
 1

Multilingual Lyric Modeling and Management

Pierfrancesco Bellini, Dept. of Systems and Informatics, University of Florence, Florence,

Italy, Tel: +39-055-4796523,Fax: +39-055-4796363, pbellini@dsi.unifi.it

 Ivan Bruno, Dept. of Systems and Informatics, University of Florence, Florence, Italy,

Tel: +39-055-4796523,Fax: +39-055-4796363, ivanb@dsi.unifi.it

Paolo Nesi, Dept. of Systems and Informatics, University of Florence, Florence, Italy,

Tel: +39-055-4796523,Fax: +39-055-4796363, nesi@dsi.unifi.it

Abstract

This chapter presents a new way to model multilingual lyrics within symbolic music

scores. This new model allows to ‘plug’ on the symbolic score different lyrics

depending on the language. This is done by keeping separate the music notation

model and the lyrics model. An object-oriented model of music notation and for lyrics

representation are presented with many examples. These models have been

implemented in the music editor produced within the WEDELMUSIC IST project. A

specific language has been developed to associate the lyrics with the score, the

language is able to represent syllables, melismas (extended syllables), refrains, etc.

Moreover, the most important music notation formats are reviewed focusing on their

representation of multilingual lyrics.

Keywords: lyrics modeling, object-oriented modeling, XML

 2

INTRODUCTION

Textual indications have been always present in music scores (rall., cresc., a tempo,

allegro, etc.), this kind of text is treated as a sign; it does not have to be translated.

Lyrics are a special kind of textual indication within a music score; they should be

translated in different languages, when needed.

Automatic translation of lyrics is not feasible with current translation technology

which works poorly even with prose texts. The translation of lyrics is a very complex

task, specific words have to be identified to match with the number of notes, melody

and length. Information technology can only partially support this process. What can

be done to support multilingual lyrics in music scores, is to give the possibility to

‘plug’ the appropriate lyric on the score without creating a new version of the score.

This means that in some way the lyric has to be a separate entity from the music

connected to it, and dynamically replaceable. This is the solution adopted in the

WEDELMUSIC editor for managing multilingual lyrics. One music score and lyrics

in several different languages can be selected by the user and joined with the music

score. In this chapter, only character-based languages are discussed. Asian languages

based on symbols may need a completely different model depending on which kind of

alphabet is used for coding the lyric. Some oriental alphabets are oriented to single

sounds rather than to concepts and/or words. Frequently only the former type of

alphabet is used to allow the assignment of distinct symbols to the music score notes.

In that case, the production of lyrics for that language is not really different from the

character based one.

In the presence of lyrics several rules for music notation formatting have to be

followed:

 3

1) tempo, dynamic markers, articulation, wedges, accents, expressions, etc., have to

be placed above the staff while the lyric is below;

2) the lyric text is divided in syllables and each syllable is related to one or more

notes;

3) the note indicates the ‘tone’ to be used when singing the syllable;

4) a syllable can be sung on more than one note (syllable extension or melisma) and

also two consecutive syllables of different words can be connected to the same

note. The punctuation of the lyric has to be attached to the word before the graphic

extension or melisma;

5) when syllables are sung on two or more notes, those notes are slured;

6) the syllables and the single words sung on single note have to be centered under

the note, except for the first of the lyric.

This chapter is not focussed on the theory about lyric association to music. Rather it

is strongly focussed on the lyric internal and visual representation. A good internal

representation makes it possible to have a good and flexible external visualization.

Details on vocal notation can be found in Read (1979) and Ross (1987). Figure 1

reports a sample of lyric notation highlighting some of the above cases.

Another aspect is connected with refrains. The refrains make it possible to avoid the

duplication of the same sequence of measures in the score (music notation). In several

cases, when executing the same ‘music’ measure, the lyric text may be different in

Figure 1. Lyric notation example

 4

different refrains; for this reason the lyric is placed on different lines as shown in

Figure 2. The refrain configuration can be quite complex in some music pieces.

In another situation, more frequent in popular music than in classical music, the music

notation on the music sheet is only related to the accompanying instrument (piano,

guitar, etc.) and the lyric is merely synchronous with the instrument melody. In those

cases, the lyric can be also associated with rests. Most of the tools for music editing

do not permit that operation with their lyric model and thus the text is added to the

music score by using simple floating text without establishing a format relationship

between syllables and notes/rests.

Another possibility is having different lyrics on the same staff. This may be for two

reasons . When the staff presents only one voice, it may be for (i) assigning different

words to different singers, or for (ii) presenting several languages of the same lyric at

the same time on the same music sheet. When the staff presents more voices, each

voice may have its own lyric. For example, a single staff may report two voices, one

for the Soprano and the other for the Alto (both of them are in treble clef). Each of

them may have distinct lyric text.

The chapter is structured in the following way: Section 2 focuses on background and

briefly reports how the lyric is modeled in several formats. Section 3 gives an

overview of the WEDELMUSIC object oriented model of music notation. Section 4

presents the lyric model and the main problems related to lyric representation.

Figure 2. Lyric notation refrain example

 5

Examples and object diagrams are used to show how certain kinds of lyrics are

modelled including aspects of multilingual lyrics. The WEDELMUSIC model for

lyrics makes it possible to “plug” different sources of lyrics on the same symbolic

music description. A “language” used by the user to enter lyric is presented as well.

This language is XML based and it interpreted in the WEDELMUSIC editor and

transformed into the lyric model which can be seen in the music editor. In Section 5,

conclusions are drawn.

BACKGROUND

Lyrics have been modelled within music notation formats since the beginning. In the

following section, some well-known music notation encoding models are presented

giving some details on how lyrics are represented. In the following section

multilingual lyrics management is considered.

Languages for Modelling Lyric

In MIDI (Selfridge-Field, 1997), (Hewlett, Selfridge-Field, 1997) Lyric Text meta-

events have been introduced to deal with lyrics, this kind of event simply states the

time when the syllable has to be sung, despite its duration (it has to be sung within the

next lyric event), and it is not explicitly connected to a melodic line.

 In MuseData (Hewlett, 1997) the syllables are associated with the notes of the

melodic line, as in the example extracted from the Telemann Aria:

...
measure 15
C#5 3 s. d [[(Lie-
D5 1 t d =]\ -
E5 4 e d]) -

Figure 3. An example to compare lyric encodings

 6

A4 4 e u be!
measure 16
rest 12
measure 17
rest 12
measure 18
D5 4 e d [(Was_
A4 4 e d]) _
B5 4 e d ist
...

In this encoding, the first column reports the note pitch, the second column the

duration (in divisions), the third column the graphical duration (i.e., s. = dotted

sixteenth), the fourth column the stem direction, the fifth the beaming information, the

sixth the slur start/end and the last reports the lyric syllable associated with the note.

In the case where a syllable extends over more notes the characters ‘-‘ and ‘_’ are

used to state that the preceding syllable is extended at least to the referring note. If

more then one lyric line is present the char ‘|’ is used to separate the syllables of the

different lines associated with the note (i.e., Deck|See|Fast).

MusicXML (Good, 2001) adapts the MuseData and Humdrum formats to XML (Bray

et al., 2000). For this reason the MusicXML encoding has a similar structure of the

MuseData one, although it is much more understandable. The following is the

MusicXML (partial) encoding of Telemann Aria:

<measure number=”15”>
 <note>
 <pitch>
 <step>C</step>
 <alter>1</alter>
 <octave>5</octave>
 </pitch>
 <duration>3</duration>
 <type>16th</type>
 <dot/>
 <stem>down</stem>
 …
 <lyric>
 <syllabic>begin</syllabic>
 <text>Lie</text>
 <extend/>
 </lyric>
 </note>
 <note>
 <pitch>
 <step>D</step>
 <octave>5</octave>
 </pitch>
 <duration>1</duration>
 <type>32th</type>
 <stem>down</stem>

 7

 …
 <lyric>
 <extend/>
 </lyric>
 </note>
 <note>
 <pitch>
 <step>E</step>
 <octave>5</octave>
 </pitch>
 <duration>4</duration>
 <type>eighth</type>
 <stem>down</stem>
 …
 <lyric>
 <extend/>
 </lyric>
 </note>
 <note>
 <pitch>
 <step>A</step>
 <octave>4</octave>
 </pitch>
 <duration>4</duration>
 <type>eighth</type>
 <stem>up</stem>
 …
 <lyric>
 <syllabic>end</syllabic>
 <text>be!</text>
 </lyric>
 </note>
</measure>

The Notation Interchange File Format NIFF (Grande, 1997) (NIFF Consortium,

1995) was designed to allow interchange of music notation data among music

notation editing and publishing programs and music scanning programs. It is a binary

format based on the RIFF (Resource Interchange File Format) specification from

Microsoft. The basic entity is the chunk, a variable length binary data, whose content

type is identified by 4 chars. A chunk (‘note’) is used to represent a note head, a

chunk (‘stem’) to represent the stem of a note, a chunk (‘lyrc’) to represent the lyric

associated with a note head etc. Chunks are grouped in lists and lists in other lists;

stems, notes, and many other chunks are grouped in a staff list, staffs are grouped in

systems and systems in a page. A chunk contains required data (fixed-length) and

optional data (variable-length), the optional data is handled using tags, each tag is

identified with a byte, it is variable-length and it contains optional information (i.e.,

AbsolutePlacement, IDs, etc.). Strings (i.e., the syllable text) are not stored within the

chunks, in the chunk there is a reference (an offset) into a specific chunk (String

 8

Table) that contains all the strings (zero-terminated). This chunk is stored in the Setup

Section and it is separated from the music notation data that is stored in the Data

Section.

The following example is an excerpt of the NIFF encoding of the Telemann Aria

translated in an ASCII code to be understandable:

//
// NIFF Form
FORM:'RIFX' ('NIFF' // size=2380
//
// Setup Section
LIST:'setp' size = 676
 ...
 // String Table
 CHUNK:'stbl' size=71
 ...
 // offset == 49
 "Lie-"Z
 // offset == 54
 "-"Z
 // offset == 56
 "-"Z
 // offset == 58
 "be!"Z
 // offset == 62
 "Was_"Z
 // offset == 67
 "ist"Z
 ...
 ENDCHUNK
 ...
ENDLIST
//
// Data Section
LIST:'data' size = 1684
 LIST:'page' size = 1672
 ...
 LIST:'syst' size = 1002
 ...
 LIST:'staf' size = 968
 ...
 // Time-Slice
 CHUNK:'tmsl' size = 11
 tsMeasureStart // type
 0 // start time numerator
 4 // start time denominator
 TAG:AbsolutePlacement size = 4
 0 // horizontal
 400 // vertical
 ENDTAG
 ENDCHUNK
 CHUNK:'clef' size = 3
 clefshapeGclef // shape
 2 // staffStep
 clefoctNoNumber // octaveNumber
 ENDCHUNK
 CHUNK:'keys' size = 1
 2 // standardCode
 ENDCHUNK
 CHUNK:'time' size = 2
 3 // top number
 8 // bottom number
 ENDCHUNK
 // Time-Slice
 CHUNK:'tmsl' size = 11
 tsEvent // type

 9

 0 // start time numerator
 4 // start time denominator
 ...
 ENDCHUNK
 CHUNK:'stem' size = 6
 TAG:LogicalPlacement size = 3
 logplaceHDefault // horizontal
 logplaceVBelow // vertical
 logplaceProxDefault // proximity
 ENDTAG
 ENDCHUNK
 CHUNK:'beam' size = 10
 0 // beamPartsToLeft
 2 // beamPartsToRight
 TAG:NumberOfNodes size = 2
 3 // value
 ENDTAG
 TAG:ID size = 2
 0 // value
 ENDTAG
 ENDCHUNK
 CHUNK:'slur' size = 8
 TAG:ID size = 2
 1 // value
 ENDTAG
 TAG:NumberOfNodes size = 2
 2 // value
 ENDTAG
 ENDCHUNK
 // Notehead
 CHUNK:'note' size = 10
 noteshapeFilled // shape
 5 // staff step
 3 // duration numerator
 32 // duration denominator
 TAG:PartID size = 2
 0 // value
 ENDTAG
 ENDCHUNK
 CHUNK:'augd' size = 0
 ENDCHUNK
 CHUNK:'lyrc' size = 19
 49L // text offset into String Table
 0 // lyricVerseID
 TAG:FontID size = 2
 0 // value
 ENDTAG
 TAG:PartID size = 2
 0 // value
 ENDTAG
 TAG:Absolute Placement size = 4
 210 // horizontal
 580 // vertical
 ENDTAG
 ENDCHUNK
 ...
 ...
 ENDLIST // Staff
 ENDLIST // System
 ENDLIST // Page
ENDLIST // Data Section
ENDFORM // NIFF Form End

Finale music notation editor and format presents an internal model of lyrics that

directly establishes a relationship between the music notation symbols and its

corresponding syllable contained in a unique string of characters that represent the

whole lyric text. The syllables are simply separated by `-`. Special symbols for

 10

syllable extension are managed separately and not coded into the string representing

the lyric in the music editor.

SMDL (Sloan, 1997) (ISO/IEC, 1995) represents the melodic line with a sequence of

notes/rests (thread) followed by a sequence of syllables/rests. The syllables are

associated with the notes in the melodic line according to the order. The following

example reports the encoding in SMDL of the Telemann Aria:

<thread id=soprthd nominst=”soprano”>
 …
 <note>3t4 1 c
 <note>t4 1 d
 <note>t 1 e
 <note>t 0 a
 <rest>6t
 <note>t 1 d
 <note>t 0 a
 <note>t 0 b
 …
</thread>
<lyric id=soprtxt thread=soprthd>
 …
 <syllable tie>Lie-
 <syllable tie>
 <syllable>
 <syllable>be!
 <rest>6t
 <syllable tie>Was
 <syllable>
 <syllable>ist
 …
</lyric>

The GUIDO format (Hoos et al., 2001), in implementation 0.8a, associates the lyric

with a sequence of notes binding the syllables to the notes according to the order. In

the event of a rest in the melodic line, the sequence has to be broken giving a

fragmented representation of the lyric.

The encoding of the four measures of Telemann Aria is the following:

[\clef<"G"> \key<"+2"> \meter<"3/8">
…
\bar
\lyrics<"Lie---be!">(\slur(\beam(c2*1/16. d2/32 e2/8)) a1)
\bar
_*3/8
\bar

 11

_*3/8
\bar
\lyrics<"Was_ ist">(\slur(\beam(d2*1/8 a1)) b)
\bar
…
]

However, in GUIDO only one lyric line can be specified and thus it is not possible to

manage refrains.

Languages and Multi-lingual Lyrics

In MIDI, the multilingual lyrics may be realised using different tracks for the lyric

events of different languages. However, it seems that lyric events have been

introduced mainly for karaoke systems.

The Humdrum format (Huron, 1997) performs a better work, the melodic line is

separated from the lyric text; a column is reserved to the Kern representation of the

melodic line, while a column is used for lyric text synchronised with the melodic line,

explicitly stating the language, and eventually a column may be used for the IPA

(International Phonetic Alphabet) phonetic representation of the lyric text. This

organisation allows multilingual lyrics representation since more than one column of

lyric text may be present, all sharing the same melodic line.

The following is an excerpt of the encoding of Telemann Aria:

**kern **text **IPA
* *LDeutsch *LDeutsch
!voice !lyrics !phonetics

...

=15 =15 =15
(16.cc# Lie- ‘li_
32dd . .
8ee) . .
8a -be! _b@
=16 =16 =16
4.r . .
=17 =17 =17
4.r . .
=18 =18 =18
(8dd Was v&s
8a) . .

 12

8b ist Ist

...

The first column contains the melodic line, the second column the lyric text and the

last column the phonetic translation. No encoding seem to be present for multiple line

of lyrics.

Formats such as MuseData, NIFF, MusicXML as well as Finale and Sibelius

commercial music editors associate the lyric syllables directly with the melodic line

notes, which does not fit for multilingual management since the lyric is directly

integrated in the melodic line. These formats, do not include the possibility of

integrating, in a unique music score, several different lyrics associated with the same

score. For these, the only solution to cope with the multilinguistic aspects is to

produce more versions of the same music score. The representation adopted in SMDL

does not deal directly with the multilingual aspects but it can be simply extended to

accomplish this task. The GUIDO format does not deal with multiple lyric lines or

multilingual lyrics.

The model adopted in WEDELMUSIC (http://www.wedelmusic.org) is based on an

object-oriented model of music and presents a symbolic indexing of each music

notation element. These aspects are discussed in the next two sections, respectively.

WEDELMUSIC has a native XML music notation model and editor (Bellini and Nesi,

2001). The XML music notation model includes a XML model of lyrics that has been

developed to support multiple lyrics. In addition, a specific lyric editor has been also

built to support and edit the lyric in easy manner. It is on this model and format that it

is focussed the rest of the chapter.

WEDELMUSIC OBJECT ORIENTED MUSIC NOTATION MODEL

 13

WEDELMUSIC is based on an object-oriented model of music notation. The model

presents several innovative aspects that have been defined to create a common

framework on which to build a set of tools for multimedia music manipulation -

including music notation and multilingual lyrics. The object-oriented paradigm, was

initially developed in the artificial intelligence context and then software engineering.

It is useful in modeling situations, where relations among “entities” are complex and

the number of entities may be constrained to grow with time to satisfy new aspects

and symbols. For these reasons it is frequently used for the implementation of

Computer Aided Design tools and for flexible and expandable frameworks. Music

notation is certainly a context where relations among music notation entities could be

very complex and in continuos evolution..

Notation Used for the Following Diagrams

The notation used in this chapter for representing object diagram has been proposed

by the authors as a working extension of that of Booch (1996). The two diagram types

A B

 Class B is a class A (ISA relation):

A:x

 Object x of class A: Unnamed object of class A:

A

 An object of class A with some attribute
values:

A:x
attr1=12
attr2=34

B

C

 An object of class B with an object
of class C inside:

 An object of class B refers to an
object of class D:

B D

 An object of class E with an array of
references to objects of class F:

E
F

F

 An object of class G refers to a list of objects of class H:

G

H H H

NULL

Figure 4. Notation for class diagrams and object diagrams.

 14

reported in the following are the class diagram (those with the ellipses), that depicts

the generalization/specialization relations among classes and aggregations relations,

and the object diagram (those with squares) where the aggregation relationships

between specific objects instances of a class are depicted just to show an example of

the relationships among real data.

In short, classes are the formal definition of data structure of objects and the

implementation of the procedures (called methods, operators, etc.) that can be used for

manipulate them. The relationships defined among classes are concretized when the

objects are instantiated from the formers. In the object diagrams the lines represents

pointers while the inclusion of a square into another represents the inclusion of a data

structure in another.

Main Relationships among Music Notation Structures

This section provides an overview of the WEDELMUSIC object-oriented music

model, which is used for the lyric model presented in the next section. The examples

reported show some “real” music notation and the related object diagrams

representing them. The description is focused on the structural part of music

(measures, notes, rests, beamed notes, multivoice) and less details are given on

symbols around notes. The model reported is general enough to be considered as

formal representation the music notation.

The main score is modelled as a sequence of parts and each part is made of:

 a sequence of measures;

 a sequence of horizontal symbols (slurs, crescendo/diminuendo);

 a sequence of syllables (for lyric).

Each part can use from 1 up to 3 staves, depending on the instrument.

 15

Figure 5 depicts how a main score with two parts and two measures is represented;

this model is partial, information about horizontal symbols are missing and will be

detailed later on:

A Part object can use one, two or three staves, depending on the instrument (i.e.,

violin, piano, organ), in the example reported above there are two single staff parts.

A Measure object can have from 1 to 3 headers (depending on the type of part) one

for each staff. A measure can manage up to 12 layers, each of which may contain

sequences of figures (notes/rests/change of clef/…). The measure header contains the

clef, the key signature and the time, plus additional indications. Each Measure object

has a full header and whenever the measure is visualised, the information associated

with the headers is displayed or omitted according to the music notation rules. In

general, according to music notation terminology, the figures are notes, rests, chords,

beams, etc. The concept of figure in music notation is an abstraction to refer to music

notation symbols that are the main symbols sequentially arranged along with a voice.

The Figure is an abstract class, it is sub classed in:

MainScore

PartList

Part

Part

NULL

BraketList SquareBrk

NULL

Measure Measure

Measure Measure

NULL

NULL

Figure 5. Main score model with object relationships.

 16

 class Note representing a musical note, it is sub classed in: Note1, Note1_2,

Note1_4, Note1_8, Note1_16, … depending on the duration;

 class Rest representing a rest, similarly it is sub classed in Rest1, Rest1_2,

Rest1_4, Rest1_8,…

 class Anchor representing a point between two figures, it is used as an anchor

point for some type of symbols (i.e., Breath);

 class Space representing a symbol that takes space but it has no duration, in this

class there are the Clefs and the KeySignatures;

 class Chord that contains a sequence of simple notes with the same duration;

 class Beam that contains a sequence of notes/rests/chords/anchors/spaces.

Figure 6 reports the class diagram (ISA, relationship of specialisation of the Object

Oriented) of these classes.

The most important Figure attributes are:

 the staff (1,2 or 3) where the figure is positioned, staff 1 is the upper one, staff 2

is the middle one and staff 3 is the lower one;

 the height of the figure, meaning the staff line/space where it is positioned, where

0 is the bottom line of the staff, 1 the first space, 2 the 2nd line, 3 the 2nd space etc.

This representation makes it possible to model chords spanning between staves and

beaming across staves as well as multivoice measures.

 17

In Figure 7, two examples are reported, a single staff measure with two voices and a

measure with two voices on two different staves.

Two voices – one staff measure

Measure

Header

KeySignature

Time

CTreble

Layer:l2

Note1_4
 staff=1
 height=6

NULL

FinalBar

Note1_4
 staff=1
 height=6

Note1_4
 staff=1
 height=6

Layer:l1

Note1_4
 staff=1
 height=2

NULL

Note1_4
 staff=1
 height=2

Note1_4
 staff=1
 height=2

Measure

Header

KeySignature

Time

CTreble

Layer:l2

Note1_4
 staff=2
 height=3

NULL

FinalBar

Note1_4
 staff=2
 height=4

Note1_4
 staff=2
 height=5

Layer:l1

Note1_4
 staff=1
 height=3

NULL

Note1_4
 staff=1
 height=3

Note1_4
 staff=1
 height=3

Header

KeySignature

Time

CBass

Two voices – two staff measure

Figure

Note

Rest

Chord

Beam

FigureList

Anchorage

Space

Clef Key
Signature

Note1
Note1_2

Note1_4

Note1_8

…

Rest1_4

Rest1

Rest1_2

…

CTreble

CBass

CSoprano …

Figure 6. Class diagram - ISA relationships

Figure 7. Measure models

 18

A chord is modelled using the Chord object that can contain more than one Note of

the same class (i.e., the same duration). Moreover, the notes can belong to different

staves as shown in Figure 8.

The Beam class is used to model beamed notes (with duration less or equal to 1/8), a

Beam object can contain Note, Rest, Chord and Space objects, provided that the first

and the last note of the beam have to be a Note or a Chord object.

The horizontal symbols (slurs, crescendo, diminuendo, etc.) spanning from a figure of

a measure layer to another figure of the same layer and eventually in another measure,

are modelled with class HorizontalSym. Each horizontal object has a reference to the

starting and the ending figure. The HorizontalSym is specialised by classes Slur, Tie,

Crescendo, Diminuendo, Wave, TrillWave, Change8va, Arrow, Tuple, etc., according

to their specific features.

Measure

Header

KeySignature

Time

CTreble

FinalBar

Layer

Chord

NULL

Note1_4
 staff=1
 height=4

Note1_4
 staff=2
 height=7

Header

KeySignature

Time

CBass

Beam

Note1_8
 staff=1
 height=2

Rest1_4
 staff=1
 height=2

Chord

NULL

Note1_8
 staff=1
 height=6

Note1_8
 staff=2
 height=7

NULL

NULL

Figure 8. Multi staff chords & beams model

 19

The example reported in Figure 9 shows a Slur object connecting two notes of two

measures and a crescendo starting from a note and ending on an Anchor object. The

anchor object represents a point in the middle (dist=50%) of the space, after the last

quarter note, it is just a reference point in the middle of two symbol along a voice.

Also tuplets are modelled as horizontal symbols, so as to allow nested tuplets and

tuplets across measure boundaries. In Figure 10, an example of nested tuplets is

presented and Figure 11 displays how the tuplets across a barline are modelled.

Measure

Layer

Note1_4

NULL

Note1_4

Note1_4

Part

MeasureList HorizList

Measure

Layer

Note1_2

NULL

Note1_4

Anchor
 dist=50%

NULL

Slur

Crescendo

NULL

Figure 9. Horizontal symbols model

Measure

Layer

Note1_16

NULL

Note1_16

Note1_16

Part

MeasureList HorizontalList

Tuplet
 num=2

Tuplet
 num=3

NULL

Note1_16

Note1_16

Beam

Note1_4

NULL

Dots

Figure 10. Nested Tuplets model

 20

WEDELMUSIC MODELING OF LYRIC

This section is devoted to present the lyric model used in WEDELMUSIC. It is XML

compliant (Bray et al., 2000). The main problems of lyric representation are

highlighted and discussed. Examples and object diagrams are used to show how

certain kinds of lyrics are modelled.

The lyric text is modelled as a sequence of syllables. Each syllable starts on a certain

note and it may be extended to a following one (not necessarily in the same measure).

The syllables are to be drawn aligned with the starting figure, all on the same

horizontal line, except for refrains where different text is reported in different lines

within the same melody. In order to associate lyric to music notation, two different

models can be used: (i) each notes present a relationship to one or more syllables, (ii)

any associated syllable present a reference (symbolic or absolute) to the music

Measure

Layer

Note1_4

NULL

Note1_4

Note1_2

Part

MeasureList HorizontalList

Measure

Layer

Note1_4

NULL

Note1_2

NULL

Tie

Tuplet
 num=3

NULL

Note1_4

Note1_4

Note1_4

Figure 11. Tuplets across barlines

 21

notation symbol. The first solution is the best solution if only one lyric is associated

with the music score. When more lyrics are associated with the same music score, the

first solution becomes too complex, since each figure has to refer to all the syllables

of the several lyrics. In these cases, the second solution can be better since it may

make it possible to realise new lyrics even without modifying the music notation. In

WEDELMUSIC, this second solutions has been chosen.

Single Language Lyrics and Refrain Management

Similarly to other symbols, lyric text is handled as horizontal symbols. The Part

object refers to a list of Syllable objects and each syllable has a reference to the

starting and ending Figure object. The order of the syllables in the list follows the

lyric text, so that the text can be reconstructed by following the list.

Syllables are separated by using:

 an empty space when the two consecutive syllables belong to different words;

 a hyphenation mark when the syllables belong to the same word;

 a continuos line if the ending syllable of a word has to be extended on more than

one note.

An attribute of the Syllable object (sep, in the following) is used to indicate which

kind of separator has to be used: ‘ ’ for empty space, ‘n’ for new line, ‘/’ for

hyphenation mark, ‘_’ for syllable extension at the end of a word and ‘-’ for syllable

extension inside a word.

The relation between separators and start/end figures has to be analysed in a more

detailed manner. The start figure reference is set always to the Figure object under

which the syllable has to be positioned; on the other hand, when it comes to the end

figure, what follows can be applied:

 22

 if the syllable is a single word or is the ending syllable of a word and it is not

extended (sep = ‘ ’ or sep = ‘n’), then the end figure is not set (meaning NULL);

 if the syllable is not the last one and it is not extended (sep = ‘/’), then the end

figure is set to the figure where the next syllable is positioned;

 if the syllable is not the last one and it is extended (sep = ‘-’), then the end figure

is set to the figure where the next syllable is positioned. The symbol '-' in the text

word can be written by using '\-';

 if the syllable is the ending one and it is extended (sep = ‘_’), then the end figure

is set to the figure under which the extension line has to be drawn, generally it is

the previous figure of the next syllable.

The example in Figure 12 shows all such events with an English lyric, and Figure 12

reports the same melody with German lyrics.

Measure

Layer

N1_4

NULL

Part

MeasureList

Syllable
 text=”droop”
 sep=’-‘

Syllable
 text=”ing”
 sep=’_’

Syllable
 text=”up”
 sep=’/’

SyllableList

start

end

start

end

N1_4

N1_4

N1_8

N1_8

N1_4

N1_8

start

end

Syllable
 text=”on”
 sep=’ ’

start

Syllable
 text=”the”
 sep=’ ’

start

…

…

Frederic Delius: from Sea Drift (1904)

Figure 12. The model of an English lyric

 23

In vocal parts, the slurs or ties between syllables are used to highlight syllable

extension, therefore they are strictly related to the lyric text. As highlighted in Figure

12 (English lyric) comparing it with that of Figure 13 (German Lyric), two slurs are

met due to the two syllable extensions (droop, ing); the two slurs are replaced with

only one in the German lyric because only one syllable is extended (sinkt). In these

cases, changing the lyric has also to imply the modification of related slurs/ties.

Therefore, to cope with this situation, some slurs/ties should be associated with the

lyric by storing the identifier of the lyric in which they can be applied. In this way,

they can be visible only when ‘plugging’ that specific lyric.

The case should be also considered in which, a note has to be split into more tied

notes for the total duration or more tied notes are merged to accommodate the

syllables of a translated lyric, as it occurs with the example reported in Figure 14. In

these cases, the simplest solution is to use syllable extension and ties producing the

Measure

Layer

N1_4

NULL

Part

MeasureList

Syllable
 text=”synkt”
 sep=’_‘

Syllable
 text=”hi”
 sep=’/’

SyllableList

start

end
N1_4

N1_4

N1_8

N1_8

N1_4

N1_8

start

end

Syllable
 text=”nab”
 sep=’ ’

start

Syllable
 text=”ins”
 sep=’ ’

start

…

…

Figure 13. The model of a German lyric

 24

equivalent form reported in Figure 15. When the same word contains an odd number

of syllables a tuple can be used.

When two consecutive syllables of different words (one starting and the other ending

with a vowel) have to be sung on the same note, as in Figure 16, the special character

‘+’ was selected to represent the slur in the syllable text. Therefore, the two

highlighted ‘syllables’ are represented through texts “ra+in” and “me+a” in the

Syllable objects. The drawing/printing engine replaces the + character with a slur

when displaying or printing the music.

The different lines of lyrics are managed using an attribute (line) of the Syllable object

pointing out on which line the Syllable has to be placed. An example is reported in

Figure 17.

English German

Figure 14. English and German lyric, comparison

Figure 15. Solution with syllable extension

Figure 16. Consecutive syllables.

 25

Another possibility of the WEDELMUSIC model is to have different lyrics to the

same staff. This is possible when the staff presents more voices (for instance the voice

of Soprano and that of Tenor), each voice may have its own lyric. In this way, it is

possible to have on the same staff two or more parts for singers with their related

music. With WEDELMUSIC model, it is also possible to have different lyrics

associated to the same voice as frequently occur in sacral music that provides under

the same staff the same lyric in different languages.

In addition, WEDELMUSIC support also a real multilingual lyrics representation

since different SyllableList can be ‘plugged’ on a Part object, depending on the

language.

Measure

Layer

N1_4

Part

MeasureList

Syllable
 text=”Now”
 line=1
 sep=’ ‘

SyllableList

Syllable
 text=”When”
 line=2
 sep=’_‘

N1_4

Syllable
 text=”I”
 line=1
 sep=’ ‘

N1_8

Syllable
 text=”see”
 line=1
 sep=’ ‘

Syllable
 text=”I”
 line=2
 sep=’ ‘

N1_8

Syllable
 text=”you”
 line=1
 sep=’ ‘

Syllable
 text=”was”
 line=2
 sep=’ ‘

N1_4

Syllable
 text=”here”
 line=1
 sep=’ ‘

Syllable
 text=”quite”
 line=2
 sep=’ ‘

Beam

NULL

Measure

Layer

N1_4

Syllable
 text=”with”
 line=1
 sep=’ ‘

Syllable
 text=”young”
 line=2
 sep=’ ‘

…

…

…

…

NULL

Figure 17. A model of multi line lyrics

 26

Multilingual Aspects and Lyric Editor

This section deals with the issues related to multilingual lyrics management. Mainly,

it explains the language to be adopted by the WEDELMUSIC users to enter lyric text.

This language is interpreted in the editor and transformed in the lyric model which

can be seen in the WEDELMUSIC music editor. The example reported in Figure 18

has been produced by using the WEDELMUSIC lyric editor, and presents both

English and German lyrics. Please note the different arrangement of slurs and ties.

O brown_ ha/lo in the sky near the moon__ droop-ing_ up/on the
seal

Du blas/ser Schein_ am_ Himm/el, der Mond__ sinkt___ hi/nab
ins Merr!

As shown in the examples above, the lyrics text is augmented with some special

characters: ‘/’, ‘_’ and ‘-’ and also the ‘@’ and ‘+’ characters are possible, as it will be

shown later in the complete example. Please note that they are extremely useful in

some languages while in others their usage is marginal. The WEDELMUSIC lyric

editor parses the text entered and assigns each syllable to a note, starting from the first

note (a particular setting of the editor allows to assign syllables to both rests and

note). The blank character, the carriage return and the ‘/’, ‘_’, ‘-’ ,‘@’ characters are

Figure 18. Example of multilingual lyric, English and German versions.

 27

considered as syllable separators, whereas the ‘+’ character cannot. When such as

symbols are part of the lyric to be shown in the score, they have to written as ‘\/’, ‘_’,

‘\-’ ,‘\@’.

Particular situations are met when syllables extensions have to be entered, for this

reason separators like ‘-’ and ‘_’ are used at the end of the syllable to state that it is

extended; the separator can be repeated to state the number of notes on which the

syllable is extended. For example the “moon” syllable in the English lyric is followed

by two ‘_’ separators, meaning the syllable is extended to the two following notes.

The same occurs with the “sinkt” syllable in the German lyric, where it is followed by

three ‘_’ separators to extend the syllable over three notes.

In some particular circumstances avoiding any syllable assignment is necessary; for

this reason the ‘@’ separator has been introduced to skip one note during the

assignment of the syllables.

As syllables separators, the lyric text includes spaces, returns and tabs used to format

the lyric. The idea is to grant the user the possibility to view the lyric text in the editor

just as a poem, thus hiding the special separators but viewing the text correctly

formatted with spaces and carriage returns. To perform that, the model has to store

also this kind of information which is useless for lyric representation in the score but

becomes useful when viewing the lyric text as a poem.

The solution adopted in WEDELMUSIC is to use a Syllable object with no figure

reference (start and end attributes are both NULL) and using the text attribute to store

such kind of information. This special Syllable object is skipped during the syllable

visualization on the score, not being associated with a figure. Besides, some other

textual information like the title, the author, the date of composition etc can be found

in the lyric, thus the ‘{‘ and '}' characters have been used to mark the beginning and

 28

the end of a comment section (which is stored in the model as it is, while it is not

associated with the score). The following is an example:

{<H1>}{Canto della Terra}{</H1>}
{lyrics by Lucio Quarantotto}

Si lo so a/mo/re che io+e te
for/se stia/mo+in/sie/me so/lo qual/che+i/stan/te
…
{1999}

That is viewed in the lyric editor by hiding the special separators as:

Canto della Terra
lyrics by Lucio Quarantotto

Si lo so amore che io e te
forse stiamo insieme solo qualche istante
…
1999

The "{<" and ">}" sequences are treated in a special way, they are used to embed

HTML formatting commands in the text. When viewing the lyric by hiding the special

operators, the characters between these two markers are completely hidden, thus

removing the HTML commands. On the contrary these sequences are not removed

anymore when exporting the lyric to HTML.

What follows is a clarification on how blank spaces are treated within the model. The

first blank character of a sequence of blanks is stored in the sep attribute and the

following ones in a comment syllable.

The management of refrains is a complex task. The main constraint is that the entered

lyric text has to be in reading order, which means first the syllables of the first line

then the syllables of the second line etc. A way to mark the beginning of a refrain is

needed and the ‘[‘ character was chosen to point out that the note associated with the

following syllable has to be considered as the refrain start. The character ‘%’ is used

like a RETURN, the assignment returns back to the previous refrain start, thus

incrementing the current line. Finally the ‘]’ character is used to end the refrain and

decrement the current line.

one Syllable object contains this text

 29

For example the sequence “A [B % C] D” (where A,B,C,D are syllable sequences

of any complexity) produce something structured like:

1. A B D

2. C

Where 1. and 2. represent the lyric line where the syllables are positioned under the

music score staff. The sequence “A [B % C %D % E] F” produces a lyric

structured as follows under the score:

1. A B F

2. C

3. D

4. E

The above introduced operators can be nested as in “A [B [C % D] E % F [G %

H] I] J”, thus producing the following complex structure:

1. A B C E J

2. D

3. F G I

4. H

To avoid inconsistencies the number of notes used in the assignment of each refrain

should be the same, for example in sequence “A [B % C] D”, the syllable sequences

B and C have to use the same number of notes. A way to avoid multiple assignments

due to different number of used notes consists in storing the number of notes assigned

and the next usable note when ‘%’ is found, and in restoring the assigning position

with the maximum number of used notes when the end ‘]’ is found.

On the side of multilingual management, on each score part the user can:

 Create a new lyric and edit it with the WEDELMUSIC Lyric Editor;

 30

 Edit the lyric text with the Lyric Editor and assign the lyric to the score;

 Select the lyric out of those available;

 Hide the lyric currently shown;

 Delete the lyric which will be destroyed;

 Export the lyric into HTML format and visualize it by a browser.

Figure 19 presents the WEDELMUSIC Editor user interface. On the left side, the tree

structure is used to show the content of the music object. In this case, "il Canto della

Terra" by Andrea Bocelli has been loaded. The Music Editor on the up-right side

shows the main score, while on the bottom-left side the Lyric Editor shows the lyric

text (the lyric visible in the Music Editor has been highlighted to better identify it) and

Figure 19. The WEDELMUSIC Editors (Music Editor, Lyric Editor & Viewer)

 31

on the right side the HTML viewer shows the lyric text formatted with HTML

commands. With the Lyric Editor, the user may write the lyric in plain text for

augmenting it in order to associate the right syllables to the specific notes.

XML Lyric Format of WEDELMUSIC

In the framework of the WEDELMUSIC project, a XML format for music notation

representation has been developed (Bellini and Nesi, 2001). It is mainly structured as

depicted in Section 3. Each part is stored in a different XML file (.swf files) and each

lyric associated with a part is stored in a different file (.lwf files). The lyric file is

practically a “dump” of the SyllableList object.

The main problem is to store the start and end pointers to the Figure objects which

are present in the Syllable objects. The solution offered is the same used for the Part

object’s horizontal symbols.

This is possible since in WEDELMUSIC each music notation object has a unique

identifier (a symbolic index which is comprised of sequence of numbers greater than

0). More specifically, within its container, each Measure object has a unique ID

within the Part, each Figure object has a unique identifier within the Layer, each

Figure object has a unique identifier within the Beam and within the Chord objects.

Using these ids each leaf Figure object is identified by a path:

MeasureID/LayerNumber/BeamID/ChordID/NoteID

 Identifies a note in a chord in a beam in a layer of a measure

This is the longest possible path. For example, other possible configurations are:

 MeasureID/LayerNumber/FigureID

 Identifies a note/rest/chord/beam/anchorage/clef/keysignature in the

layer.

 MeasureID/LayerNumber/ChordID/FigureID

 32

 Identifies a note in a chord.

 MeasureID/LayerNumber/BeamID/NoteID

 Identifies a note/rest/chord/anchorage/clef/keysignature in a beam.

Since any lyric is associated to single notes or chords, the longest path turns out to be

impossible.

A lyric is represented in WEDELMUSIC XML as follows:

<?xml version="1.0" encoding="UTF-8"?>
<LWF ID="1" SCOREID="1">
 …
 <language>eng</language>
 <text>
{Frederic Delius: from Sea Drift (1904)}

 </text>
 <syllable LINE="1" SEP=" ">
 <text>O</text>
 <start MEASURE="5" LAYER="1" FIGURE="4"/>
 </syllable>
 <syllable LINE="1" SEP="_">
 <text>brown</text>
 <start MEASURE="4" LAYER="1" FIGURE="1"/>
 <end MEASURE="4" LAYER="1" FIGURE="2"/>
 </syllable>
 <syllable LINE="1" SEP="/">
 <text>ha</text>
 <start MEASURE="4" LAYER="1" FIGURE="4"/>
 <end MEASURE="4" LAYER="1" FIGURE="5"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>lo</text>
 <start MEASURE="4" LAYER="1" FIGURE="5"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>in</text>
 <start MEASURE="4" LAYER="1" FIGURE="6"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>the</Text>
 <start MEASURE="4" LAYER="1" FIGURE="7"/>
 </syllable>
 …
</LWF>

The LWF tag represents the whole lyric text (Lyric WEDELMUSIC File), the ID

attribute represents the identifier of the lyric and the SCOREID attribute refers to the

score the lyric is related to. The language tag is used to state the lyric language in this

case "eng" stands for English. The LWF is composed of a sequence of syllable or text

tags, one for each Syllable object being present in the SyllableList. Text only tags are

used to store comments which are not associated with the score. Attributes of the

syllable tag are:

 33

 LINE indicating the line where the syllable is positioned.

 SEP indicating the separator to the next syllable. In case of syllable extension the

'_' and '-' are replicated as many times as the number of notes on which the

syllable is extended (except for the first).

 REFRAIN indicating the refrain management character associated with the

syllable ("[", "%" or "]"). The association abides by the following criteria: the start

of refrain '[' and the '%' are associated to the following syllable and the end of

refrain ']' is associated to the preceding syllable. For example in "aa [bb cc %

dd ee] ff" '[' is associated with syllable "bb", '%' to syllable "dd" and ']' to

syllable "ee".

The text tag within the syllable represents the text of the Syllable and the start and the

end tags store the path to the starting and to the ending figures of the syllable.

The attributes of start and end tags are:

 MEASURE: the measure ID;

 LAYER: the layer number starting from 1;

 FIGURE: the first level figure ID;

 CHORD.OR.BEAM: the second level figure ID (a figure in a Chord or a Beam);

 CHORD.IN.BEAM: the third level figure ID (a note in a beamed chord) never used

with lyrics.;

The last two attributes are optional and have a default value of "0".

The example of Figure 20 has been produced by assigning:

{A lyric to show refrain management}
aa bb [cc dd ee ff % gg hh ii jj] kk ll

 34

The WEDELMUSIC XML description of the lyric, stored in a .lwf file, is:

<?xml version="1.0" encoding="UTF-8"?>
<LWF ID=1 SCOREID="1">
 …
 <language>eng</language>
 <text>
{a lyric to show refrain management}

</text>
 <syllable LINE="1" SEP=" ">
 <text>aa</text>
 <start MEASURE="1" LAYER="1" FIGURE="9" CHORD.OR.BEAM="1"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>bb</text>
 <start MEASURE="1" LAYER="1" FIGURE="9" CHORD.OR.BEAM="8"/>
 </syllable>
 <syllable LINE="1" REFRAIN="[" SEP=" ">
 <text>cc</text>
 <start MEASURE="1" LAYER="1" FIGURE="10" CHORD.OR.BEAM="7"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>dd</text>
 <start MEASURE="1" LAYER="1" FIGURE="10" CHORD.OR.BEAM="6"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>ee</text>
 <start MEASURE="1" LAYER="1" FIGURE="11" CHORD.OR.BEAM="5"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>ff</text>
 <start MEASURE="1" LAYER="1" FIGURE="11" CHORD.OR.BEAM="4"/>
 </syllable>
 <syllable LINE="2" REFRAIN="%" SEP=" ">
 <text>gg</text>
 <start MEASURE="1" LAYER="1" FIGURE="10" CHORD.OR.BEAM="7"/>
 </syllable>
 <syllable LINE="2" SEP=" ">
 <text>hh</text>
 <start MEASURE="1" LAYER="1" FIGURE="10" CHORD.OR.BEAM="6"/>
 </syllable>
 <syllable LINE="2" SEP=" ">
 <text>ii</text>
 <start MEASURE="1" LAYER="1" FIGURE="11" CHORD.OR.BEAM="5"/>
 </syllable>
 <syllable LINE="2" REFRAIN="]" SEP=" ">
 <text>jj</text>
 <start MEASURE="1" LAYER="1" FIGURE="11" CHORD.OR.BEAM="4"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>kk</text>
 <start MEASURE="1" LAYER="1" FIGURE="12" CHORD.OR.BEAM="3"/>
 </syllable>
 <syllable LINE="1" SEP=" ">
 <text>ll</text>
 <start MEASURE="1" LAYER="1" FIGURE="12" CHORD.OR.BEAM="2"/>
 </syllable>
</LWF>

And the XML description of the part, stored in the .swf file, is:

<?xml version="1.0" encoding="UTF-8"?>
<SWF_Part>
 …
 <score ID="1" TYPE="NORMAL" INSTRUMENT="" LYRIC="1">
 <origin FROM="WEDELED"/>
 <measure PROGRESSIVE="1" ID="1">
 <justification MAINTYPE="LOG" MAINJUST="2.000000"/>
 <header>
 <clef TYPE="TREBLE"/>
 <keysignature TYPE="DOM"/>
 </header>
 <timesignature TYPE="FRACTION" NUMERATOR="4" DENOMINATOR="4"/>
 <layer NUMBER="1">
 <beam ID="9" STEMS="DOWN">
 <note ID="1" DURATION="D1_8" HEIGHT="4"/>
 <note ID="8" DURATION="D1_8" HEIGHT="3"/>
 </beam>
 <beam ID="10" STEMS="DOWN">
 <note ID="7" DURATION="D1_8" HEIGHT="3"/>
 <note ID="6" DURATION="D1_8" HEIGHT="3"/>
 </beam>
 <beam ID="11" STEMS="DOWN">
 <note ID="5" DURATION="D1_8" HEIGHT="3"/>
 <note ID="4" DURATION="D1_8" HEIGHT="3"/>
 </beam>
 <beam ID="12" STEMS="DOWN">
 <note ID="3" DURATION="D1_8" HEIGHT="5"/>
 <note ID="2" DURATION="D1_8" HEIGHT="4"/>
 </beam>
 </layer>
 <barline TYPE="END"/>
 </measure>
 </score>

Figure 20. Multiple lyric and refrains.

 35

</SWF_Part>

Finally a XSL style sheet can be used to translate the XML lyric description into

HTML or plain text. For example:

{Title}
Aa/bb__ cc/dd
ee/ff gg.

Producing something like:

Title
Aabb ccdd
eeff gg.

CONCLUSIONS AND FUTURE TRENDS

This chapter has been focussed on the issues related to multilingual lyric modeling

and management. In order to highlight the related modeling problems several

examples have been provided and an overview of a fully representative collection of

models for lyrics have been presented. From the reported analysis and the presentation

of the real needs, it is evident that most of the considered models proposed in the

literature are non-satisfactory. For this reason, the WEDELMUSIC object oriented

model has been studied, defined and used for music notation modeling including lyric.

The adoption of the object-oriented paradigm has made it possible to refine the model

to arrive at a good representation of the real needs. This has motivated the

presentation of object-oriented model of music notation in this chapter. In addition to

the object oriented model, the symbolic indexing for music notation symbols is one of

the most important aspects that permits multilingual lyrics on the same music score.

This is a very innovative solution that can be used for building software tools for

educational purposes and for creating dynamic karaoke in opera and concerts.

The WEDELMUSIC model for lyrics copes with the issues of multilingual

management, giving the possibility to "plug" different lyrics written in different

languages on the same melodic line or voice. A language to be used to augment the

 36

lyric text for appropriate assignment of syllables to the score has been introduced.

Some examples highlighted the use of such language and their translation into the

model have been reported. This language is meant to allow the visualization of the

lyric as a poem, just by hiding the special operators and permitting the addition of

further textual information being present in the lyric text but not reported in the score.

The corresponding WEDELMUSIC XML format for lyric storing and interchanging

has been presented.

As a conclusion we can state that the proposed model is complete for character based

lyrics and that it should be extended to symbolic based lyrics such as those of oriental

languages. In addition, the model proposed can be applied to all other music notation

languages provided that the adoption of a symbolic indexing for the main music

notation symbols. The symbolic indexing also presents several other advantages since

it is a suitable support for implementing: versioning mechanisms, selective and

nonlinear undo, cooperative editing of music (Bellini et al., 2002), etc.

More specifically, it is difficult to say which future trends will appear in lyric

representation. Needless to say in the field of music notation much more effort is

needed to develop a standard for music notation (and also for lyric) interchange. The

NIFF (Notation Interchange File Format) substantially failed its mission, being too

much focused on representing graphic details and the use of a binary format does not

help in developing tools based on it. Now the broad adoption of XML as an

interchange meta format is pushing us towards an age where interoperability,

interchange and intercommunication are and will be key aspects of IT applications.

Among them there are also applications based on music notation which still have to

cover the gap; it is what happens for example with audio music applications and

multimedia applications in general such as karaoke on video, opera, music sheets, and

 37

mobiles applications. At present they are now riding the Internet "wild horse", a horse

full of energy and potential and at the same time very difficult to control, in order to

go where you want to. In addition, the research in this field has to cope with the

problems of automatic translation of lyrics to generate lyrics in other languages and

assign the translation to music with syllable decomposition. This process is presently

only for poets due to the complexity of selecting correct words in order to preserve

sound, feeling, moods, etc. See for instance, the full example translated in three

languages reported in the appendix. Frequently, the translation is not literal, word by

word and several versions exists. In that field, information technology will have large

difficulties in substituting the human perception. On the other hand, computer based

assistants may be set up to make the process of lyric translation easier.

REFERENCES

Bellini, P., & Nesi, P. (2001). WEDELMUSIC FORMAT: An XML Music Notation

Format for Emerging Applications. Proceedings of the 1st International Conference of

Web Delivering of Music. Florence: IEEE press.

Bellini, P., Nesi, P., Spinu, M. B. (2002). Cooperative Visual Manipulation of Music

Notation. ACM Transactions on Computer-Human Interaction, September, 9(3):194-

237, http://www.dsi.unifi.it/~moods/.

Booch, G. (1994), Object-Oriented Design with Applications. The

Benjamin/Cummings Publishing Company, California, USA.

Bray,T., Paoli, J., Sperberg-McQueen, C.M., & Maler E. (2000). Extensible Markup

Language (XML) 1.0 (Second Edition). W3C Consortium.

Good, M. (2001). MusicXML for Notation and Analysis. In W. B. Hewlett & E.

Selfridge-Field (Eds.), The Virtual Score Representation, Retrieval, Restoration

(pages 113-124). Cambridge,MT: The MIT Press.

 38

Grande, C. (1997). The Notation Interchange File Format: A Windows-Compliant

Approach. In E. Selfridge-Field (Ed.), Beyond MIDI - The Handbook of Musical

Codes. (pages 491-512). London, UK:The MIT Press.

Hewlett, W.B. (1997). MuseData: Multipourpose Representation. In E. Selfridge-

Field (Ed.), Beyond MIDI - The Handbook of Musical Codes. (pages 402-447).

London, UK:The MIT Press.

Hewlett, W.B., Selfridge-Field, E. (1997). MIDI. In E. Selfridge-Field (Ed.), Beyond

MIDI - The Handbook of Musical Codes. (pages 469-490). London, UK:The MIT

Press.

Hoos, H., Hamel, K., Renz, K., & Kilian J. (2001). Representing Score-Level Music

Using the GUIDO Music Notation Format. In W. B. Hewlett & E. Selfridge-Field

(Eds.), The Virtual Score Representation, Retrieval, Restoration (pages 113-124).

Cambridge,MT: The MIT Press.

Huron, D. (1997). Humdrum and Kern: Selective Feature Encoding. In E. Selfridge-

Field (Ed.), Beyond MIDI - The Handbook of Musical Codes. (pages 375-401).

London, UK:The MIT Press.

ISO/IEC. (1995). Standard Music Description Language. ISO/IEC DIS 10743.

NIFF Consortium, (1995) NIFF 6a: Notation Interchange File Format.

Read, G. (1979). Music Notation, A Manual of Modern Practice. New York,NY:

Crescendo Publishing.

Ross, T. (1987). Teach Yourself. The Art of Music Engraving. Miami, London:

Hansen Books

Selfridge-Field, E. (Ed.). (1997). Beyond MIDI - The Handbook of Musical Codes.

London, UK:The MIT Press.

 39

Sloan, D. (1997). HyTime and Standard Music Description Language: A Document-

Description Approach. In E. Selfridge-Field (Ed.), Beyond MIDI - The Handbook of

Musical Codes. (pages 469-490). London, UK:The MIT Press.

 40

BIOGRAPHIES

Pierfrancesco Bellini is a contract Professor at the University of Florence,

Department of Systems and Informatics. His research interests include object-oriented

technology, real-time systems, formal languages, computer music. Bellini received a

PhD in electronic and informatics engineering from the University of Florence, and

worked on MOODS, WEDELMUSIC, IMUTUS, MUSICNETWORK projects of the

European Commission. He has been the program co-chair of WEDELMUSIC 2002

conference.

Ivan Bruno is a PhD candidate in software engineering and telecommunication at the

University of Florence. His research interests include optical music recognition, audio

processing, computer music, object-oriented technologies and software engineering.

He worked on WEDELMUSIC, VISICON, IMUTUS, MUSICNETWORK projects

of the European Commission.

Paolo Nesi is a full professor at the University of Florence, Department of Systems

and Informatics. His research interests include object-oriented technology, real-time

systems, quality, system assessment, testing, formal languages, physical models,

computer music, and parallel architectures. He has spend a period of his life at the

IBM Almaden Research Center, USA. Nesi received a PhD in electronic and

informatics engineering from the University of Padoa. He has been the general Chair

of WEDELMUSIC conference, IEEE Press, and of several other international

conferences: IEEE ICSM, OQ, CSMR. He is the coordinator of the following

Research and Development multipartner projects: MOODS (Music Object Oriented

Distributed System, http://www.dsi.unifi.it/~moods/), WEDELMUSIC (WEB

Delivering of Music Score, www.wedelmusic.org), and MUSICNETWORK (The

 41

Interactive Music Network, www.interactivemusicnetwork.org). Contact Nesi at

nesi@dsi.unifi.it, or at nesi@ingfi1.ing.unifi.it.

