavitation (t = 15 s), (b) cavitation (t = 75 s), (c) strong cavitation
(t = 170 s).

(a) (b) (c)



high-frequency components are present. The third
algorithm offers the best immunity with respect to these
components.

The performance which can be obtained by the algorithms
proposed is directly related to the number of pixels which
are present in the ROI. With a typical ROI of 27 762 pixels,
the first and second algorithms are capable of processing
9.11 images per second (with filtering), while with the third
algorithm only 7.52 images per second (without filter) are
processed. Therefore, the first algorithm seems to be the best
compromise between performance and quality with respect
to the others, if the goal is the cavitation inception in real
time. According to the linear dependence of estimation time
with R (the number of pixels in the ROI), the number of
images processed per second can be easily increased by
reducing R. On the other hand, the third algorithm is very
interesting since it produces as an indirect result an image in
which the cavitation area is well-identified (compare Figure
13 with respect to Figures 8 and 10 for the first and second
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Figure 12. Cavitation magnitude as a function of time, obtained by using the second algorithm.

Figure 13. Ac(ψ, ψr, thc) set on frame during: (a) absence of
cavitation (t = 15 s), (b) cavitation (t = 75 s), (c) strong cavitation
(t = 170 s).
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algorithms). The image of Ac(ψ, ψr, thc) in Figure 13 has
been suitably used for analysing cavitation conditions [16].

Moreover, it should be noted that the third algorithm has
the worst performance on a general purpose machine, while
it is more suitable for a hardware implementation than the

other algorithms which have to perform mathematical
operations for eliminating high frequency components. On
the other hand, it needs a considerable memory space for
storing a FIFO for each pixel.

In the literature, the cavitation phenomena is typically
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Figure 14. Cavitation magnitude as a function of time, obtained by using the third algorithm.

Figure 15. Normalized responses from the frequency analysis of the first algorithm for fa(t): (a) no cavitation without filtering; (b) cavita-
tion without filtering; (c) cavitation with mean filtering.
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described in terms of relationship between the pump head
and the net positive suction head (NPSH). The pump head
is a measure of the specific work of the pump, while the
NPSH is measured in meters of water column [12]. The
NPSH factor is usually considered for measuring the dis-
tance from the current and the cavitation conditions.

In Figure 18 the behavior of pump head as a function of
NPSH is reported for centrifugal pumps, where:

● NPSHinc = visual inception value, i.e. the condition in
which the cavitation can be visually detected;

● NPSHO% = value in which the cavitation becomes a
problem for pump performance (in fact, after this value a
decrease in pump head is detected);

● NPSH1% = value in which the 1% head drop is measured;
● NPSHfc = value in which full cavitation or loss of

performance is measured (in the impeller, there are large
zones of fluid in both liquid and vapor phases).

Usually acoustic-based algorithms for cavitation detec-
tion must detect the vibrations on the machine. The
vibrations, as a function of NPSH, present an evident spike
between NPSH0% and NPSH1%, as depicted in the work of

Gülich [12]; hence the effects of cavitation are relevant for
performance pump. On the other hand, the algorithms pro-
posed are capable of acting close to the HPSHinc, which is
very far from the HPSH0% as described in Gülich [12], and
verified by our experiments [16]. For this reason, the
minimum level of cavitation inception that our algorithms
can detect is strongly lower with respect to those provided
by traditional techniques based on pressure measurement.
In particular, from this point of view the third algorithm
proves to be the best ranked among the algorithms pro-

REAL-TIME DETECTION OF CAVITATION 415

Figure 16. Normalized responses from the frequency analysis of the third algorithm for fc(t): (a) no cavitation without filtering; (b)
cavitation without filtering; (c) cavitation with mean filtering.

Figure 17. Mean values and standard deviation for the cavitation magnitude with and without filtering: m0, s0 in the absence of cavita-
tion; m1, s1 during cavitation; m2, s2 during strong cavitation.
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Mean value Without filter With median filter With mean filter
m0 m1 m2 m0 m1 m2 m0 m1 m2

First algorithm 1216 6777 16277 894 4349 13083 1155 6778 16210
Second algorithm 1.57 1792 8667 0 732 5619 1.13 1776 8555
Third algorithm 19 8153 19120 4.07 7591 18561 25 8072 19112

Standard deviation Without filter With median filter With mean filter
s0 s1 s2 s0 s1 s2 s0 s1 s2

First algorithm 166 1750 2096 411 735 1469 207 380 500
Second algorithm 7.08 858 2114 0 303 949 1.76 220 407
Third algorithm 23.5 548 1015 8.7 579 950 28 497 921

Figure 18. Pump head as a function of NPSH (typical behaviour).

NPSH

NPSHinc

NPSH0%

NPSH1%

Head

NPSHfe



posed. Moreover, all three algorithms are strongly robust
with respect to detection of false negatives of cavitation,
while some false negatives detecting cavitation inception
can occur when threshold tdx is too close to noise. This risk
can be easily avoided by using higher threshold values,
since for the cavitation considered in our experiments val-
ues of NPSH between NPSH0% and NPSHinc were obtained
for both the first and second levels of cavitation. This
makes possible the increasing of threshold without prob-
lems, e.g. by making the threshold three times larger than
the mean value of noise in the absence of cavitation.

Conclusions

In this paper an image processing system for the real-time
detection of cavitation inception was proposed. This tech-
nique can be applied on any hydraulic turbomachine,
provided that an optical access is available. On the basis of
this system three different algorithms have been defined,
implemented and compared in real conditions. A real-time
response was obtained, which ensures a high reliability of
cavitation detection. One of these algorithms is also
capable of producing results from which cavity length and
extension can be directly evaluated, thus shortening the
process of cavitation analysis.
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