DE5.2.1 — AXMEDIS Framework and Validation

PR Y 4
=0

aYmedis,

Automating Production of Cross M edia Content
for Multi-channel Distribution
www.AXMEDIS.org

DES.2.1
AXMEDIS Framework and Validation

Version: 2.0
Date: 06/9/2005
Responsible: FUPF (silvia.llorente@upf.edu)

Project Number: 1ST-2-511299
Project Title: AXMEDIS
Deliverable Type: Public
Visibleto User Groups: Yes
Visibleto Affiliated: Yes
Visibleto Public: Yes

Deliverable Number: DE5.2.1

Contractual Date of Delivery: Month 12

Actual Date of Delivery: 31/08/2005

Work-Package contributing to the Deliverable: WP5.2, WP5.3
Task contributing to the Deliverable:

Nature of the Deliverable: Report

Author(s): FUPF, DSI, EXITECH, UNIVLEEDS, CR#4, IRC, XIM

Abstract:

This document describes the guidelines for setting up and maintaining AXMEDI S framework.
Repositories and validation and acceptance mechanisms will be used in order to provide support to
the project partners, and other affiliated partnersin the future. It is also described how some tools of
the AXMEDIS framework will be tested, including some indications on how data can be created to
do so.

Keyword List:
AXMEDIS Framework, validation, integration

AXMEDI S project CONFIDENTIAL 1

DE5.2.1 — AXMEDIS Framework and Validation

Table of Contents

1 EXECUTIVE SUMMARY AND REPORT SCOPE (FUPKF)coi ettt ess s sssseseens 6
11 WP5.2 COMPONENT VALIDATION AND ACCEPTANCE.......ctitsteeueesiestessesseeeessessessessesesssesseseessessessessesseessesseseenes 7
12 WP5.3 AXMEDISFRAMEWORK INTEGRATION AND MAINTENANCEc.crtrteirterteessesreseeessesseessessenessessessssessens 7

2 GUIDELINESFOR CVSREPOSITORY SET UP AND MANAGEMENT (EXITECH) .cccoeovvveeveceeeee, 9
21 GUIDELINES FOR THE SUBMISSION PROCESS......c.ceutrttteutssesteessesseessessessesessensesessessessessssessesessessensesessensssessensensanes

2.2 GUIDELINES FOR THE REPOSITORY STRUCTURE AND CONTENTS....

221 PremMiSES. ...
2.2.2 REPOSITONY SITUCLUIEcviieieiiieeteieseeie ettt esesas et sasse sttt st saesa et ebesessebe st stesesesbese st ete e se et e e sensaneseebesesensaneas
2.2.3 GENEFAl GUILEIINES. ...ttt bbb bbb bbb bbbttt e se e e e
2231 Directory include (optional: only for C/C++)..
2232 Directory source (Mmandatory)c.coceeevrerennes
2233 Directory doc/specification............
2234 Directory doc/code (mandatory)
2235 Directory doc/test (MANUELONY)oueeiiiiriieieieie e
2236 Directory doc/configuration-deployment (optional: only for modules requiring deployment)...... ...15
2237 Directory doc/other (OPLiONEL)coeeiiiiiircn s ...15
2238 Directory lib (mandatory)15
2239 Directory bin (Mandatory)..........cccuveeirnnnennneeenenesee e ...16
22310 Directory project (optional: only for modules requiring building)16
224 Cl/CH+ APPlICAIION. ...ccciireeeieririririeees e .. 16
2241 Directory include..... ...16
2242 Directory source...........ccceuue. .16
2243 Directory doc/specification.... .16
2244 Directory doc/testccccoevrvriverisinininnns ...16
2245 Directory doc/configuration-aeplOYMENTcceeeirirereerirereeeere et se e s e sessesesenesensens 16
2246 (D E= ot (0 YA o (oo) o= TSRS 16
2247 Directory lib16
2248 Directory bin................ ...16
225 C/CH+ DYNAMIC LIBIary ..ceoeciiiiccieci sttt st st st sa et saeta e st e e sansanea 16
2251 Directory include..... ...16
2252 Directory source.........c.cceueune. .16
2253 Directory doc/specification.... ...16
2254 [TT= vt (0 VAo [o oo Lo ST 17
2255 (D E= ot (0 YA o[0T o 1= OSSR 17
2256 Directory doc/configuration-deployment . w17
2257 Directory doc/othercccoeeevrrireenenene. .17
2258 Directory lib AT
2259 Directory bin............ W17
226 C/C++ Static Library W17
226.1 Directory include..... A7
22.6.2 DIFECLONY SOUICE ... ettt bbb bbb bbb bbb bbb bbb 17
2.2.6.3 DireCtory dOC/SPECITICALIONc.eiiierieeiireieeere ettt et ettt b et et e e e enens 17
2264 Directory doc/testccocoevrvinivrisinininee W17
2265 Directory doc/configuration-deployment . 17
2.2.6.6 Directory doc/othercccoevevenrveeeene. A7
22.6.7 Directory lib 17
2.2.6.8 Directory bin........ A7
227 C/C++WebSarvice....... .17
2271 DIFECLONY INCIUAE. ...t 17
2272 [T E = ot (0 Yo T o= 17
2273 Directory doc/specification.... .18
2274 Directory doc/code................. .18
2275 Directory doc/testcccovvvereererereeeenenes ...18
2276 Directory doc/configuration-deployment18
2277 Directory doc/otherocoeeeeerrerecnnnene. ...18
2278 [T 1 =t (oY L o ST 18
AXMEDISproject CONFIDENTIAL 2

DE5.2.1 — AXMEDIS Framework and Validation

2279 [T 1 =t (Y oo PO
228 JavaApplication.......cccccveuenene.
2281 Directory include.
2282 Directory source.........c.cceueune.
2283 Directory doc/specification....
2284 [TE= vt (0 YA o [o oo Lo T
2285 (D E= ot (0 YA o (oo 1= TSR
2286 Directory doc/configuration-deployment . .
2287 Directory doc/othercocoeeeeerrerecnnnene.
2288 (1= ot (o Y2 L] o TSR
2289 [T 1 =t (0 Y/ oo PO
229 Javalibrary (JAR)....
2291 Directory include.....
2292 DIFECLONY SOUICE ...ttt bbb bbb bbb bbb bbb
2293 DireCtory dOC/SPECITICALIONc.iiivirieeiiriee ettt ettt ettt b e et enens
2294 Directory doc/code................. .
2295 Directory doc/testcovevveveeeerereneenenenes
2.29.6 Directory doc/configuration-deployment .
2297 Directory doc/other
2298 Directory lib
2299 Directory bin........
2.2.10 JAVBWEDSENVICE. ... vttt st e e b ettt b et b et b et e b e et et e e ntenn
22220 (O I R 11 = (o VR T 1 0o (=
2.2.10.2 Directory SOUrce...........cceunne. .
2.2.10.3 Directory doc/specification....
22104 Directory doc/code.................
22105 Directory doC/teStccovvveeererererierernrinerennns
2.2.10.6 Directory doc/configuration-deployment .
2.2.10.7 Directory doc/otherccccceeerereereerirerennns
22.10.8 Directory lib
22109 DIFECIONY DiMN....ciiiiiiiiiiiieiiieteiet s b bbb bbb bbb bbb
2.3 GUIDELINES FOR CHECKING-OUT, UPDATING COMMITTING ..ueiteruerutetestesueseeseassessessesssesessaesseensessessesuessssssessenas 20
3 GUIDELINESFOR ADDING NEW EXTERNAL LIBRARIESTO THE AXFW (ALL) coccvvvvveiirierreninnn 24
31 ADDITION OF EXTERNAL LIBRARIES. ... cettttttrttetatastessestaseessessessesssasssssessesssassassessesssassassessessesnsessesesssessassessesnes 24
3.2 AUTHORISATION OF EXTERNAL LIBRARIESUSEceittiteruieiteseestesseeseesseseesseseessessessessessssssessessesssessessesseseessessessens 24
4 GUIDELINESFOR COMPONENT VALIDATION AND ACCEPTANCE (ALL) covvieeerereererereeeeeeene 25
4.1 COMPONENT VALIDATION ...ttutetteueetaseesteeseeseessessesseassessessesssssssssessesssensessessesseessansessessssnsessessessesnsensessessesssessessenne
4.2 COMPONENT SUBMISSION......
4.3 REVIEW REPORT FORMccouvrivienrenns
4.4 VERIFICATION REPORT FORM
4.5 COMPONENT ACCEPTANCEcutrtiriereeieseeeesesiesseesseseesessessessenesses
4.6 START UP OF COMPONENT VALIDATION AND ACCEPTANCE
4.7 PERIODIC VERIFICATION ...c.etttttteutestessesueeseesesseesesssessessesseeseessessessesseesseseaseaseansessessesseeasensessessesnseseessesseensensessesses
4.8 AACCEPTANGCE TESTING ...teteiutetatesteeseeeesesseesseaseassassessesssaaseseessesseaasassseesseaseansasesaeassassseessesseansanseseesaesneassansesnenn
5 AXMEDISFRAMEWORK VALIDATION. . ittt ettt s sae e she e se e besaesaeeeesnessenns 30
51 AXMEDIS CONTENT PRODUCTION TOOLS ... ccutitesteitereeseeseestesseseesseseesseseessessessessessesssessessessessessesseseessessesses 30
511 ComMPOSItiON TOOIS (DSI)...cerueuiirieriirieiiririeieerieesie ettt e et se e b s b e b b e e neenan 30
5111 Test case revision30
5112 Creation of data for test cases.... .30
5113 Implementation of testing tool30
5114 Description of usage of the testing tool30
512 Formatting TOOIS (DSI) ...cceovvereeireririienennen .30
5121 Test case revisionooceeeeeeee ..30
5122 Creation of datafor test cases.... ...30
5123 Implementation of testing tool31
5124 Description of usage of the testing tool31
5.1.3 AXMEDIS database, administrator tools and support (EXITECH)... .31
5131 TESE CASE FEVISION ..ttt sk bbbt R e R b bbb £ e b £ s E £ £ £ et bbb bbbt n et s 31
5132 Implementation Of tESHING TOO]c.cciriririeeirrree et ettt b e ne e enens 31
5133 Description of usage of the tESING tOO]ccoueueiirirceerrs e s e nnsaenens 31

AXMEDI S project CONFIDENTIAL 3

DE5.2.1 — AXMEDIS Framework and Validation

514 AXMEDIS Editor and Viewer, and verification on AXMEDIS terminalS (DS)ccoceovvvvieviveneennieeeneninnns 32
514.1 TESE CASE TEVISION ..ttt bbbttt

5142 Creation of datafor test cases.... .32
5.1.4.3 Implementation of testing tool32
5144 Description of usage of the teSting tOO0] ..o e 32
5.1.5 Programme and Publication engine for enabling the on demand (UNIVLEEDS, FHGIGD) .. .32
5151 TESE CBSETOVISION ...ttt bbbttt bbbt e et enin .32
5.15.2 Creation of data for test cases.... 32
5153 Implementation of testing tool 33
5154 Description of usage of the testing tool33
516 Content WOorkflow integration (IRC)ccoeeeririnirinierieesisieeree e enas 33
516.1 TESE CASEFEVISION ...ttt bbb bbb bbb ettt b bbbt n s 33
5.1.6.2 Creation of data for test cases.... ...33
5.1.6.3 Implementation of testing tool33

5164 Description of usage of the testing tool34
5.2 AXMEDIS P2P COOPERATIVE CONTENT SHARING AND PRODUCTION TOOL (CR$)34
5.2 1 ViIrtUBl DABDASE.cciieierereieteteiet ettt ettt st sttt b bRttt ee et e bbb bbb e et e e e e e 34
5211 TESE CASE FEVISION ..ttt b bbbttt bbbttt 34
5212 Creation of data for test cases.... .. 34
52.1.3 Implementation of testing tool 34
5214 Description of usage of the tESING tOO]couverieeiireeirrr e seenens 34
5,22 DOWNIOAOMONITONceiueiiiiteiirieteisieie sttt et b st b e s bbb s b et b b e s s e b et b e b e e b ebene b ebenensenan
5221 Test caserevision
5222 Creation Of dala fOr TESE CASEScutuerirriieririri sttt b bbb ettt nete 35
5223 Implementation Of tESHING TOO]c.cvriririeieirrriee ettt b e st s e ne e nens 35
5224 Description of usage of the testing tool 36
5.2.3 Publishing And Monitoring Objects........... .36

5231 Test case revision..........ccoeevenene. ... 36
5232 Creation of datafor test cases.... ...36
5233 Implementation of testing tool 36
5234 Description of usage of the tESING tOO]cvrieiiiireerr e 37
524 Loading Module Of AXEPTOOcouiiiriiieiiirisenisie ettt st sss s s e sesenessasan 38
524.1 Test case revision........c.ccovveneee. ...38
524.2 Creation of datafor test cases.... ...38
5243 Implementation of testing tool 38
5244 Description of usage of the testing tool38
5.25 Publication Module of AXEPToOI38
5251 Test case revisionccoeeeeeeee .38
5.25.2 Creation of datafor test cases.... ... 39
5253 Implementation of testing tool39
5254 Description of usage of the tESING tOO]coueueriiiireeerr et nnnaenens 39
526 Workflow management in AXEPTOOI (IRC).....ccuouiiiiirieinisieiisisiseseesessesse s sesseessesesessesessssssasessesesseses 39
52.6.1 RIS 0= <Y = VTS L] o 39

52.6.2 Creation of datafor test cases....40
52.6.3 Implementation of testing tool40
5.26.4 Description of usage of the testing tool40
53 AXMEDIS CERTIFIER AND SUPERVISORuveeiitieeiteeistreeeiseeasisessassessssesssssessassessssessasssssssssssssesssssessssssesssessassesans 40
531 AXMEDIS SUPEIVISON (FUPE)......coiiiiieiititieisie ettt sa et sa e s s e ssese s base e ssesesssansssesanensasen 40
5311 Test case revisioncccceveenee.40
53.1.2 Creation of datafor test cases....40
5313 Implementation Of tESHING TOO]c.cvriririeeirirree ettt st eb et nens 40
53.14 Description of usage of the tESING tOO]cceueueriirireeirrs e ra e nsseenens 41
5.32 AXMEDIS Registration (DSI)
5321 TESE CASE FEVISION ...ttt bbb bRt b ettt b bbb b e
5322 Creation Of Jata fOr LESE CASESoiiiriieeieirereet bbbt bbbttt
53.2.3 Implementation of testing tool
5324 Description of usage of the testing tool
5.3.3 AXMEDIS Certification and Verification (FUPF).....
5331 LIS 0= Y =Y/ o] o
5332 Creation of data for test cases....
53.3.3 Implementation Of tESHING TO0]ccccviurirueeiriririeeircree ettt a e se e b se e ssssesese e e s esesenssensens
5334 Description of usage of the tESING tOO] ..ot
5.3.4 Trace, reporting and statistic analysis (EXITECH) ...
5341 TESE CBSE FEVISION ...ttt bbb b e e bt £ bt s et b ettt b et e bt

AXMEDI S project CONFIDENTIAL 4

DE5.2.1 — AXMEDIS Framework and Validation

5.34.2 Implementation Of tESHING TO0]ccovririreieirirreeers ettt ae s s aese e e s senenenennens
5343 Description of usage of the testing toolcccccceueinenee

5.3.5 Accounting Managing and Reporting Tool (EXITECH).
5.35.1 TESt CASEIEVISION ..oneiiiieie e

rRRRRARBAS

535.2 Implementation of testing toolccccveeeririrennnne.
5.3.5.3 Description of usage of the testing toal
5.3.6 Protection Tool engine (FHGIGD)........cccccovrvrveenne .
53.6.1 QLIS Q0= < =,V Lo o T
536.2 Creation Of AaLafOr TESE CASESiuiiiieieice ettt b et e b et st et e be st e sesae e e benentas
5.3.6.3 Implementation of testing toolccocvevvrererennnne.
53.64 Description of usage of the testing tool ... 45
537 DRM to0lS (FUPF)cocoiireeeriecsseesie e .45
5371 Test caserevision..........o........45
53.7.2 Creation of datafor test cases.... .45
53.7.3 Implementation of testing toolc.ccceverereinnnns .45
5374 Description of usage of the testing tool 45
AXMEDISFRAMEWORK INTEGRATION AND MAINTENANCE.......ccooirtrereene s 46
54 SET UP OF THE AXMEDIS FRAMEWORK FOR CONTINUOUS INTEGRATION OF AXMEDIS COMPONENTS
(S LI = =) TSSO SRS 46
55 REGRESSION AND INTEGRATION TESTING (EPFL) c.cviviiiiiirieirise sttt st 46
551 REQGIESSION LESHING ...viuiieiiririeieisie ittt e bbbt e st b e s s et e s seebese e et e e b e b e ne s eb e e b ebenensnsn 46
Lo 10 1= | = o 0 === 1] o [OOSR 47
5.6 OPTIMISATION OF AXMEDIS COMPONENTS (DS])...iuvieviiirieiiisieriisisiesesie st sesse st e sessssessssesesessaneas 48
6 BIBLIOGRAPHY .ottt sttt s et s e et e st s e e e ne s ae £ et ebe s b emeese b et e se et e eeene b e neeneeseseeneeseneenenneneenean 49
T GLOSSARY ittt b bt h bt E e R R R e e AR e R e ARt SR e E SRR e AR R e R e R Re R e e eR e R e R e e bR e e Rt e Re e et nrenean 49

AXMEDI S project CONFIDENTIAL 5

DE5.2.1 — AXMEDIS Framework and Validation

1 Executive Summary and Report Scope (FUPF)

Market and end-users are pressing content industry to reduce prices. This is presently the only solution to
setup viable and sustainable business activities with e-content. Production costs have to be drastically
reduced while maintaining product quality. Content providers, aggregators and distributors need innovative
instruments to increase efficiency. A solution is automating, accelerating and restructuring the production
process to make it faster and cheaper. The goals will be reached by: (i) accelerating and reducing costs for
content production with artificial intelligence algorithms for content composition, formatting and workflow,
(i) reducing distribution and aggregation costs, increasing accessibility, with a P2P platform at B2B level
integrating content management systems and workflows, (iii) providing algorithms and tools for innovative
and flexible Digital Rights Management, exploiting MPEG-21 and overcoming its limits, supporting several
business and transactions models. AXMEDIS consortium (producers, aggregators, distributors and
researcher) will create the AXMEDIS framework with innovative methods and tools to speed up and
optimise content production and distribution, for production-on-demand. The content model and
manipulation will exploit and expand MPEG-4, MPEG-7 and MPEG-21 and others real and de-facto
standards. AXMEDIS will realize demonstrators, validated by means of rea activities with end-user by
leading distributor partners: (i) tools for content production and B2B distribution; (ii) content production and
digtribution for i-TV-PC, PC, kiosks, mobiles, PDAs. The most relevant result will be to transform the
demonstrators into sustainable business models for products and services during the last project year.
Additional demonstrators will be 2-3 associated projects launched as take up actions. The project will be
supported by activities of training, management, assessment and evaluation, dissemination and
demonstration at conference and fairs.

This deliverable is devoted to the description of tools validation and integration done inside WP5.2 and
WP5.3.

This activity is by no means finished with the completion of this deliverable, but it has to be revised during
the development of the project.

Main deliverablesin WP5 are:
e DE5S.1.1 - AXMEDIS Framework Infrastructure (M12), report;
DE5.2.1 — AXMEDIS Framework Validation and Integration (M12), report;
DE5.4.1 — AXMEDIS Content Tools (M15), report and prototype;
DE5.5.1 - AXMEDIS AXEPTaool (M17), report and prototype;
DE5.6.1 — AXMEDIS Certifier and Supervisor (M 17) report and prototype.

The main activities that have supported the production of this deliverable are related to:

WP5.2 — Component Validation and Acceptance — This subWP is responsible to decide whether a
component is valid or not for its use in the AXMEDIS framework. The guidelines for this task will
be produced, describing the AXMEDIS validation steps for each kind of component and providing
an acceptance methodology. The use of a semi-forma methodology in the certification process
description will help in automating the acceptance process steps via core experiments. Moreover,
tools and/or mechanisms for validation and acceptance could be developed taking into account the
semi-formal description. In order to test this validation methodol ogy some preliminary version of the
AXMEDIS tools will be used. Skilled partners different from those that have created the software
components will carry out these tests. Details: Definition of validation and acceptance guidelines for
deciding if a component can be accepted and integrated into the AXMEDIS framework; Periodic
validation and acceptance test; Design and Development of tools to check the above guidelines.

AXMEDI S project CONFIDENTIAL 6

DE5.2.1 — AXMEDIS Framework and Validation

WP5.3 — AXMEDIS framework integration and maintenance — This subWP will study the components
database structure for the integration and maintenance of the AXMEDIS framework. A first
prototype of the components database will be developed and a CV S repository will be configured to
enable source sharing. As soon as the prototypes of the AXMEDIS software components are
available, they will be inserted in the component database for the preliminary integration. Details:
AXMEDIS Framework integration guidelines, CV S rules, access to AXMEDIS framework database.
Start up of the CVS for the AXMEDIS framework; Continuous integration and refinement of
AXMEDIS components. regressing testing, optimisation, etc.; Integration of DRM components into
the framework.

1.1 WP5.2 Component Validation and Acceptance

This WP is coordinated by FUPF

Period: M8-M48

In order to correctly set up the AXMEDIS framework, each implemented and supplied component should be
validated and certified before allowing its use by content creators, content providers and final users inside
AXMEDIS. The validation content is produced and collected in WP8 and the related test cases are defined in
WP2 as described in WP5.1. The validation will be performed by skilled partners but different to those have
created the module. Severa industrial partners are involved in this work. To perform validation and
acceptance of software components and tools, we have split this WP into several tasks (the great part of this
work will be done after the first 18 months).

T5.2.1; Start up of the Component Validation and Acceptance

Managed by FUPF. The work should be assigned on the basis of competenciesto al the partners involved on

this WP.

e Definition of guidelines for deciding if a component is valid or not for its use in the AXMEDIS
framework.

o Definition of acceptance guidelines for components.

e Specification of requirements for constructing tools and / or mechanisms for acceptance and validation.
At this point, it should be decided which mechanisms for component validation and acceptance will be
based on automatic tools and which ones will be manual.

e Development of toolsto check the above guidelines.

T5.2.2: Periodic verification and Acceptance Testing

Managed by FUPF. The work should be assigned on the basis of competencies to all the partnersinvolved on
this WP.

e Software components and tools Testing of the tools devel oped to check the guidelines.
e Software components and tools Verification and validation of interoperability, etc.

The scope of the validation covers not only that of assessing the quality in terms of research value, but also
that of verifying the: reliability, the robustness with respect to the test cases, and the conformance to the
AXMEDIS framework.

1.2 WP5.3 AXMEDIS framework integration and maintenance

ThisWP is coordinated by EXITECH
Period: M9-M48

This WP is devoted to the integration of the components mentioned in the WP5.1. The integration work will
permit the building of several demonstrators, for instance, the demonstrators developed in WP9 and the trials
developed by the Take up actions. The great part of this work will be done after the first 18 months of
project and will consist of:

AXMEDI S project CONFIDENTIAL 7

DE5.2.1 — AXMEDIS Framework and Validation

T5.3.1: set up of the AXMEDIS framework for integration
Managed by EXITECH
e Components database set up and data base management.

e CVS st up and management for source sharing.

T5.3.2; Continuousintegration of AXMEDIS components

Managed by EXITECH, performed by all partners involved according to their skill and related tools of which
they are responsible.

Activity of integrating into the CV S the components, resolving conflicts, supporting the other partners during
the integration. Thiswill lead to refine the guidelines and also the stubs of the modules.

T5.3.3: Regression and integration testing

Managed by EPFL, performed by all partners involved according to their skill and related tools of which
they are responsible.

Regression and integration test of the software components to verify their global functionalities, by using the
integration test cases defined in WP2 and the data set produced and collected in WP8.

T5.3.4: Optimisation of AXMEDIS components

Managed by DS, performed by all partners involved according to their skill and related tools of which they
are responsible.

Optimisation of AXMEDIS Components for improving the quality of their results and removing potential
integration problems.

AXMEDI S project CONFIDENTIAL 8

DE5.2.1 — AXMEDIS Framework and Validation

2 Guidelines for CVS repository set up and management (EXITECH)

2.1 Guidelines for the submission process

The objective of this process is to guarantee that each partner will “commit” the MODULES resulting from
the development activities into a central repository (i.e.: the CVS tree) according to the defined standard
format. The defined format takes into account all the technical components and documentation that is needed
by other partners or external users to download the components and to adopt them into the applications.

The CVSisacomplicated tool that is easy enough to use for normal users. A repository of files, arranged in
a directory structure as described in the next paragraph, will be stored in the central server and al partners
and future users could check out copies of this repository. This would create a copy of the (current version
of the) filesin the usersloca hard drive.

The management of the central repository is under the responsibility of Exitech and DSI.

Each partner could:
M Update the copy of the CV Stree to reflect the changes made since the last updated.
M Commit the changes to the CV S tree so that others can see them.

Each partner could only “add” anew file. A new version of afile will update the old one.
No “delete” operation should be done on the central CVS, unlessit is necessary to guarantee the congruency
at the system level.

All the partners will make changes to their own MODULES at their leisure (without connection to the
server), and subsequently commit these changes to the main repository. It will not be possible for more than
one user to work on (and commit changesin) the same MODULE. Each module has a Responsible.

Because CVS retains all previous versions of al files that were ever part of the repository, so it will be
possible (though not easy) to recover from mistakes.

For creating new folders into the repository a request has to be send to the project coordinator with the
repository administrator in cc. The email has to contain the names of the folders to be created, the content
description and any other relevant information.

When a commit is performed an index.txt file has to be aso updated (or created), for any folder, where the
committed data is briefly explained.

The verification process

The verification process (Responsible: Exitech) will guarantee that the both technical contents and
documentation will have been uploaded for each module. The Responsible will perform only a formal
verification of the submitted data. Errors into the committed contribution will be communicated to the
partner by the project coordinator.

Each partner will be responsible for the compl eteness and correctness of the modules.

The CV'S process will not guarantee the integration of the components; anyway all the technical information
is required to permit the “integrators’ and “testers’ to evaluate the components and to test according to the
testing procedures.

The CV'S system will guarantee the versioning functionalities; it will not provide configuration management
functions.

Submission plan

Each partner has to submit the total contribution according to the development plan; anyway each partner
could “commit” the new version of a component after any “relevant” upgrade (bug fix, new functionalities,
updated documentation).

AXMEDI S project CONFIDENTIAL 9

DE5.2.1 — AXMEDIS Framework and Validation

The maintainers of the CVSwill verify after each “commit” the completeness of the documentation.
Moreover, some statistics will be provided automatically for each component (i.e.: file age, number of
submission per partners, €tc).

The objective of this process is to guarantee that each partner will “commit” the MODULES resulting from
the development activities into a central repository (i.e.: the CVS tree) according to the defined standard
format. The defined format takes into account all the technical components and documentation that is needed
by other partners or external users to download the components and to adopt them into the applications.

2.2 Guidelines for the repository structure and contents

2.2.1 Premises

In order to better understand the guidelines contained in this document, it is necessary to underline the
premises under which they are valid and the context in which the repository for AXMEDI'S framework, web
service and application, hereinafter “the CV Srepository” has been born, the name derives from the definition
reported in Annex |. the structure of the CVS repository is oriented at who will use the AXMEDIS
framework and in particular to partners involved in WP9 demonstrators and those that will contribute to
AXMEDIS with take up actions and projects. It is for them that we are mainly creating this framework.

As stated by the project manager, that requested these guidelines according to the schedule of Annex I:

e The CVS repository is not a support for development and developers, since each team in each
company has to create the environment for devel opment inside the company;

e The CVS repository is not an instrument for integration, since it has no configuration management
processinside, at least now, atask in WP5 will define the guidelines for the integration;

e The CVSrepository is not an instrument for automated building and continuous integration, since it
has no management of automatic building;

e The CVSrepository is not an instrument for automated building and continuous integration, since it
has no management of automatic building and no bound on submission due to a failure in
compilation;

e The CVSrepository isasupport for management of the project, and for the versioning of the AXFW
and its detailed components, and for the creation/storage of demonstrators;

e The CVSrepository has to support versioning only at predefined time intervals (that can be also a
time frame of months or weeks, this will depend on the project evolution and status;

e Each contribution at the CVS repository has to be self-contained in the sense that has to provide
comprehensive support for compiling, executing, deploying the AXMEDIS part submitted;

e Each contribution at the CV S repository has to be completed with documentation according what has
been formally defined in these guidelines, and revision of the specification document starting from
the officia version;

e Each contribution to the CVS repository has to be completed with test cases and test code for
allowing regression testing, a more detailed description of the activity of testing will be described in
specific guidelines on testing, regression and acceptance testing.

2.2.2 Repository Structure
After all these necessary premises the guidelines for the structure and the content of the repository can be
detailed:
The repository is structured in three main parts:

e Framework

e WebServices

o Application
Each part will contain a set of subdirectory for putting all the necessary files. Not al the directories are
mandatory for each kind of application types as detailed in the following. In any case the following set of
directories will be present under each specified parts:

e include: directory only for C/C++ application that have include files;

AXMEDI S project CONFIDENTIAL 10

DE5.2.1 — AXMEDIS Framework and Validation

e source: directory containing the source code;

e doc: directory containing the documentation as specification documentation, code documentation,
test documentation, dependencies and configuration documentation, other documentation. For each
kind of documentation a detailed description will be given;

o lib: directory containing all the necessary libraries (lib, dll, jar, etc) needed for the AXMEDIS part
to work;

e hin: directory containing the result of building process that can be a jar, an executable, alibrary, a
war or whatever.

The doc directory has to be split in different directories according to the following structure:

o gpecification: this directory must contain the UML diagrams of al the classes and in order to avoid
the problems due to incompatible format the diagrams have to be submitted in XMI format. In the
same directory, if present, also the XML schemas and WSDL files have to be put. Any other format
for UML with respect to XMI format will not be accepted;

e code: in this directory the documentation of code must be put. The documentation should be
Javadoc, doc++ or other auto-generated documentation (preferred) or other documentation format. In
any case documentation must be put in one of the following formats: HTML or TXT (preferred)
and/or RTF or PDF (not preferred but acceptable). Any other proprietary format such as Microsoft
Word docs, OpenOffice dacs, or other will be refused;

e test: this directory must contain all the test cases necessary to test the part, the source code and
building scripts for testing. Automatic testing is recommended such as JUnit (i.e
http://www.junit.org/) for Java, CppUnit (i.e. http://sourceforge.net/projects/cppunit/) for C++,
PHPUniIt (i.e. http://www.phpunit.de/en/index.php) for PHP and so on, and script for automating
testing are kindly requested such as Batch, Makefile, Ant and so on.
configuration-deployment

e oOther

This structure has been selected:

e Togivethe best integrated view to the future users of the AXFW. In thisway we can giveto themin
a simple manner access to separate levels. For example, access to source code, only to applications,
only to the includes, etc.

e To provide and collect the history of all the executable applications developed, this will permit to
provide the history of development according to annex | of the contract and to provide demonstration
without the need of recompiling and involving other partners

e To provide accessin a simple manner at al the code and applications to be test for the partners that
have to test and verify the tools even without the presence of who has produced the code.

Under each of the directories defined, a directory for each project part has to be created, so that the final
structure will be something like:

e AXMEDIS
o Framework
o WebServices
o Application

The Framework Structure is described in the following picture:

e AXMEDIS
o Framework
= include
e axom

AXMEDI S project CONFIDENTIAL 11

DE5.2.1 — AXMEDIS Framework and Validation

= source
e axom
e axhd
= doc
e gpecification
o axom
o axbd
e code
o axom
o axbd
o test
o axom
o axbd
e configuration-deployment
o axom
o axbd
e other
o axom
o axbd
= lib
e axom
e axbd
= bin
e axom
e axbd
= project
e axom
o win32
o macos
o linux
o WebServices
o Application

Into the “Framework” part of the repository it is supposed to have:

-- object models

-- loader and saver

-- communication protocols
-- DB access

-- datatransforming logic
-- algorithms

--DLL

-- plug ins

-- libraries

-- scripts

-- web service support

-- etc.

The WebService Structure is described in the following picture:

AXMEDI S project

CONFIDENTIAL

12

DE5.2.1 — AXMEDIS Framework and Validation

e AXMEDIS
o Framework
o WebServices
= include
= source
e userSupport
= doc
e gpecification
o userSupport
e code
o userSupport
e test
o userSupport
o configuration-deployment
o userSupport
e other
o userSupport
= lib
e userSupport
= hin
e userSupport
o Application

And finally the Application structure

can be depicted as follows:

e AXMEDIS
o Framework
o WebServices
o Application

= C++app

= JavaApplicationl

include

source

doc

specification

code

test
configuration-deployment
other

OO0 O O0Oo

lib
bin
project
o Wwin32
o macos
o linux
licationl
include
source
doc

AXMEDI S project

CONFIDENTIAL

13

DE5.2.1 — AXMEDIS Framework and Validation

specification

code

test

configuration-depl oyment
other

O 0O OO0 Oo

e lib

e bin

e project
o Wwin32
o macos
o linux

As applications there are considered:
e Userinterfaces
Skins
Main classes that can generate an executable by using framework content
all the test tools needed for other parts (protocols) verification.
Etc.

It is possible, depending on the software that is realized, to define some guidelines for the different kind on
file to be put in each directory as stated in the next paragraphs.

In the following the general guidelines will be reported and in the more specific subsection only the changes
that applies to the general structure will be reported.

2.2.3 General Guidelines

2.2.3.1 Directory include (optional: only for C/C++)
All theinclude (.h, .hpp, .hh, etc) that are generated for the project by the developers.

Inside this directory, a sub directory for each component will be created.

2.2.3.2 Directory source (mandatory)

All the source code organized in subdirectory defined by each development team (.c, .cxX, .cpp, .java, €tc)
that are generated for the project by the devel opers.

Inside this directory, a sub directory for each component will be created. Inside this directory the partner can
organize the source code in the best manner according to the project type; some example follows:

e A set of subdirectorieswith source code put inside

e The source code directly placed in the directory

e A hierarchy of directory differentiating for source type (i.e. Java, C++, WebPages, etc)

2.2.3.3 Directory doc/specification

In this directory must be placed:

e the UML diagram in XMI or Visio formats in order to guarantee maximum interoperability and
independence by UML editor software vendors that are generated for the software under
devel opment — mandatory for modules having OO classes,

o the XML schema adopted for the XML test case or for other activities related to the software under
examination in XML format — mandatory if the schema was used;

o the WSDL used by the application for accessing as a client to web services on the server sidein plain
text format — mandatory if the WSDL was used.

AXMEDIS project CONFIDENTIAL 14

DE5.2.1 — AXMEDIS Framework and Validation

2.2.3.4 Directory doc/code (mandatory)

In this directory the documentation of the code must be present. No submission without documentation can
be acceptable. It is suggested to use automatic documentation generation according for example to JavaDoc
or Doc++ style. In any case the documentation can be submitted only in the following formats in order to
guarantee the maximum interoperability and independence by software vendors:

o HTML (preferred)

e Plain TEXT (preferred)

e RTF

e DOC
No other format will be accepted.

2.2.3.5 Directory doc/test (mandatory)

In this directory al the test cases and the test code must be submitted together with the operational
instruction to test the code. Automatic testing is recommended and scripts for automating testing are kindly
requested as Batch file, Makefile, Ant and so on.

When in test cases you are referring to some objects or digital resource please provide reference according to
the documentation reported in the official deliverable on Test Cases, see WP2 and WP8 deliverables.

The documentation on how to test software must be inserted in aplaint text file named HowToTest.txt in the
root directory of the doc/test. This file must contain a reference to additional libraries (to be put on the lib
directory) that are necessary for testing and not for deployment.

2.2.3.6 Directory doc/configuration-deployment (optional: only for modules requiring
deployment)

In this directory a plain text file named configuration-dependencies.txt must be placed in the root of the
directory doc/configuration-deployment and it must be filled with the information on dependencies of this
software piece from other software pieces that are present in the repository tree together with the related
version that have been tested to correctly operates.

In addition a plain text file named deployment.txt must be placed in the root of the directory
doc/configuration-deployment containing all the information that are needed to know how to deploy the
software artifact (such as the library that are needed, environment variables, additional software needed,
target operating system, etc).

Any other file can be added, but the only formats allowed are:

e HTML

e Plain TEXT
e RTF

e DOC

2.2.3.7 Directory doc/other (optional)

This directory can contain any additional document useful for the development community. The only bound
is the format that must be chosen among:

e HTML
o Plain TEXT
e RTF
e PDF

2.2.3.8 Directory lib (mandatory)

This directory must contain al the libraries that are not staticaly linked to the application and that are
needed for the application in order to work. In the case the no library is needed an empty file named no-lib-
needed.txt must be placed in the lib root directory. In the case of multiplatform development a directory for
each platform have to be created and the lib must be put in the correct directory.

AXMEDI S project CONFIDENTIAL 15

DE5.2.1 — AXMEDIS Framework and Validation

2.2.3.9 Directory bin (mandatory)

This directory must contain the product of the module and all the components (configuration files, etc) that

are necessary for a correct exploiting of the software. It is considered product: an executable, alibrary, etc.

For application that do not have an executable, the jar, war, dIl, lib or the result of the module that have to be
deployed must be put here. In the case of multiplatform development a directory for each platform have to be

created and the executable must be put in the correct directory.

2.2.3.10 Directory project (optional: only for modules requiring building)
This directory must contain the makefiles or IDE projects to build the corresponding library or application.

This directory can contain also the minimal set of file (in aunique zip file for easy recompiling the module in
a defined IDE of the user. This zip file must contain only the minimal set of file, i.e. those after a project

clean up.

2.2.4 C/C++ Application

2.2.4.1 Directory include
Must be present

2.2.4.2 Directory source
No change

2.2.4.3 Directory doc/specification
No change

2.2.4.4 Directory doc/test
No change

2.2.4.5 Directory doc/configuration-deployment
No change

2.2.4.6 Directory doc/other
No change

2.2.4.7 Directory lib
No change

2.2.4.8 Directory bin
No change

2.2.5 C/C++ Dynamic Library

2.2.5.1 Directory include
Must be present

2.2.5.2 Directory source
No change

2.2.5.3 Directory doc/specification
No change

AXMEDI S project CONFIDENTIAL

16

DE5.2.1 — AXMEDIS Framework and Validation

2.2.5.4 Directory doc/code
No change

2.2.5.5 Directory docf/test
No change

2.2.5.6 Directory doc/configuration-deployment
No change

2.2.5.7 Directory doc/other
No change

2.2.5.8 Directory lib
No change

2.2.5.9 Directory bin
No change

2.2.6 C/C++ Static Library

2.2.6.1 Directory include
Must be present

2.2.6.2 Directory source
No change

2.2.6.3 Directory doc/specification
No change

2.2.6.4 Directory doc/test
No change

2.2.6.5 Directory doc/configuration-deployment
No change

2.2.6.6 Directory doc/other
No change

2.2.6.7 Directory lib
No change

2.2.6.8 Directory bin
No change

2.2.7 C/C++ WebService

2.2.7.1 Directory include
Must be present

2.2.7.2 Directory source
No change

AXMEDI S project CONFIDENTIAL

17

DE5.2.1 — AXMEDIS Framework and Validation

2.2.7.3 Directory doc/specification

The WSDL used by the application for accessing as a client to other web services and WSDL used for
generating the server side path or the web service under development on the server sidein plain text format.

2.2.7.4 Directory doc/code
No change

2.2.7.5 Directory doc/test
No change

2.2.7.6 Directory doc/configuration-deployment
No change

2.2.7.7 Directory doc/other
No change

2.2.7.8 Directory lib
No change

2.2.7.9 Directory bin
No change

2.2.8 Java Application

2.2.8.1 Directory include
Not present

2.2.8.2 Directory source
No change

2.2.8.3 Directory doc/specification
No change

2.2.8.4 Directory doc/code
No change

2.2.8.5 Directory doc/test
No change

2.2.8.6 Directory doc/configuration-deployment
No change

2.2.8.7 Directory doc/other
No change

2.2.8.8 Directory lib

This directory must contain al the librariesin JAR format that are needed by the java application. In the case
the no library is needed an empty file named no-lib-needed.txt must be placed in the lib root directory.

AXMEDI S project CONFIDENTIAL 18

DE5.2.1 — AXMEDIS Framework and Validation

2.2.8.9 Directory bin

This directory must contain the application packaged in a JAR file with a batch file for executing it. In the
case of multiplatform script for launching the application, a directory for each platform has to be created and
the script must be put in the correct directory.

2.2.9 Java Library (JAR)

2.2.9.1 Directory include
Not present

2.2.9.2 Directory source
No change

2.2.9.3 Directory doc/specification
No change

2.2.9.4 Directory doc/code
No change

2.2.9.5 Directory doc/test
No change

2.2.9.6 Directory doc/configuration-deployment
No change

2.2.9.7 Directory doc/other
No change

2.2.9.8 Directory lib

This directory must contain all the librariesin JAR format that are needed by the java library. In the case the
no library is needed an empty file named no-lib-needed.txt must be placed in the lib root directory.

2.2.9.9 Directory bin
This directory must contain the library packaged in a JAR file.

2.2.10 Java WebService

2.2.10.1 Directory include
Not present

2.2.10.2 Directory source
No change

2.2.10.3 Directory doc/specification

The WSDL used by the application for accessing as a client to other web services and WSDL used for
generating the server side path or the web service under development on the server sidein plain text format.

2.2.10.4 Directory doc/code
No change

2.2.10.5 Directory doc/test
No change

AXMEDI S project CONFIDENTIAL 19

DE5.2.1 — AXMEDIS Framework and Validation

2.2.10.6 Directory doc/configuration-deployment
No change

2.2.10.7 Directory doc/other
No change

2.2.10.8 Directory lib
No change

2.2.10.9 Directory bin
No change

2.3 Guidelines for checking-out, updating committing

For managing the AXMEDIS repository the Subversion (http://subversion.tigris.org/) platform has been
chosen.

A complete Subversion documentation and also a Subversion book are available on the project website
http://subversion.tigris.org/serviets/ProjectDocumentList.

Subversion is a free/open-source version control system. That is, Subversion manages files and directories
over time. A tree of filesis placed into a central repository. The repository is something like an ordinary file
server, except that it remembers every change ever made to your files and directories. This alows recovering
older versions of data, or examining the history of how data changed.

Subversion can access its repository across networks, which alows it to be used by people on different
computers.

Some of Subversion capabilities are:

Directory versioning

CVS only tracks the history of individual files, but Subversion implements a “virtual” versioned file system
that tracks changes to whole directory trees over time. Files and directories are versioned.

True version history

Atomic commits

A collection of modifications either goes into the repository completely, or not at al. This allows devel opers
to construct and commit changes as logical chunks, and prevents problems that can occur when only a
portion of aset of changes is successfully sent to the repository.

Versioned metadata

Each file and directory has a set of properties—keys and their values— associated with it. You can create
and store any arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.
Choice of network layers

Consistent data handling

Subversion expresses file differences using a binary differencing algorithm, which works identically on both
text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally
compressed in the repository, and differences are transmitted in both directions across the network.

Efficient branching and tagging

AXMEDI S project CONFIDENTIAL 20

DE5.2.1 — AXMEDIS Framework and Validation

Subversion creates branches and tags by simply copying the project, using a mechanism similar to a hard-
link. Thus these operations take only avery small, constant amount of time.

Subversion architecture:

commandline Gl
dlient app dlient app |

1[.. entinterface
Warking copy
management |*+——— (lient library
library
Repository access
(o] [] [wal]
Intemet |
Apache
mod DAY
mod_DAV_SYN I SVnserve
1 Iﬂfﬁﬂmxmm
Subwersion
repository

Subversion architecture (extracted from: http://svnbook.red-bean.com/en/1.0/svn-book.html)

The AXMEDIS repository will be configured using the Apache “mod DAV” & the Subversion
“mod_DAV_SVN” sincethe “svnserve’ seemsto give some limits to the user configuration.

The AXMEDIS repository will be available on a SSL protected site. The repository will be protected with an
account and a password and the internal folder will be configured in order to alow the access only to the
selected users.

The repository can be accessed for reading purposes via browser, command line and using Subversion
compatible GUI clients.

Web access
It will be possible to access and browse the (full or part of) repository according to the user rights. It is
proposed to give one account for each partner.

A possible view of the repository could be the one shown in the next figure.

AXMEDI S project CONFIDENTIAL 21

DE5.2.1 — AXMEDIS Framework and Validation

Revision 3: MWebServices/doc - Mozilla Firefox

File Modifica Wisualizza vai Segnalbri Strumenti | 7
@ - SO0 B9 O v |
subversion: Documents & files zOrari & acquisto - Trenitalia || Revision 3: /WebServices/doc 5]

Revision 3: /WebServices/doc

*

* codel

+ confisuration-deployment!

* other/

+ specification/

¢ test/
FPoawered by Subversion version 1.2.0 (rl4790).
Completato cvs. axmedis.org (2

Command line client access

Command line clients are available for all the operating systems (MAC OS X, Linux, Solaris, BSD, and
Windows.

For getting a working copy of the Application Folder it is enough to run the “svn checkout” command. The
following figure shows the Application folder checkout from a windows command line subversion client.

= NEE
=]

nProgrammiszSubversionsbin?svn checkout http:-scvs.axmedis.orgsrepossApplicatio
s
eame di autenticazione: <http:-scvus.axmedis.org:88> axmedis subversion reposito

k4
assword per ‘marius’:
eame di autenticazione: <http:-scus.axmedis.org:88> axmedis subversion reposito

Y

sername: exitech

assword per ‘exitech’: oo
ApplicationssexampleJavafApplication
ApplicationssexampleJavafApplication:source
ApplicationssexampleJavafApplicationsdoc
ApplicationssexampleJavafApplicationsdocstest
ApplicationssexampleJavafApplicationsdocxspecification
ApplicationssexampleJavafApplicationsdocxother
ApplicationssexampleJavafApplication“docsconf iguration—deployment
ApplicationssexampleJavafApplicationsdoc™code
ApplicationssexampleJavafApplication~lib
ApplicationssexampleJavafApplication~libsbin
ApplicationssexampleCppApplication
ApplicationssexampleCppApplicationssource
ApplicationssexampleCppApplicationsinclude
fipplications~exampleCppApplicationsdoc
ApplicationssexampleCppApplicationsdocstest
ApplicationssexampleCppApplicationsdocsspecification
ApplicationssexampleCppApplicationsdochother
ApplicationssexampleCppApplicationsdochconfiguration—deployment
ApplicationssexampleCppApplicationsdocscode
ApplicationssexampleCppApplicationslih
ApplicationssexampleCppApplication~libs\bin
Applicationssfabrizio.txt

stratta revisione 3.

nProgrammisSubversionsbin

AXMEDI S project CONFIDENTIAL 22

DE5.2.1 — AXMEDIS Framework and Validation

Let suppose that the fabrizio.txt file was changed and a new file is added to the working directory. The
changes can be committed by using the “svn commit” as follow:

== Prompt dei comandi !EE

\ProgrannisSubversionshinSApplications>svn commit —m "I change the txt files"
rasmetto abrizio.txt

rasmissione dati .

omnit della Revisione 4 eseguito.

:\ProgrannizSubversion\bin\Applications>_

=]

If the new file has to be added to the repository it hasto be first added to the working directory:

= Prompt dei comandi !Eu

:~\ProgrammizSubversionsbhinwApplications>svn add marius.txt
marius.txt

:“\ProgranmizSubversionshin\Applications>svn commit —m I add a new txt file"
gyiungo marius.txt

ProgrammizSubversionsbin“\Applications>_

=]

A list of the other Subversion command line is available on the Subversion book (http://svnbook.red-
bean.com/en/1.0/svn-book.html) at Chapter 9 (http://svnbook.red-bean.com/en/1.0/svn-book.html#svn-ch-9).

Using a GUI Subversion client
Several subversion clients are available. For alist you can see: http://subversion.tigris.org/project_links.html
at the clients and plug-in section.

Also some devel opment environments include GUI subversion clients.

AXMEDI S project CONFIDENTIAL 23

DE5.2.1 — AXMEDIS Framework and Validation

3 Guidelines for adding new external libraries to the AXFW (ALL)

This section describes the process for adding new external libraries to be used by the tools inside the AXFW,
apart from the ones declared in the specification documents.

3.1 Addition of external libraries

In order to add a new library, the following directives have to be followed:

1) Any library that is being used for the development of any tool to be included in the AXFW has to be
authorised before its usage.

2) An AXMEDIS partner cannot decide autonomously to make some GPL or LGPL if it comes from
the project results. The coding of any part is IPR of the project and thus it has to be authorised and
any implication has to be verified.

The violation of these directives implies may lead at the exclusion of a partner for bad behaviour. The CA
reports most of the details on thisissue.

3.2 Authorisation of external libraries use

The inclusion of any library has to be authorised by sending a request to the project coordinator and the
general reflector indicating:

e what would you like to use

e whichOS

e why

e license model of thelibrary

For instance, the authorisation will not be given if the module is GPL. It could be discussed depending on the
point in which the module is used if it should be GPL. In any case has to be separately discussed.

Finaly, the delivery of code in GPL or LGPL is not authorised without an explicit authorisation of the
AXMEDIS consortium.

Thelist of accepted librariesisreported in the AXMEDI S portal (www.axmedis.org).
Each accepted library has to be posted on the portal in the corresponding folder with:
e library in binary and source code

e documentation of the library for its compilation and usage
o license

AXMEDIS project CONFIDENTIAL 24

DE5.2.1 — AXMEDIS Framework and Validation

4 Guidelines for Component Validation and Acceptance (ALL)

In order to correctly set up the AXMEDIS framework, each implemented and supplied component should be
validated and certified before allowing its use by content creators, content providers and final users inside
AXMEDIS. Thiswill help in guaranteeing that the implemented component meets the requirements.

The validation will depend on several issues and will seek to establish the degree to which a given
component fulfils the following performance criteria:
e |tdoeswhat it issupposed to do
It doesitsjob in areasonable time
It can be integrated with other components
Itisreliable
Itisrobust
It accomplishes test cases
It is conformant with the AXMEDIS framework

In the following sections we will describe the general guidelines for component validation and acceptance in
the AXMEDIS framework.

4.1 Component validation

The component validation process should involve the checking and analysis of the component in order to
verify that the component meets the requirements demanded of it.

The main validation activities are the revision and testing of the component.

Review phase main steps:

e Review phase involves the manual review of the component, directly evaluating it. It will help in
determining that the requirements, design concepts and specifications have been met. The revision of a
component can include several activities, like peer reviewing or code inspection.

e Theresult of the review should be a report where the reviewing team explains the revision performed,
the errors found and other.

Testing phase involves the testing of the component at different levels, from unit test through to system test.
The main steps in the testing phase are the following ones:

e During development phase of the component, unit tests should be done in order to check that the
functionality being implemented is the correct one.
o Thistask should be done by the development team of the component, as they have the complete
knowledge over it.
= Modifications over the specification should be reported

e When the development of a component has been completed, an initia unit testing phase and an
integration test is needed to evaluate how the unit performs and how it interacts with other units.

o This task should be done with the cooperation of the development teams of the integrated
components. The result of this task should be reported in order to perform the needed actions for
solving the problems found.

o Thistask also needs to evaluate the following aspects, and report on them:

= Documentation provided
= Differences with the specification, if any
= Interfaces among components

AXMEDI S project CONFIDENTIAL 25

DE5.2.1 — AXMEDIS Framework and Validation

e Therest of tests should involve the whole system and it will be different depending on the demonstrator.
So system testing should be demonstrator testing for the AXMEDIS framework, at least in afirst phase.

In order to perform the above tests, the test cases identified and described in WP2 and the content for test
cases created and described in WP8 should be taken into account.

Apart from tests and reviews, component validation should also include the examination of the degree to
which the component is properly documented, including updates in the specification documents,
documentation of the programming interface, usage manual (specialy for end-user or business-user
applications) or installation manual. This information should be included in the AXMEDIS framework part
associated to this component.

The major requirements and functionalities of the component need to be mapped to the component under
validation, in order to check that the component accomplishes them.

4.2 Component Submission

This section describes what has to be reported when a component is submitted into the AXMEDIS
framework.

M odule name Name of the module being reviewed.

M odule description Genera purpose of the module.

Major requirements | To be provided by the component owner

Major use cases To be provided by the component owner

Major related | To be provided by the component owner
components

List of Test Cases e To be provided by the component owner

e Accepted by the validators
Additional test cases may be provided.

Used Libraries To be provided by the component owner
Versions and library related information should be provided
L anguages Programming languages
Operating system(s) A list and information to compile for different OS
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.

4.3 Review report form

This section gives an example of what has to be reported when a module is being reviewed. The main
information to be reported is described in the following table.

Review |1D Identifier of the review.

Module name Name of the module being reviewed.

M odule description Genera purpose of the module.

Major requirements Comments about conformance on requirements

Major use cases Comments about conformance on use cases

Major related | Comments on the integration aspects with other AXMEDIS tools or
components components

List of Test Cases Comments on the results about the usage of those test cases

Used Libraries Comments on the usage of those external libraries

Author Organisation that has the responsibility of the implementation of the module.

AXMEDI S project CONFIDENTIAL 26

DE5.2.1 — AXMEDIS Framework and Validation

The name of the person involved in the implementation can also be given.
Date of review Date when the review is done.
Participants Name, organisation and role of people involved in the review. This field can be
repeated as many times as needed.
Issues L ocation Part of the module where the issue is found. For instance, this could be the
source code file, web page, etc; it will depend on the type of application.
Who Person who finds the issue.
Description | Description of the issues found in the module during revision.

4.4 Verification report form

This section gives an example of what has to be reported when a module is verified, after it has been
reviewed and some issues have been found. The information to be reported is described in the following
table.

Verification ID Identifier of the verification.
Review |1D Identifier of the review to which this verification refers.
M odule name Name of the module being verified.
M odule description General purpose of the module.
Major requirements Comments about conformance on requirements
Major use cases Comments about conformance on use cases
Major related | Comments on the integration aspects with other AXMEDIS tools or
components components
List of Test Cases Comments on the results about the usage of those test cases
Used Libraries Comments on the usage of those external libraries
Author Organisation that has the responsibility of the implementation of the module.
The name of the person involved in the implementation can also be given.
Date of verification Date when the verification is done.
Participants Name, organisation and role of people involved in the review. Thisfield can be
repeated as many times as needed.
Issues L ocation Part of the module where the issue is found. For instance, this could be the
source code file, web page, etc; it will depend on the type of application.
Who Person who finds the issue.
Description | Description of the issues found in the module during revision.
Resolution | How the issue found during the revision process has to be solved.

45 Component acceptance

Component acceptance mostly involves those components, which are addressed to application users, either
business or final users.

Acceptance testing allows users (or project partners which can assume this role), to test the functionality of
the system against the requirements and use cases. Each kind of tool should be tested by a key user on this
area. For instance, the component acceptance test of a content production tool should be done by a user that
is skilled in the area together with part of the development team, in order to get the comments on the tool
behaviour.

It will be very useful to follow the test cases that involve components to be accepted in order to check if they
are correct. A report onif test cases are accomplished or not should be done by test participants.

AXMEDI S project CONFIDENTIAL 27

DE5.2.1 — AXMEDIS Framework and Validation

4.6 Start up of component validation and acceptance

In order to start up the component validation and acceptance in the AXMEDIS framework, the responsibl e of

each module should:

Follow the CV Srepository guidelines

Prepare unit tests

Perform unit tests and give a brief report on them

Prepare integration tests

Perform integration tests. They may be done by the partners participating in the integration together

or not. In the latter case, some communication mechanisms will be established in order to solve

possible integration problems as soon as possible. For instance, if one partner is performing an

integration test of one of his components with other partner’s component, a videoconference or

audio-conference might be set up before, during or after tests are done

e Give a brief report on the integration test, outlining problems found, categorising them (application
error, bad parameter value, inconsistent API, etc)

These reports should be available in the portal to the rest of the partners in order to improve the component
knowledge and maintenance. A new directory / portal section should be created to contain them. They could
also be included into the CV S repository, together with the corresponding application, web service, library,
etc.

4.7 Periodic verification

During project development, components will be improved / updated to solve problems found during the
different testing phases or to meet new requirements found during the acceptance tests or the evolution of
commercia software products and standards affecting the AXMEDIS framework components.

In this way, there will be the need to inform the rest of the partners of any components having been updated,
so that new integration tests are performed if needed.

Reports on the unit tests performed over the new or updated components have to be given together with the
new version of the component.

The periodic verification steps should be as follows:
1 Update component into the corresponding directory of the CV'S repository, indicating that it is a new
version.
2 Send e-mail to the reflector and / or developers mailing list to inform that an update on a component
has been done and including the results of the related regression test(s) when needed.
3 Partners using the updated component should:
3.1 Perform integration tests with the new version of the component. The participation / support of
the component responsible may be requested.
3.2 Report errors / problems detected during the integration test, if any. The report has to be
uploaded in the portal, in order that partners are informed of the results of the test.
3.3 If needed, after integration errors / problems reported in 3.2 are solved, components using the
initially updated component should be also updated in the CV S repository.
3.4 Goto verification step 2 for the component(s) updated in step 3.3.

As a modification in one component may involve the modification of many other components, regression
and integration tests should be systematically done. In some cases, it could happen that a component will no
longer work with lower versions of libraries and components. This should be specified in the documentation
of the component.

AXMEDI S project CONFIDENTIAL 28

DE5.2.1 — AXMEDIS Framework and Validation

4.8 Acceptance testing
Acceptance of a component involves that it has previously been validated and verified, making the

corresponding unit and integration tests. Once they have been passed, acceptance tests should be done. They
may involve other partners, final users, user group experts, €etc.
Acceptance test results could be reported using the review form described in section 4.3.

Once the component has been accepted, it can be made publicly available in the AXMEDIS framework.
Moreover, it may be further optimised.

AXMEDI S project CONFIDENTIAL 29

DE5.2.1 — AXMEDIS Framework and Validation

5 AXMEDIS Framework validation

This section describes how the AXMEDIS framework should be validated. It is organised by the groups of
AXMEDIS Framework tools that have to be implemented in WP5.4, WP5.5 and WP5.6.

The following steps could be followed in order to validate tools:
e Revisetest cases corresponding to each tool inside the framework.
e Collection and/or creation of the data needed for checking the revised test cases.
o Implementation of tools that check test cases against the corresponding tools using the defined
content.
o Description of usage of the testing tools, in order that partners different from the implementer one
could test the tool.

5.1 AXMEDIS Content production Tools
5.1.1 Composition Tools (DSI)

5.1.1.1 Test case revision

The test cases that can be revised for Composition Tools are from TC5.1.1.1 to TC5.1.2.5. They were
described in DE2.2.1 Test cases and Content Description.

During AXMEDIS Composition Tools implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.1.1.2 Creation of data for test cases

Utilising the content produced in WP8, the test cases will use a number of selected AXMEDIS objects in
order to show and demonstrate the composition functionalitiesin AXMEDIS. The content used for tests will
try to cover awide set of content types (video, images, text, audio) and formats.

5.1.1.3 Implementation of testing tool

Therule editor prototype will be used to test scripts for composition. A batch test script executor will be used
for batch testing.

5.1.1.4 Description of usage of the testing tool

Description of usage of the testing tool, to alow other partners and external users to test the tool or to test
equivalent tools.

5.1.2 Formatting Tools (DSI)

5.1.2.1 Test case revision

The test cases that can be revised for Formatting Tools are from TC5.2.1.1 to TC5.2.2.5. They were
described in DE2.2.1 Test cases and Content Description.

During AXMEDIS Formatting Tools implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.1.2.2 Creation of data for test cases

Utilising the content produced in WPS, the test cases will use of a number of selected AXMEDIS objectsin
order to show and demonstrate the formatting functionalities in AXMEDIS. The content used for tests will
try to cover awide set of content types (video, images, text, audio) and formats.

AXMEDI S project CONFIDENTIAL 30

DE5.2.1 — AXMEDIS Framework and Validation

5.1.2.3 Implementation of testing tool

The rule editor prototype will be used to test scripts for formatting. A batch test script executor will be used
for batch testing.

5.1.2.4 Description of usage of the testing tool

Description of usage of the testing tool, to alow other partners and external users to test the tool or to test
equivalent tools.

5.1.3 AXMEDIS database, administrator tools and support (EXITECH)

5.1.3.1 Test case revision

Thetest cases that can be revised for AXMEDI S database, administrator tools and support are from TC8.1.1
to TC8.1.7 and from TC 8.2.1 t0 8.2.6. They were described in DE2.2.1 Test cases and Content Description.
During AXMEDIS database, administrator tools and support implementation, these test cases should be
considered for revision, as specification and implementation detail s could make them change. Moreover,
some more test cases could appear, not initially considered on the test cases deliverable.Creation of datafor
test cases

5.1.3.2 Implementation of testing tool

Instead of a testing tool, regression testing has been implemented by the adoption of JUNIT suite for
automating testing.

At each level of the hierarchy in the logical diagram of the system, Unit tests are adopted for testing the layer
in awhite box manner. The Unit test of the higher level is used to test in a black box manner the underlying
layer. A functional test to check in black box manner the last layer will be implemented if needed.

The following schema details this assumption:

Layerl Layer2 Layer3

B B B B B
JUNIT JUNIT JUNIT Optiona High
test test test Ie\I?eIIon ®
layer 1 layer 2 layer 3 functional test
JUNIT SUITE (BB=Black Box,

WB=White Box)

5.1.3.3 Description of usage of the testing tool
Thetesting is completely automated by using JUNIT or the ANT scripts provided with the source code.

AXMEDI S project CONFIDENTIAL 31

DE5.2.1 — AXMEDIS Framework and Validation

5.1.4 AXMEDIS Editor and Viewer, and verification on AXMEDIS terminals (DSI)

5.1.4.1 Test case revision

The test cases that can be revised for AXMEDIS Editor and Viewer are from TC4.1.1to TC4.3.3. They were
described in DE2.2.1 Test cases and Content Description.

During AXMEDIS Editor and Viewer implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.1.4.2 Creation of data for test cases

Utilising the content produced in WP8, the test cases will use a number of selected AXMEDIS objects in
order to show and demonstrate the editing and viewing functionalities in AXMEDIS. The data used for test
will try to cover awide set of content types (video, images, text, audio) and formats.

5.1.4.3 Implementation of testing tool

Unit testing will be used to test the functionalities of AXOM, which is used by the AXMEDIS Editor &
Viewer and many other tools.
The AXMEDIS editor/viewer prototype will be used for testing user interface and content use.

5.1.4.4 Description of usage of the testing tool

Description of usage of the testing tool, to alow other partners and external users to test the tool or to test
equivalent tools.

5.1.5 Programme and Publication engine for enabling the on demand (UNIVLEEDS,
FHGIGD)

5.1.5.1 Test case revision

To prepare for amock up demo test case for AXMEDIS 2005 conference the P& P section will communicate
with on demand via socket. The steps for the test case were revised from TC10.8 (DE2-2-1-TestCases) for
the push scenario for content on demand. The following is the basic three steps for the revised test case and
demonstration:

1. The on demand <send> socket request to P&P engine (without the formal P&P programme

specification) and with the AXMEDI S test content to be requested.
2. The engine processes the request
3. P& P Reply by transmitting the prepared test content to the on-demand.

5.1.5.2 Creation of data for test cases

Utilising the content produced in accordance to WP8, the test cases will make use of a number of selected
AXMEDIS objectsin order to show and demonstrate the push and on-demand functionalitiesin AXMEDIS.

For the test case, a selection of the various identified set of basic components will be used as samples for
testing the operations (i.e. requesting and sending of AXMEDI S test object) for on demand. The components
will be selected from the rich media interactive content developed by the content integrator, XIM, in
accordance to WP8.5 and can be deployed across al of the target platforms (internet, mobile, PDA, i-TV,
PC) and arange of audio, text, multimedia and visual content provided by the consortium partners which is
suitable for multi-channel delivery. We will create or locate eight appropriate AXMEDIS test data in
accordance with the content selection guidelines (DE3-1-3) for demonstration activities. The criteria for test
selection are components that are not time consuming in terms of download and upload time and the amount
of processing time required.

AXMEDI S project CONFIDENTIAL 32

DE5.2.1 — AXMEDIS Framework and Validation

5.1.5.3 Implementation of testing tool

The first prototype of the Programme and Publication Engine will be used for testing the on-demand
publications.

This application will be implemented in C++ using wxWindows and xerces libraries as specified in DE3-1-2.
This prototype will be developed for as a win32 application only. The engine will be tested using the XML
P& P programmes saved using the first prototype of the P& P Editor using the Programme and Publication
libraries devel oped to create new programmes and editing existing programmes (AxPnPRule.lib).

The testing tool will accept a XML programme string from on-demand created utilising the programme
libraries. Using sockets to send the string, the P&P engine will validate the string. A failed process returns
and error message to on demand. A successful process will return the prepared test content to the on-demand.

5.1.5.4 Description of usage of the testing tool

The test Programme and Publication (P& P) Engine will be available for downloading from the CV S tree and
will be developed to execute locally. From the initial CV'S tree specification, the engine will be located at
AXMEDI S/framework/bin/win32.

A client application representing on-demand will also be downloaded and executed. Using the GUI of the
client application, users will make an on-demand request. Results will be returned to the client application to
demonstrate the creation of a P& P programme by the client application using the P& P Rule libraries; the
sending of the request and the reply to the request.

5.1.6 Content Workflow integration (IRC)

5.1.6.1 Test case revision

Of al the 23 Test Cases involved in integration of external workflow systems with the relevant AXMEDIS

Tools, the test cases that will involve exchanges between the native workflow environment and the

AXMEDIS tools and thus an opportunity for testing out the integrating plug-ins would seem to be as follows:
e TC6.1.3 (Edit)

TC 6.1.8 (Search),

TC 6.1.9 (Track component)

TC6.1.22 (Check-in)

TC6.1.23 (Check-out)

The above can be revised for Content Workflow Integration. These Test Cases were amongst those described
in DE2.2.1, Test cases and Content Description.

During AXMEDIS Content Workflow implementation for the demonstrator, these test cases should be
considered for revision, in light of any new refinements that might have become necessary resulting from the
specification and implementation process. Additionally some new test cases could emerge that will have to
be added to the test cases deliverable.

5.1.6.2 Creation of data for test cases

The content repository produced in WP8 will be deployed for this. The test cases will use a number of
selected AXMEDIS objects in order to demonstrate the Content Workflow Integration in AXMEDIS. The
content used for tests will cover awide set of content types (video, images, text, audio) and formats.

5.1.6.3 Implementation of testing tool

The first prototype of the AXMEDIS Workflow Integration Plug-ins will be used for testing Content
Workflow in full integration with the AXMEDI S tools environment.

AXMEDI S project CONFIDENTIAL 33

DE5.2.1 — AXMEDIS Framework and Validation

The AXMEDIS editor/viewer prototype will be used for testing user interface and content workflow
integration, which will also involve scenarios for invoking the AXMEDIS Query support and AXDB.

5.1.6.4 Description of usage of the testing tool

The way to use of the testing process will be described so asto allow other partners and external usersto test
the AXMEDIS Content Workflow Integration by invoking the above testing scenarios and thus test the
workflow integration in AXMEDIS Content production.

5.2 AXMEDIS P2P Cooperative Content Sharing and Production Tool (CRS4)

5.2.1 Virtual Database

5.2.1.1 Test case revision

TC9.1.1is confirmed asis.

5.2.1.2 Creation of data for test cases
Callection and/or creation of the data needed for checking the revised test cases.

5.2.1.3 Implementation of testing tool

The AXEPTool is provided with a tool called AXEPTool console, which is used to test the main
functionalities with atext-based user interface. All details about the console are described in DE4.4.1

5.2.1.4 Description of usage of the testing tool

The AXEPTool is provided with a tool called AXEPTool console, which is used to test the main
functionalities with atext-based user interface. All details about the console are described in DE4.4.1.

5.2.2 DownloadMonitor

5.2.2.1 Test case revision

This test case integrates the TC9.2.9 in DE2.2.1 Test Cases and Content Description, focusing on the
DownloadMonitor and related web service testing; In details: the test involves two AXEPTool instances
running on different PC (or in one PC) and an automated testing tool.

The user wants to download an object in AXEPToolA from P2P known the object URI (in AXEPT o0l B).

The testing tool launches the download and allows testers to monitor the download progress. At the end of
the process the object is downloaded and copied, according to TC9.2.9.

Download Monitor test is aso involved in TC 9.2.12, as part of the test for automatic loading of objects; in
particular its web service module isinvolved in the downloading step.

AXMEDI S project CONFIDENTIAL

®

DE5.2.1 — AXMEDIS Framework and Validation

5.2.2.2 Creation of data for test cases

Data needed for DownloadMonitor testing tool is represented by files made available for http download in an
AXEPTool instance.

5.2.2.3 Implementation of testing tool

First of al two running instances of AXEPTool are needed named AXEPToolA and AXEPToo0lB;

Some object files are made available, for example, in AXEPToolB.

So, initial conditions are that some object files are available for http download on AXEPT o0l B.

Post conditions are that the file is downloaded on AXEPToolA after atime t and during time t the testing
tool has monitored the download session showing progress, status, suspending and resuming it: this is made
using the web service interface exposed by DownloadMonitor.

Next picture shows the main implemented functionalities of the testing tool.

———

AXEPTool A : 5 ;
i : ___f—p %]% kip E

DM

Web service

Tomcat :
1
g | 2: monitor object download |
] 1
! 1
! EE— 1
i ' \
E I AXFPToolB/obja.zip) : |
I 1
| 1
! 1
| :
1]
1
wnloaded :
' | 3: getProgress)
i

DM Testing Tool

Testing steps:
1. The testing tool invokes a new object download available at an AXEPToolB related URL; the
startDownload () DownloadM onitorWebService method isinvoked.
2. The DownloadMonitor starts the download
3. Thetesting tool performs:
i. Repeatedly prints download session info, i.e. download progress status invoking
DownloadM onitor WebService methods.
ii. Suspend the session showing related status change
iii. Resumes download showing status change and progress
iv. Reports download final status

AXMEDI S project CONFIDENTIAL 35

DE5.2.1 — AXMEDIS Framework and Validation

5.2.2.4 Description of usage of the testing tool
In order to run this test next requirements are needed:

1
2.
3.

4.
5.

two AXEPTool instances must be running

at least one file must be available for download on one AXEPT ool instance

tester configures the testing tool passing it the URL of the object to download from AXEPToolA
to AXEPTool B.

check info reported by tool

check the downloaded object.

5.2.3 Publishing And Monitoring Objects

5.2.3.1 Test case revision

Thistest case integratesthe TC9.2.3 in DE2.2.1 “ Test Cases and Content Description”, focusing the attention
in notification tasks of AXMEDIS Objects updates events in the P2P network, in order to perform
appropriate operations such as automatic updating actions for these objects. Testing is performed through
Publishing And Monitoring Objects Web Service usage, in thisway also web service is properly tested.

5.2.3.2 Creation of data for test cases

Testers must have two AXEPTool instances running on different machines and a file available for http
download on AXEPTOoOIA.

5.2.3.3

Implementation of testing tool

First of all two running instances of AXEPTool are needed named AXEPToolA and AXEPToalB;
One object fileis made available in AXEPTo0IA.

Next picture shows the testing scenario:

AXMEDI S project CONFIDENTIAL 36

DE5.2.1 — AXMEDIS Framework and Validation

AXEPToolA AXEPToolB
PandM PandM
—]
PandMWebService PandMWebService

| DownloadM onitorWebService |

< »

- ———

PublishingAndM onitoringObjects

Testing tool

Testing steps:

1

Testing tool produces a PublicationEvent for a published object in AXEPToolA invoking the
producePublicationEvent() method of AXEPToolA PublishingAndMonitoringWebService.
These steps involve the creation of a RSS feed file in AXEPToolA related to the event
generated.

Testing tool invokes an object download on AXEPToolB for the published object available in
AXEPToolA. This is made invoking the startDownload() method of DownloadMonitor
WebService of AXEPToolB. Successfully finishing the download involves that
PublishingAndM onitoringObjects module on AXEPToolB automatically starts polling the RSS
feed generated in step 1, going to “listen” for updates on this feed.

calling the listEventsFromDate() method on AXEPToo0lB
PublishingAndM onitoringWebService, the testing tool must check for only one event in list.

The testing tool produces another PublicationEvent on AXEPToolA for the same object
published in step 1. In this way the related RSS file is modified and a new item is added.
PublishingAndM onitoringObjects module in AXEPToolB must register this change and saves
theevent initsinternal list.

The testing tool invokes the listEventsFromDate() on AXEPToolB checking for two events in
list.

5.2.3.4 Description of usage of the testing tool

Testers run two instances of AXEPTool on two PCs configure testing tool with their URIs and run the testing
tool, observing reported logs.

AXMEDI S project CONFIDENTIAL 37

DE5.2.1 — AXMEDIS Framework and Validation

5.2.4 Loading Module of AXEPTool

5.2.4.1 Test case revision
L oading activity is supposed to be an iteration through steps of creation of rule, actualization and performing

of publication itself. TC9.2 (in DE2.2.1 Test Cases and Content Description) reports several possible cases
on loading.

e TC9.2.13 Automatic loading new AXMEDIS Objects with the AXEPTool
o Loading isdriven by rules. Thereis no interaction between user and module. A specific rule
has to be created in order to start the loading.

e TC9.2.14 Manual loading of AXMEDIS Objects with AXEPTool
o No more applicable. The only way to start loading is through rules.

e TC9.2.15 Creation of aloading rule for the AXEPTool
o No more concerning Loading Module. Rules are created through the Rule Editor.

Starting from them is reasonable to revise the process in the following steps:
1. createarule: theruleis created using the rule editor.
2. invoke module: the Rule Engine actualizes the rule and invokes the Loading Module.
3. perform loading: the Loading Module receives data from the Rule Engine and performs the |oading.

5.2.4.2 Creation of data for test cases

For the test cases is enough to suppose the rule already actualized and assume the script (managed by Spider
Monkey) with data becoming from the assumed rule.
The main interest is on loading new objects and loading new version ones. So are first necessary rules able to
configure such situations:

e new objects

e new objects + updated
Also, in order to test the mapping module of the loading module is necessary to create data set with different
custom metadata.

5.2.4.3 Implementation of testing tool

Unit tests are implemented using JUnit utility.
Integration tests of the module are composed if a self-contained class driven by a script.

5.2.4.4 Description of usage of the testing tool

Testing tool description should form part of the document DE4.4.1 *Content Sharing and Production on
P2P".

5.2.5 Publication Module of AXEPTool

5.2.5.1 Test case revision

Publication activity is supposed to be an iteration through steps of creation of rule, actualization and
performing of publication itself. TC9.2 (in DE2.2.1 Test Cases and Content Description) reports several
possible cases on publication.

e TC9.2.1 Creation of apublishing rule for the AXEPT ool
o No more concerning Publication Module. Rules are created through the Rule Editor.

e TC9.2.2 Automatic publication of a selection of objects on the AXEPTool

AXMEDI S project CONFIDENTIAL 38

DE5.2.1 — AXMEDIS Framework and Validation

o Publication Engine has been renamed Publication Module. There are no more editors for the
module, so no user interaction will be performed. Objects to publish are selected through
rules.

e TC9.2.3 Automatic updating of a modified object on the AXEPTool
o No more applicable, because aready included in standard publication.

e TC9.2.4 Automatic publication of a non protected object on the AXEPTool
o Confirmed (only renamed Enginein Module). Dataset contains unprotected objects.

Starting from them is reasonable to revise the process in the following steps:

1. createarule theruleiscreated using the rule editor.
a. Standard rule, every kind of object
b. Updating rule, objects updated; the module will discard old objects.
c. Rulefor unprotected objects.

2. invoke module: the Rule Engine actualizes the rule and invokes the Publication Module.

3. perform publication: the Publication Module receives data from the Rule Engine and performs the

publication.

5.2.5.2 Creation of data for test cases

For the test case is enough to suppose the rule already actualized and assume the script (managed by Spider
Monkey) with data becoming from the assumed rule.
Themain interest is on publication of new objects and publication of new version ones. So are first necessary
rules able to configure such situations:

1. new objects

2. new objects + updated

5.2.5.3 Implementation of testing tool

Unit tests are implemented using JUnit utility.
Integration tests of the module are composed if a self-contained class driven by a script.

5.2.5.4 Description of usage of the testing tool
Testing tool description should form part of the document DE4.4.1 Content Sharing and Production on P2P.

5.2.6 Workflow management in AXEPTool (IRC)

5.2.6.1 Test case revision

Of all the 23 Test Cases involved in the integration of external workflow systems with the relevant
AXMEDIS Tools (as described in DE2.2.1), the test cases that will involve Workflow Management in
AXEPTool are those that can change the activation list used by the AXEPTool Scheduler. These test cases
thus provide an opportunity for testing out the integrating plug-ins that alow workflow management in
AXEPTool.

These test cases are as follows:
e TCG6.1.3 (Edit)
e TC6.1.17 (Change State)
e TC6.1.1.22 (Check —in)

The above can be revised for the Workflow Management in AXEPTool. These Test Cases were amongst
those described in DE2.2.1, Test cases and Content Description.

AXMEDI S project CONFIDENTIAL 39

DE5.2.1 — AXMEDIS Framework and Validation

During AXMEDIS Content Workflow implementation for the demonstrator, these test cases should be
considered for revision, in light of any new refinements that might have become necessary resulting from the
specification and implementation process. Additionally some new test cases could emerge that will have to
be added to the test cases deliverable.

5.2.6.2 Creation of data for test cases

The content repository produced in WP8 will be deployed for this. The test cases will use a humber of
selected AXMEDIS objects in order to demonstrate the Workflow management in AXEPTool in AXMEDIS.
The content used for tests will cover awide set of content types (video, images, text, audio) and formats.

5.2.6.3 Implementation of testing tool

The first prototype of the AXMEDIS Workflow Integration Plug-ins will be used for testing Workflow
Management in AXEPT ool in full integration with the AXMEDIS tools environment.

The AXMEDIS editor/viewer prototype will be used for testing the user interface and AXEPT ool Workflow
Management, which will also involve scenarios for invoking the AXMEDIS Query support and AXDB
through the invocation of the TC 6.1.1.22 (Check — in) as a functionality that may in turn be called by TC
6.1.1.17 (Change State).

5.2.6.4 Description of usage of the testing tool

The way to use of the testing process will be described so asto allow other partners and external usersto test
the AXEPTOOL Workflow Management integration by invoking the above test cases or any others that will
emerge to be relevant.

5.3 AXMEDIS Certifier and Supervisor
5.3.1 AXMEDIS Supervisor (FUPF)

5.3.1.1 Test case revision

The test cases that can be revised for AXMEDIS Supervisor are from TC12.2.3.1 to TC12.2.3.7. They were
described in DE2.2.1 Test cases and Content Description.

During AXMEDIS Supervisor implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.3.1.2 Creation of data for test cases

The creation of data sets mainly involves inserting information in the AXCS database related to AXMEDIS
users, tools and objects.

The insertion of this information can be done in different ways. manual creation and insertion of SQL
statements into a local test database, cal to the AXCS database interface classes or call to the AXCS
database WS. In any kind of insertion, the information will be equivaent, and should involve user
information, tool information and action log information.

5.3.1.3 Implementation of testing tool

AXMEDIS Supervisor testing tools will consist on:

e Unit tests of the operations implemented. JUnit utility can be used for this purpose, caling the
corresponding methods.

e Integration tests of the module. In this case, it is needed an initial implementation of other modules to be
jointly tested.

Functionality to be tested includes the management of action logs, those received from users and those stored
in the database, in order to check that the history of actionsis consistent.

AXMEDIS project CONFIDENTIAL 40

DE5.2.1 — AXMEDIS Framework and Validation

Also generation of Supervisor Input Data after some events occur has to be tested.

Integration between AXMEDIS Supervisor and AXMEDIS Certification and Verification also has to be
tested, as blocking of users and tools will depend on the communication performed between these two
modules.

5.3.1.4 Description of usage of the testing tool

Testing tool description should form part of the documentation associated to AXMEDIS Supervisor. It
should test all the functionality described, including integration with other modules.

5.3.2 AXMEDIS Registration (DSI)

5.3.2.1 Test case revision

The test cases that can be revised for AXMEDIS Registration are from TC12.2.1.1to TC12.2.1.8. They were
described in DE2.2.1 Test cases and Content Description.

During AXMEDIS Registration implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable. The registration process is composed by some
elements: the Registration Web Service and the client parts that use the related web service. Every single part
isinvolved only in some specific tests, and not necessary in all tests.

5.3.2.2 Creation of data for test cases

The creation of data setsis mainly composed by insertions of information in the AXCS database related to
AXMEDIS users, tools and their pertinent data.

The insertion of thisinformation can be done in different ways, each specific for the component to be tested.
In order to test the database interface, a set of data have to be prepared and inserted manually (using SQL
scripts) and with a simple code that uses methods provided by database interface. The test is successful if
testsresults are the same all times.

In order to test the web service it has to be written a small client application that uses the web services and
returns the expected results.

5.3.2.3 Implementation of testing tool

AXMEDIS Registration testing tools will consist on:;

e Unit tests of the operations implemented. JUnit utility can be used for this purpose, caling the
corresponding methods.

¢ Integration tests of the module. In this case, it is needed an initial implementation of other modules to be
jointly tested.

5.3.2.4 Description of usage of the testing tool

Testing tool description should form part of the documentation associated to Registration Web Service and
AXCS-DB Interface API.

5.3.3 AXMEDIS Certification and Verification (FUPF)

5.3.3.1 Test case revision

The test cases that can be revised for AXMEDIS Certification and Verification are from TC12.2.2.1 to
TC12.2.2.3. They were described in DE2.2.1 Test cases and Content Description.

During AXMEDIS Certification and Verification implementation, these test cases should be considered for
revision, as specification and implementation details could make them change. Moreover, some more test
cases could appear, not initially considered on the test cases deliverable.

AXMEDIS project CONFIDENTIAL 41

DE5.2.1 — AXMEDIS Framework and Validation

5.3.3.2 Creation of data for test cases

The creation of data sets mainly involves inserting information in the AXCS database related to AXMEDIS
users and tools.

The insertion of this information can be done in different ways: manual creation and insertion of SQL
statements into a local test database, call to the AXCS database interface classes or call to the AXCS
database WS. In any kind of insertion, the information will be equivalent, and should involve user
information and tool information. Different sets of information are needed to check different functionality, so
valid and invalid information has to be used to perform tests.

5.3.3.3 Implementation of testing tool

AXMEDIS Certification and Verification testing tools will consist on:

e Unit tests of the operations implemented. JUnit utility can be used for this purpose, caling the
corresponding methods.

e Integration tests of the module. In this case, it is needed an initial implementation of other modules to be
jointly tested.

Functionality to be tested includes the management of user and tool information in order to check if user can
be certified and his actions verified. Also tools have to be certified and verified.

Integration between AXMEDIS Supervisor and AXMEDIS Certification and Verification also has to be
tested, as blocking of users and tools will depend on the communication performed between these two
modules.

5.3.3.4 Description of usage of the testing tool

Testing tool description should form part of the documentation associated to AXMEDIS Certification and
Verification. It should test all the functionality described, including integration with other modules.

The rest of modules communicating with AXMEDIS Certification and Verification module are needed in
order to test the integration.

5.3.4 Trace, reporting and statistic analysis (EXITECH)

5.3.4.1 Test case revision

The test cases that can be revised for Trace, reporting and statistic analysis are from TC12.2.5.1 to
TC12.2.5.6. They were described in DE2.2.1 Test cases and Content Description.

During trace, reporting and statistic analysis implementation, these test cases should be considered for
revision, as specification and implementation details could make them change. Moreover, some more test
cases could appear, not initially considered on the test cases deliverable.

5.3.4.2 Implementation of testing tool

Instead of a testing tool, regression testing has been implemented by the adoption of JUNIT suite for
automating testing.

At each level of the hierarchy in the logical diagram of the system, Unit tests are adopted for testing the layer
in awhite box manner. The Unit test of the higher level is used to test in a black box manner the underlying
layer. A functional test to check in black box manner the last layer will be implemented if needed.

The following schema detail s this assumption:

AXMEDIS project CONFIDENTIAL 42

DE5.2.1 — AXMEDIS Framework and Validation

Layerl Layer2 Layer3

B w B w B
B B B B B

JUNIT JUNIT JUNIT Optiona High
test test test Ie\I?eIIon ®
layer 1 layer 2 layer 3 functional test

JUNIT SUITE (BB=Black Box,

WB=White Box)

5.3.4.3 Description of usage of the testing tool
Thetesting is completely automated by using JUNIT or the ANT scripts provided with the code.

5.3.5 Accounting Managing and Reporting Tool (EXITECH)

5.3.5.1 Test case revision

The test cases that can be revised for Accounting Managing and Reporting Tool are from TC12.2.5.7 to
TC12.2.5.8 and the 12.4.1. They were described in DE2.2.1 Test cases and Content Description.

During Accounting Managing and Reporting Tool implementation, these test cases should be considered for
revision, as specification and implementation details could make them change. Moreover, some more test
cases could appear, not initially considered on the test cases deliverable.

5.3.5.2 Implementation of testing tool

Instead of a testing tool, regression testing has been implemented by the adoption of JUNIT suite for
automating testing.

At each level of the hierarchy in the logical diagram of the system, Unit tests are adopted for testing the layer
in awhite box manner. The Unit test of the higher level is used to test in a black box manner the underlying
layer. A functional test to check in black box manner the last layer will be implemented if needed.

The following schema details this assumption:

Layerl Layer2 Layer3

B B B
TLANTT ANTT AR
JUNIT JUNIT JUNIT Optional High
ltest test test |e€e| g
axvep| | e layer 2 layer3 | inal functional test 43
JUNIT SUITE (BB=Black Box,

WB=White Box)

DE5.2.1 — AXMEDIS Framework and Validation

5.3.5.3 Description of usage of the testing tool
Thetesting is completely automated by using JUNIT or the ANT scripts provided with the code.

5.3.6 Protection Tool engine (FHGIGD)

The terminology Protection Tool engine refers to the protection functionality of the AXMEDIS Content
Processing (AXCP) engine. At the beginning of the AXMEDIS projects multiple engines for different
purposes were considered. The design phase revealed a functional overlap between these individual engines.
Hence, the functionality of these different enginesis now integrated in the AXCP engine.

For simplicity we also use the terminology Protection Tool engine in some parts of this document. But the
reader should be aware that thisisjust a functional extension of the core AXCP engine.

5.3.6.1 Test case revision

During the implementation of the protection extensions of the AXMEDIS Content Processing (AXCP)
Engine, the test cases are continuously revised, as specification and implementation details might change the
test cases.

At the implementation stage new insights and experiences might lead to new test cases that have not been
considered in the design phase of the AXMEDIS project. The initial set of test cases for the Protection Tool
engine were described in DE2.2.1 Test cases and Content Description are TC12.3.1.1 to TC12.3.3.

The current status of the implementation is not finished. Thus, the ongoing implementation of the Protection
Tool engine does not allow a thorough revision at this project stage. A fina revision of the Protection Tool
engine will be possible when the implementation reaches a project status that provides the necessary
functionality for the analysis and adjustment of the test cases.

5.3.6.2 Creation of data for test cases

In the specification documents test data was described according to the requirements of the AXMEDIS
partners. During the implementation the Protection Tool engine is first tested with this sample data that is
available in the specification documents.

A collection of sample data was created according to this specification document. This collection will be the
basis for the first tests of the Protection Tool engine prototype during its implementation. More test data will
be created and used for testing as the implementation evolves: This allows the previously described thorough
revision of the test cases.

Utilising the content produced in WP8, the test cases will use a number of selected AXMEDIS objects in
order to show and demonstrate the protection editing and license creation functionalities in AXMEDIS. The
data used for test will try to cover awide set of content types, encryption formats, and license types.

5.3.6.3 Implementation of testing tool

First implementations were performed to test and validate the functionality of the AXCP Rule Editor and
Executor. As the complete protection functionality was not available functional stubs were implemented to
perform afirst series of tests. These tests focused on the passing of parameters. Furthermore, the possibilities
and limitations of the integration of additional components and their functionalities into the AXCP Java
Script engine was tested and validated.

Summarized, the implementation validated the processing of rules and the passing of parameters into the
Java Script engine with dummy extensions.

However, the further implementation of the Protection Tool engine relies on the availability of the other
components that it provide the protection and license handling functionality.

AXMEDI S project CONFIDENTIAL 44

DE5.2.1 — AXMEDIS Framework and Validation

5.3.6.4 Description of usage of the testing tool
The Protection Tool engine will be available in the AXMEDIS subversion repository for testing and will be

developed to be executed locally. The AXCP Rule Editor and engine and the protection extensions will be
located at AXMEDIS/Framework/ruleeditor and AXMEDIS/Framework/rul eexecutor.

The Rule Editor and Executor will be used to test the functionalities of the Protection Rule engine. Using the
GUI of the Rule Editor a user will be able to create, edit, and debug Protection rules. The Rule Executor can
be used to execute and test existing rules and the protection functionalities of the other componentsinvolved.

5.3.7 DRM tools (FUPF)

5.3.7.1 Test case revision

The test cases that can be revised for DRM tools are from TC12.5.1 and subsections to TC12.5.2 and
subsections. They were described in DE2.2.1 Test cases and Content Description.

During the implementation of these tools, test cases should be considered for revision, as specification and
implementation details could make them change. Moreover, some more test cases could appear, not initially
considered on the test cases deliverable.

5.3.7.2 Creation of data for test cases
The data needed for the test cases will depend on the kind of tool, but we will use:
e Licensesexpressed in MPEG-21 REL language. They will be provided by:
o Theimplemented tools
o XML editors
o Other license editors, that follow MPEG-21 REL XML schemas
e Licensesexpressedin OMA REL
e Protection information regarding AXMEDIS objects
e Information stored in the AXMEDIS databases, like user information, tool information, object
information and action logs.

5.3.7.3 Implementation of testing tool

AsDRM tools are a set of tools, different kinds of test have to be performed:

e Unit tests of the operations implemented. These tests will depend on the implementation language.

e Integration tests of the DRM tools. In this case, it is needed and initial implementation of the tools.

e Integration tests with other modules. In this case, it is needed an initial implementation of other modules
to bejointly tested.

5.3.7.4 Description of usage of the testing tool
Testing tool description should form part of the documentation associated to the different DRM tools.

Features that will be tested by these tools:
e Creation and management of licenses
e Caching and management of protection information
¢ Integration and communication between the different modules

AXMEDIS project CONFIDENTIAL 45

DE5.2.1 — AXMEDIS Framework and Validation

AXMEDIS Framework Integration and Maintenance

5.4 Set up of the AXMEDIS framework for continuous integration of AXMEDIS
components (EXITECH)

This task will be managed by EXITECH, performed by al partners involved according to their skill and
related tools of which they are responsible. The integration work will permit to the building of severa
demonstrators and of the trials devel oped by the Take up actions.

In order to alow an integration of the AXMEDIS framework a central repository will be created. By using a
VCS (Version Controlling System) the partners involved into the Framework development will submit their
work periodically. The AXMEDIS framework repository should be set up on a dedicated hardware.

The VCS system will be chosen in order to allow the version control, the folder access control and the
possibility to revert to a previous configuration. The submission process has to be executed by following
specific rules in order to guarantee the validation and the integration of the repository content.

The VCS responsible will also performs the activities of resolving conflicts and supporting the other partners
during the submission process. Thiswill lead to refine the guidelines and al so the stubs of the modules.

As soon as the prototypes of the AXMEDIS software components are available, they will be inserted in the
component database for the integration. The submitted components will be verified periodicaly from the
formal and functional point of view.

5.5 Regression and integration testing (EPFL)

These two test phases are rather distinct and will be described in two separate subsections.

5.5.1 Regression testing

Regression testing is a process which tests a system or a tool to ensure that it still functions as expected / as
per specification. The reason for this renewed testing activity is a modification of an implementation within
the program. For example; a mgjor upgrade in the code or an important bug fix; a new hardware platform or
amaor release of the operating system. In addition, when a development team releases a new version of its
database, a comprehensive regression test plan needs to be developed and completed to ensure that the
reports, scripts, (remote) procedure calls and user options, are all functioning as expected.

Regression testing should also test the revised software by simulating its operationa environment to be sure
that all systems and interfaces till operate properly.

Regression testing will be conducted in AXMEDIS according to a Test Plan. Testing of the different units or
components to verify their globa functionality will be done by using the test cases defined in WP2 and the
data set initially produced and collected in WP8. Mgjor factors and strategies that will be followed to
perform regression testing are the following:

e An as much as possible automated process will be created (with the help of each module author)
based on test cases and data set mentioned above. For instance in section 5 some components are
described for which the JUNIT suite for automating testing is adopted.

e Adequate coverage without wasting time will be considered when defining and conducting
regression tests.

e A regression test for concerned modules will be run each time a mgjor bug fix is handled. The bug
itself might be fixed but the fix might create other bugs.

o A regression test for concerned modules will be run each time modifications are made following
integration tests or periodic verifications (see section 4.7).

AXMEDIS project CONFIDENTIAL 46

DE5.2.1 — AXMEDIS Framework and Validation

e |f the bug fix is not tested by one of the tests in the process, a new regression test covering the
functionality of this bug should be established (to be sure that this is fixed in general or not coming
back).

e |f two or more tests are similar, the less effective will be identified and eliminated (duplications are
quite common when more than one person is writing code).

o Effectsof changesin the program on memory and CPU usage should be traced.

As said, with the help of all development teams, a plan of tests will be devel oped made up of WP2 test cases
that can be run every time a new version of the program is built. Automated tests, as well as test cases
involving boundary conditions and timing will be defined in the plan.

The regression test library will be periodically reviewed to eliminate redundant or unnecessary tests. This
could be done for instance every third testing cycle.

Regression test plan and reports for each unit or component has to be maintained by each responsible and
periodically updated on the portal. In particular the plan should include the test cases concerning the
component, if the regression test is automated (how) or a short description of the testing procedure,
functionality covered by the test. Reports should include results, test cases that have been added or
deprecated, magjor observed changes in memory and CPU usage.

5.5.2 Integration testing

Integration testing is the phase of software testing in which individual software modules are combined and
tested as a group. Integration testing takes as input modules that have been checked already by individual
unit testing, groups them in larger aggregates, and applies tests defined in the integration test plan to those
groups.

In integration testing simplest form, two units that have already been tested are combined into a component
and the interface between them is tested. A component is an integrated group of more than one unit. In a
more realistic scenario, many units are combined into components. Eventually all the modules making up a
process are tested together.

Integration testing identifies problems that occur when units are combined. By using atest plan that requires
testing each unit before combining units, any errors discovered when combining units are likely related to the
interface between units.

Integration testing can proceed in a number of different ways, which can be identified as top down or bottom
up. In top down integration testing the high-level control routines are tested first, possibly with the middle
level control structures present only as stubs. Subprogram stubs essentially are incomplete subprograms,
which are only present to allow the higher-level control routines to be tested.

The other major way for integration testing is bottom up integration testing where an individual module is
tested from a test set. Once a set of individual modules has been tested they are then combined into a
collection of modules, or builds, which are then tested by a second test set. This process can continue until
the build consists of the entire application.

In AXMEDIS a combination of top-down and bottom-up testing would be used. Since AXMEDIS is alarge
software project being developed by a number of teams at different levels (from signal processing to
applications), the teams or individuals would define and conduct bottom-up testing of the modules which
they were implementing before releasing them to teams developing more high level or “integration” modules
(larger applications) which would assemble them together for top-down testing.

AXMEDIS project CONFIDENTIAL 47

DE5.2.1 — AXMEDIS Framework and Validation

A description of suitable integration test procedure should be included with the description of each module
and application.

5.6 Optimisation of AXMEDIS components (DSI)

Optimisation of AXMEDIS Components will be done to improve the quality of their results and to remove
the potential integration problems.

The optimization phase will analyse the whole production process to see which are the components to be
optimized to reduce the overal production time taking into account the use scenarios.

An evaluation of when and how many times some basic functions are used will help to identify the points
where an optimization is needed.

The optimization will not consider only the execution speed but it will take into account also the time used

by humans to write scripts for the production process. In this case recurring activities will be identified and
shortcuts will be introduced.

AXMEDI S project CONFIDENTIAL 48

DE5.2.1 — AXMEDIS Framework and Validation

6 Bibliography

Testing utilities
e JUnit for Java: http://www.junit.org/
e CppUnit for C++: http://sourceforge.net/projects/cppunit/
e PHPUnit for PHP: http://www.phpunit.de/en/index.php

Versioning control system
e Subversion: http://subversion.tigris.org/
e Subversion book: http://svnhbook.red-bean.com/en/1.0/svn-book.html

Verification and validation
e Software Engineering, 6th Edition, lan Sommerville, Addison Wesley.
http://www.comp.lancs.ac.uk/computing/resources/ | anS/SE6/index.html

7 Glossary

Concept Description

Peer review Validation technique which comprises the revision of software in order to quickly
find errors

Inspection Detailed examination of component step-by-step

AXMEDIS project CONFIDENTIAL 49

