
Linked Open Graph: browsing multiple

SPARQL entry points

to build your own LOD views

Pierfrancesco Bellini, Paolo Nesi, Alessandro Venturi

Distributed Systems and Internet Technology Lab, DISIT Lab, Department of Information Engineering

University of Florence, Florence, Italy, tel: +39-055-4796523, fax: +39-055-4797363

 http://www.disit.dinfo.unifi.it, paolo.nesi@unifi.it, pierfrancesco.bellini@unifi.it, http://log.disit.org

Abstract -- A number of accessible RDF stores are populating

the linked open data world. The navigation on data reticular

relationships is becoming every day more relevant. Several

knowledge base present relevant links to common vocabularies

while many others are going to be discovered increasing the

reasoning capabilities of our knowledge base applications. In this

paper, the Linked Open Graph, LOG, is presented. It is a web

tool for collaborative browsing and navigation on multiple

SPARQL entry points. The paper presented an overview of major

problems to be addressed, a comparison with the state of the arts

tools, and some details about the LOG graph computation to cope

with high complexity of large Linked Open Dada graphs. The

LOG.disit.org tool is also presented by means of a set of examples

involving multiple RDF stores and putting in evidence the new

provided features and advantages using dbPedia, Getty,

Europeana, Geonames, etc. The LOG tool is free to be used, and it

has been adopted, developed and/or improved in multiple

projects: such as ECLAP for social media cultural heritage, Sii-

Mobility for smart city, and ICARO for cloud ontology analysis,

OSIM for competence / knowledge mining and analysis.

Keywords LOD, LOD browsing, knowledge base browsing,

SPARQL entry points.

I.INTRODUCTION

The large publication of OD (open data) has opened the path
for the information sharing. Most of the OD are published by
governmental organizations, in file formats such as: html, xml,
csv, shp, etc., and typically provide information that may
present links to web resources. These links are typically coded
as un-typed hyperlinks, URLs (Uniform Resource Locators). In
2006, Tim Berners-Lee published the LD (Linked Data)
principles [1], as a model to stimulate the process of making
accessible and sharing data as digital resources on the web and
from them establishing links with semantically connected
sources via URI (Uniform Resource Identifiers) [2]. On this
wave, the data publication moved towards the diffusion of LD,
opening the path for the construction of LD repositories and
thus for creating a globally connected and distributed data space
with integrated semantics. LD are based on documents
formalized in RDF (Resource Description Framework) [3]. LD
are mainly designed to be accessed and reused by machines. An
RDF link leads to a triple putting in relationship two entities.
For example, Carl knows Paolo, this consists of a subject, a
predicate and an object or data value, which in turn are
represented with URI. Thus, LD as triples can be accessible via
specific LD Browsers, which allows to follow URI from one

data set to the model definition and/or to another dataset.
Predicates, as “knows”, may be specified by using well-known
vocabulary, such as the FOAF (Friend Of A Friend, [4]) that
defines aspects and characteristics of people and their relations,
and many others as mentioned in the sequel. A vocabulary
defines the common characteristics of things belonging to
classes and their relations. A vocabulary, also called ontology,
is defined by using the RDFS (RDF Schema, RDF Vocabulary
Description Language) or the OWL extension (Ontology Web
Language). RDF triples can be stored in RDF stores (databases)
and made accessible via SPARQL [17] entry point to pose
semantic queries (SPARQL Protocol and RDF Query
Language, recursive definition) on the RDF store. A network of
SPARQL services and/or as LD/URI allows the creation of a
network of LD, thus contributing to the construction of a global
data model, which is the Linked Open Data, LOD [2].

In general, SPARQL queries are quite complex to be
composed since their formalization strongly depend on the
ontological structure of the RDF store model and the
relationships among entities. This fact constraints the users to
study the ontology in terms of entities and their relationships,
also taking into account the external definition in terms of
ontology segment, vocabulary, etc.

As an alternative, third parties LD search facilities based on
keywords are also provided such as the semantic web crawler,
such as Sindice.com [5]. Others solutions provide support to
search on the semantic web via URI/LD. Other tools allow
federating queries among multiple SPARQL entry points (RDF
stores) have been proposed such as via Semantic Web Client
Library [6]. This approach is typically applied for searching
complementary aspects and composing the results in a unique
semantic model.

Therefore, the complexity of accessing and using RDF
stores and specifically LOD accessible via SPARQL entry point
is limiting their usage. The understanding of LOD structure by
using LD browsers is not an easy task and is also limited, since
in most cases those browsers represent reticular relationships of
LD with simplified tables and pages.

In the literature, to cope with the above mentioned
problems, a large number of tools to edit and browse ontologies
and knowledge bases have been proposed [7]. Most of them
allow the editing of RDF stores and represent the entities by
using hierarchical structures. A number of tools have been built
on Protégé ontology editor [8]. Among the available tools, only

http://www.disit.dinfo.unifi.it/
mailto:paolo.nesi@unifi.it
mailto:pierfrancesco.bellini@unifi.it
http://log.disit.org/

a few of them present a visual representation of the RDF store
directly accessing to the SPARQL entry point. iSPARQL [9] is
powerful tools that allow to access to an RDF repository via a
SPAQRL query that can be visually represented and extended.
On the other hand, the representation of results is still in tabular
form and the navigation among relationships of the identified
entities is very complex for who do not know the ontology
structure. A number of tools for visual definition of SPARQL
queries have been proposed, as Konduit [10], NITELIGHT
[11].

Gruff application allows the visual composition of semantic
queries grounded on Allegro Graph. Gruff generates the
SPARQL query for accessing the entry point. The usage of
Gruff should accelerate the learning of SPARQL language,
while the complexity of usage is quite high. Gruff is a local
application and includes capabilities for RDF storage browsing
and analysis. A different approach has been taken by gFacet
[12], which proposed a tool for posing interactive queries on a
SPARQL entry point and obtaining interactive faceted results
that can be used to refine the queries. Almost all the above
mentioned tools are applications that need to be downloaded
and installed. On the other hand, LodLive service is a web
based RDF browser based on data graph representation
(http://lodlive.it) [13]. It allows to access at LD and to single
SPARQL endpoints. LodLive provides a user friendly user
interface for browsing and navigation on the RDF entities
starting from a specific URI. Once chosen the data sets and the
URI, the representation of the accessed entity is based on circle
surrounded by a number of small circles that can be accessed to
expand the relationships.

On the other hand, none of the above mentioned LOD
browsing data tools allow to fully exploit the nature of LD/LOD
by expanding their rendering and navigation on multiple
SPARQL entry points, and only LodLive is accessible via web,
and present relevant limitations.

In this paper, Linked Open Graph, LOG, is presented.
LOG.DISIT.org is a web based application for collaborative
browsing and navigation into multiple SPARQL entry points
(RDF stores). The LOG tool is web accessible and it is also in
use to create the Social Graph in ECLAP social network as an
embedded tool: http://www.eclap.eu [14].

The paper is structured as follows. In Section II, the main
aspects of browsing into RDF stores are presented. Section III
presents a comparative analysis of SPARQL visual browsers. It
includes aspects to access and query, relationships among
entities, general manipulation, URI details, and non-functional
requirements. The comparison is used to put in evidence the
main innovations of the proposed Linked Open Graph, LOG as:
(i) management of multiple SPARQL entry points, (ii) saving
and sharing of RDF graphs via web, (iii) learning and
inspecting RDF graphs. Section IV presents some details about
the computation of the LOG graphs and some larger and more
complex example. Conclusions are drawn in Section V.

II.RDF STORE AND EXTERNAL LINKS

The example reported in the introduction “Carl knows
Paolo” consists of a subject, a predicate and an object or data
value. These elements, in turn are represented by using URI.

The “knows” property may be defined to have as domain and
range from class foaf:Person (from FOAF, [4]). Using this
information, it can be inferred that both Carl and Paolo belong
to the class foaf:Person. Moreover, the vocabulary states that
class foaf:Person is a sub class of the more general class
foaf:Agent, thus both Carl and Paolo belong to class foaf:Agent.
The OWL version 2 language proposed by W3C allows
defining disjunctive classes, union and intersection of classes,
functional properties, symmetric, transitive properties,
minimum and maximum cardinality of the associated elements
of a property and other features. SPARQL language has been
designed to query information on reticular structured
information based on triples, and uses advanced algorithms to
match portions of the RDF graph with a specified template. For
example, the following query lists all the names of people that
Carl knows indirectly through one or more other persons:

SELECT ?n WHERE {
 ?p1 foaf:mbox <mailto:carl@unifi.it>.
 ?p1 rdf:knows+ ?p2.
 ?p2 foaf:name ?n.

}

Different data sets may be defined by exploiting
vocabularies (ontology segments) for defining properties and
classes such as:

 foaf:knows, foaf:Person [4];

 OTN: [18] an ontology of traffic networks that is more or
less a direct encoding of GDF (Geographic Data Files) in
OWL;

 dcterms: [19] set of properties and classes maintained by
the Dublin Core Metadata Initiative as dc:title;

 vCard: for a description of people and organizations [20];

 wgs84_pos: vocabulary representing latitude and longitude,
with the WGS84 Datum, of geo-objects [21].

Moreover, different RDF stores may be connected each
other since they share common vocabulary or since one RDF
store may refers with its links/URLs to other stores. Those links
could be established after a process of data enrichment. For
example, to connect the names of a well-known painter into a
museum representation with the painter’s biography which is
present on dbPedia [22]. On these bases, a number of SPARQL
entry points to access at RDF stores are accessible such as:
dbPedia [22], Europeana, LinkedGeoData, British Museum,
Cultural Italia, Open Link LOD Cache, Linked Movie Data
base, Getty vocabulary. A list of SPARQL end points can be
found on http://www.w3.org/wiki/SparqlEndpoints.
In addition, it is also possible to join two entities defined with
different URI with a property owl:sameAs.

III.ANALYSIS OF LOD GRAPH VISUAL BROWSERS

As described in the previous sections, the visual browsing of
SPARQL entry points can be very useful for analysing the RDF
store reticular structure, that is at the basis of the ontology and
the related instances of predicates contained, the knowledge
base. The users may use the LOD graphical viewers and
browsers to (i) create RDF representations and models, (ii) save

http://lodlive.it/
http://www.eclap.eu/
http://www.w3.org/wiki/SparqlEndpoints

them and share with other colleagues as a basis of discussion,
(iii) learn about how SPARQL queries are created. On top of
these SPARQL graph viewers, reasoners on different aspects
can be provided, to make analysis about geographical and
geometrical relationships, temporal relationships, etc.
Moreover, different SPARQL versions provide limited
capabilities in executing queries, such as problems counting
elements, etc. Therefore, despite the first impression, the
representation of an RDF reticular structure and thus its access
are not a simple neither superficial task. The visual browsing of
SPARQL entry points is not a simple task, especially if this
work is performed by a Web Application. Thus, as described in
the next pages, the LOG.disit.org service is not a simple
browsing of related resources. In particular, specific algorithms
are needed to cope with complexity of obtaining and processing
complex reticular structures with web based applications,
removing duplications, managing multiple entry points,
generating complex SPARQL queries, etc.

In the following section, a number of demanded features
and related problems are discussed with the aim of presenting
LOG.DISIT features and comparing them with representative
state of the art solutions: LodLive and Gruff. The identified
features have been grouped in a few topics and discussed in
different subsections: access and query, relationships versus
entities, general manipulation, URI details, and non-functional
features.

III.A Access and Query LD and Stores

Access and rendering of LD. This means that the visual
tool should be capable to represent a LD which is publically
accessible as a URI, providing a set of triples. In Figure 1, the
rendering of a URI

1
 is depicted via LodLive [13]. The single

URI is represented with a bubble, and the other small circles are
links that can be clicked to expand the visualization to other
LD/bubbles. Filled small circles are outbound links to LD,
while unfilled small circles are inbound links coming from
other LDs towards the former URI(a).

Figure 1: URI rendering with LodLive

These LD as RDF stores are accessible for the application or

discovered by a semantic query to well-known SPARQL entry

1
 http://dati.culturaitalia.it/resource/actor/accademia-dei-

georgofili

points. The small circles represent properties of the bubble, and
some of them (presented in black) have coded letters as: “t” as
types, “s” as owl:sameAs, “b” as blank nodes. The proposed
rendering implies that the relationships of each single
bubble/LD are not automatically explored. While their opening
can be performed singularly and all together with a mouse click
on the big bubble settings small icon.

Access and rendering URI from a SPARQL entry point.
A visual tool for browsing SPARQL entry points extract the
results by using a couple { URL(i), Q }, where Q is the semantic
query or an URI. In this case, the tool needs to know both the
SPARQL entry point of a given store a (an URL, that we can
identify as URL(a)), and at least a URI to be searched in the
store (called here as URI(a)) to get back the related description
in terms of triples. In this case, the rendering of the triples can
be similar to that of Figure 1 (representing the URI and the
possible identified relationships recovered).

Managing Entry Points with different URLs in URI. In
most cases, the URI(a) may have the same domain of their
corresponding SPARQL entry point URL(a), but it is not
mandatory. And thus, the tools have to be capable to accept to
start browsing from the couple URI, URL having different
domains.

Multiple SPARQL entry points. The access and browse to
a RDF store via the SPARQL entry point is a way to understand
the knowledge base and the relationships among the included
entities. In some cases, the entities/URIs (URI(a), URI(b)) of
different RDF stores (accessible via different SPARQL entry
points: URL(a) and URL(b)) may be connected each other.
Typically, the connections can be via URI representing classes
of common ontologies and definitions. The visualization of
graphs associated with URL(a),URI(a) and URL(b),URI(b) on
the same screen may allow to put in evidence the relationships
among these two graphs. They may be the basis for (i) studying
how to integrate different ontologies, for federating different
RDF storages, (ii) understanding differences and relationships
among different models, and/or (iii) for creating additional
connections. For example, by creating an owl:sameAs
relationship among two entities that represent the same concept
in two models. In some cases, similar pattern have not been
intentionally defined by using the same vocabulary since they
are different for some aspect, while in other context they could
be the same, otherwise deductions in the knowledge base would
not take into account all needed facts.

Making keyword based query. In order to identify a
starting URI for RDF graph rendering it could be possible to
pose a keyword-based query on the RDF store. This feature is
not always available on the RDF store (SPARQL entry points),
and may be implemented in several different manners. Some
implementation provide additional full text keyword based
indexes on Lucene, other simpler solutions provide only
substring search facility. The keyword based query is typically
performed on all or specific ontology classes. Some of the tools
allow selecting the specific class on which the keyword based
query is performed. Both LodLive and LOG.DISIT provide this
feature.

Inspecting entry point for searching classes. Once an
entry point is identified, it is possible to pose queries to inspect

http://dati.culturaitalia.it/resource/actor/accademia-dei-georgofili
http://dati.culturaitalia.it/resource/actor/accademia-dei-georgofili

it to search for major classes. Thus, a textual search can be
performed on the instances of one or more of those classes, in
order to get back a list of entities/URI from which the graph
visual browsing can start. This feature is quite difficult to use
since the selection of the class(es) on which the search is
performed may imply a certain knowledge about the ontology
modelled in the RDF store of entry point.

III.B Relationships among entities

Showing relationships, turning them on/off, singularly
and/or for category. Once the first URI (the bubble in Figure
1) and related URIs are shown several relationships may be
present in the graph, maybe hundreds or thousands, see Figure 2
from LOG.disit on dbPedia for URI related to Florence, Italy (it
has been searched by a keyword based query on dbPedia
SPARQL entry point, and thus it works when dbPedia entry is
alive). Some of the relationships may be recursive (classes
defined in term of their self); other are quite frequent and
multiple, such as: owl:sameAs, subject, type. These should be
marked or treated in different manner (as in the case of LodLive
mentioned above). In any case, the users should be enabled to
turn on/off some of the relationship categories to make the
graph more readable and focussed on the entities and
relationships under analysis. A LOD graph for an URI can
present hundreds of different relationships kinds, and may be
millions of triples to instances. Therefore, the usage of one line
for each relationship kind is preferable to have a link for triple.
The possibility of disabling relationship categories would
shorten and simplify the analysis, as in LOG.DISIT.

Figure 2: Florence URI on dbPedia, via LOG.DISIT, providing 364 elements:

237 entities and 127 multiple relatioships (red circles).

Moreover, each category of relationship may bring to
thousands or millions of entities (see Figure 3 for Gruff). For
example, a library as Europeana has millions of elements, the
civic number of a national street in Sii-Mobility may be
thousands, see for example [http://SiiMobility.disit.org,
http://servicemap.disit.org]. This complexity has to be
managed somehow, giving the possibility of accessing to a part
of them for understanding the model, and to some specific
relationships among the entities involved: for example by
posing a specific query or faceting directly from each single

entity [12]. In some cases, the instances can be easily hidden
from the graph disabling specific relationships of instance of.

Representing relationships. In the rendering of the RDF
graph, a large number of entities (URI) and the relationships
among them may be present. In most cases, the URI may have
1:N relationships that should be represented in different manner
(some of them are very frequent such as owl:sameAs, type, or
those that bring to a blank node). The high number of graphical
elements can be reduced allowing closing/opening,
expanding/compressing relations, filtering some relationships
from the visualization (i.e., limiting the rendering to selected
relationships) and may be also graphically representing entities
and relationships by using coded styles.

Figure 3: URI on a dbPedia segment, via Gruff.

On this regard, LodLive and Gruff assign a different colour
to each URI according to their type (see Figure 3). When
multiple types are present the colour can be determined by the
first one, and thus the assignment may be misleading. In
LodLive the color code is not constant so that at each graph
reload the same graph may present totally different colors. A
different approach could be to assign different icons according
to their type, as in LOG.disit, and adopted in ECLAP social
graph [14].

 Discovering inbound/outbound relationships, URI
and queries. At each URI a number of semantic queries can be
associated with, for example, to recover the relationships:

(A) towards other entities (outbound, as subject in Gruff), it can
be used:

SELECT ?object ?property WHERE {
<http://dati.culturaitalia.it/resource/actor/accademia-dei-
georgofili> ?property ?object.
FILTER(isURI(?object))
}

(B) coming from other entities towards the former URI
(inbound, also called as object relationships in Gruff), it can be
used:

SELECT ?subject ?property WHERE { ?subject ?property
<http://dati.culturaitalia.it/resource/role/isProducedBy>
 FILTER(isURI(?subject))
}

http://servicemap.disit.org/

In some tool, the contextualized text of the query declined for a
specific entity is accessible. It can be very useful for training the
users in using the SPARQL and for shortening the data
exploitation in external applications accessing to the SPARQL
entry point API.

The inbound relationships can come from other SPARQL
entry points, different from the one under inspection. This
analysis implies to have a list of SPARQL entry points: as
performed by LodLive and LOG.DISIT. In both cases, the list
of accessible entry points for the tools is available for selection.
Therefore, the set of SPARQL entry points allows for each URI
to make this analysis, see Figure 4 for LOG.DISIT. The
analysis allows counting the number of relationships in the
different case, and for each of them to see sample the related
query performed to get them. The query can be used to get all of
them. In the case of Figure 4, 6 inbound and more than 5.6
million of outbound links have been found. In addition, also
The British Museum is using that entity in about 40 million of
triples, and dbPedia for more than 4.7 million etc. The
discovered links can be opened to expand the browsing of the
RDF graph to internal and/or external URIs, also belonging to
other and multiple SPARQL entry points such as in
LOG.DISIT.org, only, using multiple SPARQL rendering.

Figure 4: Results of the relationships analysis for

http://www.w3.org/2002/07/owl#Thing URI LOG.DISIT.org

Discover paths between URI. As a support to the analysis
of the RDF graph, the identification of possible paths between
two identified URI can be very useful. This analysis is a
complex job to be performed in exhaustive manner for non-
trivial cases, see for example the implementation of Gruff. Once
identified the possible paths, the user would have to decide to
see one or more of them according to some criteria.

Creating triples/relationships. An interesting feature that
is moving towards the structural change of the RDF under
analysis would be the insertion of new triples / new
relationships, as in Gruff. This is possible in several RDF store
editor and typically not available in browsers since the new
triple should be stored somehow and would not be fine to store
in a third party RDF store, even having the authorisation.
Nevertheless, the creation of additional triples could be
interesting to trial model integration among multiple SPARQL
entry points.

A number of other features are also associated with the RDF
relationships such as: the possibility of expanding and closing
all the relationships, the possibility of counting the number of

relationships, and the special management of some of them
owl:sameAs, links to blank nodes.

III.C General Manipulation

Undo of the actions performed, “back”. The users may
manipulate the LOD graph by means of several different actions
such as opening/expanding URI and/or their relationships,
turning on/off some relationship, etc. In the RDF visual graph
manipulation, the possibly of undoing the actions performed
with a back buttons may be very useful, together with the
possibility of saving the reached status.

Save and load LOD graphs. The main aim of graph tools
for visual browsing RDF stores is the construction of LOD
graph rendering a situation for study and analysis entities and
their relationships. The study of knowledge base as well as of
ontology is frequently a long process in which several different
navigations and openings are performed to explore relationships
among the several entities/URIs. Therefore, a very valuable
feature is the possibility of saving the status of the graph with
all its linked URIs, and the relationships exploded (taking into
account their on/off status). This graphical context should be the
starting point for further analysis and not a simple image
snapshot. Once saved the RDF graph analysis, it could be useful
to be reloaded for further elaboration, and/or for sharing it with
other colleagues in read or read/write modalities, thus enabling
the collaborative work on the same RDF graph analysis. Only
Gruff and LOG.DISIT allow saving and loading RDF graphs.

Share and collaborate on LOD graphs. The RDF graph
sharing is based on saving the RDF graph on some cloud to
provide the possibility to share it to other colleagues to make
changes or simple access at the graph via web. Among the tool
analysed, only LOG.DISIT provide this collaborative feature on
LOD RDF graphs. LOG.DISIT allows to share the RDF graph
as web data on the cloud, in read and read/write modalities.

Export of RDF graph triples. The export of the RDF
entities involved in the visualized/pruned RDF graph can be a
very useful feature for study the model in other tools.

A number of other features are also associated with the
general manipulation of the visual graph such as: Re-layouting
the graph the screen rearranging automatically the graphical
elements, focusing on an URI (identifying an URI and
restarting the navigation from that point), zooming and panning
the graph, centering the graph (moving in the center of the
graph the original URI).

III.D URI Details

URI attributes. A number of attributes/values (literal) may
be associated with the URI. These data should be accessible
without involving graph representation. To this end, a simple
table with a list of values can be provided as in LodLive and
LOG.DISIT. Among the possible values, the GPS coordinates
could be used for positioning the URI on geo-MAP (Map
allocation of URI).

URL to resources. An URI in the LOD graph is the
representation of an RDF entity in the store. On the other hand,
the original data can be opened in the browser. Moreover, a
URI may have among its attributes some URL to external
digital resources. These URL should be accessible for opening

http://www.w3.org/2002/07/owl#Thing

the digital resources into the browser or for download. They can
be files, such as: images, video, documents, web pages, etc. In
these cases, it can be useful to have the possibility to directly
Open play resources.

Representing entities. In complex LOD graph the fast
identification of URI type is very important. Not all the URIs
have a relationships with an URI formalizing its type, and it is
not rare to see an URI with multiple types. The URI can be
represented by using specific icons on the basis of their: (i) type
(problems in the case of multiple types), (ii) information and
attributes (such as some connected image), (iii) specific icon
associated with the URI (e.g., image of the person for
dc:author), (iv) specific case, for example to represent the
Blank nodes.

III.E Summary of comparison

 Table 1 reports the summary of the performed comparative
analysis of Section III.

TABLE 1: SUMMARY OF COMPARATIVE ANALYSIS

 LOG LodLi
ve

Gruf
f

Access and Query

Access and rendering of LD Y Y N

Access and rendering URI from SPARQL entry point Y Y Y

Managing Entry Points with different URL in URI. Y N Y

Multiple SPARQL entry points Y(10) N N

Making keyword based query Y Y Y

Inspecting entry point for searching classes Y Y Y

Relationships vs entities

Showing relationships, turning on/off, singularly or
globally

Y(3) Y(2) Y(2)

Representing relationships (managing complexity) Y Y(4) Y(4)

Discovering inbound/outbound relationships, URI
and queries

Y Y Y(7)

Discover paths between URI N N Y

Creating triples/relationships N N Y

Expand all relationships Y Y N

Close all relationships Y N N

Counting number of elements Y Y Y

“sameAs” management Y Y Y

Blank nodes rendering Y Y Y

General Manipulation

Undo actions performed, “back” Y N Y

Save and Load LOD graphs Y N (Y)

Share and collaborative LOD graphs Y N N

Export of RDF graph triples N N N

Re-layouting the graph Y(6) N Y

Focusing on an URI Y Y N

Zooming the graph Y N Y(8)

Centering the graph Y N N

Panning the graph with mouse/finger Y Y Y

URI Details

URI attributes (showing info or an URI) Y Y Y(1)

Map allocation of URI Y(9) Y(9) N

URL to resources Y Y N

Open play resources Y Y Y

Representing entities Y Y(5) Y(5)

Non Functional

Web based tool Y Y N

Embed in web pages of third party service: ECLAP Y N N

Graph Invoked by URL Y(7) N N

1. Gruff presents literal attributes of URI as graph nodes, while LodLive
usies a single aside panel, and LOG multiple frames, thus making simpler

the comparison among nodes.

2. In Gruff: single and multiple links can be off at the same time, limited
capability in tuning on all links of the same kind in the graph. In

LodLive, links can be singularly turned on/off. The complexity is not

managed.
3. In LOG, multiple links on/off of the same kind

4. LodLive and Gruff allow opening all or singularly, no middle way or

precise control. LodLive presents a limited number of elements in some
cases, and does not inform the user about the applied limitation.

5. LodLive and Gruff adopt different colours for representing different type

of entities, and not icons.
6. In LOG.DISIT, the positioning of the entities and relationships is

dynamically performed on the basis of a force model, in some case, this

can be confusing.
7. Gruff provide support to discover inbound/outbound links (as object/as

subject) only taking into account the current RDF store. LOG and

LodLive perform the query on a range of SPARQL entry points (at their

disposal in some database), while others can be added.

8. Gruff has a powerful zoom and large graph management; on the other

hand, it is a standalone application in native code.
9. LodLive provide direct support for placing on a Map the URI if they

present GPS coordinates. Integration with Map can be performed for

LOG since the LOG graphs can be opened and recalled by an REST call /
URL. See for example the Http://servicemap.disit.org .

10. LOG allow the loading of multiple SPARQL entry points and the web

sharing of LOG graph, by sending emails with the links to reload and
manipulate them

IV. LOG.DISIT.ORG COMPUTING

As described in Section III, the Linked Open Graph,
LOG.Disit.org, allows opening multiple reticular RDF
representations starting from different URIs (also called graph
root) of different SPARQL entry points. All the starting
URIs/URLs loaded are also listed on top of the LOG user
interface. The listed URL/URI can be clicked to highlight the
corresponding root URI.

Figure 5: Graph reduction process in LOG

In LOG graph reported in Figure 5 an algorithmic aspects
related to multiple entry points is discussed. In Figure 5a, the
1:N relationships (as R0, R1, ..) are represented with a unique
arc exiting from the sourcing node, N0. Among the visual

http://servicemap.disit.org/

browsers analysed in the state of the art, LOG.disit is the only
one managing multiple SPARQL entry points and allowing the
web collaboration. Circles, as R0, represents the relationship
and manages the multiplicity (for example towards N1 and N2).
This approach (adopted in LOG to have only one line exiting
from the entity per relationship kind), allows managing the
complexity of large data sets. On the other hand, it computation
adds an additional complexity in LOG drawing where multiple
roots may be present.

In Figure 5a, a LOG case with two roots is presented: N0
and N8; the two roots share node N5 that holds a double
multiplicity (belonging to two graphs). When the user closes
R0, with a double click: the 2 relationships related arcs dotted in
Figure 5a are deleted. According to that action, a graph analysis
is needed. The analysis is started by performing a labelling
process from both roots N0 and N8. This allows identifying all
nodes that are connected from some root (all except N2, N3) in
the graph. Thus, the elements which are not connected have to
be removed (see Figure 5b), for example: N2, N3, R3 and R2.
In addition, shared nodes, such as node N5 lose their

multiplicity. Figure 5c represents the final results after the
application of the above described “closure” algorithm, where it
is evident that some elements passed from one root to the other.
A complementary operation is performed, when an inbound link
of a node is opened (for example by using a query similar to
that obtained in Figure 4), for example, N3 request the opening
of R3, then a situation similar to Figure 5b can be reached.

In most cases, the removal of elements does not means to
delete the elements from the internal graph model, but only its
hidden from the graph. This approach allow to pass from less to
more details in a very fast manner, but at the expenses of the
loading time when data are collected form the remote RDF
stores

With the contextual menu on the node/URI, the user may
perform the analysis of the inbound and outbound relationships,
or explore all the relationships (see Figure 4). Thus, in the
browsing and construction of an LOG RDF graph, a number of
progressive queries are performed. The graph is constructed on
the basis of the resulting triples obtained from those queries: (i)
some of the resulting relationships and URIs (nodes) could be

Figure 6: A LOG RDF graph with multiple URI of different entry points, expansion and relationships enabled

already present in the graph; (ii) a node may have multiple arcs
entering and exiting to/from a node. They do not have to be
drawn more than once; the duplications have to be avoided by
using an efficient algorithm on the data model since real time
rendering is needed. Thus, the algorithm verifies every new arc
to check if it is already included or not; duplicated arcs are
removed from the model. Then, nodes without arcs are also
removed. The graph cleaning has to be performed every time
nodes/URI and relationships/arcs are added or removed.

From the technical point of view, LOG.disit provides a
server side application in PHP and exploit on client side:
Javascript, JQuery, Ajax, and D3 graphic library [15].

When the graph related to a URI needs to be created the
server side script needs to retrieve from the SPARQL endpoint
the information to depict the node: the type, the label, when
available the foaf:depiction image, the predicates that are
associated with the node and for all the nodes that are to be
represented the type, label and depiction image. To this end, the
server-side script performs the following numbered steps:

1. it is requested the rdf:type, rdfs:label and foaf:depiction
associated with the URI;

2. it is requested for the URI the number of occurrences of
each predicate using a query such as:

SELECT ?p (count(*) as ?c) WHERE {
 <URI> ?p ?o.
 FILTER isURI(?o)
} GROUP BY ?p

This is performed to have an idea of the complexity of the
relations with other nodes, it can happen that a node has
thousands of associations with other nodes and in this case a
query that gets all the triples where the URI is the subject can
be unmanageable.

3. For the predicates that are not too numerous it is
requested the information of the related nodes and predicates
with a query as the following:

SELECT ?p ?o ?l ?t ?d WHERE {
 <URI> ?p ?o.
 OPTIONAL { ?o rdfs:label ?l }
 OPTIONAL {?o rdf:type ?t}
 OPTIONAL {?o foaf:depiction ?d}
 FILTER !(?p IN (<…>,<…>)) }

4. for each predicate <P-URI> that is too numerous a
specific query is performed such as the following:

SELECT ?o ?l ?t ?d WHERE {
 <URI> <P-URI> ?o.
 OPTIONAL { ?o rdfs:label ?l }
 OPTIONAL {?o rdf:type ?t}
 OPTIONAL {?o foaf:depiction ?d} }

to retrieve information about related nodes.

5. the same operations of steps 2, 3 and 4 are performed
using the <URI> as object and not as subject of the predicate.

A special case is the one related to blank nodes, generally
identifiers used to refer to them are valid only for the specific
document that contains them and thus these identifiers cannot
be used in later queries to get information about the specific

blank node. Moreover, if a blank node is used in a SPARQL
query it is treated as a variable matching nodes. Some RDF
store solve this problem with specific extensions that are not
standard and thus are difficult to be used in this context. To
partially solve this problem we decided to retrieve for blank
nodes also all the relations of the blank node with other nodes
and send all this information to the client that needs to manage
its access. This operation is limited since in case the blank node
refers to another blank node this one cannot be explored. This
problem may be solved in a future version using information
from linked data that should contain all the blank nodes used to
represent a resource.

For this reason the query used in the third step is changed
to:

SELECT ?p ?bnode ?p2 ?o ?l ?t ?d WHERE {
 { <URI> ?p ?o. FILTER isURI(?o)
 } UNION {
 <URI> ?p ?bnode.
 ?bnode ?p2 ?o.
 FILTER isBlank(?bnode) && isURI(?o)
 }
 OPTIONAL { ?o rdfs:label ?l }
 OPTIONAL {?o rdf:type ?t}
 OPTIONAL {?o foaf:depiction ?d}
 FILTER !(?p IN (<…>,<…>, …))
}

that makes a union of the results where the URI is associated
with another URI and when the URI is associated through a
blank node.

IV.1 LOG usage and example s

Technically, not all ontologies and RDF models and stores
have been developed by using the same methods since they
have been developed by different teams, using different styles,
in different periods, and exploiting different vocabularies. This
implies that different approaches to model the same entities and
patterns may be possible, as well as different usage of
“sameAs”, “equivalent class”, blank nodes, reuse of vocabulary
and concepts, etc. The LOG can be very useful to understand
these differences interactively studying the RDF store from
remote, to learn and to explore the possibility of reusing and
connecting them each other. The LOG.disit tool, with its
additional features with respect to the state of the art browsing
tools, can be a very useful tool for: analyzing RDF stores and
models, comparing and discovering connections and
relationships among RDF stores and models, discovering
eventual problems in accessible knowledge base for their future
reuse and connection.

In Figure 6, an example is presented. The upper part of the
screen reports the controls and the list of roots URIs included
and loaded in the graph. They have been obtained from: LOD
of Florence, Sii-Mobility and LinkedGeoData The resulting
LOG graph reported in the Figure 6 can be accessed (in read
only mode) by using
http://log.disit.org/service?graph=3dfae71db76642b6ba23ce7dc
cb12bcf, while the URL for modifying the LOG graph has been
sent to the email of the LOG graph creator only, that could
decide to share. On the bottom part of the screen, the list of
active relationships is reported. They can be turned on/off and
the whole section inverted. After to have loaded the first URI

http://log.disit.org/service?graph=3dfae71db76642b6ba23ce7dccb12bcf
http://log.disit.org/service?graph=3dfae71db76642b6ba23ce7dccb12bcf

(Pitti from Linked Geo data) the user discovered relationships
(similarly to Figure 4) then decided to open the first URI related
to Pitti, and worked a bit on some aspects to browse
relationships. Then the decision of searching for Pitti in
different SPARQL entry points (Sii-Mobility and Comune di
Firenze) provoked the load of the corresponding nodes. Then a
number of other nodes have been browsed with the aim of
comparing the three different representations of the same entity
discovering other similarities (sadly of unconnected entities) as
Florence, and related streets. This process helped the user to
conquer a global and integrated comparison of the aspects
associated to the same topic in multiple RDF stores.

Concrete examples have to be contextualized with respect to
the RDF store directly suggested in the LOG interface as
follows. In the following other example of LOG.disit usage
with connected and specialized graphs are reported.

ECLAP RDF store contains information about content and
users of the ECLAP social network (http://www.eclap.eu). In
this case, the LOG could be used to (i) compare the user profile
graphs of different users, (ii) discover direct and indirect
relationships among users by searching and calling their entry
points, (iii) exploring relationships of a single user among its
several connections with other social network actions and
elements. The analysis can be focused on producing new
metrics, new suggestions, and identifying new cause – effect
relationships. The ECLAP model, via users and content are also
connected to dbPedia and Geoname. In Figure 7, a study about
the indirect relationships among two different users is reported.
Some of the possible relationships have been disabled to focus
on common favorite content and friendships.

Figure 7: A LOG RDF, indirect relationshipos of two different users on ECLAP.

OSIM RDF Store contains a model and data related to the
University of Florence knowledge, including all structures,
research lab, researchers, their publications, relationships
among them, related competences of people and structures and
thus a taxonomy of concepts and competences. In this case, the
LOG can be useful to browse and analyze the network of
experts that are working on a given topic, their relationships,
the places in which they have published, the projects in which

they worked, and who worked on what. The browsing of the
store allows extracting more information than the simple
semantic query on the user interface. There are some
connections among users of ECLAP and the OSIM store since
some of the users are also modeled in the OSIM store. The
usage of multiple RDF stores allows to understand how these to
stores could be used to create new knowledge and services. For
example, learning preferences on ECLAP and providing
suggestions on OSIM or viceversa. In Figure 8, a LOG graph
analysing connection and structures of the same user on ECLAP and OSIM

RDF stores is presented.

Figure 8: A LOG RDF graph analysing connection and structures of the same
user on ECLAP and OSIM RDF stores.

Senato and Camera RDF stores contains the information
related to laws and political decisions by the Italian govern, and
thus also the involvements of the politicians. The two stores are
not physically connected while relationships are evident in
terms of laws, politicians, approvals of documents and their
passages and demands from one camera to the other (the
famous disputed Italian perfect bicameralism). In this case, the
activation of the one URI in a store may really link to
information in the other, and the complete view can be obtained
only by a tool as LOG.disit.org, that allows you to join them
together. Another interesting analysis can be performed to see
the votes of politicians during their political life and the support
they gave to different political groups and laws.

Sii-Mobility RDF Store models a large repository of
geolocalized data regarding Smart City concepts and data
connected to Tuscany: topographic information, administration,
services, statistics, time line of busses, parking status, weather
forecast. In this case, the LOG tools is very useful in the hands
of potential SME interested in developing mobile applications
during Hackathon for the definition of innovative Smart City
services. For example, to (i) discover and understand the model
and the information associated to a given service in the city, (ii)
discover connections and similarities among different open data
set of public administration, (iii) study the integration of open
data with geographic information. In this particular case, Sii-
Mobility provides an user interface to perform geographic
queries and from the results the LOG graph can be open
(http://servicemap.disit.org).

http://www.eclap.eu/

V.CONCLUSIONS

The navigation on internet accessible RDF stores is
becoming every day more relevant. They are frequently based
on local and commonly accepted ontologies and vocabularies to
set up large knowledge base to solve specific problems of
modelling and reasoning. The growing needs of such structures
increased the need of having flexible and accessible tools for
RDF store browsing taking into account multiple SPARQL
entry points to create and analyse reticular structure and
scenarios of remote stores. The LOG tool presented in this
article provides innovative features solving a number of
problems related to graph computation to cope with high
complexity of large LOD graphs with a web based tool. The
complexity is mainly managed by providing tools for (i)
progressive browsing of the graphs, (ii) allowing graph
composition, (iii) providing support to pose specific queries,
(iv) allowing the progressive discovering/selection of instances.
A comparative analysis with reference solutions at the state of
the art has been also provided, showing that LOG presents a
number of innovative and very useful features for RDF store
analysis and development. In general, RDF stores have been
developed by using different methods, by different teams, using
different styles, in different periods, and exploiting different
vocabularies. The Linked Open Graph, LOG, is a web based
tool for collaborative analysis, browsing and navigation on
multiple SPARQL entry points. The LOG.disit tool, with its
additional features with respect to the state of the art browsing
tools, can be very useful to understand these differences
interactively studying the RDF store from remote, to learn and
to explore the possibility of reusing and connecting them each
other.

The LOG tool is used in multiple projects as ECLAP for
cultural heritage (http://www.eclap.eu), Sii-Mobility for smart
city [16] and ICARO for smart cloud ontology analysis. It has
been validated using multiple public accessible RDF stores such
as: dbPedia, Europeana, Getty Vocabulary, Camera and Senato,
GeoLocation, etc., putting in evidence the different cases and
usage of LOG tools in the different scenarios, with a specific
stress on the analysis of multiple RDF stores on the same graph.

BIBLIOGRAPHY

[1] T. Berners-Lee, “Linked Data”,
http://www.w3.org/DesignIssues/LinkedData.html, 2006.

[2] C. Bizer, T. Heath and T. Berners-Lee (2009) Linked Data - the story so
far. Int. Journal on Semantic Web and Information Systems, 5, (3), 1-22.

[3] G. Klyne, J. Carroll, “Resource Description Framework (RDF): Concepts
and Abstract Syntax - W3C Recommendation”, 2004

[4] FOAF, http://www.foaf-project.org/

[5] G. Tummarello, R. Delbru, and E. Oren. 2007. Sindice.com: weaving the
open linked data. In Proc. of ISWC'07/ASWC'07, Springer, Berlin,
Heidelberg, pp.552-565.

[6] O. Hartig, C. Bizer, J.-C. Freytag. 2009. Executing SPARQL Queries
over the Web of Linked Data. In Proc. of ISWC '09, Springer, pp.293-
309.

[7] S. Ramakrishnan and A. Vijayan. 2014. A study on development of
cognitive support features in recent ontology visualization tools. Artif.
Intell. Rev. 41, 4 (April 2014), pp.595-623.

[8] Protégé http://protege.stanford.edu/

[9] iSPARQL, http://oat.openlinksw.com/isparql/index.html,

[10] O. Ambrus, K. Moller, S. Handschuh, “Konduit VQB: a Visual Query
Builder for SPARQL on the Social Semantic Desktop”, proc of
VISSW2010, IUI2010, 2010, Hong Kong, China.

[11] A. Russell, P.R. Smart, D. Braines, Dave, N.R. Shadbolt, “NITELIGHT:
A Graphical Tool for Semantic Query Construction”, In, SWUI 2008,
Florence, Italy,

[12] Gfacet, http://www.visualdataweb.org/gfacet.php

[13] D. V. Camarda, S. Mazzini, A. Antonuccio. 2012. LodLive, exploring the
web of data. In Proc. of the I-SEMANTICS '12, ACM, pp.197-200.
http://lodlive.it

[14] P. Bellini, P. Nesi, "Modeling Performing Arts Metadata and
Relationships in Content Service for Institutions", Multimedia Systems
Journal, Springer, 2014. http://www.eclap.eu

[15] D3, Data-Driven Documents, http://d3js.org/

[16] P. Bellini, P. Nesi, N. Rauch, “Smart City data via LOD/LOG
Service”, Workshop Linked Open Data: where are we?, LOD2014, org.
by W3C.

[17] Prud'hommeaux, E., Seaborne, A., SPARQL Query Language for RDF,
http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/

[18] OTN, Ontology of Transportation Networks, Deliverable A1-D4,
Project REWERSE, 2005
http://rewerse.net/deliverables/m18/a1-d4.pdf

[19] http://dublincore.org, http://dublincore.org/documents/dcmi-
terms/

[20] VCARD, http://www.w3.org/TR/vcard-rdf/
[21] wgs84, http://www.w3.org/2003/01/geo/wgs84_pos
[22] dbPedia, http://dbpedia.org/resource/

http://www.w3.org/DesignIssues/LinkedData.html
http://www.foaf-project.org/
http://protege.stanford.edu/
http://oat.openlinksw.com/isparql/index.html
http://www.visualdataweb.org/gfacet.php
http://lodlive.it/
http://www.eclap.eu/
http://d3js.org/
http://www.w3c.it/events/2014/lod2014/
http://dublincore.org/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://www.w3.org/2003/01/geo/wgs84_pos
http://dbpedia.org/resource/

