
Figure 3: TAC++ class tree browser

To perform this process, the user can decide to assess or not class libraries (if any). In any case,
the de�nitions (C++ headers �les) of the libraries used must be available. If the code of class library is
available, it can be considered into the assessment process or not.

The class browser provides an integrated editor and uses the multi-linked structure for navigating
among system classes and their members. As can be observed in Fig.3, the browser shows the list of
classes with a synthetic description of their relationship: the class hierarchy, the list of methods, etc. By
selecting a class and its method, the corresponding method code is directly available in separate editing
windows. Each change in the class de�nition and/or implementation may produce corresponding changes
in the data contained in the multi-linked structure.

The above-described process is capable of producing Low-Level Metrics (LLM). These are direct
metrics { such as LOC, Mc, Ha, NA, NAL, NAI , NM , NMI , NML, MIC, CBO, etc. LLMs
Evaluator saves on a �le the multi-linked structure. This comprises also the description of each method
in terms of its parameters and de�nition of local variables. The same approach is followed for global
de�nitions, variable and subprograms that can be present in C++ systems even if their adoption is not
properly coherent with the OOP.

The results produced by the LLMs Estimator can be collected on the basis of the life-cycle phase in
which they are estimated. Please note that, most of the above mentioned direct metrics can produce draft
results even when only the class de�nition is available, such as in the early analysis. This can be very
useful for predicting �nal values of these metrics and thus for predicting the �nal product characteristics.

4.2 De�ning and Collecting High-Level Metrics

High-Level Metrics (HLMs) can be de�ned by the user on the basis of LLMs. To this end, a speci�c
interactive tool allows the de�nition of new metrics by means of a visual editor (see Fig.4). HLMs can
be de�ned according to the following structure comprised of one or more additive terms:

NewMetric = WM1M1
WU1

P
x
U1

WD1

P
x
D1

+ :::+WMnMn
WUn

P
x
Un

WDn

P
x
Dn

where x is the context in which the sum is performed { for instance (i) on all system classes, (ii) on all
class methods, (iii) on all class attributes, etc. Each sum on x can be set to operate on a single value,

11

Figure 4: High Level Metric Editor

thus transforming the terms in a single term.
Weights can be imposed on the basis of company experience and goals by using a set of reference

projects with the aim of the related database of weights. Entries of the database weights are evaluated
during the various phases of system development, or set to �xed values. Please note that for each metric,
di�erent values of weights can be saved according to the life-cycle phase in which they are collected and
signi�cant. This is because di�erent values for the weights have to be usually registered and used in
di�erent phases of the software life-cycle.

The HLMs Evaluator obtains the values of indirect metrics on the basis of the current de�nitions
of HLMs and by using LLMs values. The values of HLMs are stored together with the values of their
weights and phase in which they have been assessed.

4.3 Visualizing Results

In order to provide a fast and understandable view of the project status, the values obtained for LLMs
and HLMs can be collected for visualizing them in a set of speci�c views. The views can be de�ned for
satisfying the needs of developers as well as those of subsystem and project managers. These are typically
directly de�ned in the internal development manual of the company together with many other rules that
must be followed for developing the system (i.e., manual of development of the company). Di�erent views
will be de�ned for addressing the speci�c needs of developer, subsystem and project managers. Views
can be histograms or pro�les.

4.3.1 Pro�les

A pro�le is a consumptive view, which is capable of showing the values of several metrics with respect
their speci�c mean, maximum, minimum and acceptable values. The minimum/maximum value(s) can
be considered the lowest/greatest value(s) under/over of which a correction should be needed.

These views are shown by using normalized graphs: Kiviat, bar, pie, etc. by means of the Viewer
(see Fig.5). In order to make faster the correction for solving undesirable lowest and greatest values, a
brief comment describing what could be done is associated to each HLM directly in the HLMs database.
This places the basis for the continuous improvement of system quality and conformity with the required
product and process pro�le.

12

Figure 5: TAC++ Kiviat Diagram for a selected view.

For example, in order to monitoring class quality a view reporting values of metrics: NA, NM , CCm,
CMm=NM , CCGI , NSUB, DIT , NSUP , etc., can be de�ned. Other examples of typical views are: (i)
a view reporting the e�ort prediction of a class: Size2, NAM , WMC, CC0, etc.; (ii) a view presenting
e�ort estimation of a class: CC0

m, CCm, WMC, Mc, etc.; (iii) views reporting e�ort prediction or
estimation at system level: SC, TLOC ; (iv) views reporting conformity to OOP at system level: NRC,
NRC=NCL, SCm=NCL, etc.; (v) views reporting class metrics related to reusability and maintainability:
NOC, NSUP , NSUB, DIT , etc.

In addition, in this case, the de�nitions of views are organized according to the life-cycle phase for
which they have been de�ned. In this way, reference values, and actions for solving problems can be
imposed phase by phase, reporting speci�c values and comments.

4.3.2 Histograms

By using TAC++ it is also possible to evaluate the statistic view of each metrics for the system under
assessment. For example: (i) the number of classes for the complexity of classes, (ii) the number of
methods for the complexity of methods, (iii) the number of classes for their CCGI , (iv) the number of
classes for their NSUP , (v) the number of classes for their NSUB, etc. (see Fig.6). These histograms
are useful for identifying which classes are outside of the company established or recommended bounds.
In fact, typical trends of histograms can be assumed as reference patterns by the company. In some cases
the histogram trends is also independent of the languages [21], [22].

A collection of histograms among the various phases of development life cycle could aid the system
manager to take into account the modi�cation, from the point of view of quality pro�le, of each class in
the system.

13

Figure 6: TAC++ generated histogram.

4.4 Validating and Tuning Metrics

Despite to the high number of metrics, in the literature, there exists only few papers reporting accurate
validations of metrics [14], [9]. The adoption of a validation technique is not only a work for researchers.
It mainly consists in identifying metric parameters (weights) on the basis of the knowledge of actual data
{ e.g., on the basis of the real e�ort of development as well as of maintenance or the number of defects
encountered in developing a class, etc., depending on the goals of the metric under validation.

The validation process can be used for (i) verifying which terms of each identi�ed metric is relevant
for its estimation (this can be used for reducing the estimation e�ort and, in some cases, for increasing
correlation and reliability), (ii) evaluating the con�dence of the measures obtained, (iii) tuning metric
models according to di�erent context and pro�les (weights and scale identi�cation), (iv) identifying
metric parameters along the development life-cycle for evaluating the development progress with respect
to reference trend, and �nally (v) for evaluating the goodness of metrics in representing the selected
feature (i.e., selecting metrics).

For these reasons, the validation and tuning processes must be performed at di�erent levels, by the
developers, by the subsystem and project managers. In particular, operation (iv) must be performed by
the developers, while operations (ii), (iii), (v) by the subsystem and project managers and (i) by speci�c
people devoted to the de�nition of methods and instruments for controlling the process of development.

Usually, the validation can be performed by using mathematical and statistical techniques such as
multilinear regression tools [26] or logistic regression [27]. In both cases, real data reporting direct
measures of the features that should be evaluated by metrics are needed { e.g., real e�ort, number of
defects identi�ed, results of objective test about usability, etc. This information is collected by using a
Data Collector, which in our tool is developed in Java to be portable in a wide number of platforms.

Weight values depend on the application context and, thus, it is possible to obtain more precise

14

Figure 7: TAC++ Statistical Tool

results by estimating the weights depending on the type of the system under development and for each
speci�c phase of the development life-cycle. This can be simply done by using a little number of reference
projects into the selected area and estimating weights with the previously applied method. The reference
projects must comply with OOP and quality pro�les requested for the project area.

The Statistic Analyzer is capable of estimating all the metric weights used in a metrics if the corre-
sponding real value of the metric is available { e.g., if CCMc is considered, and the real e�ort for each
class is available, the statistical tool can estimate the optimal weights by means of multilinear robust
regression. The values of the weights can be used for assessing other systems and as a starting value for
de�ning reference values of the company.

Usually a metric may present a high number of components but not all the terms have the same
importance. By using the Statistic tool, it is possible to verify not only the correlation of the whole
metric with respect to the real data, but also the correlation of each term of the metric with respect to the
collected e�ort, maintenance or other real data. Moreover, the statistic tool is capable of identifying the
metrics components that are more relevant for the estimation of the targeted features. This is performed
by considering p-values and t-values of multilinear regression analysis [26]. In this way, a process of
re�nement can be performed in order to identify whose terms of the metric are more signi�cant than
the others for obtaining the indirect measure; for example by observing the inuence of each metric
component in estimating or predicting e�ort, maintenance, etc.

Please note that, the most important metrics of TAC++ have been analyzed and validated by using
the above technique, during the development of several C++ projects. This validation process has been
performed in order to discover whose metrics must be evaluated and which components are relevant [9],
and when they give good results for controlling the system main characteristics.

The engine of Statistic Analyzer is mainly based on multilinear regression techniques [26] (Progress).
Since Progress tool presents a textual interface, a graphical user interface has been added to make it
more user friendly. Moreover, the result of multilinear regressions can be easily interpreted since they
can be graphically visualized as dot diagrams (see Fig.7).

15

A Posteriori Corr. Variance

WMC = CLMc [20] 0.90 245
CMLOC [22] 0.91 186
CMHa [16] 0.82 423
CCMc [9] 0.93 149
CCHa [9] 0.94 216
CCLOC [9] 0.94 145
TJCC [19] 0.93 157
HSCC [10] 0.93 146

Predictive Corr. Variance
CC

0

LOC [9] 0.88 770
NAM [18] 0.73 1100
Size2 [6] 0.72 1700

Table 2: Comparison between metrics de�ned for evaluation and prediction of class e�ort.

4.5 Experiments on E�ort Evaluation and Prediction

In Tab.2, the most di�use metrics for e�ort estimation at level of class are compared against the well
known pure functional metrics. The comparison is made on the basis of correlation and variance values
obtained by the TAC++ Statistic Analyzer (con�dence values and values of weights have been omitted)
(see [9] for details of the validation process).

Lower values of variance correspond to a less spread distribution { i.e., a lower probability to get
the wrong e�ort estimation or prediction by using the selected metric. The analysis reported shows that
traditional functional metrics can be pro�tably employed for evaluating object-oriented systems if they
are used as a basis for more complete metrics (as in [22], [28]). The metrics proposed in [9] present both a
higher value of correlation and a lower value of variance. The di�erences among the values of correlation
are not so strong and, thus, the values of variance are important since give an idea of the estimation
con�dence. These values have been obtained by assessing several C++ applications with a high degree
of conformance to the OOP [9].

During the system assessment, particular attention must be paid to applications that adopt an object-
oriented library of classes for managing GUI with windows (e.g., Motif plus CommonView, MS-Windows
plus MSVC++, and so on). Usually these projects have approximately 30% of code devoted to user
interface management and, therefore, this property must be taken into account during the weight and
metric bounds tuning.

In order to estimate the trend of selected metrics and weights for subsequent evaluations, it is very
important to record values during the early phases of the system life-cycle. Once the weights are identi�ed,
the adoption of predictive metrics is very useful, see Tab.2 in which the correlation values obtained for
these metrics are very encouraging, because small errors can be accepted in the early phase of software
development cycle. By using TAC++ a collection of trends of development of some projects have been
recorded by the research workgroup of the authors in order to establish bounds for metrics and speci�c
values for the weight depending on the application �eld. This experience is going to revealing every
day more e�ective since other projects under assessment are following the values predicted in the early
phases. Moreover, the tool has demonstrated it usefulness for detecting degenerative conditions in the
class hierarchy, thus controlling the maintainability, reusability, etc.

5 Discussion and Conclusions

The adoption of the OOP has produced a great demand of speci�c metrics. Several direct and indirect
metrics for the evaluation of e�ort, maintenance and reusability costs, have been de�ned. Therefore, in
order to manage this large number of metrics, an integrated tool for de�ning, showing and validating

16

them is mandatory.
The tool presented in this paper o�ers to developers, subsystem and project managers a highly

con�gurable environment to control all the aspects of a C++ projects since the early phase of system
development. TAC++ o�ers many features for aiding project development and maintenance: (i) direct
manipulation of code, (ii) low-level metric evaluation, (iii) High level metric de�nition and evaluation,
(iv) graphical representation of metric pro�les and histogram, (v) metrics validation and tuning by the
means of a multilinear regression engine, and (vi) real data collector { i.e. real e�ort in person-hours,
number of errors, number of fault, etc.

TAC++ has been pro�tably used for controlling the development and maintenance of several projects
elaborated by the research group of the authors in order to validate its use on the application �eld. The
results obtained by the above mentioned tests have permitted to the research group to establish bounds,
reference pro�les and histograms for a wide typology of applications, that will be used for develop present
and future C++ projects.

Acknowledgments

The authors would like to thank all the members of TAC++ team and the many other people involved
in its development in the past. A special thank to B. Pages for an early version of the class browser (i.e.,
Xcoral), and A. Borri of CESVIT, for his help in designing the �rst version of TAC++.

References

[1] B. Henderson-Sellers and J. M. Edwards, \The object oriented systems life cycle," Communications of the

ACM, vol. 33, pp. 143{159, Sept. 1990.

[2] B. W. Boehm, \A spiral model of software development and enhancement," ACM SIGSOFT Software Engi-

neering Notes, vol. 11, no. 4, pp. 14{24, 1986.

[3] P. Nesi, Objective Software Quality, Proc. of Objective Quality 1995, 2nd Syposium on Software Quality

Techniques and Acquisition Criteria. Berlin: Lecture Notes in Computer Science, N.926, Springer Verlag,
1995.

[4] B. Henderson-Sellers, D. Tegarden, and D. Monarchi, \Metrics and project management support for an object-
oriented software development," in Tutorial Notes TM2, TOOLS Europe'94, International Conference on

Technology of Object-Oriented Languages and Systems, (Versailles, France), 7-10 March 1994.

[5] L. A. Laranjeira, \Software size estimation of object-oriented systems," IEEE Transactions on Software En-

gineering, vol. 16, no. 5, pp. 510{522, 1990.

[6] W. Li and S. Henry, \Object-oriented metrics that predict maintainability," Journal of Systems Software,
vol. 23, pp. 111{122, 1993.

[7] F. BritoeAbreu, M. Goulao, and R. Esteves, \Toward the design quality evaluation of object oriented software
systems," in Proc. of 5th International Conference on Software Quality, (Austin, USA), McLean, Oct. 1995.

[8] P. Nesi and M. Campanai, \Metric framework for object-oriented real-time systems speci�cation languages,"
The Journal of Systems and Software, vol. 34, pp. 43{65, 1996.

[9] P. Nesi and T. Querci, \E�ort estimation and prediction of object-oriented systems," The Journal of Systems
and Software, vol. in press, 1998.

[10] B. Henderson-Sellers, \Some metrics for object-oriented software engineering," in Proc. of the International

Conference on Technology of Object-Oriented Languages and Systems, TOOLS 6 Paci�c 1991, pp. 131{139,
TOOLS USA, 1991.

[11] H. Zuse, \Quality measurement { validation of software metrics," in Proc. of the 7th International Software

Quality Week in San Francisco, QW'94, pp. 4{T{2, Software Research, 17-20 May 1994.

[12] J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood, \Issues on the object-oriented paradigm: A question-
narie," tech. rep., Dept. of Computer Science, Univ. of Strahclyde, UK, RR-95-183, June 1995.

17

metric comment
ACm[9] Attribute Complexity/size
CACIm[9] Class Attribute Complexity/size Inherited
CACLm[9] Class Attribute Complexity/size Local
CCm[9] Class Complexity/size
CC

0

m[9] Class Complexity/size, predictive form
CCGI[21] Class CoGnitive Index
CIm[9] Class Method complexity/size Inherited
CLm[9] Class Method complexity/size Local, equivalent to CMm

CMm[9] Class Method complexity/size (pure functional) equivalent to CLm
CMICIm[9] Class Method Interface Complexity/size Inherited
CMICLm[9] Class Method Interface Complexity/size Local
DIT [20] Deep Inheritance Tree
ECD[21] External Class Description
Ha[16] Halstead metric
HSCC[10] Class Complexity by Henderson{Sellers
LOC number of Lines Of Code
Mc[17] McCabe ciclomatic Complexity
MCm[9] Method Complexity/size
MICm[9] Method Interface Complexity/size
NA Number of Attributes of a class
NAI Number of Attributes Inherited of a class
NAL Number of Attributes Locally de�ned of a class
NAM Number of Attributes and Methods of a class
NCL Number of CLasses
NKC[22] Number of Key Classes
NM Number of Methods of a class
NMI Number of Methods Inherited of a class
NML Number of Methods Local of a class
NOC[20] Number Of Child
NRC[9] Number of Root Classes in the system class tree
NSUB [21] Number of SUBclasses of a class
NSUP [21] Number of SUPerclasses of a class
SCm[9] System Complexity/size
Size2[6] Number of class attributes and methods
Tm[18] Total m-based functional Complexity
TJCC [19] Class Complexity
WMC [20] Weighted Methods for Class, equivalent to CLMc in our notation

Table 3: Glossary of the metrics mentioned in this paper. Metrics with m parameter are evaluated on the
basis of a functional metric selected from: Mc, Ha or LOC; for example: CCMc Class Complexity/size
based on McCabe ciclomatic Complexity.

18

[13] S. C. Bilow, D. Lea, K. Freburger, and D. deChampeaux, \Workshop on: Processes and metrics for ob-
ject oriented development," in Proc. of OOPSLA'93, Conference on Object-Oriented Programming Systems,

Languages, and Applications, (Washington, DC, USA), 26 September-1 October 1993.

[14] V. R. Basili, L. Briand, and W. L. Melo, \A validation of object oriented design metrics as quality indicators,"
tech. rep., Dept. of Computer Science University of Maryland, UMIACS-TR-95-40, College Park, MD, 20742
USA, April 1995.

[15] C. F. Kemerer, \An empirical validation of software cost estimation models," Communications of the ACM,
vol. 30, pp. 416{429, May 1987.

[16] H. M. Halstead, Elements of Software Science. Elsevier North Holland, 1977.

[17] T. J. McCabe, \A complexity measure," IEEE Transactions on Software Engineering, vol. 2, no. 4, pp. 308{
320, 1976.

[18] F. Fioravanti and P. Nesi, \Tool for analyzing c++ code (ver.2.0)," tech. rep., Dipartimento di Sistemi e
Informatica, Facolta` di Ingegneria, Universita` di Firenze, RT 21/97, Florence, Italy, 1997.

[19] D. Thomas and I. Jacobson, \Managing object-oriented software engineering," in Tutorial Note, TOOLS'89,

International Conference on Technology of Object-Oriented Languages and Systems, (Paris, France), p. 52,
13-15 Nov. 1989.

[20] S. R. Chidamber and C. F. Kemerer, \A metrics suite for object oriented design," IEEE Transactions on

Software Engineering, vol. 20, pp. 476{493, June 1994.

[21] F. Fioravanti, P. Nesi, and S. Perlini, \Assessment of system evolution through characterisation," tech. rep.,
Submitted to IEEE ICSE98, and also Tech. Rep. Dipartimento di Sistemi e Informatica, Facolta` di Ingegneria,
Universita` di Firenze, RT 22/97, Florence, Italy, 1998.

[22] M. Lorenz and J. Kidd, Object-Oriented Software Metrics, A Practical Guide. New Jersey: PTR Prentice
Hall, 1994.

[23] B. Henderson-Sellers, \Identifying internal and external characteristics of classes likely to be useful as structural
complexity metrics," in Proc. of International Conference on Object Oriented Information Systems, OOIS'94

(D. Patel, Y. Sun, and S. Patel, eds.), (London), pp. 227{230, Springer Verlag, Dec. 19-21 1994.

[24] M. Campanai and P. Nesi, \Supporting object-oriented design with metrics," in Proc. of the International

Conference on Technology of Object-Oriented languages and Systems, TOOLS Europe'94, (Versailles, France),
7-11 March 1994.

[25] T. P. Hopkins, \Complexity metrics for quality assessment of object oriented design," in Software Quality

Management II, VOL.2 Building Quality into Software (M. Ross, C. A. Brebbia, G. Slaples, and J. Slapleton,
eds.), pp. 467{481, Computational Mechanisms Press, 1994.

[26] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. New York, USA: Jhon Wiley &
Sons, 1987.

[27] D. W. HosmerJr and S. Lemeshow, Applied Logistic Regression. New York, USA: Jhon Wiley & Sons, 1989.

[28] S. R. Chidamber and C. F. Kemerer, \Towards a metrics suite for object-oriented design," in Proc. of OOP-

SLA'91, 6th Conference on Object-Oriented Programming Systems, Languages, and Applications, ACM SIG-

PLAN NOTICES VOL. 26, N.11, (Phoenix, USA), October 1991.

19

Contents

1 Introduction 1

2 Taxonomy of Object-Oriented Metrics 3

3 Overview of Object-Oriented Metrics 5

3.1 Method Level Metrics . 5
3.2 Class Level Metrics . 6

3.2.1 Complexity/Size Metrics . 6
3.2.2 Prediction of Complexity/Size . 7
3.2.3 Class Relationship Metrics . 8

3.3 System Level Metrics . 8

4 Controlling Object-Oriented Development 9

4.1 Collecting Low-Level Measures . 10
4.2 De�ning and Collecting High-Level Metrics . 11
4.3 Visualizing Results . 12

4.3.1 Pro�les . 12
4.3.2 Histograms . 13

4.4 Validating and Tuning Metrics . 14
4.5 Experiments on E�ort Evaluation and Prediction . 16

5 Discussion and Conclusions 16

20

