
Ontology Bulding vs Data Harvesting and Cleaning

for Smart-city Services

Pierfrancesco Bellini, Monica Benigni, Riccardo Billero, Paolo Nesi, Nadia Rauch

DISIT Lab, Dep. of Information Engineering, University of Florence, Italy

http://www.disit.dinfo.unifi.it , {pierfrancesco.bellini, riccardo.billero, paolo.nesi, nadia.rauch}@unifi.it

Abstract— Presently, a very large number of public and private

data sets are available around the local governments. In most

cases, they are not semantically interoperable and a huge human

effort is needed to create integrated ontologies and knowledge

base for smart city. Smart City ontology is not yet standardized,

and a lot of research work is needed to identify models that can

easily support the data reconciliation, the management of the

complexity and reasoning. In this paper, a system for data

ingestion and reconciliation of smart cities related aspects as road

graph, services available on the roads, traffic sensors etc., is

proposed. The system allows managing a big volume of data

coming from a variety of sources considering both static and

dynamic data. These data are mapped to smart-city ontology and

stored into an RDF-Store where they are available for

applications via SPARQL queries to provide new services to the

users. The paper presents the process adopted to produce the

ontology and the knowledge base and the mechanisms adopted

for the verification, reconciliation and validation. Some examples

about the possible usage of the coherent knowledge base

produced are also offered and are accessible from the RDF-Store

and related services. The article also presented the work

performed about reconciliation algorithms and their comparative

assessment and selection.

Keywords— Smart city, knowledge base construction,

reconciliation, validation and verification of knowledge base, smart

city ontology, linked open graph.

I. INTRODUCTION

Despite the large work performed by Public
Administrations (PAs) on producing open data they are not
typically semantically interoperable and neither with the many
private data. Open data coming from PA contains typically
statistic information about the city (such as data on the
population, accidents, flooding, votes, administrations, energy
consumption, presences on museums, etc.), location of point of
interests on the territory (including, museums, tourism
attractions, restaurants, shops, hotels, etc.), major GOV
services, ambient data, weather status and forecast, changes in
traffic rules for maintenance interventions, etc. Moreover, a
relevant role is covered in city by private data coming from
mobility and transport such as those created by Intelligent
Transportation Systems, ITS, for bus management, and
solutions for managing and controlling parking areas, car and
bike sharing, car flow, good delivering services, accesses on
Restricted Traffic Zone (RTZ) etc. Both open and private data
may include real time data such as the traffic flow measure,
position of vehicles (buses, car/bike sharing, taxi, garbage
collectors, delivering services, etc.), railway and train status,
park areas status, and Bluetooth tracking systems for

monitoring movements of cellular phones, ambient sensors, and
TV cameras streams for security. Both PAs and mobility
operators have large difficulties in elaborating and aggregating
these data to provide new services, even if they could have a
strong relevance in improving the citizens’ quality of life.
Therefore, our cities are not so smart as they could be by
exploiting a semantically interoperable knowledge base
exploiting on these data. This condition is also present in highly
active cities on open data publication such as Firenze, that is
considered one of the top cities on Open Data.

Therefore, the variability, complexity, variety, and size of
these data, make the data process of ingestion and exploitation
a “Big Data” problem as addressed in [2], [3]. The variety and
variability of data can be due to the presence of several
different formats, and to scarce (or non-existing)
interoperability among semantics of the single fields and of the
several data sets. In order to reduce the ingestion and
integration cost, by optimizing services and exploiting
integrated information at the needed quality level, a better
interoperability and integration among systems is required [1],
[2]. This problem can be partially solved by using specific
reconciliation processes to make these data interoperable with
other ingested and harvested data. The velocity of data is
related to the frequency of data update, and it allows to
distinguish static data from dynamic data: the first one are
rarely updated, such as once per month/year, as opposed to the
second one that are updated from once a day up to every minute
or more. When these data models are analyzed and then
processed to become semantically interoperable, they can be
used to create a common knowledge base that can be feed by
corresponding data instances (with static, quasi-static and real
time data). This process may lead to create a large interoperable
knowledge base that can be used to make queries for producing
suggestions as well as, predictions, deductions, in the
navigation or in the service access and usage.

This scenario enables the creation of new services
exploiting the accumulated knowledge for: delivering service
predictions and tuning, deducing and predicting critical
conditions, towards different actors: public administrations,
mobility operators, commercials and point of interests and
citizens. In this paper, the above mentioned complex process of
knowledge base construction is described from: ontology
creation to the data ingestion and knowledge base production
and validation. The mentioned process also include processes
of data analysis for ontology modeling, data mining, formal
verification of inconsistencies and incompleteness to perform
data reconciliation and integration. Among the several
processes, the most critical aspects are related to the ontology

http://www.disit.dinfo.unifi.it/

construction that can enable deduction and reasoning, and on
the verification and validation of the obtained model and
knowledge base.

The paper is organized as follows. In Section II, the
overview of the proposed ontology is presented together with
the main problems underlined its construction, and the main
macro classes. Section III describes the details associated to
each macroclass of the proposed smart city ontology and the
integration with other vocabulary. Section IV reports the
general architecture adopted for processing Open Data and the
motivations that constrained its definition. In the same section,
two services are presented that allow navigating in the
knowledge base and can be used by non-data engineers. Section
V presents the verification and validation process adopted for
the knowledge base, and the results regarding the reconciliation
precision and recall by using different kind of algorithms.
Conclusions are drawn in Section VI.

II. ONTOLOGY MAIN ELEMENTS

In order to create an ontology for Smart City services, a
large number of data sets have been analyzed to see in detail
each single data elements of each single data set with the aim of
modeling and establishing the needed relationships among
element, thus making a general data set semantically
interoperable (e.g., associating the street names with
toponimous coding, resolving ambiguities). The work
performed started from the data sets available in the Florence
and Tuscany area. In total the whole data sets are more than
800 data sets. At regional level, Tuscany Region provided a set
of open data into the MIIC (Mobility Integration Information
Center of the Tuscany Region), and provide integrated and
detailed geographic information reporting each single street in
Tuscany (about 137,745), and the locations of a large part of
civic numbers, for a total of 1,432,223 (a wider integration
could be performed integrating also Google maps and
Yellow/white pages). From the MIIC, it is possible to recover
information regarding streets, car parks, traffic flow, bus
timeline, etc. While from Florence municipality, real time data
such as those from the RTZ about car passages, tram lines on
the maps, bus stops, bus tickets, statistics on accidents,
ordinances and resolutions, numbers of arrivals in the city,
number of vehicles per year, etc., can be obtained. From the
other open data, points of interest (POI) can be recovered as
position and information related to: museums, monuments,
theaters, libraries, banks, express couriers, police, firefighters,
restaurants, pubs, bars, pharmacies, airports, schools,
universities, sports facilities, hospitals, emergency rooms,
government offices, hotels and many other categories,
including weather forecast by LAMMA consortium. In addition
to these data sets, those coming from the mobility and transport
operators have been collected as well.

The analysis of the above mentioned data sets allowed us to
create an integrated ontological model presenting 7 main areas
of macroclasses as depicted in Figure 1.

Administration: includes classes related to the structuring
of the general public administrations, namely PA, and its
specifications, Municipality, Province and Region; also
includes the class Resolution, which represents the ordinance

resolutions issued by each administration that may change the
traffic stream.

Street-guide: formed by entities as Road, Node,
RoadElement, AdministrativeRoad, Milestone, StreetNumber,
RoadLink, Junction, Entry, and EntryRule Maneuver, it is used
to represent the entire road system of Tuscany, including the
permitted maneuvers and the rules of access to the RTZ. The
street model is very complex since it may model from single
streets to areas, different kinds of crosses and superhighways,
etc. In this case, OTN (Ontology for Transport Network)
vocabulary has been exploited to model traffic [4] that is more
or less a direct encoding of GDF (Geographic Data Files) in
OWL.

Figure 1 - Ontology Macro-Classes and their connections

Point of Interest (POI): includes all services, activities,
which may be useful to the citizen and who may have the need
to “search-for” and to “arrive-at”. The classification of
individual services and activities is based on main and
secondary categories planned at regional level. In addition, this
macro segment of the ontology may take advantage of reusing
Good Relation model of the commercial offers

1
.

Local public transport: includes the data related to major
LPT (Local Public Transport, in italian: TPL, Transport Public
Local) companies scheduled times, the rail graph, and data
relating to real time passage at bus stops. Therefore, this
macroclass is formed by classes PublicTransportLine, Ride,
Route, AVMRecord, RouteSection, BusStopForeast, Lot,
BusStop, RouteLink, RouteJunction. (where AVM means
Automatic Vehicle Monitoring).

Sensors: macroclass concerns data from sensors: ambient,
weather, traffic flow, pollution, etc. Currently, data collected by
various sensors installed along some streets of Florence and
surrounding areas, and those relating to free places in the main
car parks of the region, have been integrated in the ontology.
Some of the sensors can be located on moving vehicles such as

1
 http://www.heppnetz.de/projects/goodrelations/

Temporal
Macroclass

Point of
Interest

Macroclass

Sensors
Macroclass

Local public
transport

Macroclass

Administratio
n

Macroclass

Street-guide
Macroclass

PA à hasPublicOffice à OFFICE

SENSOR à measuredTime à TIME

SERVICE à isInRoad à ROAD

CARPARKSENSOR à
observeCarPark à CARPARK

BUS à hasExpectedTime à TIME

CARPARK à
isInRoad à

ROAD

BUSSTOPFORECAST à
atBusStop à BUSSTOP

WEATHERREPORT à refersTo à PA

BUSSTOP à isInRoad à ROAD

ADMINISTRATIVEROAD à
ownerAuthority àPA

MetaData

http://www.heppnetz.de/projects/goodrelations/

those on busses, car sharing, bike sharing, and on citizens
mobiles, etc.

Temporal: macroclass that puts concepts related to time
(time intervals and instants) into the ontology, so that associate
a timeline to the events recorded and is possible to make
forecasts. It takes advantage from time ontologies such as
OWL-Time [5].

Metadata: This group of entities represent the collection of
metadata associated with the data sets, and their status
conditions. If they have been ingested and integrated into the
RDF store index, data of ingestion and update, licenses
information, versioning, etc. In the case of problems with a
certain set of triples or attributes, it is possible to recover the
data sets that have generated them, when and how.

The ontology reuses the following vocabularies: dcterms:
set of properties and classes maintained by the Dublin Core
Metadata Initiative; foaf: dedicated to the description of the
relations between people or groups; vCard: for a description of
people and organizations; wgs84_pos: vocabulary representing
latitude and longitude, with the WGS84 Datum, of geo-objects.
The present RDF store and indexing engine OWLIM allows to
perform geographic queries, for example to identify the POI
which are closer than a given distant with respect to a specific
GPS position. To this end, a specific index is built during RDF
store indexing.

III. SMART-CITY ONTOLOGY DETAILS

A. Administration Macroclasss

The Administration Macroclass is structured in order to
represent the Italian public administration hierarchy: each
region is divided into several provinces, within which the
territory is divided into municipalities. Moreover each PA,
during its mandate, can produce resolutions and publish
statistics. To represent this situations the SmartCity Ontology
has, as main class of Administration Macroclass, the class PA,
which has been defined as a subclass of foaf:Organization, link
that helps to assign a clear meaning to this class. The three
subclasses of PA, i.e. Region, Province and Municipality are
automatically defined according to the restriction on some
ObjectProperties: for example, the class Region is defined as a
restriction of the class PA on ObjectProperty hasProvince, so
that only the PA that possess provinces, can be classified as
Regions. Class PA is connected to class Resolution through the
ObjectProperty hasApprovedPA, that has its inverse property,
hasResolution. Statistical data related to both various
municipalities in the region and to each street, are represented
by a unique class StatisticalData, shared by macroclasses
Administration and Street Guide: as we will see also in the next
subsection, class StatisticalData is connected to both classes
PA and Road through ObjectProperty hasStatistic.

B. Street-guide Macroclass

At regional level, the entire roads system in Tuscany, from
an administrative point of view, is seen as a set of
administrative extensions or administrative roads, while from
the citizen' point of view, it is composed by a set of roads. Each
administrative road represents the administrative division of the
roads, based on which PA have to manage them. Both

administrative roads and roads are formed by a variable number
of road elements, each of which starts and ends in a unique
node. Each road element, in turn, is formed by a set of sections
separated by an initial junction and a final junction, which
allow to delineate the exact broken line that represents each
road element. Placed on the various roads there are street
numbers, each of which always corresponds to at least one
entry; in some cases there are two entrances which corresponds
to a single street number, i.e. the outer gate and the front door.
With regard to road circulation, access rules and maneuvers are
defined: the first one defines access restrictions to each road
element, the second one, instead, are mandatory turning
maneuvers, priority or forbidden, which are described by
indicating the order of road elements involving.

Another element present into the Tuscany road system is
the milestone, which represents the kilometer stones that are
placed along the administrative roads, that is, the elements that
identify the precise value of the mileage at that point.

The situation described above has been modeled into the
Smart City Ontology, choosing as the main class of Street
Guide macroclass, the RoadElement class, which is defined as a
subclass of the corresponding element in the OTN Ontology
(see Figure 2), that is Road_Element. Each road element is
delimited by a start node and an end node, detectable by the
ObjectProperties startsAtNode and endsAtNode, which connect
elements of the class in question to the class Node, subclass of
the same name class OTN:Node, belonging to ontology OTN.

otn:Node

otn:Edge

Road
RoadEleme

nt

hasRoadElement

isPartOfRoad
Node

startsAtNode

endsAtNode

subClassOf

otn:Road

subClassOf

Milestone

is
In

El
em

en
t

containsElement

formAdminRoad

Administrat
iveRoad

otn:Road_E
lement

Junction

RoadLink

startJunctionendJunction

subClassOf

hasSegment

su
b

C
la

ss
O

f

Maneuver

EntryRule

ac
ce

ss
To

El
em

en
t

h
as

R
u

le

h
as

M
an

eu
ve

r

hasFirstElem
hasSecondElem

hasThirdElem

co
n

ce
rn

in
gN

o
d

e

otn:Maneu
ver

su
b

C
la

ss
O

f

StreetNum
ber

hasStreetNumber
belongToRoad

Entry

hasInternalAccess
hasExternalAccess

placedInElement

coincideWith

Figure 2 - The Street-guide Macro class

The class Node has been defined with a restriction on
DataProperty geo:lat and geo:long, two properties inherited
from the definition of the class Node as subclass of
geo:SpatialThing belonging to ontology Geo wgs84 [7]: in fact,
each node can be associated with only one pair of coordinates
in space, and a node without these values cannot exist. The
class Road is defined as a subclass of the corresponding class in
the OTN Ontology, i.e., the homonymous class Road, with a
cardinality restriction on ObjectProperty containsElement,
since a road that does not contain at least one road element,
cannot exist. Also the class AdministrativeRoad is connected to

class RoadElement through two inverse ObjectProperties
hasRoadElement and formAdminRoad, while it is connected
with only one ObjectProperty, coincideWith, to the class Road.
In order to better clarify the relationship that exists between
classes Road, AdministrativeRoad and RoadElement: a Road's
instance can be connected to multiple instances of class
AdministrativeRoad (e.g., if a road crosses the border between
two provinces), but the opposite is also true (e.g., when a road
crosses a provincial town center and it assumes different
names), i.e., there is a N:M relationship between these two
classes. On each road element, it is possible to define access
restrictions, identified by class EntryRule, which is connected
to class RoadElement through 2 inverse ObjectProperties, i.e.,
hasRule and accessToElement. The class Maneuver and class
EntryRule are connected by ObjectProperty hasManeuver.
Moreover, we verified that only in rare cases maneuvers
involving three different road elements, to represent the
relationship between classes Maneuver and RoadElement, three
ObjectProperties were defined: hasFirstElem, hasSecondElem
and hasThirdElem. In addition to the ObjectProperty that binds
a maneuver to the junction that is interested, that is,
concerningNode (because a maneuver takes place always in
proximity of a node). Each instance of Milestone class must be
associated with a single instance of AdministrativeRoad, and it
is therefore defined a cardinality restriction equal to 1.
Associated with ObjectProperty isInElement; also class
Milestone is defined as subclass of geo:SpatialThing, in this
case the presence of coordinates is not mandatory, to be capable
to model entities that does not present those data. Thanks to the
owned data, classes StreetNumber and Entry were defined: the
connection of class StreetNumber to class Road, is possible
respectively through the ObjectProperties hasStreetNumber and
belongToRoad. The relationship between classes Entry and
StreetNumber, is also defined by the two ObjectProperties,
hasInternalAccess and hasExternalAccess. The class Entry is
defined as a subclass of geo:SpatialThing, and it is possible to
associate a maximum of one pair of coordinates geo:lat and
geo:long with each instance. The Street-guide macroclass is
connected to the Administration macroclass through two
different ObjectProperties -- i.e., OwnerAuthority and
managingAuthority, which represent respectively the public
administration which owns an AdministrativeRoad, or public
administration that manages a RoadElement. Thanks to the
processing of KMZ files (Keyhole Markup Language file and
zero or more supporting files packaged in a ZIP file), is
possible to retrieve the set of coordinates that define the broken
line of each RoadElement. Each of these points is added to the
ontology as an instance of class Junction (defined as a subclass
of geo:SpatialThing, with compulsory single pair of
coordinates). Each small segment between two instances of
Junction class is instead an instance of class RoadLink, which is
defined by a restriction on the ObjectProperties ending and
starting, which connect the two mentioned classes. RoadLink
and Juctions are in total about 20 million of triples.

C. Point of Interest Macroclass

This macroclass allows to represent services to the citizens,
points of interest, businesses activities, tourist attractions, and
anything else can be located thanks to a pair of coordinates on a
map. Each type of element has been defined starting from the

categories defined by the Tuscany Region taxonomy of
categories, including: Accommodation, GovernmentOffice,
TourismService, TransferService, CulturalActivity,
FinancialService, Shopping, Healthcare, Education,
Entertainment, Emergency and WineAndFood.

It is easy to understand that the main class of the Point of
Interest Macroclass is a generic class Service for which the
subclasses above listened have been identified thanks to the
value assigned to ObjectProperty serviceCategory.

The class Accommodation for example, was defined as a
restriction of the class Service on ObjectProperty
serviceCategory, which must take one of the following values:
tourist_resort, hotel, tourist_home, rest_home,
religiuos_guest_house, bed_and_breakfast, hostel,
summer_residence, vacation_resort, farmhouse,
day_care_center, camping, historic_residence, mountain_dew.

We have also defined DataProperty ATECOcode, i.e.
ATECO is the ISTAT (national institute for statistics in Italy,
www.istat.it) code for the classification of economic activities,
which could be used in future as a filter to define the various
services subclasses, in place of the categories proposed by the
Tuscany Region, in order to make more precise research of the
various types of services. Thanks to the class Service the
macroclasses Point of Interest and Street guides can be
connected by exploiting ObjectProperty hasAccess, with which
a service can be connected to only one external access,
corresponding to the road and the street number of the service
location. If this association is not possible (because of lack of
information, missing street number, etc..), the connection
between the same two macroclasses listed above, is realized
through the ObjectProperty isInRoad, that connects an instance
of the class Service to an instance of the class Road. In order to
use at least one of these two ObjectProperty to connect
macroclasses Point of Interest and Street Guides, an intense
reconciliation phase is necessary, as described in section IV.

D. Public Transport Macroclass

The TPL (Italian LPT) macroclass (see Figure 3) includes
information relating to public transport by road and rail. The
public transport by road is organized in public transport lots,
each of which is in turn composed of a number of bus and tram
lines. Each line includes at least two ride per day (the first in
ascendant direction, and the second one in descendant
direction), identified through a code provided by the TPL
company and each ride is scheduled to drive along a specific
path, called route. A route can be seen as a series of road
segments delimited by subsequent bus stops, but wishing then
to represent to a cartographic point of view the path of a bus,
we need to represent the broken line that composes each stretch
of road crossed by the means of transport itself, and to do so,
the previously used modeling on road elements, has been
reused: we can see each path as a set of small segments, each of
which delimited by two junctions.

 The part relating to rail transport: each railway line, i.e., an
infrastructure designed to run trains between two places of
service, is composed by a number of railway elements, which
can also form a railway direction (a railway line having
particular characteristics of importance for volume of traffic

and transport relations linking centers or main nodes of the rail
network) and a railway section (section of the line in which you
can find only one train at time, and that is usually preceded by a
"protective" or "block" signal). In addition, each rail element
begins and ends at a railway junction, in correspondence of
which there may be train stations or cargo terminals.

PublicTransp
ortLine

Route

RouteSection

BusStop RouteLink

hasRoute

hasFirstSection

hasRouteLink

endsAtStop
startsAtStop

beginsAtJunction

finishesAtJunction

RouteJunctio
n

otn:Line

subClassOf

otn:Route subClassOf

otn:RouteSec
tion

subClassOf

otn:StopPoin
t

subClassOf

hasSection

h
as

Fi
rs

tS
to

p

RidescheduledOnLine

onRoute

AVMRecord

h
as

A
V

M
R

ec
o

rd

lastStop

onRoute

Lot
isPartOfLot

is
P

ar
tO

fL
o

t

concernLine

BusStopForec
ast

h
as

Fo
re

ca
st

at
B

u
sS

to
p

Figure 3 - Public Transport Macroclass (a portion)

Based on the previous description, we have defined class
PublicTransportLine (that it is also subclass of OTN:Line),
which is connected to the corresponding instance of class Lot,
thanks to ObjectProperty isPartOfLot. Every instance of class
PublicTransportLine is connected to class Ride through
ObjectProperty scheduledOnLine, which is also defined as a
limitation of cardinality exactly equal to 1, because each stroke
may be associated to a single line. To model each path and its
sequence of crossed bus stops, classes Route and BusStop have
been defined. We decided to define two ObjectProperties
linking classes Route and RouteSection, i.e. hasFirstSection and
hasSection, since, from a cartographic point of view, wanting to
represent the path that a certain bus follows. In details, knowing
the first segment and the stop of departure, it is possible to
obtain all the other segments that make up the complete path
and, starting from the second bus stop (that is identified as the
different stop from the first stop, but that it is also contained in
the first segment), we are able to reconstruct the exact sequence
of the bus stops, and then the segments, which constitute the
entire path. For this purpose also ObjectProperty hasFirstStop
has been defined, which connects classes Route and BusStop
and ObjectProperty endsAtStop and startsAtStop, which
connect instead each instance of RouteSection to two instances
of class BusStop (subclass of OTN:StopPoint). Each stop is also
connected to class Lot, through the ObjectProperty isPartOfLot,
with a 1:N relation, because there are stops shared by urban and
suburban lines so they belong to two different lots. Possessing
also the coordinates of each stop, class BusStop was defined as
a subclass of geo:SpatialThing, and was also termed a
cardinality equal to 1 for the two DataProperty geo:lat and
geo:long. In order to represent the broken line that composes
each route, classes RouteLink and RouteJunction, and the
ObjectProperties beginsAtJunction and finishesAtJunction,
were defined. The

class Route is also connected to class RouteLink through
hasRouteLink ObjectProperty.

The Railway Graph is mainly formed by class
RailwayElement, that can be connected to classes
RailwayDirection and RailwaySection, thanks to two inverse
ObjectProperties isComposedBy and composeSection, and to
class RailwayLine, trough the two inverse ObjectProperties
isPartOfLine and hasElement. Each instance of class
RailwayElement is connected to two instances of class
RailwayJunction (defined as a subclass of the OTN:Node), by
the ObjectProperties startAtJunction and endAtJunction,.
Classes TrainStation and GoodsYard correspond only to one
instance of the RailwayJunction class, both through the
ObjectProperty correspondToJunction.

E. Sensors Macroclass

Sensors Macroclass consists of four parts related to car

parks sensors, weather sensors, traffic sensors installed along

roads/rails and to AVM/kit systems installed on buses, cars

and/or bikes. The first part is focused on the real-time data

related to parking: for each sensors installed into different car

parking areas, a status record is received every 5minutes. In

each status report, there are information about the number of

free and occupied parking spaces, for the main car parks in

Tuscany Region. The weather sensors produce real-time data

concerns the weather forecast, thanks to LAMMA (institute for

modeling and monitoring environmental conditions in

Tuscany, http://www.lamma.rete.toscana.it). This consortium

updates the municipality forecast report once or twice per day

and every report contains forecast for five days divided into

range, which have a greater precision (and a higher number)

for the nearest days until you get to a single daily forecast for

the 4th and 5th day. The traffic sensors produce real-time data

concerning the sensors placed along the roads of the region,

which allow making different measures and assessment related

to traffic situation. Unfortunately, the location of these sensors

is not very precise, it is not possible to place them in a unique

point thanks to coordinate, but only to place them within a

toponym, which for long-distance roads such as FI-PI-LI road

(the highway that connect Florence-Pisa-Livorno), it

represents a range of many miles. Each sensor, is part of a

group and produces observations which can belong to four

types, i.e. they can be related to the average velocity, car flow

passing in front of the sensor, traffic concentration, or to the

traffic density. On this regards, Bluetooth sensors could be

installed to trace the number of people passing by on car and

bikes from a given point.
The AVM (Automatic Vehicle Monitoring) systems part

concerns the sensors systems installed on most of buses, which,
at intervals of few minutes, send a report to the management
center. They provide information about: the last stop
performed, current GPS coordinates of the vehicle, the
identifiers of vehicle and of the line, a list of upcoming stops
with the planned passage time.

To model the car parks situation we have defined the class
CarParkSensor which is linked to instances of the class
SituationRecord, that represent, as previously stated, the state
of a certain parking at a certain instant; this link is performed
via the reverse ObjectProperties, relatedToSensor and
hasRecord. This first part of the Sensors Macroclass is also

connected to the Point of Interest Macroclass through two
inverse ObjectProperties, observeCarPark and
hasCarParkSensor, which connect the classes CarParkSensor
and TransferService.

The weather situation, instead, is represented by class
WeatherReport connected to class WeatherPrediction via the
ObjectProperty hasPrediction. Moreover, class Municipality is
connected to each report by two reverse ObjectProperties:
refersToMonicipalitu and hasWeatherReport, to realize the
connection between the macroclasses Sensors and
Administration.

With regard to traffic sensors, each group of sensors is
represented by class SensorSiteTable and each instance of class
SensorSite connects to its group through the ObjectProperty
formsTable and thanks to ObjectProperty placeOnRoad each
instance of class SensorSite can be connected only to class
Road (see Figure 2), to create a connection between Sensors
and Street-guide macroclasses. Each sensor produces
observations represented by instance of class Observation and,
as mentioned earlier, there are four possible subclasses:
TrafficConcentration, TrafficHeadway, TrafficSpeed, and
TrafficFlow subclass. Classes Observation and Sensor are
connected via a pair of reverse ObjectProeprties,
hasObservation and measuredBySensor.

Finally, the last part of Sensors Macroclass is mainly
represented by two classes, AVMRecord and BusStopForecast,
and thanks to the ObjectProperty lastStop, this first class can be
connected to the BusStop class. The list of scheduled stops is
instead represented as instances of the class BusStopForecast, a
class that is linked to the class BusStop through atBusStop
ObjectProperty so as to be able to recover the list of possible
lines provided on a certain stop (the class AVMRecord is in fact
also connected to the class Line via ObjectProperty
concernLine).

F. Temporal Macroclass

The Temporal Macroclass, is now only "sketchy" within the

ontology, and it is based on the Time ontology [5] as it has
been used into OSIM ontology [8]. It requires the integration of
the concept of time as it will be of paramount importance to be
able to calculate differences between time instants, and the
Time ontology comes to help us in this task. We define
fictitious URI: #instantForecast, #instantAVM,
#instantParking, #instantWreport, #instantObserv to associate
at a resource URI a time parameter -- i.e. respectively
BusStopForecast, AVMRecord, SituationRecord,
WheatherReport and finally Observation. It is necessary to
create a fictitious URI that links a time instant to each resource,
to avoid ambiguity, because identical time instants associated
with different resources may be present (although the format in
which a time instant is expressed has a fine scale). Time
Ontology is used to define precise moments as temporal
information, and to use them as extreme for intervals and
durations definition, a feature very useful to increase
expressiveness.

Pairs of ObjectProperties have also been defined for each
class that needs to be connected to the class Instant: between
classes Instant and SituationRecord were defined the inverse
ObjectProperties instantParking and observationTime, between
classes WeatherReport and Instant, the ObjectProperties
instantWReport and updateTime have been defined; between
classes Observation and Time there are the reverse
ObjectProperties measuredTime and instantObserv, between
BusStopForecast and Time we can find hasExpectedTime and
instantForecast ObjectProperties, and finally, between
AVMRecord and Time, there are the reverse ObjectProperties
hasLastStopTime and instantAVM.

G. Metadata Macroclass

Finally, Metadata macroclass is used to keep track of the
status and descriptors associated with the various ingested
dataset. Sesame [www.openrdf.org] allows to assign a name
(i.e., an identifier) to the various graphs that can be identified
within the defined ontology, so defining some Named Graphs.
This name, also called "context", allows to expand the triple

RDF Store,
Knowledge

base

BigData Store
Dati Statici

ETL
Transfor
mation

ETL
Transfor
mation

ETL
Transfor
mation

ETL
Transfor
mation

Mapping
processe

s

Temp
Store

Triple
Generati

on

Data
Integrati
on Tool

DISIT
Ontology

for
Smart City

R2RML
Model

Reconciliation consolleProcess
Scheduler

Ingestion

Temp
Store

SQL Store

NoSQL Store

BigData Store
Dati Real Time

SQL Store

ETL
Transfor
mation

Validation

Query
SPARQL

Linked Open Graph
Log.disit.org

ServiceMap
servicemap.disit.org

Mapping

SP
A

RQ
L

en
d

po
in

t

Access

Server

Figure 4 - Architecture Overview

data model to a quad data model, defined as follow: subject-
predicate-object-context. Owlim, allows to assign the context to
each triple set, during the data loading phase. Therefore, a
description and status context called dataProperty is associated
with each data set. It allows to store all the useful information
related to a certain data set, such as: date of creation, data
source, original file format, dataset description, type of license
bound to the dataset, kind of ingestion process, and how much
automated is the entire ingestion process, type of access to the
dataset, overtime, period, associated parameters, date of last
update, date of triples creation, status of the ingestion process,
etc..

IV. DATA ENGINEERING ARCHITECTURE

In this section, the description of the data engineering
architecture is proposed (see Figure 4). The whole ingestion
and quality improvement process can be regarded as divided
into the following phases of: Data Ingestions, knowledge
Mapping, knowledge Reconciliation to make the model
semantic interoperable, Verification and Validation and
Access/exploitation from services. The whole phases of the
ingestion processes are managed by a Process Scheduler that
allocates processes on a parallel and distributed architecture
composed by several servers. To allow the regular update of
ingested data the scheduler regularly retrieves data and check
for updates. The ingested data are transcoded and then mapped
in the Smart City Ontology. After that, they are made available
to applications on an RDF Store (OWLIM-SE) using a
SPARQL Endpoint. Applications can use the geo-referenced
data to provide advanced services to the city citizens, such as
the present solution for knowledge base browsing via Linked
Open Data (http://log.disit.org) and the Service Map
(Http://servicemap.disit.org), described in the following
section.

A. Data Ingestion

For the data ingestion, the problems are related to the
management of the several formats and of the various data sets
that may find allocation on different segments and areas of the
Smart City Ontology. The solution allows ingesting and
harvesting a wide range of public and private data, coming as
static, semi-static and real time data as mentioned in the
previous sections. For the case of Florence area, we are
addressing about 150 different sources of the 564 available.
Static and semi-static data include points of interests, geo-
referenced services, maps, accidents statistic, etc. This
information is typically accessible as public files in several
formats, such as: SHP, KMZ, CVS, ZIP, XML, etc.

Each Open Data ingestion process retrieves information and
produce records in a noSQL Hbase for big data [9], logging all
the information acquired to trace back and versioning the data
ingestion. Data are then completed; other columns are updated
dynamically with other process steps, and finally data obtained
are placed on an HBase table.

Real time data includes data coming from sensors (e.g.,
parking, weather conditions, pollution measures, busses, etc.)
that are typically acquired from Web Services as well as more
static data as road graph description, etc. For example ingestion
of data relating to traffic sensors consists of a ETL

transformation (Extract, Transform, and Load). In most cases,
the real-time data are directly pushed in the mapping process to
feed the temporary SQL store. They are typically streamed into
the traditional SQL store and then converted into triples in the
RDF final store.

In almost all cases, each single data set is ingested by means
of a different ETL process defined by using Pentaho Kettle
formalism [10] because, among the several existing solutions,
this formalism is quite diffused and easier to understand, and it
was already used by Information Systems Directorate of
Florence. When the Kettle language presented limitation,
external processes in Java have been adopted.

B. Data Mapping

The Mapping Phase deals with the transport of information,
previously saved into HBase database, into an RDF datastore,
in our case managed by Owlim-SE [11]. The first part of this
procedure retrieves information from HBase to put them on a
temporary MySQL database (required to use the Data
Integration tool chosen), while in the second part data are
translated into triples. Transformation is needed to map the
traditional structured into RDF triples, based on information
contained in a well-defined ontology (DISIT Ontology for
Smart City) and all ontologies reused (dcterms, foaf, vCard,
etc.). This process may be performed by ad-hoc programs that
have to take into account the mapping from linear model to
RDF structures. This two steps process allowed us to test and
validate several different solutions for mapping traditional
information into RDF triples and ontology. The ontological
model has been several times updated and thus the full RDF
storage has been regenerated from scratch reloading the
definition (all the other vocabularies, selecting the testing
several different solutions) and the instance triples according to
the new model under test. Once the model has been generated,
triples can be automatically inserted.

The first essential step is to specify semantic types of the
data set, i.e., it is necessary to establish the relationship between
the columns of the SQL tables and properties of ontology
classes. The second step consists in defining the Object
Properties among the classes, or the relationships between the
classes of the ontology. When dataset has 2 columns that have
the same semantic type but which correspond to different
entities, thus multiple instances of the same class have to be
defined, associate each column to the correct one.

The process responsible to perform the mapping
transformation, passing from Hbase to SQL database has been
produced as a corresponding ETL Kettle associated with each
specific ingestion procedure for each data set. The second
phase, of performing the mapping from SQL to RDF, has been
realized by using a mapping model: Karma Data Integration
tool [12], which generates a R2RML model, representing the
mapping for transport from MySQL to RDF and then it is
uploaded in a OWLIM-SE RDF Store instance [11]. Karma
initialization phase involves loading the primary reference
ontology and connecting dataset containing the data to be
mapped. This process allowed the production of the knowledge
base that may present a large set of problems due to
inconsistencies and incompleteness that may be due to lack of
relationships among different data sets, etc. These problems

http://log.disit.org/
http://servicemap.disit.org/

may lead to the impossibility of making deductions and
reasoning on the knowledge base, and thus on reducing the
effectiveness of the model constructed. These problems have to
be solved by using a reconciliation phase via specific tools and
the support of human supervisors.

C. Exploiting and Exploriing Smart City Data

The Smart City Ontology presented is a strong
generalization of a large set of data modeling problems. The
integration of the several data sets coming from different
sources into a semantic interoperable knowledge base is a
solution to exploit this information for smart city purpose. To
this end, the activities of data quality improvements can be
performed in the first phases of the ingestion, and/or after the
triple generation and integration to discover problems and to
solve them.

The system has been used to ingest the data coming from
the Municipality of Florence, the Tuscany Region and MIIC.
Considering only files related to the daily weather forecast of
all the available municipalities, we have 286 files updated twice
a day, each of which, containing also 16 lines of weather
prediction for the week, we obtain an increase of approximately
270,000 HBase lines per month that, in terms of triples,
corresponds to a monthly increase of about 2.5 million triples.

Moreover, in order to explore the data being ingested and
their relationships a tool for data visualization and exploration
was used, that allows exploring the semantic graph of the
relations among the entities, this Linked Open Graph is
available for applications developers to explore and understand
better the data available in the ontology.

Figure 5 - Service Map (http://servicemap.disit.org)

A second tool called ServiceMap to perform geographic
queries (for example to get points of interests close to a bus
station, to get the street number close to a given point on the
map, etc.) has been deployed (see Figure 5).

The service map, for example, allows to (i) get bus stops
and from them to access the status line of the bus, providing the
waiting time to the next bus, (ii) finding parking and getting in
real time the number of empty places, etc. From each “pin” in

the map, it is possible to pass from the entity identified to its
model in terms of relationships on the LOG graph.

V. VERIFICATION AND VALIDATION

To connect services to the Street Guide in the repository a
reconciliation phase in more steps, has been required, because
the notation used by the Tuscany region in some Open Data
within the Street Guide, does not always coincide with those
used inside Open Data relating to different points of interest. In
substance, different public administration are publishing Open
Data that are not semantically interoperable.

Typical problems can be related to: (i) low quality of data,
(ii) lack of data that are supposed to arrive in real time, (iii)
changes in the data model of the data set, (iv) changes and
updates into the data sets (this problem could generate a change
into the ontological model and thus the human intervention is
activated for model review), etc. To this end, periodic
verification and validation processes is needed to be performed
by defining a set of SPARQL queries on the knowledge base
with the aim of detecting inconsistencies and incompleteness,
and verifying the correct status of the model. These periodically
executed queries perform a regression testing every time a new
update of data process ingestion is performed, and when real
time data arrive into the final RDF store. The validation process
may lead to identify problems that may be limited to the
instances of classes. To this end, the fourth information
associated with each triple allows to identify the problems and
the data set processes to be revised.

Therefore, an iterative workflow process was defined.
During validation there were cases like the Weather forecast
where no connection among the data were present due to
different encoding of the name of the municipality, for this
reason to support the reconciliation process a table containing
the ISTAT code of each municipality was created, and each
time new weather data are available, they are automatically
completed with the correct ISTAT code, thus supporting the
search for the instance of the PA class to which connect the
weather forecasts.

A relevant process of data improvement for semantic
interoperability is related to the application of reconciliations
among the entities associated with locations as streets, civic
numbers and localities. On this regard, there are different types
of inconsistencies within the various integrated dataset, such as:

• typos;

• missing street number, or replacement with "0" or "SNC"

(Italian acronym that means without civic number);

• Municipalities with no official name (e.g. Vicchio/Vicchio

del Mugello);

• street names with uncommon characters (-, /, ° ? , Ang.,

,);

• street numbers with strange characters (-, /, ° ?, Ang. ,(,);

• road name with words in a different order from the usual (

e.g. Via Petrarca Francesco, exchange of name and

surname);

• number wrongly written (e.g. 34/AB, 403D, 36INT.1);

• red street numbers (in some cities, street numbers may

have a color. So that a street may have 4/Black and 4/Red,

http://servicemap.disit.org/

red is the numbering system for shops);Roman numerals

in the road name (e.g., via Papa Giovanni XXIII).
As a summary, the whole knowledge base initially created

was consisting of more than 81 Million triples, with a growth of
4 million triples per month. A part of them can be discharged
when statistical values are estimated and punctual value
discharged. For the validation, a total amount of services/points
of interest inserted into the repository has been of 30182
instances. Among these, 13185 have been reconciled at street
number-level, while the number of elements reconciled at
street-level has been 21207. There are also 149 services
associated to a coordinate pair, for which reconciliation did not
return results, yet for the lack of references into the knowledge
base (some streets and civic numbers are still missing or
incomplete).

Thanks to the created ontology, is possible to perform
services reconciliation at street number level, i.e. connecting an
instance of class Service to an external access that uniquely
identifies a street number on a road, or only at street-level, with
less precision (lack that can be compensated thanks to
geolocation of the service).

In the collected data sets, an average of about the 15% are
automatically connected entities since they refer to perfectly
consistent locations (i.e., perfect match in terms of location,
street and civic number) in the MIIC with respect to the
description reported in the service data set. In the total of
location entities ingested, 5,75 % of locations are wrong and
not reconciliable due to (i) the presence of wrong values for
streets and/or locations, (ii) the lack of a consistent reference
location into the MIIC geographical model.

The reconciliation process can be performed with the aim of
finding elements that identify the same entity while presenting
different URIs. Thus the identified reconciliations are solved
creating an owl:sameAs triple to the selected location toponym.
Reconciliation detection can be performed by using (i) a set of
specific SPARQL queries, (ii) program tools for RDF link
discovering. To this end, declarative languages for link
discovering such as SILK [14] and LIMES [13] have been
proposed. As the production of SPARQL queries, the
programming of the link discovering algorithms also implies
the knowledge of the ontological structure of the RDF stores to
be compared/linked.

A. SPARQL Reconciliation

The methodology used for SPARQL reconciliation consists
of trying to connect each service at street number-level, and
then, perform the reconciliation at street-level. The first
reconciliation step performed consists of an exact search of the
street name associated with each service integrated. For
example, to reconciliate the service located at "VIA DELLA
VIGNA NUOVA 40/R-42/R, FIRENZE", a SPARQL query is
necessary, to search for all elements of Road class connected to
the municipality of "FIRENZE" (via the ObjectProperty
inMunicipalityOf), which have a name that exactly corresponds
to "VIA DELLA VIGNA NUOVA" (checking both fields:
official name, alternative name). The query results has to be
filtered again, imposing that an instance of StreetNumber class

exists and it corresponds to civic number "40" or "42", with the
R class code Red. A very frequent problem for exact search, is
the existence of multiple ways to express toponym qualifiers,
that is dug (e.g. Piazza and P.zza) or parts of the proper name
of the street (such as Santa, or S. or S or S.ta): thanks to support
tables, inside which the possible change of notation for each
individual case identified are inserted, a second reconciliation
step was performed, based on exact search of the street name,
which has allowed to increase the number of reconciled
services at street number-level. The third reconciliation step is
based on the research of the last word inside the field v:Street-
Address of each instance of the Service class, because,
statistically, for a high percentage of street names, this word is
the key to uniquely identify a match.

The above mentioned three steps have been also carried out
without taking into account the street number, and so in order
to obtain a reconciliation at street-level of each individual
service. An additional, phase of manual correction has been
also performed by manually (i) searching services and
incongruent locations via web search service as Google, (ii)
cleaning address and street number fields, (iii) accepting and
performing association match of non-identified matches, taking
into account the list of probable candidates suggested by the
query results.

B. Link discovering Based Reconciliation and comparison

Link discovering based reconciliation consists in writing
specific SILK algorithms for link discovering. They allow to
discover links by writing specific algorithms grounded on
distances and similarity metrics between patterns and
relationships mainly based on string matching and distance
measures (Euclidean, weighted models, tree distances, patterns
distance, string match, taxonomical, Jaro, Jaro-Winkler,
Leveisthein, Dice, Jaccard, etc.) [14].

In this case, a number of link discovering algorithms have
been developed and assessed. Among them, the better ranked
were based on comparing, at the same time, the location and the
street. Firstly searching for the perfect match on location name
and accepting uncertainty on street number from 0 up to 5
characters, for example. Both criteria have been aggregated
considering their weight almost identical.

C. Reconciliation Comparison

The obtained results are reported in Table 1. The table
reports the results assessed in terms of precision, recall and
F1score (the F1 score is also called the F-measure, and it is
defined as Harmonic mean of Recall and Precision) [15], in
identifying the correct entities to be reconciliated. The first two
lines refer to the SPARQL approach with and without manual
intervention as described in Section V.A. The manual
intervention has strongly improved the recall. On the other
hand, the SPARQL approach is very time intensive for the
programmers since a set of specific queries have to be produced
for each data set to be reconciled. The second part of Table I
reported the results related to different implementations of link
discovering SILK based solutions, by using different string

distances (i.e., Leveisthein, Dice, and Jaccard), with the above
mentioned values for their parameters. Other distance models
have been also used without obtaining significant results. The
last Link discovering solution has been coded by using an
additional knowledge about all the specific strings coding
problems reported in Section V.

Table I – Reconciliation Comparison

Method Precision Recall F1

SPARQL –based reconciliation 1,00 0,69 0,820

SPARQL -based reconciliation +
manual action 0,985 0,722 0,833

Link discovering - Leveisthein 0,927 0,508 0,656

Link discovering - Dice 0,968 0,674 0,794

Link discovering - Jaccard 1,000 0,472 0,642

Link discovering - Knowledge
base + Leveisthein 0,925 0,714 0,806

VI. CONCLUSIONS

In this paper, a system for the ingestion of public and
private data for smart city with related aspects as road graph,
services available on the roads, traffic sensors etc., has been
proposed. The system includes both open data from public
administration and private data coming from transport systems
integrated mangers, thus addressing and providing real time
data of transport system, i.e., the busses, parking, traffic flows,
etc. The system allows managing large volumes of data coming
from a variety of sources considering both static and dynamic
data. This data is then mapped to a Smart City Ontology and
stored into an RDF-Store where this data are available for
applications via SPARQL queries to provide new services to
the users. The derived ontology has been obtained by means of
an incremental process performed analyzing, integrating and
validating each added data set. Thus the resulting ontology is a
strong generalization of a large set of data modeling problems.

In addition, a thorough verification and validation process
performed allowed us to identify the set of triples to: (i)
improve and enrich the model, and (ii) perform the corrections.
Thus improving and enabling the deductive capabilities of the
final model. Finally, the proposed system also provides a
visualization and exploration tool to explore the data available
in the RDF-Store. As a conclusion, the performed assessment
and comparison has produced a clear results demonstrating that
the best quality of results are obtained by using the approach
based on SPARQL queries plus some manual actions. Also the
simple usage of SPARQL queries resulted to be better ranked
with respect to the SILK based link discovering. On the other
hand, the writing of link discovering algorithms resulted to be
much simpler and faster that performing a set of specific
SPARQL queries.

The next step will be to identify famous names, points of
interest, locality names that can be linked to other data set as
DBpedia

2
 or GeoNames

3
 according to a Linked Open Data

2 http://dbpedia.org/

3 http://www.geonames.org/

model. This process can be performed with a simple NLP
algorithm [6], [8]. Furthermore an upcoming integration of the
DISIT Ontology for Smart City with the GoodRelations model,
is also planned, together with the automation of the
reconciliation step, thanks to link discovery and machine
learning techniques.

ACKNOWLEDGMENT

A sincere thanks to the public administrations that provided
the huge data collected and to the Ministry to provide the
funding for Sii-Mobility Smart City Project, a warm thanks to
Lapo Bicchielli, Giovanni Ortolani, Francesco Tuveri.

REFERENCES

[1] Caragliu, A., Del Bo, C., Nijkamp, P. (2009), Smart cities in Europe, 3rd
Central European Conference in Regional Science – CERS, Kosice (sk),
7-9 ottobre 2009.

[2] Bellini P., Di Claudio M., Nesi P., Rauch N., "Tassonomy and Review of
Big Data Solutions Navigation", Big Data Computing To Be Published
26th July 2013 by Chapman and Hall/CRC

[3] Vilajosana, I. ; Llosa, J. ; Martinez, B. ; Domingo-Prieto, M. ; Angles,
A., "Bootstrapping smart cities through a self-sustainable model based
on big data flows", Communications Magazine, IEEE, Vol.51, n.6, 2013

[4] Ontology of Trasportation Networks, Deliverable A1-D4, Project
REWERSE, 2005 http://rewerse.net/deliverables/m18/a1-d4.pdf

[5] Pan, Feng, and Jerry R. Hobbs. "Temporal Aggregates in OWL-Time."
In FLAIRS Conference, vol. 5, pp. 560-565. 2005.

[6] Embley, David W., Douglas M. Campbell, Yuan S. Jiang, Stephen W.
Liddle, Deryle W. Lonsdale, Y-K. Ng, and Randy D. Smith.
"Conceptual-model-based data extraction from multiple-record Web
pages." Data & Knowledge Engineering 31, no. 3 (1999): 227-251.

[7] Auer, Sören, Jens Lehmann, and Sebastian Hellmann. "Linkedgeodata:
Adding a spatial dimension to the web of data." In The Semantic Web-
ISWC 2009, pp. 731-746. Springer Berlin Heidelberg, 2009.

[8] Andrea Bellandi, Pierfrancesco Bellini, Antonio Cappuccio, Paolo Nesi,
Gianni Pantaleo, Nadia Rauch, ASSISTED KNOWLEDGE BASE
GENERATION, MANAGEMENT AND COMPETENCE
RETRIEVAL, International Journal of Software Engineering and
Knowledge Engineering, Vol.22, n.8, 2012

[9] Apache HBase: A Distributed Database for Large Datasets. The Apache
Software Foundation, Los Angeles, CA. URL http://hbase.apache.org.

[10] Pentaho Data Integration, http://www.pentaho.com/product/data-
integration

[11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, Ruslan Velkov, “OWLIM: A family of scalable
semantic repositories”, Semantic Web Journal, Volume 2, Number 1 /
2011.

[12] S.Gupta, P.Szekely, C.Knoblock, A.Goel, M.Taheriyan, M.Muslea,
"Karma: A System for Mapping Structured Sources into the Semantic
Web", 9th Extended Semantic Web Conference (ESWC2012).

[13] A. Ngomo, S. Auer. “LIMES: a time-efficient approach for large-scale
link discovery on the web of data”. Proc. of the 22nd int. joint conf. on
Artificial Intelligence, Vol.3. AAAI Press, 2011.

[14] R. Isele, C. Bizer. “Active learning of expressive linkage rules using
genetic programming”. Web Semantics: Science, Services and Agents on
the World Wide Web 23 (2013): pp.2-15.

[15] Powers, D.M.W. (February 27, 2011). "Evaluation from precision, recall
and F-Measure to roc informedness, markedness and correlation".
Journal of Machine Learning Technologies 2 (1): 37–63.

http://dbpedia.org/
http://www.geonames.org/
http://www.worldscientific.com/doi/abs/10.1142/S021819401240013X
http://www.worldscientific.com/doi/abs/10.1142/S021819401240013X
http://www.worldscientific.com/doi/abs/10.1142/S021819401240013X
http://hbase.apache.org/
http://www.pentaho.com/product/data-integration
http://www.pentaho.com/product/data-integration

