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Appendix A – Analysis of bispectrum for polyphonic sounds 
In this Appendix, the bispectrum of polyphonic sound is theoretically treated, together with 

some examples. In particular, the cases regarding polyphonic signals with two or more sounds have 
been considered. In the case of bichords, one of the most interesting cases, being a perfect fifth 
interval, since it presents a strong partials overlap ratio. In this case, the analysis of residual coming 
from the difference of the real bispectrum of the bichord signal with respect to the linear 
composition of the single bispectra of concurrent sounds, has been performed. The formal analysis 
has demonstrated that the contributions of this residual are null or negligible for proposed multi-F0 
estimation procedure. This theoretical analysis has been also confirmed by the experimental results, 
as shown with some examples. Moreover, the case of tri-chord with strong partial overlapping and a 
high number of harmonics per sound has confirmed the same results. 

A.1 Bispectrum of a polyphonic signal: a bichord 

In this section, the behaviour of the bispectrum for a polyphonic signal is analyzed. Let us to 
recall the spectrum (positive frequencies only) of a generic monophonic sound with fundamental 
frequency 0f : 

0
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where H is the set of harmonics of the sound, consisting of P partials (fundamental frequency 
included):  0 0 0 0 0, 2 ,3 ,..., ( 1) ,H f f f P f Pf  . 

Consider now, as an example and without loss of generality, two synthesized sounds, 1S  and 2S , 

each one composed by five partials, so that { }1 01 01 01 01 01,2 ,3 ,4 ,5H f f f f f=  and 

{ }2 02 02 02 02 02,2 ,3 ,4 ,5H f f f f f= . The generated spectra are denoted as 1( )X f  and 2( )X f , 

respectively. Accordingly with the linearity of the Fourier Transform, let 1 2( ) ( ) ( )X f X f X f   

be the spectrum of the polyphonic signal S, composed by the mixture of 1S  and 2S . Under these 

assumptions, the bispectrum of the polyphonic signal, computed with the direct method (defined by 
eq. (3), Section II.B in the paper) can be expressed as the follows: 
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A.2 Analysis of bispectrum nonlinearity 

 The first and the last terms of the sum in equation (A.1) are equal to 
1 1 2( , )SB f f  and 

2 1 2( , )SB f f , respectively. The bispectrum is not linear, actually 

1 21 2 1 2 1 2( , ) ( , ) ( , )S S SB f f B f f B f f  . Let 1 2( , )diffB f f  be the difference 

1 21 2 1 2 1 2( , ) ( , ) ( , )S S SB f f B f f B f f  : 
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 Let us analyze each term of the sum in equation (A.2), in order to better understand the 
behaviour of 1 2( , )diffB f f . 

 The first term yields: 
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the product {1,2,1}Π  is not null only if each term of the product itself is not null. Concerning the 

first two terms, this happens when 1 01f kf  (that is, when 1f  takes the value of any of the partials 

belonging to 1H ) and, similarly, when 2 02f lf . This involves that, considering the third term, the 

entire product is non-zero only when it exists at least an integer value m such that: 

01 01 02mf kf lf  , 1,...,5k  , 1,...,5l   and 01 1mf H . To satisfy this condition, it is necessary 

(but not sufficient, depending on the length of 1H  and 2H ) that the sounds present overlapping 

partials; a sufficient condition is that the two harmonic series, 1H  and 2H , share at least one 

frequency value. 
As an example: consider two sounds, with harmonic sets 1H  and 2H , generate a perfect 

fifth interval (which presents a very strong partials overlap ratio); this implies 02 012 3f f . Under 

these conditions, the contribute of {1,2,1}Π  would be non-zero only for the following couples 

1 2( , )f f : 

01 02( , 2 )f f  and 01 02(2 ,2 )f f , 

with 01 02 01 01 01 12 3 4f f f f f H     , and also 01 02 01 01 01 12 2 2 3 5f f f f f H     . It is 

worthy to notice that these two couples are located in the upper triangular region of the plane 

1 2( , )f f , above the first quadrant bisector, and so they are outside the non-redundant region 
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considered in the computation of the bispectrum (see Section II.B and Figure 2 of the paper). For 

this reason, the contribute of {1,2,1}Π  to 1 2( , )diffB f f , in this context, is zero. This analysis can be 

generalized for all the terms of the sum in 1 2( , )diffB f f , as reported in the following.  

 Considering the second term of the sum in equation (A.2): 
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the term {2,1,1}Π  is non-zero only if exist at least an integer values m such that 01 02 01mf kf lf  , 

1,...,5k  , 1,...,5l   and 01 1mf H . Following the example of the two sounds generating a perfect 

fifth interval, this happens only for the couples of frequencies 

02 01(2 , )f f  and 02 01(2 ,2 )f f . 

As it can be noticed, this is the symmetric case of {1,2,1}Π , with respect to the first quadrant 

bisector, and in this circumstance these points are inside the non-redundant region considered for 

bispectrum computation. Therefore, {2,2,1}Π  is not null in these points; however, 1 1 2( , )B f f  also 

generates nonnull values in correspondence of these two couples, in the equivalent form of 

01 01(3 , )f f  and 01 01(3 ,2 )f f  (see equation (5), Section III.C of the paper). For this reason, {2,1,1}Π  

does not generate any additional peaks in the 1 2( , )f f  plane; the only effect is to add an amplitude 

contribute to bispectral peaks generated by 1 1 2( , )B f f , at the same positions in the 1 2( , )f f  plane. 

At the end of these considerations we will show that these contributes can be considered not 
relevant in the computation of normalized 2-D cross-correlation, within the Multi-F0 estimation 
procedure. 
 

Consider now the third term in equation (A.2): 
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{2,2,1}Π  is non-zero only if exist at least an integer value m such that 01 02 02mf kf lf  , 1,...,5k  , 

1,...,5l   and 01 1mf H . In our example, such a case occurs for the couple 

02 02( , )f f , 

actually 02 02 01 01 01 1
3 3

3
2 2

f f f f f H     . This shows that {2,2,1}Π  only adds an amplitude 

contribute to a bispectral peak originated by 2 1 2( , )B f f  at the same position in the 1 2( , )f f  plane, 

without generating any additional peaks. 
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Consider the fourth term in equation (A.2): 
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{1,1,2}Π  is non-zero only if exist at least an integer value m such that 02 01 01mf kf lf  , 1,...,5k  , 

1,...,5l   and 02 2mf H . In our example, this happens for the following couples of frequencies: 

 01 01( , 2 )f f , actually 01 01 01 02 22 3 2f f f f H    ; 

 01 01( ,5 )f f , actually 01 01 01 02 25 6 4f f f f H    ; 

 01 01(2 ,4 )f f , actually 01 01 01 02 22 4 6 4f f f f H    . 

These three couples are outside the non-redundant region considered for bispectrum 

computation; {1,1,2}Π  is not null only in correspondence of the following couples, which are the 

symmetric ones of the three ones listed above (with respect to the first quadrant bisector): 

 01 01(2 , )f f : this adds an amplitude contribute to the bispectral peak generated by 

1 1 2( , )B f f  at the same position in the 1 2( , )f f  plane; 

 01 01(5 , )f f  and 01 01(4 ,2 )f f ; in correspondence of these two couples {1,1,2}Π  gives 

origin (in this particular case) to two additional peaks in the bispectrum: they represent 
an extension to the five harmonics 2-D monophonic pattern of the sound at pitch 01f , 

(according to equation (5), Section III.C of the paper). The reason why 1 1 2( , )B f f  does 

not generate peaks in correspondence of these two couples is that the considered 
harmonic set 1H  is composed by five partials. 

 

Consider the fifth term in equation (A.2): 
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{1,2,2}Π  is non-zero only if exist at least an integer value m such that 02 01 02mf kf lf  , 1,...,5k  , 

1,...,5l   and 02 2mf H . In our example, this happens for the following couples of frequencies: 

 01 02(3 , )f f  and 01 02(3 ,2 )f f , in correspondence of which add {1,2,2}Π  adds an 

amplitude contribute to the bispectral peaks generated by 2 1 2( , )B f f  in 02 02(2 , )f f  and 

02 02(2 ,2 )f f ; 

 01 02(3 ,3 )f f , which is outside the non-redundant region considered in the computation 

of the bispectrum. 
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Consider, finally, the sixth term in equation (A.2): 
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As it can be noticed, this is the symmetric case of the previous {1,2,2}Π , with respect to the first 

quadrant bisector. Therefore, {2,1,2}Π  is non-zero only when exist at least an integer value m such 

that 02 02 01mf kf lf  , 1,...,5k  , 1,...,5l   and 02 2mf H . In our example, this happens for the 

following couples of frequencies: 

 02 01( ,3 )f f , which is outside the non-redundant region considered in the computation of 

the bispectrum; 

 02 01(2 ,3 )f f  and 02 01(3 ,3 )f f , in correspondence of which {2,1,2}Π  adds an amplitude 

contribute to the bispectral peaks generated by 2 1 2( , )B f f  in 02 02(2 ,2 )f f  and 

02 02(3 ,2 )f f . 

Eventually, let us to remember that we have illustrated an example in which the two 
interfering sounds present a strong partials overlap ratio. For a generic synthesized bichord, the 
contribute of 1 2( , )diffB f f   gains more relevance with the increasing number of partials in the 

harmonic sets of the sounds, and with the increasing partials overlap ratio. In the other cases, when 
the two sounds don't share the value of any of their partials within their harmonic sets, the value of 

1 2( , )diffB f f  is zero. 

 

A.3 Empirical example: a synthesized bichord 

A graphical example could be useful to illustrate in a clearer way this argumentation.  
 
In Figure A.1, the contour plot of the bispectrum of a synthesized 5 harmonics bichord: 

4 4C G  C G4 4
0 0261.63 Hz,  392 Hzf f  , which forms a perfect fifth interval; then in Figure 

A.2, the contour plot of the sum of the bispectra of 4C  and 4G , is shown. In Figure A.1, the 

monophonic 2-D patterns of the two sounds are distinguishable, and also the two additional peaks 

generated by the contribute of the product {1,1,2}Π , located at 01 01(5 , )f f  and 01 01(4 ,2 )f f , which 

appear to have a smaller amplitude. 
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Figure A.1. Contour plot of the bispectrum of 

synthesized bichord 4 4C - G . 
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Figure A.2. Contour plot of the sum of the bispectra of 

two synthesized sounds: 4C  and 4G . 

 
 

Dealing with real sounds, it is impossible to quantify the amplitude contribute given by each 
single term present in 1 2( , )diffB f f , if the number of partials and their amplitude model is not 

known in advance for each concurrent sound. For this reason, it is difficult to perform a general 
qualitative analysis. On the other hand, it is possible to evaluate the normalized 2-D cross-
correlations between both {1,2} 1 2( , )B f f  and 1 1 2 2 1 2( , ) ( , )B f f B f f  with a 2-D pattern, equivalent 

to the one used in the Multi-F0 estimation procedure which is the core of the system proposed in the 
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paper. The results of the two normalized 2-D cross-correlation (denoted as 
{1,2}Bρ  and 

1 2B Bρ  ) and 

the array obtained by subtracting 
{1,2}Bρ  and 

1 2B Bρ  , are shown in Figure A.3. 
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Figure A.3. Comparison of normalized 2-D cross-correlation for 

5-harmonics synthesized bichord 4 4C - G , and the difference of 

them (with a different scale). 
 
 

It can be noted that there are no relevant differences between the two cases (in Figure A.3, 
bottom part reporting the difference, the y-axis scale has been enlarged to make difference array 
more readable).  

Moreover, the same normalized 2-D cross-correlation for other two synthesized sounds has 
been calculated with the same pitch by using 10 harmonics instead of 5. This operation was made in 
order to show that the contribute of 1 2( , )diffB f f  would not affect significantly the values of 2-D 

correlation (and, therefore, the results of Multi-F0 Estimation procedure) with increasing number of 
partials. The results are shown in Figure A.4. 
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Figure A.4. Comparison of normalized 2-D cross-correlation for 

10-harmonics synthesized bichord 4 4C - G , and the difference of 

them (with a different scale). 
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A.4 Bispectrum of a polyphonic signal: qualitative analysis for three or more 

sounds 
 

When a polyphonic audio signal is composed by more than two concurrent sounds, it can be 
shown, by extending the analysis performed for a bichord in section A.2, that the signal bispectrum 
may present additional peaks, with respect to the sum of the bispectra of the single monophonic 
sounds. Even in this case, they do not affect the result of normalized 2-D cross-correlation, since 
they are located at coordinates which do not belong to the generic pattern of a monophonic sound 
(see equation (5), Section III.C of the paper). This is shown in the example reported in Figure A.5 
where the test signal is a trichord 4 4 4C -E -G , which presents strong partials overlapping. Therefore, 

in these cases, the effect of 1 2( , )diffB f f  is null, whereas it is relevant (in the sense of computation 

of 2-D cross-correlation), only for those frequency couples given, in case, by the combinations of 
bichords harmonic sets. If the intersection between the harmonic sets of the concurrent is empty, 

1 2( , )diffB f f  is null. 
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Figure A.5. Contour plot of the bispectrum of 5-harmonics synthesized 

trichord 4C - E4  - G4 , and graphical classification of the peaks of the 

residual 1 2 1 2 3 1 2 1 1 2 2 1 2 3 1 2   { , , }( , ) ( , ) ( , ) ( , ) ( , )resB f f B f f B f f B f f B f f . 
 

 
Also in this example, the normalized 2-D cross-correlations 

{1,2,3}Bρ  and 
1 2 3B B Bρ    have been 

calculated for the same test signal 4 4 4C -E -G , though this time it was synthesized with 10 

harmonics. The result is shown in Figure A.6. The contribute of the residual is still to be considered 
not relevant, although this time the difference between 

{1,2,3}Bρ  and 
1 2 3B B Bρ    is slightly higher, 

especially for note 4C  and its sub-octave. This is due to the fact that 4C , being the lowest note 

played in the audio signal, presents partials overlapping with both notes 4E  and 4G . 
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Figure A.6. Comparison of normalized 2-D cross-correlation for 

10-harmonics synthesized trichord 4 4 4C - E - G . 

 


