
DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE5.2.1

AXMEDIS Framework and Validation
Version: 2.0
Date:06/9/2005
Responsible: FUPF (silvia.llorente@upf.edu)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: Public
Visible to User Groups: Yes
Visible to Affiliated: Yes
Visible to Public: Yes

Deliverable Number: DE5.2.1
Contractual Date of Delivery: Month 12
Actual Date of Delivery: 31/08/2005
Work-Package contributing to the Deliverable: WP5.2, WP5.3
Task contributing to the Deliverable:
Nature of the Deliverable: Report
Author(s): FUPF, DSI, EXITECH, UNIVLEEDS, CRS4, IRC, XIM

Abstract:
This document describes the guidelines for setting up and maintaining AXMEDIS framework.
Repositories and validation and acceptance mechanisms will be used in order to provide support to
the project partners, and other affiliated partners in the future. It is also described how some tools of
the AXMEDIS framework will be tested, including some indications on how data can be created to
do so.

Keyword List:
AXMEDIS Framework, validation, integration

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

2

Table of Contents

1 EXECUTIVE SUMMARY AND REPORT SCOPE (FUPF) .. 6

1.1 WP5.2 COMPONENT VALIDATION AND ACCEPTANCE.. 7
1.2 WP5.3 AXMEDIS FRAMEWORK INTEGRATION AND MAINTENANCE... 7

2 GUIDELINES FOR CVS REPOSITORY SET UP AND MANAGEMENT (EXITECH) 9
2.1 GUIDELINES FOR THE SUBMISSION PROCESS ... 9
2.2 GUIDELINES FOR THE REPOSITORY STRUCTURE AND CONTENTS .. 10

2.2.1 Premises ... 10
2.2.2 Repository Structure .. 10
2.2.3 General Guidelines... 14

2.2.3.1 Directory include (optional: only for C/C++)...14
2.2.3.2 Directory source (mandatory) ...14
2.2.3.3 Directory doc/specification ...14
2.2.3.4 Directory doc/code (mandatory) ...15
2.2.3.5 Directory doc/test (mandatory) ...15
2.2.3.6 Directory doc/configuration-deployment (optional: only for modules requiring deployment).............................15
2.2.3.7 Directory doc/other (optional) ..15
2.2.3.8 Directory lib (mandatory) ...15
2.2.3.9 Directory bin (mandatory)...16
2.2.3.10 Directory project (optional: only for modules requiring building) ..16

2.2.4 C/C++ Application... 16
2.2.4.1 Directory include...16
2.2.4.2 Directory source ..16
2.2.4.3 Directory doc/specification ...16
2.2.4.4 Directory doc/test ..16
2.2.4.5 Directory doc/configuration-deployment ...16
2.2.4.6 Directory doc/other ...16
2.2.4.7 Directory lib ..16
2.2.4.8 Directory bin..16

2.2.5 C/C++ Dynamic Library.. 16
2.2.5.1 Directory include...16
2.2.5.2 Directory source ..16
2.2.5.3 Directory doc/specification ...16
2.2.5.4 Directory doc/code ..17
2.2.5.5 Directory doc/test ..17
2.2.5.6 Directory doc/configuration-deployment ...17
2.2.5.7 Directory doc/other ...17
2.2.5.8 Directory lib ..17
2.2.5.9 Directory bin..17

2.2.6 C/C++ Static Library ... 17
2.2.6.1 Directory include...17
2.2.6.2 Directory source ..17
2.2.6.3 Directory doc/specification ...17
2.2.6.4 Directory doc/test ..17
2.2.6.5 Directory doc/configuration-deployment ...17
2.2.6.6 Directory doc/other ...17
2.2.6.7 Directory lib ..17
2.2.6.8 Directory bin..17

2.2.7 C/C++ WebService .. 17
2.2.7.1 Directory include...17
2.2.7.2 Directory source ..17
2.2.7.3 Directory doc/specification ...18
2.2.7.4 Directory doc/code ..18
2.2.7.5 Directory doc/test ..18
2.2.7.6 Directory doc/configuration-deployment ...18
2.2.7.7 Directory doc/other ...18
2.2.7.8 Directory lib ..18

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

3

2.2.7.9 Directory bin..18
2.2.8 Java Application... 18

2.2.8.1 Directory include...18
2.2.8.2 Directory source ..18
2.2.8.3 Directory doc/specification ...18
2.2.8.4 Directory doc/code ..18
2.2.8.5 Directory doc/test ..18
2.2.8.6 Directory doc/configuration-deployment ...18
2.2.8.7 Directory doc/other ...18
2.2.8.8 Directory lib ..18
2.2.8.9 Directory bin..19

2.2.9 Java Library (JAR)... 19
2.2.9.1 Directory include...19
2.2.9.2 Directory source ..19
2.2.9.3 Directory doc/specification ...19
2.2.9.4 Directory doc/code ..19
2.2.9.5 Directory doc/test ..19
2.2.9.6 Directory doc/configuration-deployment ...19
2.2.9.7 Directory doc/other ...19
2.2.9.8 Directory lib ..19
2.2.9.9 Directory bin..19

2.2.10 Java WebService.. 19
2.2.10.1 Directory include...19
2.2.10.2 Directory source ..19
2.2.10.3 Directory doc/specification ...19
2.2.10.4 Directory doc/code ..19
2.2.10.5 Directory doc/test ..19
2.2.10.6 Directory doc/configuration-deployment ...20
2.2.10.7 Directory doc/other ...20
2.2.10.8 Directory lib ..20
2.2.10.9 Directory bin..20

2.3 GUIDELINES FOR CHECKING-OUT, UPDATING COMMITTING ... 20
3 GUIDELINES FOR ADDING NEW EXTERNAL LIBRARIES TO THE AXFW (ALL) 24

3.1 ADDITION OF EXTERNAL LIBRARIES.. 24
3.2 AUTHORISATION OF EXTERNAL LIBRARIES USE.. 24

4 GUIDELINES FOR COMPONENT VALIDATION AND ACCEPTANCE (ALL).. 25
4.1 COMPONENT VALIDATION... 25
4.2 COMPONENT SUBMISSION... 26
4.3 REVIEW REPORT FORM .. 26
4.4 VERIFICATION REPORT FORM.. 27
4.5 COMPONENT ACCEPTANCE.. 27
4.6 START UP OF COMPONENT VALIDATION AND ACCEPTANCE.. 28
4.7 PERIODIC VERIFICATION.. 28
4.8 ACCEPTANCE TESTING .. 29

5 AXMEDIS FRAMEWORK VALIDATION.. 30
5.1 AXMEDIS CONTENT PRODUCTION TOOLS .. 30

5.1.1 Composition Tools (DSI)... 30
5.1.1.1 Test case revision ..30
5.1.1.2 Creation of data for test cases ...30
5.1.1.3 Implementation of testing tool ..30
5.1.1.4 Description of usage of the testing tool ..30

5.1.2 Formatting Tools (DSI) ... 30
5.1.2.1 Test case revision ..30
5.1.2.2 Creation of data for test cases ...30
5.1.2.3 Implementation of testing tool ..31
5.1.2.4 Description of usage of the testing tool ..31

5.1.3 AXMEDIS database, administrator tools and support (EXITECH)... 31
5.1.3.1 Test case revision ..31
5.1.3.2 Implementation of testing tool ..31
5.1.3.3 Description of usage of the testing tool ..31

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

4

5.1.4 AXMEDIS Editor and Viewer, and verification on AXMEDIS terminals (DSI).. 32
5.1.4.1 Test case revision ..32
5.1.4.2 Creation of data for test cases ...32
5.1.4.3 Implementation of testing tool ..32
5.1.4.4 Description of usage of the testing tool ..32

5.1.5 Programme and Publication engine for enabling the on demand (UNIVLEEDS, FHGIGD) 32
5.1.5.1 Test case revision ..32
5.1.5.2 Creation of data for test cases ...32
5.1.5.3 Implementation of testing tool ..33
5.1.5.4 Description of usage of the testing tool ..33

5.1.6 Content Workflow integration (IRC) .. 33
5.1.6.1 Test case revision ..33
5.1.6.2 Creation of data for test cases ...33
5.1.6.3 Implementation of testing tool ..33
5.1.6.4 Description of usage of the testing tool ..34

5.2 AXMEDIS P2P COOPERATIVE CONTENT SHARING AND PRODUCTION TOOL (CRS4) 34
5.2.1 Virtual Database... 34

5.2.1.1 Test case revision ..34
5.2.1.2 Creation of data for test cases ...34
5.2.1.3 Implementation of testing tool ..34
5.2.1.4 Description of usage of the testing tool ..34

5.2.2 DownloadMonitor.. 34
5.2.2.1 Test case revision ..34
5.2.2.2 Creation of data for test cases ...35
5.2.2.3 Implementation of testing tool ..35
5.2.2.4 Description of usage of the testing tool ..36

5.2.3 Publishing And Monitoring Objects.. 36
5.2.3.1 Test case revision ..36
5.2.3.2 Creation of data for test cases ...36
5.2.3.3 Implementation of testing tool ..36
5.2.3.4 Description of usage of the testing tool ..37

5.2.4 Loading Module of AXEPTool ... 38
5.2.4.1 Test case revision ..38
5.2.4.2 Creation of data for test cases ...38
5.2.4.3 Implementation of testing tool ..38
5.2.4.4 Description of usage of the testing tool ..38

5.2.5 Publication Module of AXEPTool .. 38
5.2.5.1 Test case revision ..38
5.2.5.2 Creation of data for test cases ...39
5.2.5.3 Implementation of testing tool ..39
5.2.5.4 Description of usage of the testing tool ..39

5.2.6 Workflow management in AXEPTool (IRC).. 39
5.2.6.1 Test case revision ..39
5.2.6.2 Creation of data for test cases ...40
5.2.6.3 Implementation of testing tool ..40
5.2.6.4 Description of usage of the testing tool ..40

5.3 AXMEDIS CERTIFIER AND SUPERVISOR ... 40
5.3.1 AXMEDIS Supervisor (FUPF).. 40

5.3.1.1 Test case revision ..40
5.3.1.2 Creation of data for test cases ...40
5.3.1.3 Implementation of testing tool ..40
5.3.1.4 Description of usage of the testing tool ..41

5.3.2 AXMEDIS Registration (DSI) .. 41
5.3.2.1 Test case revision ..41
5.3.2.2 Creation of data for test cases ...41
5.3.2.3 Implementation of testing tool ..41
5.3.2.4 Description of usage of the testing tool ..41

5.3.3 AXMEDIS Certification and Verification (FUPF) ... 41
5.3.3.1 Test case revision ..41
5.3.3.2 Creation of data for test cases ...42
5.3.3.3 Implementation of testing tool ..42
5.3.3.4 Description of usage of the testing tool ..42

5.3.4 Trace, reporting and statistic analysis (EXITECH) .. 42
5.3.4.1 Test case revision ..42

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

5

5.3.4.2 Implementation of testing tool ..42
5.3.4.3 Description of usage of the testing tool ..43

5.3.5 Accounting Managing and Reporting Tool (EXITECH).. 43
5.3.5.1 Test case revision ..43
5.3.5.2 Implementation of testing tool ..43
5.3.5.3 Description of usage of the testing tool ..44

5.3.6 Protection Tool engine (FHGIGD).. 44
5.3.6.1 Test case revision ..44
5.3.6.2 Creation of data for test cases ...44
5.3.6.3 Implementation of testing tool ..44
5.3.6.4 Description of usage of the testing tool ..45

5.3.7 DRM tools (FUPF) .. 45
5.3.7.1 Test case revision ..45
5.3.7.2 Creation of data for test cases ...45
5.3.7.3 Implementation of testing tool ..45
5.3.7.4 Description of usage of the testing tool ..45

AXMEDIS FRAMEWORK INTEGRATION AND MAINTENANCE.. 46
5.4 SET UP OF THE AXMEDIS FRAMEWORK FOR CONTINUOUS INTEGRATION OF AXMEDIS COMPONENTS
(EXITECH).. 46
5.5 REGRESSION AND INTEGRATION TESTING (EPFL).. 46

5.5.1 Regression testing .. 46
5.5.2 Integration testing .. 47

5.6 OPTIMISATION OF AXMEDIS COMPONENTS (DSI).. 48
6 BIBLIOGRAPHY ... 49
7 GLOSSARY ... 49

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

6

1 Executive Summary and Report Scope (FUPF)

Market and end-users are pressing content industry to reduce prices. This is presently the only solution to
setup viable and sustainable business activities with e-content. Production costs have to be drastically
reduced while maintaining product quality. Content providers, aggregators and distributors need innovative
instruments to increase efficiency. A solution is automating, accelerating and restructuring the production
process to make it faster and cheaper. The goals will be reached by: (i) accelerating and reducing costs for
content production with artificial intelligence algorithms for content composition, formatting and workflow,
(ii) reducing distribution and aggregation costs, increasing accessibility, with a P2P platform at B2B level
integrating content management systems and workflows, (iii) providing algorithms and tools for innovative
and flexible Digital Rights Management, exploiting MPEG-21 and overcoming its limits, supporting several
business and transactions models. AXMEDIS consortium (producers, aggregators, distributors and
researcher) will create the AXMEDIS framework with innovative methods and tools to speed up and
optimise content production and distribution, for production-on-demand. The content model and
manipulation will exploit and expand MPEG-4, MPEG-7 and MPEG-21 and others real and de-facto
standards. AXMEDIS will realize demonstrators, validated by means of real activities with end-user by
leading distributor partners: (i) tools for content production and B2B distribution; (ii) content production and
distribution for i-TV-PC, PC, kiosks, mobiles, PDAs. The most relevant result will be to transform the
demonstrators into sustainable business models for products and services during the last project year.
Additional demonstrators will be 2-3 associated projects launched as take up actions. The project will be
supported by activities of training, management, assessment and evaluation, dissemination and
demonstration at conference and fairs.

This deliverable is devoted to the description of tools validation and integration done inside WP5.2 and
WP5.3.

This activity is by no means finished with the completion of this deliverable, but it has to be revised during
the development of the project.

Main deliverables in WP5 are:

• DE5.1.1 – AXMEDIS Framework Infrastructure (M12), report;
• DE5.2.1 – AXMEDIS Framework Validation and Integration (M12), report;
• DE5.4.1 – AXMEDIS Content Tools (M15), report and prototype;
• DE5.5.1 – AXMEDIS AXEPTool (M17), report and prototype;
• DE5.6.1 – AXMEDIS Certifier and Supervisor (M17) report and prototype.

The main activities that have supported the production of this deliverable are related to:

WP5.2 – Component Validation and Acceptance – This subWP is responsible to decide whether a

component is valid or not for its use in the AXMEDIS framework. The guidelines for this task will
be produced, describing the AXMEDIS validation steps for each kind of component and providing
an acceptance methodology. The use of a semi-formal methodology in the certification process
description will help in automating the acceptance process steps via core experiments. Moreover,
tools and/or mechanisms for validation and acceptance could be developed taking into account the
semi-formal description. In order to test this validation methodology some preliminary version of the
AXMEDIS tools will be used. Skilled partners different from those that have created the software
components will carry out these tests. Details: Definition of validation and acceptance guidelines for
deciding if a component can be accepted and integrated into the AXMEDIS framework; Periodic
validation and acceptance test; Design and Development of tools to check the above guidelines.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

7

WP5.3 – AXMEDIS framework integration and maintenance – This subWP will study the components
database structure for the integration and maintenance of the AXMEDIS framework. A first
prototype of the components database will be developed and a CVS repository will be configured to
enable source sharing. As soon as the prototypes of the AXMEDIS software components are
available, they will be inserted in the component database for the preliminary integration. Details:
AXMEDIS Framework integration guidelines, CVS rules, access to AXMEDIS framework database.
Start up of the CVS for the AXMEDIS framework; Continuous integration and refinement of
AXMEDIS components: regressing testing, optimisation, etc.; Integration of DRM components into
the framework.

1.1 WP5.2 Component Validation and Acceptance
This WP is coordinated by FUPF
Period: M8-M48
In order to correctly set up the AXMEDIS framework, each implemented and supplied component should be
validated and certified before allowing its use by content creators, content providers and final users inside
AXMEDIS. The validation content is produced and collected in WP8 and the related test cases are defined in
WP2 as described in WP5.1. The validation will be performed by skilled partners but different to those have
created the module. Several industrial partners are involved in this work. To perform validation and
acceptance of software components and tools, we have split this WP into several tasks (the great part of this
work will be done after the first 18 months).

T5.2.1: Start up of the Component Validation and Acceptance
Managed by FUPF. The work should be assigned on the basis of competencies to all the partners involved on
this WP.
• Definition of guidelines for deciding if a component is valid or not for its use in the AXMEDIS

framework.
• Definition of acceptance guidelines for components.
• Specification of requirements for constructing tools and / or mechanisms for acceptance and validation.

At this point, it should be decided which mechanisms for component validation and acceptance will be
based on automatic tools and which ones will be manual.

• Development of tools to check the above guidelines.

T5.2.2: Periodic verification and Acceptance Testing
Managed by FUPF. The work should be assigned on the basis of competencies to all the partners involved on
this WP.
• Software components and tools Testing of the tools developed to check the guidelines.
• Software components and tools Verification and validation of interoperability, etc.

The scope of the validation covers not only that of assessing the quality in terms of research value, but also
that of verifying the: reliability, the robustness with respect to the test cases, and the conformance to the
AXMEDIS framework.

1.2 WP5.3 AXMEDIS framework integration and maintenance
This WP is coordinated by EXITECH
Period: M9-M48

This WP is devoted to the integration of the components mentioned in the WP5.1. The integration work will
permit the building of several demonstrators, for instance, the demonstrators developed in WP9 and the trials
developed by the Take up actions. The great part of this work will be done after the first 18 months of
project and will consist of:

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

8

T5.3.1: set up of the AXMEDIS framework for integration
Managed by EXITECH
• Components database set up and data base management.
• CVS set up and management for source sharing.

T5.3.2: Continuous integration of AXMEDIS components
Managed by EXITECH, performed by all partners involved according to their skill and related tools of which
they are responsible.
Activity of integrating into the CVS the components, resolving conflicts, supporting the other partners during
the integration. This will lead to refine the guidelines and also the stubs of the modules.

T5.3.3: Regression and integration testing
Managed by EPFL, performed by all partners involved according to their skill and related tools of which
they are responsible.
Regression and integration test of the software components to verify their global functionalities, by using the
integration test cases defined in WP2 and the data set produced and collected in WP8.

T5.3.4: Optimisation of AXMEDIS components
Managed by DSI, performed by all partners involved according to their skill and related tools of which they
are responsible.
Optimisation of AXMEDIS Components for improving the quality of their results and removing potential
integration problems.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

9

2 Guidelines for CVS repository set up and management (EXITECH)

2.1 Guidelines for the submission process
The objective of this process is to guarantee that each partner will “commit” the MODULES resulting from
the development activities into a central repository (i.e.: the CVS tree) according to the defined standard
format. The defined format takes into account all the technical components and documentation that is needed
by other partners or external users to download the components and to adopt them into the applications.

The CVS is a complicated tool that is easy enough to use for normal users. A repository of files, arranged in
a directory structure as described in the next paragraph, will be stored in the central server and all partners
and future users could check out copies of this repository. This would create a copy of the (current version
of the) files in the users local hard drive.
The management of the central repository is under the responsibility of Exitech and DSI.

Each partner could:

 Update the copy of the CVS tree to reflect the changes made since the last updated.
 Commit the changes to the CVS tree so that others can see them.

Each partner could only “add” a new file. A new version of a file will update the old one.
No “delete” operation should be done on the central CVS, unless it is necessary to guarantee the congruency
at the system level.

All the partners will make changes to their own MODULES at their leisure (without connection to the
server), and subsequently commit these changes to the main repository. It will not be possible for more than
one user to work on (and commit changes in) the same MODULE. Each module has a Responsible.
Because CVS retains all previous versions of all files that were ever part of the repository, so it will be
possible (though not easy) to recover from mistakes.

For creating new folders into the repository a request has to be send to the project coordinator with the
repository administrator in cc. The email has to contain the names of the folders to be created, the content
description and any other relevant information.

When a commit is performed an index.txt file has to be also updated (or created), for any folder, where the
committed data is briefly explained.

The verification process
The verification process (Responsible: Exitech) will guarantee that the both technical contents and
documentation will have been uploaded for each module. The Responsible will perform only a formal
verification of the submitted data. Errors into the committed contribution will be communicated to the
partner by the project coordinator.
Each partner will be responsible for the completeness and correctness of the modules.

The CVS process will not guarantee the integration of the components; anyway all the technical information
is required to permit the “integrators” and “testers” to evaluate the components and to test according to the
testing procedures.

The CVS system will guarantee the versioning functionalities; it will not provide configuration management
functions.

Submission plan
Each partner has to submit the total contribution according to the development plan; anyway each partner
could “commit” the new version of a component after any “relevant” upgrade (bug fix, new functionalities,
updated documentation).

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

10

The maintainers of the CVS will verify after each “commit” the completeness of the documentation.
Moreover, some statistics will be provided automatically for each component (i.e.: file age, number of
submission per partners, etc).
The objective of this process is to guarantee that each partner will “commit” the MODULES resulting from
the development activities into a central repository (i.e.: the CVS tree) according to the defined standard
format. The defined format takes into account all the technical components and documentation that is needed
by other partners or external users to download the components and to adopt them into the applications.

2.2 Guidelines for the repository structure and contents
2.2.1 Premises
In order to better understand the guidelines contained in this document, it is necessary to underline the
premises under which they are valid and the context in which the repository for AXMEDIS framework, web
service and application, hereinafter “the CVS repository” has been born, the name derives from the definition
reported in Annex I. the structure of the CVS repository is oriented at who will use the AXMEDIS
framework and in particular to partners involved in WP9 demonstrators and those that will contribute to
AXMEDIS with take up actions and projects. It is for them that we are mainly creating this framework.

As stated by the project manager, that requested these guidelines according to the schedule of Annex I:

• The CVS repository is not a support for development and developers, since each team in each
company has to create the environment for development inside the company;

• The CVS repository is not an instrument for integration, since it has no configuration management
process inside, at least now, a task in WP5 will define the guidelines for the integration;

• The CVS repository is not an instrument for automated building and continuous integration, since it
has no management of automatic building;

• The CVS repository is not an instrument for automated building and continuous integration, since it
has no management of automatic building and no bound on submission due to a failure in
compilation;

• The CVS repository is a support for management of the project, and for the versioning of the AXFW
and its detailed components, and for the creation/storage of demonstrators;

• The CVS repository has to support versioning only at predefined time intervals (that can be also a
time frame of months or weeks, this will depend on the project evolution and status;

• Each contribution at the CVS repository has to be self-contained in the sense that has to provide
comprehensive support for compiling, executing, deploying the AXMEDIS part submitted;

• Each contribution at the CVS repository has to be completed with documentation according what has
been formally defined in these guidelines, and revision of the specification document starting from
the official version;

• Each contribution to the CVS repository has to be completed with test cases and test code for
allowing regression testing, a more detailed description of the activity of testing will be described in
specific guidelines on testing, regression and acceptance testing.

2.2.2 Repository Structure
After all these necessary premises the guidelines for the structure and the content of the repository can be
detailed:
The repository is structured in three main parts:

• Framework
• WebServices
• Application

Each part will contain a set of subdirectory for putting all the necessary files. Not all the directories are
mandatory for each kind of application types as detailed in the following. In any case the following set of
directories will be present under each specified parts:

• include: directory only for C/C++ application that have include files;

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

11

• source: directory containing the source code;
• doc: directory containing the documentation as specification documentation, code documentation,

test documentation, dependencies and configuration documentation, other documentation. For each
kind of documentation a detailed description will be given;

• lib: directory containing all the necessary libraries (lib, dll, jar, etc) needed for the AXMEDIS part
to work;

• bin: directory containing the result of building process that can be a jar, an executable, a library, a
war or whatever.

The doc directory has to be split in different directories according to the following structure:
• specification: this directory must contain the UML diagrams of all the classes and in order to avoid

the problems due to incompatible format the diagrams have to be submitted in XMI format. In the
same directory, if present, also the XML schemas and WSDL files have to be put. Any other format
for UML with respect to XMI format will not be accepted;

• code: in this directory the documentation of code must be put. The documentation should be
Javadoc, doc++ or other auto-generated documentation (preferred) or other documentation format. In
any case documentation must be put in one of the following formats: HTML or TXT (preferred)
and/or RTF or PDF (not preferred but acceptable). Any other proprietary format such as Microsoft
Word docs, OpenOffice docs, or other will be refused;

• test: this directory must contain all the test cases necessary to test the part, the source code and
building scripts for testing. Automatic testing is recommended such as JUnit (i.e.
http://www.junit.org/) for Java, CppUnit (i.e. http://sourceforge.net/projects/cppunit/) for C++,
PHPUnit (i.e. http://www.phpunit.de/en/index.php) for PHP and so on, and script for automating
testing are kindly requested such as Batch, Makefile, Ant and so on.

• configuration-deployment
• other

This structure has been selected:

• To give the best integrated view to the future users of the AXFW. In this way we can give to them in
a simple manner access to separate levels. For example, access to source code, only to applications,
only to the includes, etc.

• To provide and collect the history of all the executable applications developed, this will permit to
provide the history of development according to annex I of the contract and to provide demonstration
without the need of recompiling and involving other partners

• To provide access in a simple manner at all the code and applications to be test for the partners that
have to test and verify the tools even without the presence of who has produced the code.

Under each of the directories defined, a directory for each project part has to be created, so that the final
structure will be something like:

The Framework Structure is described in the following picture:

• AXMEDIS
o Framework

 include
• axom

• AXMEDIS
o Framework
o WebServices
o Application

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

12

 source
• axom
• axbd

 doc
• specification

o axom
o axbd

• code
o axom
o axbd

• test
o axom
o axbd

• configuration-deployment
o axom
o axbd

• other
o axom
o axbd

 lib
• axom
• axbd

 bin
• axom
• axbd

 project
• axom

o win32
o macos
o linux

o WebServices
o Application

Into the “Framework” part of the repository it is supposed to have:

-- object models
-- loader and saver
-- communication protocols
-- DB access
-- data transforming logic
-- algorithms
-- DLL
-- plug ins
-- libraries
-- scripts
-- web service support
-- etc.

The WebService Structure is described in the following picture:

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

13

And finally the Application structure can be depicted as follows:

• AXMEDIS
o Framework
o WebServices
o Application

 JavaApplication1
• include
• source
• doc

o specification
o code
o test
o configuration-deployment
o other

• lib
• bin
• project

o win32
o macos
o linux

 C++application1
• include
• source
• doc

• AXMEDIS
o Framework
o WebServices

 include
 source

• userSupport
 doc

• specification
o userSupport

• code
o userSupport

• test
o userSupport

• configuration-deployment
o userSupport

• other
o userSupport

 lib
• userSupport

 bin
• userSupport

o Application

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

14

o specification
o code
o test
o configuration-deployment
o other

• lib
• bin
• project

o win32
o macos
o linux

As applications there are considered:

• User interfaces
• Skins
• Main classes that can generate an executable by using framework content
• all the test tools needed for other parts (protocols) verification.
• Etc.

It is possible, depending on the software that is realized, to define some guidelines for the different kind on
file to be put in each directory as stated in the next paragraphs.
In the following the general guidelines will be reported and in the more specific subsection only the changes
that applies to the general structure will be reported.

2.2.3 General Guidelines

2.2.3.1 Directory include (optional: only for C/C++)
All the include (.h, .hpp, .hh, etc) that are generated for the project by the developers.

Inside this directory, a sub directory for each component will be created.

2.2.3.2 Directory source (mandatory)
All the source code organized in subdirectory defined by each development team (.c, .cxx, .cpp, .java, etc)
that are generated for the project by the developers.

Inside this directory, a sub directory for each component will be created. Inside this directory the partner can
organize the source code in the best manner according to the project type; some example follows:

• A set of subdirectories with source code put inside
• The source code directly placed in the directory
• A hierarchy of directory differentiating for source type (i.e. Java, C++, WebPages, etc)

2.2.3.3 Directory doc/specification
In this directory must be placed:

• the UML diagram in XMI or Visio formats in order to guarantee maximum interoperability and
independence by UML editor software vendors that are generated for the software under
development – mandatory for modules having OO classes;

• the XML schema adopted for the XML test case or for other activities related to the software under
examination in XML format – mandatory if the schema was used;

• the WSDL used by the application for accessing as a client to web services on the server side in plain
text format – mandatory if the WSDL was used.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

15

2.2.3.4 Directory doc/code (mandatory)
In this directory the documentation of the code must be present. No submission without documentation can
be acceptable. It is suggested to use automatic documentation generation according for example to JavaDoc
or Doc++ style. In any case the documentation can be submitted only in the following formats in order to
guarantee the maximum interoperability and independence by software vendors:

• HTML (preferred)
• Plain TEXT (preferred)
• RTF
• DOC

No other format will be accepted.

2.2.3.5 Directory doc/test (mandatory)
In this directory all the test cases and the test code must be submitted together with the operational
instruction to test the code. Automatic testing is recommended and scripts for automating testing are kindly
requested as Batch file, Makefile, Ant and so on.
When in test cases you are referring to some objects or digital resource please provide reference according to
the documentation reported in the official deliverable on Test Cases, see WP2 and WP8 deliverables.
The documentation on how to test software must be inserted in a plaint text file named HowToTest.txt in the
root directory of the doc/test. This file must contain a reference to additional libraries (to be put on the lib
directory) that are necessary for testing and not for deployment.

2.2.3.6 Directory doc/configuration-deployment (optional: only for modules requiring
deployment)

In this directory a plain text file named configuration-dependencies.txt must be placed in the root of the
directory doc/configuration-deployment and it must be filled with the information on dependencies of this
software piece from other software pieces that are present in the repository tree together with the related
version that have been tested to correctly operates.
In addition a plain text file named deployment.txt must be placed in the root of the directory
doc/configuration-deployment containing all the information that are needed to know how to deploy the
software artifact (such as the library that are needed, environment variables, additional software needed,
target operating system, etc).
Any other file can be added, but the only formats allowed are:

• HTML
• Plain TEXT
• RTF
• DOC

2.2.3.7 Directory doc/other (optional)
This directory can contain any additional document useful for the development community. The only bound
is the format that must be chosen among:

• HTML
• Plain TEXT
• RTF
• PDF

2.2.3.8 Directory lib (mandatory)
This directory must contain all the libraries that are not statically linked to the application and that are
needed for the application in order to work. In the case the no library is needed an empty file named no-lib-
needed.txt must be placed in the lib root directory. In the case of multiplatform development a directory for
each platform have to be created and the lib must be put in the correct directory.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

16

2.2.3.9 Directory bin (mandatory)
This directory must contain the product of the module and all the components (configuration files, etc) that
are necessary for a correct exploiting of the software. It is considered product: an executable, a library, etc.
For application that do not have an executable, the jar, war, dll, lib or the result of the module that have to be
deployed must be put here. In the case of multiplatform development a directory for each platform have to be
created and the executable must be put in the correct directory.

2.2.3.10 Directory project (optional: only for modules requiring building)
This directory must contain the makefiles or IDE projects to build the corresponding library or application.
This directory can contain also the minimal set of file (in a unique zip file for easy recompiling the module in
a defined IDE of the user. This zip file must contain only the minimal set of file, i.e. those after a project
clean up.

2.2.4 C/C++ Application

2.2.4.1 Directory include
Must be present

2.2.4.2 Directory source
No change

2.2.4.3 Directory doc/specification
No change

2.2.4.4 Directory doc/test
No change

2.2.4.5 Directory doc/configuration-deployment
No change

2.2.4.6 Directory doc/other
No change

2.2.4.7 Directory lib
No change

2.2.4.8 Directory bin
No change

2.2.5 C/C++ Dynamic Library

2.2.5.1 Directory include
Must be present

2.2.5.2 Directory source
No change

2.2.5.3 Directory doc/specification
No change

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

17

2.2.5.4 Directory doc/code
No change

2.2.5.5 Directory doc/test
No change

2.2.5.6 Directory doc/configuration-deployment
No change

2.2.5.7 Directory doc/other
No change

2.2.5.8 Directory lib
No change

2.2.5.9 Directory bin
No change

2.2.6 C/C++ Static Library

2.2.6.1 Directory include
Must be present

2.2.6.2 Directory source
No change

2.2.6.3 Directory doc/specification
No change

2.2.6.4 Directory doc/test
No change

2.2.6.5 Directory doc/configuration-deployment
No change

2.2.6.6 Directory doc/other
No change

2.2.6.7 Directory lib
No change

2.2.6.8 Directory bin
No change

2.2.7 C/C++ WebService

2.2.7.1 Directory include
Must be present

2.2.7.2 Directory source
No change

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

18

2.2.7.3 Directory doc/specification
The WSDL used by the application for accessing as a client to other web services and WSDL used for
generating the server side path or the web service under development on the server side in plain text format.

2.2.7.4 Directory doc/code
No change

2.2.7.5 Directory doc/test
No change

2.2.7.6 Directory doc/configuration-deployment
No change

2.2.7.7 Directory doc/other
No change

2.2.7.8 Directory lib
No change

2.2.7.9 Directory bin
No change

2.2.8 Java Application

2.2.8.1 Directory include
Not present

2.2.8.2 Directory source
No change

2.2.8.3 Directory doc/specification
No change

2.2.8.4 Directory doc/code
No change

2.2.8.5 Directory doc/test
No change

2.2.8.6 Directory doc/configuration-deployment
No change

2.2.8.7 Directory doc/other
No change

2.2.8.8 Directory lib
This directory must contain all the libraries in JAR format that are needed by the java application. In the case
the no library is needed an empty file named no-lib-needed.txt must be placed in the lib root directory.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

19

2.2.8.9 Directory bin
This directory must contain the application packaged in a JAR file with a batch file for executing it. In the
case of multiplatform script for launching the application, a directory for each platform has to be created and
the script must be put in the correct directory.

2.2.9 Java Library (JAR)

2.2.9.1 Directory include
Not present

2.2.9.2 Directory source
No change

2.2.9.3 Directory doc/specification
No change

2.2.9.4 Directory doc/code
No change

2.2.9.5 Directory doc/test
No change

2.2.9.6 Directory doc/configuration-deployment
No change

2.2.9.7 Directory doc/other
No change

2.2.9.8 Directory lib
This directory must contain all the libraries in JAR format that are needed by the java library. In the case the
no library is needed an empty file named no-lib-needed.txt must be placed in the lib root directory.

2.2.9.9 Directory bin
This directory must contain the library packaged in a JAR file.

2.2.10 Java WebService

2.2.10.1 Directory include
Not present

2.2.10.2 Directory source
No change

2.2.10.3 Directory doc/specification
The WSDL used by the application for accessing as a client to other web services and WSDL used for
generating the server side path or the web service under development on the server side in plain text format.

2.2.10.4 Directory doc/code
No change

2.2.10.5 Directory doc/test
No change

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

20

2.2.10.6 Directory doc/configuration-deployment
No change

2.2.10.7 Directory doc/other
No change

2.2.10.8 Directory lib
No change

2.2.10.9 Directory bin
No change

2.3 Guidelines for checking-out, updating committing

For managing the AXMEDIS repository the Subversion (http://subversion.tigris.org/) platform has been
chosen.

A complete Subversion documentation and also a Subversion book are available on the project website
http://subversion.tigris.org/servlets/ProjectDocumentList.

Subversion is a free/open-source version control system. That is, Subversion manages files and directories
over time. A tree of files is placed into a central repository. The repository is something like an ordinary file
server, except that it remembers every change ever made to your files and directories. This allows recovering
older versions of data, or examining the history of how data changed.

Subversion can access its repository across networks, which allows it to be used by people on different
computers.

Some of Subversion capabilities are:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a “virtual” versioned file system
that tracks changes to whole directory trees over time. Files and directories are versioned.
True version history

Atomic commits
A collection of modifications either goes into the repository completely, or not at all. This allows developers
to construct and commit changes as logical chunks, and prevents problems that can occur when only a
portion of a set of changes is successfully sent to the repository.
Versioned metadata

Each file and directory has a set of properties—keys and their values— associated with it. You can create
and store any arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.
Choice of network layers

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works identically on both
text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally
compressed in the repository, and differences are transmitted in both directions across the network.

Efficient branching and tagging

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

21

Subversion creates branches and tags by simply copying the project, using a mechanism similar to a hard-
link. Thus these operations take only a very small, constant amount of time.

Subversion architecture:

Subversion architecture (extracted from: http://svnbook.red-bean.com/en/1.0/svn-book.html)

The AXMEDIS repository will be configured using the Apache “mod_DAV” & the Subversion
“mod_DAV_SVN” since the “svnserve” seems to give some limits to the user configuration.

The AXMEDIS repository will be available on a SSL protected site. The repository will be protected with an
account and a password and the internal folder will be configured in order to allow the access only to the
selected users.
The repository can be accessed for reading purposes via browser, command line and using Subversion
compatible GUI clients.

Web access
It will be possible to access and browse the (full or part of) repository according to the user rights. It is
proposed to give one account for each partner.

A possible view of the repository could be the one shown in the next figure.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

22

Command line client access
Command line clients are available for all the operating systems (MAC OS X, Linux, Solaris, BSD, and
Windows.
For getting a working copy of the Application Folder it is enough to run the “svn checkout” command. The
following figure shows the Application folder checkout from a windows command line subversion client.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

23

Let suppose that the fabrizio.txt file was changed and a new file is added to the working directory. The
changes can be committed by using the “svn commit” as follow:

If the new file has to be added to the repository it has to be first added to the working directory:

A list of the other Subversion command line is available on the Subversion book (http://svnbook.red-
bean.com/en/1.0/svn-book.html) at Chapter 9 (http://svnbook.red-bean.com/en/1.0/svn-book.html#svn-ch-9).

Using a GUI Subversion client
Several subversion clients are available. For a list you can see: http://subversion.tigris.org/project_links.html
at the clients and plug-in section.

Also some development environments include GUI subversion clients.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

24

3 Guidelines for adding new external libraries to the AXFW (ALL)

This section describes the process for adding new external libraries to be used by the tools inside the AXFW,
apart from the ones declared in the specification documents.

3.1 Addition of external libraries

In order to add a new library, the following directives have to be followed:

1) Any library that is being used for the development of any tool to be included in the AXFW has to be
authorised before its usage.

2) An AXMEDIS partner cannot decide autonomously to make some GPL or LGPL if it comes from
the project results. The coding of any part is IPR of the project and thus it has to be authorised and
any implication has to be verified.

The violation of these directives implies may lead at the exclusion of a partner for bad behaviour. The CA
reports most of the details on this issue.

3.2 Authorisation of external libraries use

The inclusion of any library has to be authorised by sending a request to the project coordinator and the
general reflector indicating:

• what would you like to use
• which OS
• why
• license model of the library

For instance, the authorisation will not be given if the module is GPL. It could be discussed depending on the
point in which the module is used if it should be GPL. In any case has to be separately discussed.

Finally, the delivery of code in GPL or LGPL is not authorised without an explicit authorisation of the
AXMEDIS consortium.

The list of accepted libraries is reported in the AXMEDIS portal (www.axmedis.org).

Each accepted library has to be posted on the portal in the corresponding folder with:

• library in binary and source code
• documentation of the library for its compilation and usage
• license

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

25

4 Guidelines for Component Validation and Acceptance (ALL)

In order to correctly set up the AXMEDIS framework, each implemented and supplied component should be
validated and certified before allowing its use by content creators, content providers and final users inside
AXMEDIS. This will help in guaranteeing that the implemented component meets the requirements.

The validation will depend on several issues and will seek to establish the degree to which a given
component fulfils the following performance criteria:

• It does what it is supposed to do
• It does its job in a reasonable time
• It can be integrated with other components
• It is reliable
• It is robust
• It accomplishes test cases
• It is conformant with the AXMEDIS framework

In the following sections we will describe the general guidelines for component validation and acceptance in
the AXMEDIS framework.

4.1 Component validation

The component validation process should involve the checking and analysis of the component in order to
verify that the component meets the requirements demanded of it.

The main validation activities are the revision and testing of the component.

Review phase main steps:
• Review phase involves the manual review of the component, directly evaluating it. It will help in

determining that the requirements, design concepts and specifications have been met. The revision of a
component can include several activities, like peer reviewing or code inspection.

• The result of the review should be a report where the reviewing team explains the revision performed,
the errors found and other.

Testing phase involves the testing of the component at different levels, from unit test through to system test.

The main steps in the testing phase are the following ones:

• During development phase of the component, unit tests should be done in order to check that the

functionality being implemented is the correct one.
o This task should be done by the development team of the component, as they have the complete

knowledge over it.
 Modifications over the specification should be reported

• When the development of a component has been completed, an initial unit testing phase and an

integration test is needed to evaluate how the unit performs and how it interacts with other units.
o This task should be done with the cooperation of the development teams of the integrated

components. The result of this task should be reported in order to perform the needed actions for
solving the problems found.

o This task also needs to evaluate the following aspects, and report on them:
 Documentation provided
 Differences with the specification, if any
 Interfaces among components

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

26

• The rest of tests should involve the whole system and it will be different depending on the demonstrator.

So system testing should be demonstrator testing for the AXMEDIS framework, at least in a first phase.

In order to perform the above tests, the test cases identified and described in WP2 and the content for test
cases created and described in WP8 should be taken into account.

Apart from tests and reviews, component validation should also include the examination of the degree to
which the component is properly documented, including updates in the specification documents,
documentation of the programming interface, usage manual (specially for end-user or business-user
applications) or installation manual. This information should be included in the AXMEDIS framework part
associated to this component.

The major requirements and functionalities of the component need to be mapped to the component under
validation, in order to check that the component accomplishes them.

4.2 Component Submission
This section describes what has to be reported when a component is submitted into the AXMEDIS
framework.

Module name Name of the module being reviewed.
Module description General purpose of the module.
Major requirements To be provided by the component owner
Major use cases To be provided by the component owner
Major related
components

To be provided by the component owner

List of Test Cases • To be provided by the component owner
• Accepted by the validators

Additional test cases may be provided.
Used Libraries To be provided by the component owner

Versions and library related information should be provided
Languages Programming languages
Operating system(s) A list and information to compile for different OS
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.

4.3 Review report form
This section gives an example of what has to be reported when a module is being reviewed. The main
information to be reported is described in the following table.

Review ID Identifier of the review.
Module name Name of the module being reviewed.
Module description General purpose of the module.
Major requirements Comments about conformance on requirements
Major use cases Comments about conformance on use cases
Major related
components

Comments on the integration aspects with other AXMEDIS tools or
components

List of Test Cases Comments on the results about the usage of those test cases
Used Libraries Comments on the usage of those external libraries
Author Organisation that has the responsibility of the implementation of the module.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

27

The name of the person involved in the implementation can also be given.
Date of review Date when the review is done.
Participants Name, organisation and role of people involved in the review. This field can be

repeated as many times as needed.
Issues Location Part of the module where the issue is found. For instance, this could be the

source code file, web page, etc; it will depend on the type of application.
 Who Person who finds the issue.
 Description Description of the issues found in the module during revision.

4.4 Verification report form
This section gives an example of what has to be reported when a module is verified, after it has been
reviewed and some issues have been found. The information to be reported is described in the following
table.

Verification ID Identifier of the verification.
Review ID Identifier of the review to which this verification refers.
Module name Name of the module being verified.
Module description General purpose of the module.
Major requirements Comments about conformance on requirements
Major use cases Comments about conformance on use cases
Major related
components

Comments on the integration aspects with other AXMEDIS tools or
components

List of Test Cases Comments on the results about the usage of those test cases
Used Libraries Comments on the usage of those external libraries
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.
Date of verification Date when the verification is done.
Participants Name, organisation and role of people involved in the review. This field can be

repeated as many times as needed.
Issues Location Part of the module where the issue is found. For instance, this could be the

source code file, web page, etc; it will depend on the type of application.
 Who Person who finds the issue.
 Description Description of the issues found in the module during revision.
 Resolution How the issue found during the revision process has to be solved.

4.5 Component acceptance
Component acceptance mostly involves those components, which are addressed to application users, either
business or final users.

Acceptance testing allows users (or project partners which can assume this role), to test the functionality of
the system against the requirements and use cases. Each kind of tool should be tested by a key user on this
area. For instance, the component acceptance test of a content production tool should be done by a user that
is skilled in the area together with part of the development team, in order to get the comments on the tool
behaviour.

It will be very useful to follow the test cases that involve components to be accepted in order to check if they
are correct. A report on if test cases are accomplished or not should be done by test participants.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

28

4.6 Start up of component validation and acceptance
In order to start up the component validation and acceptance in the AXMEDIS framework, the responsible of
each module should:

• Follow the CVS repository guidelines
• Prepare unit tests
• Perform unit tests and give a brief report on them
• Prepare integration tests
• Perform integration tests. They may be done by the partners participating in the integration together

or not. In the latter case, some communication mechanisms will be established in order to solve
possible integration problems as soon as possible. For instance, if one partner is performing an
integration test of one of his components with other partner’s component, a videoconference or
audio-conference might be set up before, during or after tests are done

• Give a brief report on the integration test, outlining problems found, categorising them (application
error, bad parameter value, inconsistent API, etc)

These reports should be available in the portal to the rest of the partners in order to improve the component
knowledge and maintenance. A new directory / portal section should be created to contain them. They could
also be included into the CVS repository, together with the corresponding application, web service, library,
etc.

4.7 Periodic verification
During project development, components will be improved / updated to solve problems found during the
different testing phases or to meet new requirements found during the acceptance tests or the evolution of
commercial software products and standards affecting the AXMEDIS framework components.

In this way, there will be the need to inform the rest of the partners of any components having been updated,
so that new integration tests are performed if needed.

Reports on the unit tests performed over the new or updated components have to be given together with the
new version of the component.

The periodic verification steps should be as follows:

1 Update component into the corresponding directory of the CVS repository, indicating that it is a new
version.

2 Send e-mail to the reflector and / or developers mailing list to inform that an update on a component
has been done and including the results of the related regression test(s) when needed.

3 Partners using the updated component should:
3.1 Perform integration tests with the new version of the component. The participation / support of

the component responsible may be requested.
3.2 Report errors / problems detected during the integration test, if any. The report has to be

uploaded in the portal, in order that partners are informed of the results of the test.
3.3 If needed, after integration errors / problems reported in 3.2 are solved, components using the

initially updated component should be also updated in the CVS repository.
3.4 Go to verification step 2 for the component(s) updated in step 3.3.

As a modification in one component may involve the modification of many other components, regression
and integration tests should be systematically done. In some cases, it could happen that a component will no
longer work with lower versions of libraries and components. This should be specified in the documentation
of the component.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

29

4.8 Acceptance testing
Acceptance of a component involves that it has previously been validated and verified, making the
corresponding unit and integration tests. Once they have been passed, acceptance tests should be done. They
may involve other partners, final users, user group experts, etc.

Acceptance test results could be reported using the review form described in section 4.3.

Once the component has been accepted, it can be made publicly available in the AXMEDIS framework.
Moreover, it may be further optimised.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

30

5 AXMEDIS Framework validation

This section describes how the AXMEDIS framework should be validated. It is organised by the groups of
AXMEDIS Framework tools that have to be implemented in WP5.4, WP5.5 and WP5.6.

The following steps could be followed in order to validate tools:

• Revise test cases corresponding to each tool inside the framework.
• Collection and/or creation of the data needed for checking the revised test cases.
• Implementation of tools that check test cases against the corresponding tools using the defined

content.
• Description of usage of the testing tools, in order that partners different from the implementer one

could test the tool.

5.1 AXMEDIS Content production Tools
5.1.1 Composition Tools (DSI)

5.1.1.1 Test case revision
The test cases that can be revised for Composition Tools are from TC5.1.1.1 to TC5.1.2.5. They were
described in DE2.2.1 Test cases and Content Description.
During AXMEDIS Composition Tools implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.1.1.2 Creation of data for test cases
Utilising the content produced in WP8, the test cases will use a number of selected AXMEDIS objects in
order to show and demonstrate the composition functionalities in AXMEDIS. The content used for tests will
try to cover a wide set of content types (video, images, text, audio) and formats.

5.1.1.3 Implementation of testing tool
The rule editor prototype will be used to test scripts for composition. A batch test script executor will be used
for batch testing.

5.1.1.4 Description of usage of the testing tool
Description of usage of the testing tool, to allow other partners and external users to test the tool or to test
equivalent tools.

5.1.2 Formatting Tools (DSI)

5.1.2.1 Test case revision
The test cases that can be revised for Formatting Tools are from TC5.2.1.1 to TC5.2.2.5. They were
described in DE2.2.1 Test cases and Content Description.
During AXMEDIS Formatting Tools implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.1.2.2 Creation of data for test cases
Utilising the content produced in WP8, the test cases will use of a number of selected AXMEDIS objects in
order to show and demonstrate the formatting functionalities in AXMEDIS. The content used for tests will
try to cover a wide set of content types (video, images, text, audio) and formats.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

31

5.1.2.3 Implementation of testing tool
The rule editor prototype will be used to test scripts for formatting. A batch test script executor will be used
for batch testing.

5.1.2.4 Description of usage of the testing tool
Description of usage of the testing tool, to allow other partners and external users to test the tool or to test
equivalent tools.

5.1.3 AXMEDIS database, administrator tools and support (EXITECH)

5.1.3.1 Test case revision
The test cases that can be revised for AXMEDIS database, administrator tools and support are from TC8.1.1
to TC8.1.7 and from TC 8.2.1 to 8.2.6. They were described in DE2.2.1 Test cases and Content Description.
During AXMEDIS database, administrator tools and support implementation, these test cases should be
considered for revision, as specification and implementation details could make them change. Moreover,
some more test cases could appear, not initially considered on the test cases deliverable.Creation of data for
test cases

5.1.3.2 Implementation of testing tool
Instead of a testing tool, regression testing has been implemented by the adoption of JUNIT suite for
automating testing.
At each level of the hierarchy in the logical diagram of the system, Unit tests are adopted for testing the layer
in a white box manner. The Unit test of the higher level is used to test in a black box manner the underlying
layer. A functional test to check in black box manner the last layer will be implemented if needed.
The following schema details this assumption:

5.1.3.3 Description of usage of the testing tool
The testing is completely automated by using JUNIT or the ANT scripts provided with the source code.

Layer1 Layer2 Layer3

JUNIT SUITE (BB=Black Box,
WB=White Box)

JUNIT
test
layer 1

W
B

JUNIT
test
layer 2

JUNIT
test
layer 3

W
B

W
B

B
B

B
B

B
B

Optional High
level
functional test

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

32

5.1.4 AXMEDIS Editor and Viewer, and verification on AXMEDIS terminals (DSI)

5.1.4.1 Test case revision
The test cases that can be revised for AXMEDIS Editor and Viewer are from TC4.1.1 to TC4.3.3. They were
described in DE2.2.1 Test cases and Content Description.
During AXMEDIS Editor and Viewer implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.1.4.2 Creation of data for test cases
Utilising the content produced in WP8, the test cases will use a number of selected AXMEDIS objects in
order to show and demonstrate the editing and viewing functionalities in AXMEDIS. The data used for test
will try to cover a wide set of content types (video, images, text, audio) and formats.

5.1.4.3 Implementation of testing tool
Unit testing will be used to test the functionalities of AXOM, which is used by the AXMEDIS Editor &
Viewer and many other tools.
The AXMEDIS editor/viewer prototype will be used for testing user interface and content use.

5.1.4.4 Description of usage of the testing tool
Description of usage of the testing tool, to allow other partners and external users to test the tool or to test
equivalent tools.

5.1.5 Programme and Publication engine for enabling the on demand (UNIVLEEDS,
FHGIGD)

5.1.5.1 Test case revision
To prepare for a mock up demo test case for AXMEDIS 2005 conference the P&P section will communicate
with on demand via socket. The steps for the test case were revised from TC10.8 (DE2-2-1-TestCases) for
the push scenario for content on demand. The following is the basic three steps for the revised test case and
demonstration:

1. The on demand <send> socket request to P&P engine (without the formal P&P programme
specification) and with the AXMEDIS test content to be requested.

2. The engine processes the request
3. P&P Reply by transmitting the prepared test content to the on-demand.

5.1.5.2 Creation of data for test cases
Utilising the content produced in accordance to WP8, the test cases will make use of a number of selected
AXMEDIS objects in order to show and demonstrate the push and on-demand functionalities in AXMEDIS.

For the test case, a selection of the various identified set of basic components will be used as samples for
testing the operations (i.e. requesting and sending of AXMEDIS test object) for on demand. The components
will be selected from the rich media interactive content developed by the content integrator, XIM, in
accordance to WP8.5 and can be deployed across all of the target platforms (internet, mobile, PDA, i-TV,
PC) and a range of audio, text, multimedia and visual content provided by the consortium partners which is
suitable for multi-channel delivery. We will create or locate eight appropriate AXMEDIS test data in
accordance with the content selection guidelines (DE3-1-3) for demonstration activities. The criteria for test
selection are components that are not time consuming in terms of download and upload time and the amount
of processing time required.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

33

5.1.5.3 Implementation of testing tool
The first prototype of the Programme and Publication Engine will be used for testing the on-demand
publications.

This application will be implemented in C++ using wxWindows and xerces libraries as specified in DE3-1-2.
This prototype will be developed for as a win32 application only. The engine will be tested using the XML
P&P programmes saved using the first prototype of the P&P Editor using the Programme and Publication
libraries developed to create new programmes and editing existing programmes (AxPnPRule.lib).

The testing tool will accept a XML programme string from on-demand created utilising the programme
libraries. Using sockets to send the string, the P&P engine will validate the string. A failed process returns
and error message to on demand. A successful process will return the prepared test content to the on-demand.

5.1.5.4 Description of usage of the testing tool
The test Programme and Publication (P&P) Engine will be available for downloading from the CVS tree and
will be developed to execute locally. From the initial CVS tree specification, the engine will be located at
AXMEDIS/framework/bin/win32.
A client application representing on-demand will also be downloaded and executed. Using the GUI of the
client application, users will make an on-demand request. Results will be returned to the client application to
demonstrate the creation of a P&P programme by the client application using the P&P Rule libraries; the
sending of the request and the reply to the request.

5.1.6 Content Workflow integration (IRC)

5.1.6.1 Test case revision
Of all the 23 Test Cases involved in integration of external workflow systems with the relevant AXMEDIS
Tools, the test cases that will involve exchanges between the native workflow environment and the
AXMEDIS tools and thus an opportunity for testing out the integrating plug-ins would seem to be as follows:

• TC 6.1.3 (Edit)
• TC 6.1.8 (Search),
• TC 6.1.9 (Track component)
• TC6.1.22 (Check-in)
• TC6.1.23 (Check-out)

The above can be revised for Content Workflow Integration. These Test Cases were amongst those described
in DE2.2.1, Test cases and Content Description.

During AXMEDIS Content Workflow implementation for the demonstrator, these test cases should be
considered for revision, in light of any new refinements that might have become necessary resulting from the
specification and implementation process. Additionally some new test cases could emerge that will have to
be added to the test cases deliverable.

5.1.6.2 Creation of data for test cases
The content repository produced in WP8 will be deployed for this. The test cases will use a number of
selected AXMEDIS objects in order to demonstrate the Content Workflow Integration in AXMEDIS. The
content used for tests will cover a wide set of content types (video, images, text, audio) and formats.

5.1.6.3 Implementation of testing tool
The first prototype of the AXMEDIS Workflow Integration Plug-ins will be used for testing Content
Workflow in full integration with the AXMEDIS tools environment.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

34

The AXMEDIS editor/viewer prototype will be used for testing user interface and content workflow
integration, which will also involve scenarios for invoking the AXMEDIS Query support and AXDB.

5.1.6.4 Description of usage of the testing tool
The way to use of the testing process will be described so as to allow other partners and external users to test
the AXMEDIS Content Workflow Integration by invoking the above testing scenarios and thus test the
workflow integration in AXMEDIS Content production.

5.2 AXMEDIS P2P Cooperative Content Sharing and Production Tool (CRS4)
5.2.1 Virtual Database

5.2.1.1 Test case revision
• TC9.1.1 is confirmed as is.

• TC9.2.5 The Manual publication of an AXMEDIS Object is now performed by the AXEPTool

Console.

The steps are the following:
Open the console
Type publish file://path/file.ext

The expected results are: the object is committed into the AXDBOUT, the file file.ext is copied in the public
directory of the AXEPTa PublicationEvent is sent in the http://hostname/RSS/file.xml RSS channel.

5.2.1.2 Creation of data for test cases
Collection and/or creation of the data needed for checking the revised test cases.

5.2.1.3 Implementation of testing tool
The AXEPTool is provided with a tool called AXEPTool console, which is used to test the main
functionalities with a text-based user interface. All details about the console are described in DE4.4.1

5.2.1.4 Description of usage of the testing tool
The AXEPTool is provided with a tool called AXEPTool console, which is used to test the main
functionalities with a text-based user interface. All details about the console are described in DE4.4.1.

5.2.2 DownloadMonitor

5.2.2.1 Test case revision
This test case integrates the TC9.2.9 in DE2.2.1 Test Cases and Content Description, focusing on the
DownloadMonitor and related web service testing; In details: the test involves two AXEPTool instances
running on different PC (or in one PC) and an automated testing tool.

The user wants to download an object in AXEPToolA from P2P known the object URI (in AXEPToolB).

The testing tool launches the download and allows testers to monitor the download progress. At the end of
the process the object is downloaded and copied, according to TC9.2.9.

Download Monitor test is also involved in TC 9.2.12, as part of the test for automatic loading of objects; in
particular its web service module is involved in the downloading step.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

35

5.2.2.2 Creation of data for test cases
Data needed for DownloadMonitor testing tool is represented by files made available for http download in an
AXEPTool instance.

5.2.2.3 Implementation of testing tool
First of all two running instances of AXEPTool are needed named AXEPToolA and AXEPToolB;
Some object files are made available, for example, in AXEPToolB.
So, initial conditions are that some object files are available for http download on AXEPToolB.
Post conditions are that the file is downloaded on AXEPToolA after a time t and during time t the testing
tool has monitored the download session showing progress, status, suspending and resuming it: this is made
using the web service interface exposed by DownloadMonitor.

Next picture shows the main implemented functionalities of the testing tool.

Testing steps:

1. The testing tool invokes a new object download available at an AXEPToolB related URL; the
startDownload () DownloadMonitorWebService method is invoked.

2. The DownloadMonitor starts the download
3. The testing tool performs:

i. Repeatedly prints download session info, i.e. download progress status invoking
DownloadMonitor WebService methods.

ii. Suspend the session showing related status change
iii. Resumes download showing status change and progress
iv. Reports download final status

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

36

5.2.2.4 Description of usage of the testing tool
In order to run this test next requirements are needed:

1. two AXEPTool instances must be running
2. at least one file must be available for download on one AXEPTool instance
3. tester configures the testing tool passing it the URL of the object to download from AXEPToolA

to AXEPTool B.
4. check info reported by tool
5. check the downloaded object.

5.2.3 Publishing And Monitoring Objects

5.2.3.1 Test case revision
This test case integrates the TC9.2.3 in DE2.2.1 “Test Cases and Content Description”, focusing the attention
in notification tasks of AXMEDIS Objects updates events in the P2P network, in order to perform
appropriate operations such as automatic updating actions for these objects. Testing is performed through
Publishing And Monitoring Objects Web Service usage, in this way also web service is properly tested.

5.2.3.2 Creation of data for test cases
Testers must have two AXEPTool instances running on different machines and a file available for http
download on AXEPToolA.

5.2.3.3 Implementation of testing tool
First of all two running instances of AXEPTool are needed named AXEPToolA and AXEPToolB;
One object file is made available in AXEPToolA.

Next picture shows the testing scenario:

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

37

Testing steps:

1. Testing tool produces a PublicationEvent for a published object in AXEPToolA invoking the
producePublicationEvent() method of AXEPToolA PublishingAndMonitoringWebService.
These steps involve the creation of a RSS feed file in AXEPToolA related to the event
generated.

2. Testing tool invokes an object download on AXEPToolB for the published object available in
AXEPToolA. This is made invoking the startDownload() method of DownloadMonitor
WebService of AXEPToolB. Successfully finishing the download involves that
PublishingAndMonitoringObjects module on AXEPToolB automatically starts polling the RSS
feed generated in step 1, going to “listen” for updates on this feed.

3. calling the listEventsFromDate() method on AXEPToolB
PublishingAndMonitoringWebService, the testing tool must check for only one event in list.

4. The testing tool produces another PublicationEvent on AXEPToolA for the same object
published in step 1. In this way the related RSS file is modified and a new item is added.
PublishingAndMonitoringObjects module in AXEPToolB must register this change and saves
the event in its internal list.

5. The testing tool invokes the listEventsFromDate() on AXEPToolB checking for two events in
list.

5.2.3.4 Description of usage of the testing tool
Testers run two instances of AXEPTool on two PCs configure testing tool with their URIs and run the testing
tool, observing reported logs.

AXEPToolA AXEPToolB

PandM PandM

PandMWebService PandMWebService

PublishingAndMonitoringObjects

Testing tool

DownloadMonitorWebService

Rss feed

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

38

5.2.4 Loading Module of AXEPTool

5.2.4.1 Test case revision
Loading activity is supposed to be an iteration through steps of creation of rule, actualization and performing
of publication itself. TC9.2 (in DE2.2.1 Test Cases and Content Description) reports several possible cases
on loading.

• TC9.2.13 Automatic loading new AXMEDIS Objects with the AXEPTool
o Loading is driven by rules. There is no interaction between user and module. A specific rule

has to be created in order to start the loading.

• TC9.2.14 Manual loading of AXMEDIS Objects with AXEPTool
o No more applicable. The only way to start loading is through rules.

• TC9.2.15 Creation of a loading rule for the AXEPTool

o No more concerning Loading Module. Rules are created through the Rule Editor.

Starting from them is reasonable to revise the process in the following steps:

1. create a rule: the rule is created using the rule editor.
2. invoke module: the Rule Engine actualizes the rule and invokes the Loading Module.
3. perform loading: the Loading Module receives data from the Rule Engine and performs the loading.

5.2.4.2 Creation of data for test cases
For the test cases is enough to suppose the rule already actualized and assume the script (managed by Spider
Monkey) with data becoming from the assumed rule.
The main interest is on loading new objects and loading new version ones. So are first necessary rules able to
configure such situations:

• new objects
• new objects + updated

Also, in order to test the mapping module of the loading module is necessary to create data set with different
custom metadata.

5.2.4.3 Implementation of testing tool
Unit tests are implemented using JUnit utility.
Integration tests of the module are composed if a self-contained class driven by a script.

5.2.4.4 Description of usage of the testing tool
Testing tool description should form part of the document DE4.4.1 “Content Sharing and Production on
P2P”.

5.2.5 Publication Module of AXEPTool

5.2.5.1 Test case revision
Publication activity is supposed to be an iteration through steps of creation of rule, actualization and
performing of publication itself. TC9.2 (in DE2.2.1 Test Cases and Content Description) reports several
possible cases on publication.

• TC9.2.1 Creation of a publishing rule for the AXEPTool
o No more concerning Publication Module. Rules are created through the Rule Editor.

• TC9.2.2 Automatic publication of a selection of objects on the AXEPTool

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

39

o Publication Engine has been renamed Publication Module. There are no more editors for the
module, so no user interaction will be performed. Objects to publish are selected through
rules.

• TC9.2.3 Automatic updating of a modified object on the AXEPTool

o No more applicable, because already included in standard publication.

• TC9.2.4 Automatic publication of a non protected object on the AXEPTool
o Confirmed (only renamed Engine in Module). Dataset contains unprotected objects.

Starting from them is reasonable to revise the process in the following steps:

1. create a rule: the rule is created using the rule editor.
a. Standard rule, every kind of object
b. Updating rule, objects updated; the module will discard old objects.
c. Rule for unprotected objects.

2. invoke module: the Rule Engine actualizes the rule and invokes the Publication Module.
3. perform publication: the Publication Module receives data from the Rule Engine and performs the

publication.

5.2.5.2 Creation of data for test cases
For the test case is enough to suppose the rule already actualized and assume the script (managed by Spider
Monkey) with data becoming from the assumed rule.
The main interest is on publication of new objects and publication of new version ones. So are first necessary
rules able to configure such situations:

1. new objects
2. new objects + updated

5.2.5.3 Implementation of testing tool
Unit tests are implemented using JUnit utility.
Integration tests of the module are composed if a self-contained class driven by a script.

5.2.5.4 Description of usage of the testing tool
Testing tool description should form part of the document DE4.4.1 Content Sharing and Production on P2P.

5.2.6 Workflow management in AXEPTool (IRC)

5.2.6.1 Test case revision
Of all the 23 Test Cases involved in the integration of external workflow systems with the relevant
AXMEDIS Tools (as described in DE2.2.1), the test cases that will involve Workflow Management in
AXEPTool are those that can change the activation list used by the AXEPTool Scheduler. These test cases
thus provide an opportunity for testing out the integrating plug-ins that allow workflow management in
AXEPTool.

These test cases are as follows:

• TC 6.1.3 (Edit)
• TC 6.1.17 (Change State)
• TC 6.1.1.22 (Check – in)

The above can be revised for the Workflow Management in AXEPTool. These Test Cases were amongst
those described in DE2.2.1, Test cases and Content Description.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

40

During AXMEDIS Content Workflow implementation for the demonstrator, these test cases should be
considered for revision, in light of any new refinements that might have become necessary resulting from the
specification and implementation process. Additionally some new test cases could emerge that will have to
be added to the test cases deliverable.

5.2.6.2 Creation of data for test cases
The content repository produced in WP8 will be deployed for this. The test cases will use a number of
selected AXMEDIS objects in order to demonstrate the Workflow management in AXEPTool in AXMEDIS.
The content used for tests will cover a wide set of content types (video, images, text, audio) and formats.

5.2.6.3 Implementation of testing tool
The first prototype of the AXMEDIS Workflow Integration Plug-ins will be used for testing Workflow
Management in AXEPTool in full integration with the AXMEDIS tools environment.

The AXMEDIS editor/viewer prototype will be used for testing the user interface and AXEPTool Workflow
Management, which will also involve scenarios for invoking the AXMEDIS Query support and AXDB
through the invocation of the TC 6.1.1.22 (Check – in) as a functionality that may in turn be called by TC
6.1.1.17 (Change State).

5.2.6.4 Description of usage of the testing tool
The way to use of the testing process will be described so as to allow other partners and external users to test
the AXEPTOOL Workflow Management integration by invoking the above test cases or any others that will
emerge to be relevant.

5.3 AXMEDIS Certifier and Supervisor
5.3.1 AXMEDIS Supervisor (FUPF)

5.3.1.1 Test case revision
The test cases that can be revised for AXMEDIS Supervisor are from TC12.2.3.1 to TC12.2.3.7. They were
described in DE2.2.1 Test cases and Content Description.
During AXMEDIS Supervisor implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable.

5.3.1.2 Creation of data for test cases
The creation of data sets mainly involves inserting information in the AXCS database related to AXMEDIS
users, tools and objects.

The insertion of this information can be done in different ways: manual creation and insertion of SQL
statements into a local test database, call to the AXCS database interface classes or call to the AXCS
database WS. In any kind of insertion, the information will be equivalent, and should involve user
information, tool information and action log information.

5.3.1.3 Implementation of testing tool
AXMEDIS Supervisor testing tools will consist on:
• Unit tests of the operations implemented. JUnit utility can be used for this purpose, calling the

corresponding methods.
• Integration tests of the module. In this case, it is needed an initial implementation of other modules to be

jointly tested.

Functionality to be tested includes the management of action logs, those received from users and those stored
in the database, in order to check that the history of actions is consistent.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

41

Also generation of Supervisor Input Data after some events occur has to be tested.

Integration between AXMEDIS Supervisor and AXMEDIS Certification and Verification also has to be
tested, as blocking of users and tools will depend on the communication performed between these two
modules.

5.3.1.4 Description of usage of the testing tool
Testing tool description should form part of the documentation associated to AXMEDIS Supervisor. It
should test all the functionality described, including integration with other modules.

5.3.2 AXMEDIS Registration (DSI)

5.3.2.1 Test case revision
The test cases that can be revised for AXMEDIS Registration are from TC12.2.1.1 to TC12.2.1.8. They were
described in DE2.2.1 Test cases and Content Description.
During AXMEDIS Registration implementation, these test cases should be considered for revision, as
specification and implementation details could make them change. Moreover, some more test cases could
appear, not initially considered on the test cases deliverable. The registration process is composed by some
elements: the Registration Web Service and the client parts that use the related web service. Every single part
is involved only in some specific tests, and not necessary in all tests.

5.3.2.2 Creation of data for test cases
The creation of data sets is mainly composed by insertions of information in the AXCS database related to
AXMEDIS users, tools and their pertinent data.
The insertion of this information can be done in different ways, each specific for the component to be tested.
In order to test the database interface, a set of data have to be prepared and inserted manually (using SQL
scripts) and with a simple code that uses methods provided by database interface. The test is successful if
tests results are the same all times.
In order to test the web service it has to be written a small client application that uses the web services and
returns the expected results.

5.3.2.3 Implementation of testing tool
AXMEDIS Registration testing tools will consist on:
• Unit tests of the operations implemented. JUnit utility can be used for this purpose, calling the

corresponding methods.
• Integration tests of the module. In this case, it is needed an initial implementation of other modules to be

jointly tested.

5.3.2.4 Description of usage of the testing tool
Testing tool description should form part of the documentation associated to Registration Web Service and
AXCS-DB Interface API.

5.3.3 AXMEDIS Certification and Verification (FUPF)

5.3.3.1 Test case revision
The test cases that can be revised for AXMEDIS Certification and Verification are from TC12.2.2.1 to
TC12.2.2.3. They were described in DE2.2.1 Test cases and Content Description.
During AXMEDIS Certification and Verification implementation, these test cases should be considered for
revision, as specification and implementation details could make them change. Moreover, some more test
cases could appear, not initially considered on the test cases deliverable.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

42

5.3.3.2 Creation of data for test cases
The creation of data sets mainly involves inserting information in the AXCS database related to AXMEDIS
users and tools.

The insertion of this information can be done in different ways: manual creation and insertion of SQL
statements into a local test database, call to the AXCS database interface classes or call to the AXCS
database WS. In any kind of insertion, the information will be equivalent, and should involve user
information and tool information. Different sets of information are needed to check different functionality, so
valid and invalid information has to be used to perform tests.

5.3.3.3 Implementation of testing tool
AXMEDIS Certification and Verification testing tools will consist on:
• Unit tests of the operations implemented. JUnit utility can be used for this purpose, calling the

corresponding methods.
• Integration tests of the module. In this case, it is needed an initial implementation of other modules to be

jointly tested.

Functionality to be tested includes the management of user and tool information in order to check if user can
be certified and his actions verified. Also tools have to be certified and verified.

Integration between AXMEDIS Supervisor and AXMEDIS Certification and Verification also has to be
tested, as blocking of users and tools will depend on the communication performed between these two
modules.

5.3.3.4 Description of usage of the testing tool
Testing tool description should form part of the documentation associated to AXMEDIS Certification and
Verification. It should test all the functionality described, including integration with other modules.

The rest of modules communicating with AXMEDIS Certification and Verification module are needed in
order to test the integration.

5.3.4 Trace, reporting and statistic analysis (EXITECH)

5.3.4.1 Test case revision
The test cases that can be revised for Trace, reporting and statistic analysis are from TC12.2.5.1 to
TC12.2.5.6. They were described in DE2.2.1 Test cases and Content Description.
During trace, reporting and statistic analysis implementation, these test cases should be considered for
revision, as specification and implementation details could make them change. Moreover, some more test
cases could appear, not initially considered on the test cases deliverable.

5.3.4.2 Implementation of testing tool
Instead of a testing tool, regression testing has been implemented by the adoption of JUNIT suite for
automating testing.
At each level of the hierarchy in the logical diagram of the system, Unit tests are adopted for testing the layer
in a white box manner. The Unit test of the higher level is used to test in a black box manner the underlying
layer. A functional test to check in black box manner the last layer will be implemented if needed.
The following schema details this assumption:

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

43

5.3.4.3 Description of usage of the testing tool
The testing is completely automated by using JUNIT or the ANT scripts provided with the code.

5.3.5 Accounting Managing and Reporting Tool (EXITECH)

5.3.5.1 Test case revision
The test cases that can be revised for Accounting Managing and Reporting Tool are from TC12.2.5.7 to
TC12.2.5.8 and the 12.4.1. They were described in DE2.2.1 Test cases and Content Description.
During Accounting Managing and Reporting Tool implementation, these test cases should be considered for
revision, as specification and implementation details could make them change. Moreover, some more test
cases could appear, not initially considered on the test cases deliverable.

5.3.5.2 Implementation of testing tool
Instead of a testing tool, regression testing has been implemented by the adoption of JUNIT suite for
automating testing.
At each level of the hierarchy in the logical diagram of the system, Unit tests are adopted for testing the layer
in a white box manner. The Unit test of the higher level is used to test in a black box manner the underlying
layer. A functional test to check in black box manner the last layer will be implemented if needed.
The following schema details this assumption:

Layer1 Layer2 Layer3

JUNIT SUITE (BB=Black Box,
WB=White Box)

JUNIT
test
layer 1

W
B

JUNIT
test
layer 2

JUNIT
test
layer 3

W
B

W
B

B
B

B
B

B
B

Optional High
level
functional test

Layer1 Layer2 Layer3

JUNIT SUITE (BB=Black Box,
WB=White Box)

JUNIT
test
layer 1

W
B

JUNIT
test
layer 2

JUNIT
test
layer 3

W
B

W
B

B
B

B
B

B
B

Optional High
level
functional test

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

44

5.3.5.3 Description of usage of the testing tool
The testing is completely automated by using JUNIT or the ANT scripts provided with the code.

5.3.6 Protection Tool engine (FHGIGD)
The terminology Protection Tool engine refers to the protection functionality of the AXMEDIS Content
Processing (AXCP) engine. At the beginning of the AXMEDIS projects multiple engines for different
purposes were considered. The design phase revealed a functional overlap between these individual engines.
Hence, the functionality of these different engines is now integrated in the AXCP engine.

For simplicity we also use the terminology Protection Tool engine in some parts of this document. But the
reader should be aware that this is just a functional extension of the core AXCP engine.

5.3.6.1 Test case revision
During the implementation of the protection extensions of the AXMEDIS Content Processing (AXCP)
Engine, the test cases are continuously revised, as specification and implementation details might change the
test cases.

At the implementation stage new insights and experiences might lead to new test cases that have not been
considered in the design phase of the AXMEDIS project. The initial set of test cases for the Protection Tool
engine were described in DE2.2.1 Test cases and Content Description are TC12.3.1.1 to TC12.3.3.

The current status of the implementation is not finished. Thus, the ongoing implementation of the Protection
Tool engine does not allow a thorough revision at this project stage. A final revision of the Protection Tool
engine will be possible when the implementation reaches a project status that provides the necessary
functionality for the analysis and adjustment of the test cases.

5.3.6.2 Creation of data for test cases
In the specification documents test data was described according to the requirements of the AXMEDIS
partners. During the implementation the Protection Tool engine is first tested with this sample data that is
available in the specification documents.

A collection of sample data was created according to this specification document. This collection will be the
basis for the first tests of the Protection Tool engine prototype during its implementation. More test data will
be created and used for testing as the implementation evolves: This allows the previously described thorough
revision of the test cases.

Utilising the content produced in WP8, the test cases will use a number of selected AXMEDIS objects in
order to show and demonstrate the protection editing and license creation functionalities in AXMEDIS. The
data used for test will try to cover a wide set of content types, encryption formats, and license types.

5.3.6.3 Implementation of testing tool
First implementations were performed to test and validate the functionality of the AXCP Rule Editor and
Executor. As the complete protection functionality was not available functional stubs were implemented to
perform a first series of tests. These tests focused on the passing of parameters. Furthermore, the possibilities
and limitations of the integration of additional components and their functionalities into the AXCP Java
Script engine was tested and validated.

Summarized, the implementation validated the processing of rules and the passing of parameters into the
Java Script engine with dummy extensions.

However, the further implementation of the Protection Tool engine relies on the availability of the other
components that it provide the protection and license handling functionality.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

45

5.3.6.4 Description of usage of the testing tool
The Protection Tool engine will be available in the AXMEDIS subversion repository for testing and will be
developed to be executed locally. The AXCP Rule Editor and engine and the protection extensions will be
located at AXMEDIS/Framework/ruleeditor and AXMEDIS/Framework/ruleexecutor.

The Rule Editor and Executor will be used to test the functionalities of the Protection Rule engine. Using the
GUI of the Rule Editor a user will be able to create, edit, and debug Protection rules. The Rule Executor can
be used to execute and test existing rules and the protection functionalities of the other components involved.

5.3.7 DRM tools (FUPF)

5.3.7.1 Test case revision
The test cases that can be revised for DRM tools are from TC12.5.1 and subsections to TC12.5.2 and
subsections. They were described in DE2.2.1 Test cases and Content Description.
During the implementation of these tools, test cases should be considered for revision, as specification and
implementation details could make them change. Moreover, some more test cases could appear, not initially
considered on the test cases deliverable.

5.3.7.2 Creation of data for test cases
The data needed for the test cases will depend on the kind of tool, but we will use:

• Licenses expressed in MPEG-21 REL language. They will be provided by:
o The implemented tools
o XML editors
o Other license editors, that follow MPEG-21 REL XML schemas

• Licenses expressed in OMA REL
• Protection information regarding AXMEDIS objects
• Information stored in the AXMEDIS databases, like user information, tool information, object

information and action logs.

5.3.7.3 Implementation of testing tool
As DRM tools are a set of tools, different kinds of test have to be performed:
• Unit tests of the operations implemented. These tests will depend on the implementation language.
• Integration tests of the DRM tools. In this case, it is needed and initial implementation of the tools.
• Integration tests with other modules. In this case, it is needed an initial implementation of other modules

to be jointly tested.

5.3.7.4 Description of usage of the testing tool
Testing tool description should form part of the documentation associated to the different DRM tools.

Features that will be tested by these tools:

• Creation and management of licenses
• Caching and management of protection information
• Integration and communication between the different modules

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

46

AXMEDIS Framework Integration and Maintenance

5.4 Set up of the AXMEDIS framework for continuous integration of AXMEDIS
components (EXITECH)

This task will be managed by EXITECH, performed by all partners involved according to their skill and
related tools of which they are responsible. The integration work will permit to the building of several
demonstrators and of the trials developed by the Take up actions.

In order to allow an integration of the AXMEDIS framework a central repository will be created. By using a
VCS (Version Controlling System) the partners involved into the Framework development will submit their
work periodically. The AXMEDIS framework repository should be set up on a dedicated hardware.
The VCS system will be chosen in order to allow the version control, the folder access control and the
possibility to revert to a previous configuration. The submission process has to be executed by following
specific rules in order to guarantee the validation and the integration of the repository content.

The VCS responsible will also performs the activities of resolving conflicts and supporting the other partners
during the submission process. This will lead to refine the guidelines and also the stubs of the modules.

As soon as the prototypes of the AXMEDIS software components are available, they will be inserted in the
component database for the integration. The submitted components will be verified periodically from the
formal and functional point of view.

5.5 Regression and integration testing (EPFL)

These two test phases are rather distinct and will be described in two separate subsections.

5.5.1 Regression testing

Regression testing is a process which tests a system or a tool to ensure that it still functions as expected / as
per specification. The reason for this renewed testing activity is a modification of an implementation within
the program. For example; a major upgrade in the code or an important bug fix; a new hardware platform or
a major release of the operating system. In addition, when a development team releases a new version of its
database, a comprehensive regression test plan needs to be developed and completed to ensure that the
reports, scripts, (remote) procedure calls and user options, are all functioning as expected.

Regression testing should also test the revised software by simulating its operational environment to be sure
that all systems and interfaces still operate properly.

Regression testing will be conducted in AXMEDIS according to a Test Plan. Testing of the different units or
components to verify their global functionality will be done by using the test cases defined in WP2 and the
data set initially produced and collected in WP8. Major factors and strategies that will be followed to
perform regression testing are the following:

• An as much as possible automated process will be created (with the help of each module author)
based on test cases and data set mentioned above. For instance in section 5 some components are
described for which the JUNIT suite for automating testing is adopted.

• Adequate coverage without wasting time will be considered when defining and conducting
regression tests.

• A regression test for concerned modules will be run each time a major bug fix is handled. The bug
itself might be fixed but the fix might create other bugs.

• A regression test for concerned modules will be run each time modifications are made following
integration tests or periodic verifications (see section 4.7).

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

47

• If the bug fix is not tested by one of the tests in the process, a new regression test covering the
functionality of this bug should be established (to be sure that this is fixed in general or not coming
back).

• If two or more tests are similar, the less effective will be identified and eliminated (duplications are
quite common when more than one person is writing code).

• Effects of changes in the program on memory and CPU usage should be traced.
• …

As said, with the help of all development teams, a plan of tests will be developed made up of WP2 test cases
that can be run every time a new version of the program is built. Automated tests, as well as test cases
involving boundary conditions and timing will be defined in the plan.

The regression test library will be periodically reviewed to eliminate redundant or unnecessary tests. This
could be done for instance every third testing cycle.

Regression test plan and reports for each unit or component has to be maintained by each responsible and
periodically updated on the portal. In particular the plan should include the test cases concerning the
component, if the regression test is automated (how) or a short description of the testing procedure,
functionality covered by the test. Reports should include results, test cases that have been added or
deprecated, major observed changes in memory and CPU usage.

5.5.2 Integration testing

Integration testing is the phase of software testing in which individual software modules are combined and
tested as a group. Integration testing takes as input modules that have been checked already by individual
unit testing, groups them in larger aggregates, and applies tests defined in the integration test plan to those
groups.

In integration testing simplest form, two units that have already been tested are combined into a component
and the interface between them is tested. A component is an integrated group of more than one unit. In a
more realistic scenario, many units are combined into components. Eventually all the modules making up a
process are tested together.

Integration testing identifies problems that occur when units are combined. By using a test plan that requires
testing each unit before combining units, any errors discovered when combining units are likely related to the
interface between units.

Integration testing can proceed in a number of different ways, which can be identified as top down or bottom
up. In top down integration testing the high-level control routines are tested first, possibly with the middle
level control structures present only as stubs. Subprogram stubs essentially are incomplete subprograms,
which are only present to allow the higher-level control routines to be tested.

The other major way for integration testing is bottom up integration testing where an individual module is
tested from a test set. Once a set of individual modules has been tested they are then combined into a
collection of modules, or builds, which are then tested by a second test set. This process can continue until
the build consists of the entire application.

In AXMEDIS a combination of top-down and bottom-up testing would be used. Since AXMEDIS is a large
software project being developed by a number of teams at different levels (from signal processing to
applications), the teams or individuals would define and conduct bottom-up testing of the modules which
they were implementing before releasing them to teams developing more high level or “integration” modules
(larger applications) which would assemble them together for top-down testing.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

48

A description of suitable integration test procedure should be included with the description of each module
and application.

5.6 Optimisation of AXMEDIS components (DSI)

Optimisation of AXMEDIS Components will be done to improve the quality of their results and to remove
the potential integration problems.

The optimization phase will analyse the whole production process to see which are the components to be
optimized to reduce the overall production time taking into account the use scenarios.

An evaluation of when and how many times some basic functions are used will help to identify the points
where an optimization is needed.

The optimization will not consider only the execution speed but it will take into account also the time used
by humans to write scripts for the production process. In this case recurring activities will be identified and
shortcuts will be introduced.

DE5.2.1 – AXMEDIS Framework and Validation

AXMEDIS project CONFIDENTIAL

49

6 Bibliography

Testing utilities

• JUnit for Java: http://www.junit.org/
• CppUnit for C++: http://sourceforge.net/projects/cppunit/
• PHPUnit for PHP: http://www.phpunit.de/en/index.php

Versioning control system

• Subversion: http://subversion.tigris.org/
• Subversion book: http://svnbook.red-bean.com/en/1.0/svn-book.html

Verification and validation

• Software Engineering, 6th Edition, Ian Sommerville, Addison Wesley.
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/index.html

7 Glossary

Concept Description
Peer review Validation technique which comprises the revision of software in order to quickly

find errors
Inspection Detailed examination of component step-by-step

