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Summary

Formal methods should be adopted since the early phases of the system development to

reduce failures in the final software product.

In the specification phase, many languages/formalisms could be used to specify the
system under development. For real-time systems, where the specification is focussed on
modelling system behavior in response of external stimuli, one of the possible approaches
consists in using logical statements to describe what the system has to do.This is a dif-
ferent modalityof specification with respect to operational approaches which are based on

producing descriptions focussed on how the system does certain operations.

For the specification of real-time systems formal frameworks are typically used. A formal
framework is based on a formal model that allow representing the system under specification
and a set of tools aids the model verification. Two kinds of specification verification can be

present: verification by using property proof and verification by simulation.

Verification by using property-proof permits to prove properties for the system. For
example, given the specification of a system it permits to demostrate if a deadlock will
never happen. Property-proof is particularly important for safety-crytical systems where
some critical situations have to be absolutelly avoided. In a framework based on a logical

language, properties and the specification are expressed using the same logic language.

To prove a property means to demonstrate the property by using the logical specification.
To this extent, theorem provers could be adopted to mechanically derive these proofs or at

least to aid the user in such a work.

Temporal logics are extensions of propositional/first order logics to deal with time con-
straints, such as ordering of events (i.e., one event has to occur before another) or quanti-
tative constraints (i.e., something has to occur within 10ms). In the past, many temporal
logics were presented: in particular TILCO (Temporal Interval Logic with Compositional

Operators) is specifically suitable for real-time systems specification.

Temporal logics are well suited to describe temporal constraints while they are not



particularly appropriate to describe system structure. For this reason, CTILCO (Com-
municating TILCO) has been introduced as an extension of TILCO. CTILCO describes
the system as a set of communicating processes where each process can be furtherly de-
composed or specified by using TILCO to express its behavior. This approach defines a
composition/decomposition specification methodology supported by verification. CTILCO
permits specification reuse (in the same project or in other projects). Moreover, a syn-
chronous communication model has been defined in TILCO and communication theorems
have been proved to permit to demonstrate properties concerning communicating processes.

Even if TILCO is well suited for real-time systems specification it has been furtherly
enhanced with new operators to simplify the expression of temporal constraints (TILCOX).
To this end, a new proof system has been developed within the Isabelle/HOL theorem
prover.

As already mentioned property-proof is not the only validation support used during the
specification, even simulation could be adopted. With system simulation the behavior of
the system (or part of it) is tested to see its response to certain stimuli. In this case, only a
small part of the system behavior is tested. Simulation is naturally used with operational
specification languages (state machines, Petri nets, etc.), while simulation or execution is
not natural for denotational formalisms such as logical specification languages. In these
languages, given the history of inputs, execution means to find the history of outputs which
satisfy the specification. Some problems may arise, (i) the history of outputs could not be
univocally determined; (ii) the specification could be partial, that is the value of an output
may not be specified in some instants; (iii) the value of an output may depend on the value
of a future input (non-causal specification).

The execution of specifications formalized in temporal logics may not be limited to
system simulation; in some cases, it may be used even for system implementation when
some temporal constraints are satisfied and the specification is complete and causal. In
traditional approaches, the system hardware executes a program written in a programming
language as C, C++, Ada. This source-code is generated from an executable specification
(i.e., Petri nets) and generally it uses services of the operating system for time scheduling
of the actions to be done.

In our approach the system hardware executes a general inferential engine that given
the specification and inputs, produces the outputs. The problem in this case is to produce
the outputs at the correct time.

An executor for propositional TILCO and TILCOX has been developed. Specifications
written in TILCO and TILCOX are translated in a simple temporal logic (BTL) with only

and, or, not and delay operators and transformed in a temporal inference network. For



such a network, inference rules have been defined to infer from the input values the output
values.

As regard real-time execution, it has been found that for a causal specification the time
needed to produce the outputs at a time ¢ knowing the inputs at time ¢, t — 1, ¢t — 2,... is
proportional to the number of arcs of the inferential network. Thus the real-time execution
can be feasible depending on the network size and the system hardware. This is a strongly
innovative result in the field of formal methods since there exist only few temptatives of

defining execution engines for non trivial temporal logic specifications.






Chapter 1

Introduction

Techniques for specifying reactive as well as real-time systems are in the focus of interest of
many researchers. In such systems, relevant failures are caused by violations of conditions
on temporal constraints (i.e., deadline, timeouts, etc.). It has been often demonstrated that,
even for large applications, the adoption of formal methods since the early phases of the
development life-cycle reduces failures of the final product. Moreover, formal specification
models are effective if they are supported by verification and validation techniques to ensure

the correctness of system specification since the early phases of system development.

1.1 Reactive and Real-Time Systems

For specification models, three different aspects must be considered: the structural, the
functional and the behavioral aspects [69], [146]. The structural aspect refers to the system
decomposition into sub-systems. The functional aspect has to do with the transformational
activities (on data) performed by individual software components. The behavioral aspect
(i.e., the system dynamics) refers to the system reaction to external stimuli and internally
generated events, either synchronously or asynchronously. The systems in which the be-
havioral aspect is relevant are usually denoted as reactive; real-time systems belong to this
category. A reactive system has been defined in [88] as:

“A system that has some ongoing interaction with its environment”.

Since reactive systems must maintain this continuous response rather than generating
a final result on termination, they are considered safety-critical because an error, in some
contexts, can cause security problems.

The reaction to external events is the primer purpose of the system requirements (the

timing of these responses is also critical). This response consists in the sequence of states or



events that the system produces during its operation. The wide number of these sequences
provokes that to trace requirements specifications is very difficult.

Reactive systems are often concurrent and distributed. A reactive system usually ex-
ecutes concurrently with its environment and, independently of the purpose of the total
system requirements, is composed of different processes that run in a concurrent manner.
Each component of the system must be specified and verified in terms of the interactions it
has with the other components.

Real-time properties are often significant in reactive systems. Real-time systems are
a subset of reactive systems because the reactiveness consideration does not necessarily
include the explicit notion of time. A real-time system has been defined in [88] as:

“A system that must satisfy explicit (bounded) response time constraints or it will fail.”

Real-time systems must generate correct responses subject to bounds on temporal con-
ditions, producing events depending on a specific delay or deadline. Formal methods are
advocated to satisfy safety-critical properties in real-time systems [138], for detecting and
preventing incompleteness and inconsistencies of their external specification and communi-
cation subsystems (with special attention to timing constraints [139],[89] and providing the
basis for a systematic approach [142], [35]), and being integrated by a methodology in all

stages of the development process.

1.2 Formal Methods

A recent taxonomy for classifying formal methods is based on the extent to which they are
descriptive, operational or dual (that is a mixture of descriptive and operational). Opera-
tional techniques are those which are defined in terms of states and transitions; therefore,
they are intrinsically executable. Descriptive techniques are based on mathematical nota-
tions (axioms, clauses, etc.) and produce precise, rigorous specifications, giving an abstract
view of the state space by means of algebraic or logic equations. These can be automatically
processed for verifying the completeness and the consistency of the specification, by proving
properties by means of automatic tools. Dual techniques tend to integrate both descrip-
tive and operational capabilities, allowing the formal specification by means of clauses or
other mathematical formalisms as well as the execution of specifications based on state dia-
grams or Petri nets. Descriptive methods usually fail in modeling structural and functional
aspects, but they are suitable for describing system behavior. Operational methods are
intrinsically suitable for modeling system behavior in detail, even if they lack in mathemat-
ical foundation for describing system behavior at the needed level of abstraction in order

to allow validation (i.e., the proving of a required property) without simulation. For dual



techniques, the main problem is the formal relationship between operational and descriptive
notations, which should be interchangeable.

In the literature, there are many other classifications according to which tools are divided
in process-, data-, control-, and object-oriented [51] or in model-, and property-oriented
approaches [146], [66]. In [150], Zave has made a classification by considering the degree
of formalism with respect the degree of descriptiveness/operationality. This resulted in a
plot having in the abscissa the formal-informal range, and in the ordinate the descriptive-
operational range.

Some researchers [35], [12], have developed relevant criteria for evaluating and comparing
formal specification methods, that can be helpful to select the most suitable method for an

specific software application.

1.2.1 Mathematical Supports

In this section, the most frequently used mathematical supports for reasoning on communi-
cating concurrent processes are briefly discussed. In the late 1970s, Hoare, with his work on
CSP (Communicating Sequential Processes) [74], [76], and Milner, with his work on CCS
(Calculus of Communicating Systems) [103], have posed the bases for the verification and
validation of concurrent systems. The relationships among these two models have been dis-
cussed in [32]. Until [74], several methods for specifying communicating sequential processes
were widely used, including semaphores [49], conditional critical regions [73], monitors and
queues (concurrent Pascal) [31], etc. As observed in [74], ‘most of these are demonstrably
adequate for their purpose, but there is no widely recognized criterion for choosing between
them’. This consideration led Hoare to attempt to find a single simple solution to all those
problems. In the light of the subsequent evolution, CSP is considered as a first rigorous

approach to the specification of concurrent systems.

The mathematical bases of CSP have been widely used for defining and analyzing con-
current systems regarded as processes communicating via channels [76]. For this reason,
the CSP model is denoted as process-oriented, and each process is modeled as a sequential
machine. The communication mechanism is completely synchronous — i.e., the transmit-
ter/receiver is blocked until the receiver/transmitter is ready to perform the communication.
In the CSP notation, sending a message e on a channel ¢ is denoted by c/e, while receiving a
message e from a channel ¢ is denoted by c?e. This syntax and communication model have
been frequently used for defining programming languages (e.g., Occam) and specification
tools. In CSP model constructs for modeling parallel (]|), sequential (>>), and interleaved

(l) executions of processes are also defined [76].



Given its popularity, the original CSP model [74] has been expanded in many ways,
resulting in a set of models of increasing complexity: the Counter Model, the Trace Model,
the Divergence Model, the Readiness Model, and the Failure Model [106], [114], [75], [76],
[104]. The Failure Model can be profitably used for reasoning about the safety and liveness
conditions of the system under specification, even in the presence of divergent models (i.e.,
having an infinite number of states) and non-deterministic processes [15], [76]. The Trace
Model can be used to analyze the history of events on the system channels, and for verifying
if the system satisfies abstract descriptions of system behavior. For these reasons, CSP is
an appropriate basis for both operational and descriptive approaches.

The CSP model does not comprise the concept of time and, thus, the system valida-
tion does not take into account timing constraints. For these reasons during the 1980s
many extensions have been proposed for adding time support — e.g., CSP-R [84] (where
time managing is added by means of WAIT ¢ instruction), Timed CSP [129] (where time
managing is added by means of the special function delay()), CSR (Communicating Shared
Resources) [62] and in the CRSM (Communicating Real-time State Machines) [135] (where

time is added by means of time bounds on executions and inputs/outputs), etc.

The syntax and semantics of CCS are based on the concept of observation equivalence be-
tween programs: a program is specified by describing its observation equivalent class which
corresponds to the description of its behavior. This is given by means of a mathematical
formalism in which variables, behavior-identifiers and expressions are defined. Behavior-
identifiers are used in behavior expressions where the actions performed by the system
are described. This makes the CCS model quite operational as pointed out in [103] and
[113]. This model is based on an asynchronous communication mechanism. The CCS model

provided the ground for several models proposed in the late 1980s — e.g., [25].

It should be noted that, the fact that the CSP model is strictly synchronous is not a
limitation. In fact, by means of synchronous communicating state machines, asynchronous
communications can also be defined. This is done through buffers of infinite capacity which
are modeled as state machines as in [135]. In a similar manner, synchronous communications
1:1 (one sender and one receiver) can be expanded to 1:N communications (one sender and

N receivers).

1.2.2 Operational Approaches

Operational approaches describe the system by means of an executable model [2], [149]. The

model can be mathematically verified (for consistency and completeness) by using static



analysis, and validated by executing the model (i.e., simulation). Operational approaches
can be divided in two categories.

The first category comprises languages and methods which are usually based on transition-
oriented models, such as state machines [19] or Petri nets [130], that is, models naturally
oriented towards the description of system behavior.

The second category includes methods which are based on abstract notations particularly
suitable for supporting the system analysis and design (system (de)composition). In these
cases, the notations are mainly oriented towards the description of system structure and/or
functionality. For this reason, these notations are usually associated with guidelines for
system analysis/design and are regarded as methodologies. However, most of them do
not model system behavior and, thus, cannot be directly used for system simulation and
specification execution. Moreover, since these methods have been developed by starting
from visual notations, they lack in formalism and are usually considered as semi formal.

For example, SDL is an integrated operational tool for software specification used in the
telecommunications field, providing both visual and textual representations of its syntax.
In SDL, the system under specification is regarded as a block which can be decomposed
in sub-blocks, thus modeling the structural aspects of the system. Blocks communicate
asynchronously by means of strongly typed channels. The language provides support for
defining new types of messages modeled as ADTs (Abstract Data Types) [64], [65]. A block
can be decomposed in sub-blocks or in a set of communicating processes. A process is
implemented as an extended state machine, where the communication semantics is defined
by means of a single buffer of infinite length for each state machine. SDL state machines
are a mixture of state diagrams and flow charts; in fact, they present states, transitions
and selections (equivalent to the “if” statements of high-level languages). In SDL state
diagrams, reading of inputs and writing of outputs, as well as the execution of assignments
and procedures can be associated with each transition. Reading should always precede
writing, since inputs usually represent the condition for transition. If no input reading is
defined, the change of state is always performed. For example, the exiting from the initial
state is usually performed without reading any input.

In SDL, timing constraints are modeled through timers. A timer can be considered as a
separate process which is able to send messages. A process can have a set of timers, which
can be set, read or reset. For example, an SDL state machine that must satisfy a timeout
must set a timer and then wait for the message signalling its occurrence. To this end, the
state machine must be able to receive input messages from the timer in all its states, and a
transition from a state to the next cannot be interrupted. As a result, definition of deadlines

may result in somewhat complicated expressions. SDL permits the dynamic generation of
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processes. For the above reasons, the behavior of an SDL specification can be non com-
pletely deterministic. In order to manage the problems of real-time in telecommunications
supporting functional, behavioral and structural aspects, several extensions of SDL, such
as [30], [54], have been presented.

1.2.3 Descriptive Approaches

Descriptive approaches are based on mathematical notations (axioms, clauses, set theory,
etc.) and produce precise, rigorous specifications, giving an abstract view of the system
state space. The system is described by specifying its global properties, forcing the analyst
to specify what must be done by the system rather than how it must be done. Descriptive
specifications can usually be automatically processed for verifying their completeness and
consistency. Moreover, a specification can also be validated by proving that high-level
properties are verified by the specification itself. This is performed by means of theorem
provers or Prolog engines. Since most of these are not enough efficient and predictable
(from the performance point of view), descriptive approaches are not considered adequate
for producing executable real-time specifications. Some descriptive languages have been
enriched with primitives for dealing with time, making them suitable for specifying real-
time systems.
Descriptive approaches can be divided in two categories:

e Algebraic methods are based on the concepts of Abstract Data Type (ADT) [64],
[65]. Algebraic methods have been used for defining abstract data types in conventional
applications [111]; later on, they have been employed for specifying reactive systems and
communication protocols [141]. In these languages, state variables are modeled by means
of axioms, which in turn are functions of the axioms of other ADTs. Most of the algebraic
methods allow to specify the system at different levels of abstraction, starting from a coarse
description and arriving at the most detailed one. For these methods, the system itself is
regarded as an ADT, and its specification consists in describing its syntax and semantics.
The syntax definition gives the description of the operator domains of the ADT, while
the semantics is given by an implementation of these operators by means of mathematical
expressions. Semantics is often defined by writing a set of axioms with a language based
on first-order logic. Complex abstract data types are defined on the basis of simpler ones;
hence, the semantics of complex types is specified by using the axioms of simple types, and
thus the behavior of complex types can be again validated by using the axioms of the simple
types. This allows to verify the specification correctness at each level of specification detail.

The completeness can be verified when it is proven that a defined property is verified
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by the axioms of the system. This confers a descriptive rather than the operational nature
to these approaches, although the ADT behavior can be in many cases translated in state
machines. The operational descriptions are distributed among the operators and, therefore,
they are not simply executable.

e Logical methods describe the system under specification by means of a set of logic
rules, specifying how the system must evolve from certain conditions. Differently from
the operational methods, the state space described by these specifications is limited and
abstract. Rules can be given in the form of first-order clauses of Horn or higher-order
logical expressions [91]. These languages are unsuitable for representing the structural
aspect of a system, but are very appropriate for describing properties of the system under
specification. Validation consists in proving high-level properties, which are also given in
the form of logical expressions, by means of theorem solvers or Prolog engines. Simulation
is also based on the same techniques.

In the literature, there are many examples of logic languages for the specification of
relationships among times and actions. These are often integrated with other techniques
addressing also the functional and/or the structural aspects of the system under specifica-
tion — e.g., RT-ASLAN (Real-Time extension of ASLAN) integrates the first-order logic
with the ADT [14], RTL (Real-Time Logic) is a formal language to describe the temporal

relationships among events and actions [80], etc.

1.2.4 Dual Approaches

Dual methods [115], [55] try to integrate in a single approach the formal verifiability of de-
scriptive approaches and the executability of operational approaches, though they are often
in contrast, especially as regards the reuse and the verification of software specifications.
One of the first examples of dual approach can be considered the Transition Axiom
Method proposed by Lamport [87], [86]. In this method, the specification is equivalent to
a state machine, on which the proof of high-level properties given by means of axioms can
be verified. ESM/RTTL is a dual approach obtained be the integration of ESM (Extended
State Machine) language and RTTL (Real-Time Temporal Logic) [118], [115]. RTTL is a
logic language based on the classical operator of temporal logic: until (M), and nezt (®).
From these the more useful operators of: eventually (<), henceforth (O), etc., are derived.
RTTL can be used to describe high-level properties of the system under specification by
means of first-order logic formulae. The integration between RTTL and ESM is obtained
by describing the high-level behavior of the system with first-order expressions in which

conditions for transitions containing RTTL expressions can be also present. Both RTTL
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Class sluice_gate
visible go, position
temporal domain integer

TD Items
Predicates go({up,down})

vars position: { up, down, mvup, mvdown }

TT Items _
vars A : integer

axioms
vars t: integer

go_down: position=up A go(down) — Lasts(position=mvdown,A) A Futr(position=down,A)
gp-up: position=down A go(up) — Lasts(position=mvup,A) A Futr(position=up,A)
move_up: position=mvup A go(down) — 3t ( NextTime(position=up,t) A
Futr(Lasts(position=mvdown,A) A Futr(position=down,A)t )
move_down: position=mvdown A go(up) — It ( NextTime(position=down,t) A
Futr(Lasts(position=mvup,A) A Futr(position=up,A),t )
end sluice_gate

Figure 1.1: Textual description of the class sluice_gate in TRIO+.

reservoir’

actuator? mputGate
openlnput } open go }
closelnput 3 close lposition

Figure 1.2: Visual description of class reservoir! comprised of actuator! and inputGate
objects in TRIO+.

and ESM formulae can refer to the absolute time value.

TRIO+ (TRIO object-oriented) is a logical language for modular system specification
[92], [93] extending TRIO (see with object-oriented capabilities. It is based on a first-order
temporal language, providing support for a variety of validation activities, such as testing,
simulation and property proof. TRIO+ is considered a dual language since it combines
the use of visual notation, hierarchical decomposition (typically of operational approaches),
with the rigor of the descriptive logical language. In Fig.1.1, the example of a pondage power
station is reported, where the quantity of water held in the tank is controlled by means of a
sluice gate. The gate is controlled by the commands: up and down which respectively open
and close the gate. These are represented by a predicate go having a range { up, down }.
The gate can be in one of the states: up, down, mvUp, mvDown. The state is modeled by
a time-dependent variable named position. Since TRIO+ is based on logic programming,
the object-oriented concept of an instance corresponds to a history of the Prolog interpreter
(that is the history of the status of an object).
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TRIO+ is endowed with a graphical notation that covers only the declarative part of the
language. With this graphic interface the structural aspects can be described, by defining
the components of a class and their relationships (see Fig.1.2). TRIO+ is an executable
model which supports the executions of partially defined specifications.

TROL is an object-oriented dual specification language supported by the CASE tool
TOOMS. TROL is one of the first dual specification languages and is based on an extension
of timed CSP — 1i.e., the CRSM [135]. In TOOMS/TROL, the External Specification is
expressed in terms of ports and clauses with temporal constraints. In TROL, the system
under specification is hierarchically decomposed in objects and sub-objects. For these ob-
jects, the behavior can be specified by means of first-order clauses, since the early phases
of decomposition. Moreover, also timing constraints at the external interface of each object
can be defined according to [46]. These constraints can be associated with Provided and

Required services of each class, and to Clauses.

1.3 Specifying with constraints

For real-time systems, both completeness and consistency of the formal specification should
be guaranteed, as well as the satisfaction of system behavior with respect to the timing
constraints defined and the high-level behavioral descriptions. These properties state the
formal criteria of the specification correctness, which can be verified to reduce failures in
requirements, (de)composition and implementation of the system. Toward this end, the use
of formal verification criteria (independently of the verification technique) is recommended
[117].

1.3.1 Completeness and Consistency Constraints

The wverification of completeness and consistency is usually performed statically by control-
ling the syntax and semantics of the model without executing the specification. The system
validation consists in controlling the conditions of liveness (i.e., absence of deadlock), safety,
and the meeting of timing constraints (e.g., deadline, timeout, etc.). It is usually performed
statically in descriptive approaches (i.e., by proving properties) [40] and dynamically in
operational approaches (i.e., by simulation) [33]. The capability of the method for verifying
and validating the system specification (by means of mathematical techniques or simula-
tions) must be analyzed in order to establish if the tools are capable of guaranteeing that the
specification produced exactly matches the behavior of the system under development, with

safety, without deadlocks and by meeting all timing constraints. Please note that the two
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terms verification and validation do not always receive the aforementioned meaning [142],
[24]. For instance, in [142], the most frequently used definitions for verification are reported,
while the term validation is mentioned as “final verification”. A specification is complete
to the extent that its parts are present and fully developed. A specification is consistent to
the extent that its provisions do not conflict with each other or with the general objectives
[24]. More precisely, in the system requirements and (de)composition, incompleteness must
be detected and the consistency of the specification must be guaranteed.

The verification mechanism must also guarantee that the histories constituting external
specifications are correct [71] and that requirements specifications are complete. In [79],
several formal criteria for specification completeness in real-time systems have been pre-
sented. This research has been extended to verify completeness and consistency of systems
requirements using Statecharts and tabular notations [70].

On the other hand, a partial specification of system requirements permit to define the
completeness and consistency constraints of the internal and detailed specification. Please
note that the use of verified and validated External Specifications is the first step for building
the Internal Specification. For system (de)composition, the completeness can be verified by
controlling that a component provide each service required by another component of the
system, all elements are accounted in the specified interactions, and the requirements of
the system assumed by each component are satisfied. Currently, most of the approaches
for formally verifying the system (de)composition differ in the way that components and
connections are specified. Wright [6] semantically states explicit connectors that are formally
specified using CSP. In Rapide[90], events are used to characterize component interaction

and simple connector types are formally verified.

1.3.2 Temporal Constraints

Since this work is focused on real-time systems specification, a particular attention is de-
voted to the expressivity in modeling the temporal constraints (timeout, deadline, etc.)
[138]. At a high level, a formalism can deal with time either in an ezplicit or implicit
manner. In the first case, the language allows the representation of time through variables.
Explicit timing constraints can be expressed in relative or absolute form. When time is ex-
pressed in a relative manner, time durations and deadlines are given in time units. In this
case, the relationship between these time units and the absolute measure of time expressed
in seconds (or milliseconds) is not clear. However, the validation of specifications becomes
almost hardware independent. When time is expressed in absolute form, time durations

and deadlines are directly given in seconds or milliseconds (i.e., the absolute time of the
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clock) and therefore the meeting of timing constraints depends on the context (machine
type, number of processes, workload, etc.).
Real-time system requirements have been expressed quantitatively through three tem-

poral constraints [46]:

e Duration: An event must occur for £ amount of time.

e Minimum Rate: minimum ¢ amount of time must elapse between two consecutive

occurrences of the same event.

e Maximum Rate: maximum ¢ amount of time must exactly elapse between two occur-

rences of the same event.

Please note that even if this description does not extensively cover all temporal con-
straints, it permits the reasoning about the most important temporal conditions on reactive
systems. These temporal constraints are not mutually exclusive, i.e., both maximum and
minimum time bounds can be associated with the occurrence of two events, which, in turn,
can have specific durations. In turn, these event occurrences must precede or follow the

occurrence of another event which is expressed as the ordering of constraints.

1.4 Methodology and Tools

Methodologies and tools that integrate formal methods with software engineering practices
are playing a role of the major importance in software industry. Numerous formal languages
and tools that have been reported in the previous section are still not an integral part
of a development methodology. In particular, for dual approaches, requiring a massive
verification and validation during the whole system development, there is not a life cycle
defined.

In recent years, most of the formal specification languages, have been extended with
object orientation. This has resulted in specification models which try to retain the best of
the object-oriented paradigm and formal specification techniques.

For these reasons, several languages and tools for modeling the system under specifica-
tion starting from its requirements have been proposed — early examples are [3], [27]. More
recently, the Object-Oriented Paradigm (OOP) has also impacted on several formal speci-
fication languages, in the sense that these have been extended in order to support system

structuring (i.e., (de)composition) and reuse — e.g., [35], [30].
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1.4.1 Object Oriented Methodologies

Conventional methodologies, such as DFD, Entity-Relationships diagrams (ER) [38], etc.,
have been reinterpreted in the context of the object-oriented methodology — e.g., Coad
and Yourdon [43], Rumbaugh et al. (OMT) [132], and Martin and Odell [96]. Of course,
the resulting techniques are influenced by the functional view. More recently, Some “pure”
object-oriented methodologies have also been proposed — e.g., Booch [26], and Wirsf-
Brock et al. Pure object-oriented methodologies focus only on the definition of objects and
relationships among them [105].

In many of the above-mentioned approaches, the system is decomposed into objects for
representing the structural aspects of the system under specification. Object relationships
are defined through extended Entity Relationship diagrams [43], [132] or by using the so-
called Object Diagrams [26], [132], [77], [148]. To support all the features of the OOP, such
as inheritance, polymorphism, aggregation, association, etc., special symbols for Entity
Relationship diagrams or special diagrams, such as Class Hierarchy, have been defined. In
most of the proposed methodologies, system behavior is encapsulated in the implementation
of objects (more specifically in the implementation of class methods). The object behavior is
usually described by means of extended state diagrams or state transition matrices. Shlaer
and Mellor [136], [137] and Booch [26], use a Mealy model; Rumbaugh (OMT) [132] uses a
notation similar to Statecharts, Coad and Yourdon [43] use a state event table.

Furthermore, though many of these methodologies are especially defined for the analysis
and design of reactive systems, some of them are not completely satisfactory for specifying
real-time systems. Usually, these notations only provide support for defining timing con-
straints of the system under analysis, but unfortunately they are not strongly supported
by techniques for verifying the consistency and completeness of time relationships. This
derives from the fact that these methods are not enough formal for supporting a formal

semantics and for defining an executable model of the system.

1.4.2 External and Internal Specification

The adoption of OOP also constrains to better identify the External Interface of each
system component. The specification of the External Interface is usually given in terms
of the External Specification which consists of a set of statements describing the high-level
behavior of the component under specification and the structure of its interface. It should be
noted that the description of the class interface in terms of methods is not able to represent
all the relationships that objects may have with respect to other objects, especially in a

concurrent environment [36], [44], since this does not represent the services that a class of
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objects requires from other objects [147], [144]. In fact, these requests are encapsulated into
the methods body and, thus, they are hidden to the outer objects.

The External Specification is currently approached by specification languages for de-
scribing and analyzing system requirements. The External Specification can be defined
since the early stages of the system development and can be very useful for checking the
class/system/subsystem requirements; checking the system composition; evaluating costs
of reuse; defining validated reference requirements, histories, traces, for the final validation.

According to OOP, a methodology (life-cycle) should supports both top-down and
bottom-up approaches to development. Please note that in both cases the External Speci-
fication of classes can be adopted for helping the user to take the right direction in reusing
classes (adopting, specializing, generalizing), and implementing classes (decomposing, de-
scribing as state machines). On the basis of the External Specification and the development
context, the system (de)composition is described in terms of the Internal Specification .

The Internal Specification is comprised of attributes (communicating objects) and their
connections. A class is decomposed in a set of subparts which in turn are instances of others

classes.

1.4.3 Tool Support

Although many CASE tools support operational methods (SA, ROOM, etc), these must
also support denotational methods as well. To date, model checking techniques are mostly
used (algorithm to verify the trueness and falseness of a specific property) because they are
more easy to use. In this case, there is a need of further research to automatically perform
logical deduction of properties on denotational methods. The formal reasoning of system
properties is a hard task that CASE tools need to automate.

For example, tools — e.g., GEODE [61] — cover all features defined in the so-called SDL
88 (version of 1988). Moreover, for supporting the configuration management, versioning,

and report generator, other instruments are needed.

1.5 Thesis Contributions

This work extends the work done on TILCO temporal logic[97]. In particular, it

e presents a framework for the specification of communicating real-time systems/subsystems;

e extends TILCO with new operators as bounded happen and dynamic intervals to

simplify formulsewriting, and presents a new deductive system;
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e presents an executor of deterministic TILCO specifications, the executor is used for

validation trought simulation or even (if it is possible) for system implementation.

e presents a set of tools developed to support the specification in TILCO and its exten-

sion.

1.6 Organization of the Thesis
This thesis is organized as follows:

e In chapter 2, temporal logics presented in literature in the last years are shortly

reviewed to compare them.
e In chapter 3, TILCO temporal logic is presented in more details.

e In chapter 4, C-TILCO an extension of temporal logic TILCO is presented to deal
with system (de)composition. A model of communication between system “parts” is

presented. A deductive system for C-TILCO is presented.

e In chapter 5, a further extension of temporal logic TILCO is presented to enhance the

expressiveness of the logic and to simplify formula
e In chapter 6, an executor of TILCO/TILCO-X specifications is presented.
e In chapter 6.5, conclusions are drawn.
e In Appendix A, tools developed for TILCO specification are presented.

e In Appendix B and C, Isabelle theories for TILCO-C and TILCO-X are reported.



Chapter 2

Temporal logics for real-time

system specification

In this chapter classical logics are discussed in order to highlight their limitations in express-
ing temporal properties. Temporal logics are presented and the most important features
that characterize the temporal logics are highlighted and some examples are presented. A
selection of temporal logics presented in literature are briefly described and their suitability
for the specification of real-time systems is higlighted. Finally the main features of the

temporal logics considered are reported and discussed.

2.1 From Classical to Temporal Logics

The primary feature of a logic theory is its order, which defines the domain of all formulas
described by the logic: (i) propositional, (ii) first order, (ii) higher order.

Formulae in propositional logic are built on the basis of a set of elementary facts (i.e.,
atomic formulae) by using a set of logic operators (—, A, V, =, < ). Their semantics can be
defined in terms of ¢ruth tables or by inductive rules on the structure of the formula itself.
Each formula can assume a logical value true (T) or false (.L).

The First Order Logic, FOL, adds several extensions to the propositional logic:

e There exists a domain of elements, D, on the basis of which the logical formulae are
built;

e n-ary R; relationships on D can be defined, as subsets of D";
e A n-ary predicate p; is associated with each n-ary R; relationship. The predicate is

19
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a function that for each element of D" gives a value T, if it belongs to an n-ary R;

relationship, otherwise the value L is assumed;

e The operators of FOL are those of propositional logic plus the universal quantifier V

(for all), and the existential quantifier 3 (ezists).

In FOL quantified variables must be elements of D and not full predicates. The pres-
ence of quantification increases the expressiveness of the logic, allowing the description of
existential and generalization relationships.

The Higher Order Logic, HOL, extends the domain modeled by FOL by allowing the

adoption of predicates as quantification variables. For example, the following HOL formula:

VP.3x.P(z),

cannot be written in FOL since it contains a quantifier varying over a predicate P. The

higher expressiveness of HOL makes it suitable for formally describing lower order logics.

2.1.1 Deductive Systems

Classical logics can formalize the deductive process: given a set of true propositions, it is
possible to verify if other propositions are a logical consequence of the early set.

Proving theorems by using formal logic is a process quite different from the human
deductive process. Deductive systems are based on a formalized theory by means of a set
of axioms and deduction rules. This makes possible to define a purely syntax-deductive
system without adopting the concepts of validity and satisfiability, which are typical of the
human deductive process.

In order to profitably adopt a deductive system for proving theorems it is mandatory to
demonstrate that it is complete (i.e., it is possible the construction of a demonstration for
all theorems of the theory), and sound (i.e., each theorem that can be demonstrable with
the logic is a theorem of the logic) [47], [1], [22], [11].

Deductive systems tend to be minimal, as the set of axioms and deductive laws selected
are usually just those strictly needed to describe the logic. Therefore, the process required
to prove other theorems can be complex and long. On the other hand, it is often possible to
use the deductive system to demonstrate new deduction laws and theorems that, in turn,
can be used in other proof processes as the minimum initial set. In this way, a system of

deduction laws that makes the process of proof easier can be built.
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2.1.2 Classical Logic and Time

In general, assertions can be classified as either static or dynamic. Static assertions have a
fixed and time-independent truth value, while the truth value of dynamic assertions is in
some way time-dependent. For example, the proposition 1 < 2 is always true, whereas the

logical value of the proposition:
it 18 raining

is time-varying: sometimes it may be true while at others it may be false. Since the state
of real system changes over time, logic predicates describing the behavior must provide
propositions whose values vary over time. Classical logic can express only atemporal (non-
time dependent) formulas whose validity and satisfiability do not depend on the instant
in which they are evaluated. In other words, time has no role in classical logic; when
a proposition presents a value that changes over time, the time must be modeled as an
explicit variable. For example, if a proposition P has to be true in interval [t + 5, ¢ + 20] we

have to write the formula as
Vx € [t + 5,t + 20].P(x).

This approach makes the writing of time-dependent propositions quite complex. In order to
model the behavior of domains in which the logical value of propositions may vary, modal
and temporal logics were introduced as extensions of classical logic. These approaches

facilitate the specification of temporal relationships.

2.1.3 Modal Logic

In modal logic, the concepts of truth and falsity are not static and immutable, but are, on
the contrary, relative and variable [78]. In modal logic, the classical concept of interpretation
of a formula is extended, in the sense that every modal logic theory has associated with it,
not just a single interpretation, but a set of interpretations called worlds. In each world,
a truth value is assigned to the formulas, similarly to the interpretation of a formula in
classical logic.

A modal logic system is defined by < W, R,V > where: W is the set of worlds; R C
W x W is the reachability relationship between worlds; and V' is the evaluation function for

formulas:

V:FxW —{T,L1},
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where F' is the set of the formulas of the modal theory. V assigns a truth value to every
formula in F' in every world in W.

The forms of W and V' depend on other characteristics of the logic; for example, whether
it is propositional or a FOL. Besides the operators and symbols of classical logic, modal
logic introduces operators L (necessary) and M (possibly). These express the concept of
the necessity and possibility of formulas in the set of worlds reachable from the world in
which the main formula is evaluated.

The semantics of a modal logic can be formally given on the basis of an evaluation
function V', which is inductively defined over the structure of the formula to be evalu-
ated. Omitting the definition of the part about classical logic, V is defined over the modal

operators L and M as follows:
e V(IMf,w)=T iff v € WwRv = V(f,v);
o V(Lf,w)=T iff Vo € WwRv = V(f,v).

In other words, formula M f is true in a world w if and only if there exists a world v
reachable from w, where subformula f is true; formula Lf is true in w if and only if in all
worlds reachable from w subformula f is true. Modal operators L and M have a simple
interpretation as quantifiers defined over the set of reachable worlds from the current world,
namely: M is an existential quantifier, while L is a universal quantifier. It is easy to see

that the following relation holds between operators L and M:
Lf=-M-f.

The features of a modal logic < W, R,V > are strictly connected to the relationship that
determines the structure of the set of worlds. The interpretations of relationship R may
be several: R can represent how a set of classical theories are correlated; for example, in a
non-monotonic logic the elementary truth and the deducible facts can change dynamically.
In the context of temporal logics the most interesting interpretation for relationship R is the
relation nezt instant. In this way, the worlds are the set of configurations that the system
modeled may assume in successive time instants. In this case, the modal logic can be quite
profitably used for the study of temporal properties of systems, and for this reason takes

the name temporal logic.

2.1.4 Temporal Logic

Temporal logics are particular modal logics where the set of worlds W is interpreted as the

set of all possible instants T' of a temporal domain.
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Usually temporal logics are built as extensions of classical logic by adding a set of new
operators that hide quantification over the temporal domain. Temporal logics presented in
the literature are principally obtained by extending propositional or FOL; rarely has the
extension started with HOL.

As in modal logic, where the world in which the formula is evaluated is referenced,
in temporal logic the evaluation instant of a formula is used. The value of a formula is
a dynamic concept. Therefore, the concept of formula satisfiability must be modified to
consider both the interpretation of a formula and the instant of the evaluation.

Generally temporal logics add four new operators with respect to classical logics [127]:

e G, always in the future;
e F eventually in the future;
e H . always in the past;

e P, eventually in the past.
These can be formally defined:

e V(Gf,t) =T iff Vse Tt <s= V(f,s);
e V(Hf,t) =T iffVseT.s<t=V(f,s);
o Ff=-G-f;

e Pf=-H-f.

These operators can express the concepts of necessity (G, H) and possibility (F, P)
in the future and in the past, respectively. Often in temporal logics these operators are
represented by other symbols: O (always) denotes G and < (eventually) denotes F. For
past operators (if they are present), symbol B denotes H and 4 denotes P.

If relation < is transitive and non-reflexive, it is possible to introduce two other binary

operators:

e until (in some cases represented with ), with ¢juntil ¢ that is true if ¢o will be

true in the future and until that instant ¢ will be always true;

e since (in some cases represented with S), with ¢;since ¢ that is true if ¢ was true

in the past and since that instant ¢; has been true;
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The semantic of these operators can be formally defined as follow:

o V(fiuntilfo,t) =T if Js € Tt < sAV(fo,s) AVu e Tt <u<s=V(f1,u);

o V(fisincefo,t) =T iff Is € T.s <t AV (fy,8) AVu € T.s <u <t = V(f1,u).

Note that operator until (since) does not include the present instant in the future (past).
The introduction of operators until and since is relevant since these operators can express
concepts that cannot be expressed with the operators G, H, F and P. On the contrary,

these last operators can be defined in terms of until and since:
e F¢ = Tuntilg;

e P¢ = Tsinceg;

and
¢ Go=~Fiy

If the temporal logic has the begin property (e.g., stating that the temporal domain is
bounded in the past as discussed in the sequel), the operator until is enough to complete
the logic expressiveness: when the past is limited the operator since is not necessary.
Relationships among events in the past can be expressed by using until starting from the
beginning of time (from a fixed reference time instant).

Other common operators are next and prev, represented with O and @, respectively.

These operators are unary and can be defined in term of until and since operators:

e O¢ = Luntilg

e ®) = lsince¢

These two operators assume different meanings depending on the time structure — e.g.,
discrete or continuous — or whether the logic is event-based.

The presence of distinct operators for past and future simplifies the specification model:
since with their use formulas can be easily written — for instance, evaluating the past and
describing the future. On the other hand, this distinction is only a convention, since in

most temporal logics formulas can be easily shifted to the past or to the future.
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2.2 Main Characteristics of Temporal Logics

This section presents the evaluation criteria used to compare the temporal logics discussed
in the following sections. We provide a taxonomy to classify and evaluate the suitability
of temporal logics used for specifying real-time systems. Temporal logics are typically used
in the phases of requirements analysis, advanced analysis, specification, and more recently,
even for execution. They focus on modeling system behavior rather that functional or
structural aspects [35]. Structural aspect refers to system decomposition into subsystems
(modular temporal logics). Functional aspect deals with the data transformation of the
system. Behavior refers to the system reaction to external stimuli and internal events, a
critical aspect of reactive and real-time systems.

To use temporal logics for real-time system specification, it is necessary to evaluate their
expressiveness in modeling the typical requirements of such systems and of the constraints
needed to express the specification. Typical temporal constraints can be divided in two
main categories: (i) events and event orderings; (ii) quantitative temporal constraints.

The following paragraphs discuss the most important features of temporal logics and

the criteria used to identify their general characteristics and properties.

2.2.1 Order of Temporal Logic

The order of a temporal logic is the order of classical logic on which the temporal logics
is constructed. This characteristic dictates the set of formulas that the temporal logic
can express. A higher order implies greater expressiveness but more complex formulas,
and frequently, the logic itself is less complete and decidable. For instance, propositional
temporal logics are less expressive than higher order logics, but often propositional temporal
logics are decidable and their decision procedures have a tractable complexity; whereas
higher order logics are more expressive but much more complex. First order temporal
logics usually permit one to write quite expressive formulas without overly increasing the

complexity of the logic.

2.2.2 Temporal Domain Structure

As stated in Section 2.1.3, the main properties of a modal logic, and then of a temporal
logic, are related to the properties of relation R; the next section will show the structure of
temporal domains derived from properties of relationship R. For temporal logics relation R
is called a precedence relation and is denoted by <. Properties that bear on the temporal

domain structure are:
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transitivity Veyzx <yAhy<z=z<z2
non-reflexivity Vz.nz <z

linearity Veyrx <yVrz=yVy<cz

left linearity Veyzy<zAhz<z=>y<zVy=zVz<y
right linearity Vzyzax<yAz<z=y<zVy=zVz<y

begin Jr.—Jyy <z

end Jz.—Ayx <y

predecessor Ve.dyy <z

successor Vedy.x <y

density Veyr<y=3Jzzx<z<y

discreteness (Vezy.z <y=3Jzx <zA-Juzx<u<z)A

(Vzyx <y=3Jzz <yA-TJu.z <u<y)
Usually < is a transitive and non-reflexive relationship; hence it is a partial ordering on
time instants.
The property begin (end) states that the temporal domain is bounded in the past (future)
[67], [101], whereas the property predecessor (successor) shows that the temporal domain

is unlimited in the past (future). In fact, the following equivalencies hold:
(Fz.mFy.y < z) & ~(Vz.Ty.y < z)
(Fz.mFy.z <y) & ~(Vz.Jy.z < y)
A temporal domain is dense with respect to relationship < if between two instants there

is always a third. On the contrary, the temporal domain is discrete if there exist two instants

between which a third cannot be determined.

Figure 2.1: Representation of linear temporal domains.

If the precedence relation is linear then we have a linear temporal structure that corre-
sponds to the intuitive notion of time. This is the simplest type of temporal structure. In
this case, the precedence relation is a total order on time instants. Figure 2.1 shows the
temporal domain for a linear temporal structure with a unlimited past and future, with
only a unlimited future and with only an unlimited past. If the time structure is linear
and discrete, a state of the system can be associated with each time instant. If the time is

dense, the logic must be event-based to support a state-based semantics.
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Figure 2.2: A non linear structure in the future.

When the precedence relation, <, is only linear on the left, the temporal structure is
more complex: branches can exist in the future (in other words, more than one future can
exist for each instant), but there exists only one past (see Figure 2.2). If the time is discrete
and its structure is branched a next state exists but it cannot be unequivocally determined.

Temporal structures with branches in the past are also possible. If no hypotheses are
made about linearity, branches in the future and in the past are possible.

The order relation of the structure is usually transitive and non-reflexive. The temporal
domain may be limited in the past and/or in the future or unlimited, and it may be dense or
discrete. Thus, the temporal structure may be linear or branched in the past and/or in the
future. These properties have implications for the decidability of the logic, its executability,

and the style used to write formulas.

2.2.3 Fundamental Entity of the Logic

A basic way to characterize temporal logics is whether points or intervals are used to model
time. This also influences the expressiveness of the logic.

Point-based temporal logics express relationships among events in terms of points.
Point-based logics define intervals as connected set of points. In point-based logics it is
more difficult to express relationships between intervals in which certain events are veri-
fied. Time durations are expressed by using quantifications over time. Logics based on
time points [94], [131] specify system behavior with respect to certain reference points in
time; points are determined by a specific state of the system and by the occurrence of
events marking state transition. In order to describe temporal relationships, the operators
O (henceforth) and < (eventually) are usually adopted to specify necessity and possibility,
respectively.

Interval-based temporal logics (interval logics) are more expressive since they are ca-

pable of describing events in time intervals and a single time instant is represented with



28

a time interval of one. Usually interval-based logics permit one to write formulas with a
greater level of abstraction and so are more concise and easy to understand than point-
based temporal logics. In the case of time intervals [133], [134], [110], [67], [68], [85], [101]
[128], formulae specify the temporal relationships among facts, events, and intervals, thus
allowing a higher level of abstraction for system specification. Interval-based logics usually
present specific operators to express the relationships between intervals (meet, before, after
[4]), and/or operators for combining intervals (e.g., the chop operator [131]), or operators
to specify the interval boundaries on the basis of the truth of predicates [101].

The qualitative relationships that may hold between intervals as classified by Allen in

[5] are represented in Figure 2.3.

A
B B before A B after A B
B B meets A B metby A B
B B overlap A B overlappedby A B
B B finishedby A
B B startedby A

B B starts A

B B finishes A

B B contains A

B B equals A

B B during A

Figure 2.3: Possible relationships between two intervals.

The relationships among time points or intervals are typically qualitative, but quantita-
tive temporal logics are preferable for the specification of real-time systems (e.g., RTL [80],
MTL [82] and TRIO [63], TILCO [98]).

2.2.4 A Metric for Time and Quantitative Temporal Constraints

The presence of a metric for time determines the possibility of expressing temporal con-
straints in a quantitative form in the logic formulas; without a metric for time only temporal-

order relations can be expressed (qualitative temporal logics).
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The temporal operators presented in Section 2.1.4 are qualitative since it is not possible
to give an exact measure (i.e., duration, timeout) for events and among events. Temporal
logics without a metric for time adopt a time model for which the events are those that
describe the system evolution (event-based temporal logics). Each formula expresses what
the system does at each event, events are referred to other events, and so on: this results
in specifying relationships of precedence and cause-effect among events.

Temporal logics with a metric for time allow the definition of quantitative temporal
relationships, — such as distance among events and durations of events, in time units. The
expression of quantitative temporal constraints is fundamental for real-time systems spec-
ification. It is necessary to have a metric for time if the temporal logic has to be used to
express the behavior of hard or non-hard real-time systems. A typical way for adding a

metric for time is to allow the definition of bounded operators — for example:
QunA

for stating that A is eventually true from 4 to 7 time instants from the current time, or
05514 which means that A is eventually true within 5 time units. A different method is
based on the explicit adoption of a general system clock in the formulas (see section 2.2.6).

A different way to manage time quantitatively is to adopt the freeze quantifier [7],
which allows only references to times that are associated with states. This means that

freeze quantifier “z.” differs from the FOL quantification over time. For instance:
Oz. (p—<y. (gVy <z+6))

This means that in every state with time x, if p holds, then there is a future state with time
y such that ¢ holds and y is at most = + 6. Logics allowing freeze quantification are called

half-order logics.

In specifying of real-time systems, the general behavior of the system is typically ex-
pressed by means of quantitative temporal constraints. The correct behavior of the system
depends on the satisfiability of these temporal constrains.

In [82], a classification of temporal constraints with respect to event occurrences has been
proposed. In particular, we can specify constraints for establishing relationships between

the occurrence of

1. an event and a corresponding reaction (reaction time). Typical cases are:

e maximum distance between event and reaction (e.g., timeout);
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e exact distance between event and reaction (e.g., delay);
2. the same event (period). Typical cases are:

e minimum distance between two occurrences of an event;

e cxact distance between occurrences of an event.

This classification can be simplified by reducing the types of temporal constraints to only

two elementary constraints:

e universal temporal quantifier [1; A, that means that A is true in all time instants of

interval i;

e existential temporal quantifier <;A, that means that A is true in at least one time

instant in interval 7;

X>

Figure 2.4: Quantitative temporal constraints.

where A is a temporal logic formula and i is an interval that can be either a set of points or a
fundamental entity whose extremes are expressed quantitatively (see Figure 2.4). By using
these two elementary operators most of the possible temporal requirements of real-time

systems can be expressed. For example:

when A happens, B must happen within ¢ time units: A = Q[O,t)B

when A happens, B must happen after ¢ time units: A = Oy 4B

the distance between two occurrences of event A is at least ¢ time units: A = O =4

the distance between two occurrences of event A is always equal to ¢ time units:

A= on-A4) A (Oy,p4)
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where intervals are specified using the usual mathematical notation, with round and squared
brackets used for excluding and including bounds, respectively. The intervals are defined
relative to the instant in which formulas are evaluated, so the time is implicit.

The above two elementary temporal operators are sufficient for expressing safeness or
liveness. For example, the classical safety conditions, such as ;A (where A is a positive
property) must be satisfied by the system specification, where the interval 7 can be extended
to the specification temporal domain, as well as to only a part of it. Liveness conditions,
such as ;A (A will be satisfied within 4) or deadlock-free conditions, such as 0;(<;—A)
can also be specified.

If unbounded intervals are allowed operators O, <, Bl and 4 can be defined as:

o [p = D(O,+oo)¢;
o O = 400) b5
° .gb = D(foo,())gb'

° ‘gﬁ = O(—oo,O)¢-

Certain temporal logics also provide bounded versions of the operators since and until.
These versions can be easily obtained from the unbounded operators since and until and
the bounded operators henceforth and always.

Some other temporal logics are much more oriented towards presenting the behavior of
predicates intended as signals. These logics have been frequently used for modeling digital
signals and are typically based on intervals. In order to relate the definition of an interval for
bounding predicates with the evolution of other predicates a special operator for capturing
the time instant related to events is needed. This special function from Predicate — Time

is frequently introduced by using special operators.

2.2.5 Events and Ordering of Events

Typical relationships of cause-effect can be specified by using the simple operators imply
(=) and co-imply (<). Moreover, the simpler operators of temporal logic (i.e., 0 and <)
can be profitably used for describing facts and rules. A fact is a predicate that is true at
least for a time (e.g., presence of an event), while a rule is a predicate that is true in all
time instants. These operators are unsuitable for specifying relationships of ordering among

events, such as:

(a) A precedes B;
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(b) A follows B;
(c¢) A will be true until B will become true for the next time;

(d) A has been true since the last time that B was true for the last time;

A B
€) i f ! ¢
T
B A
(b) = = | .
T
A B
(© e =
T -B
B A
(d) —e | ¢
-B T

Figure 2.5: Constraints about the ordering between events.

where A and B are temporal logic formulas. In Figure 2.5 graphical representations of (a)
through (d) are shown, where T represents the instant in which formulas are evaluated.
Constraints (¢) and (d) may be described by using operators until and since, respectively.
The precedence relation in the future (past) may be defined with operator until (since),

as is shown by Manna in [94], defining operators precede and follow:

Aprecede B = —((—A)untilB)
Afollow B = —((—A)sinceB).

Therefore, in order to express the ordering between events the temporal logic has to provide
the operators until and since.
In effect, several versions of until and since operators exist. The typical definition of the

until/since operator is the “weak” definition:

e A until, B — is true if B will become true and until that instant A will be true, or

if B will stay always false and A always true.
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e A since, B —is true if B has been true since the instant in which A became true, or

if B has been always false and A always true.

The strong version of these operators assumes the occurrence of the change of status for B.

Therefore, they can be defined in terms of the above operators as follows:

e A until B=<BA A until,, B

e A since B = @B A A since,, B

Different versions can be defined, and the current time can also be included in the evaluation
range of the operators. In this case, the so-called 0 version of the weak version of the

operators can be defined as follows:

e A until,) B= BV (AA A until, B)

e A since,o B =BV (AA A since,, B)

Other versions can be defined for combinations of the basic versions stated above.

2.2.6 Time Implicit, Explicit, Absolute

Time in temporal logics can be defined in an implicit or explicit manner. A time model
is implicit when the meaning of formulas depends on the evaluation time, and this is left

implicit in the formula. For instance, (A means that:
Vt € [Ty, 00]. A(t)

where T} is the evaluation time (the so-called current time instant). When time is implicit,
the formalism is able to represent the temporal ordering of events. Each formula represents
what happens in the evaluation time (e.g., in the past or in the future of the evaluation

time), which is the implicit current time:
OO 54

means that A will be eventually true in the future for an interval of 3 to 5 time units
later with respect to the evaluation time. If time is treated implicitly, the possibility of
referring the specification to an absolute value of time is usually lost. Temporal logics
with time implicit may or may not allow the quantification over time (e.g., TRIO allows

quantification over time and adopts a implicit model of time).
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On the contrary, when the time is explicit the language represents the time through a
variable. In this way, it is possible to express any useful property of real-time. The explicit
specification of time allows the specification of expressions that have no sense in the time

domain — e.g., the activation of a predicate when the time is even.

The reference to time can be absolute or relative. It is considered absolute when the
value of the current time is referenced to a general system clock (the clock is idealized in
the sense that no drift is supposed). It is frequently represented with T'; for example, in the

following formula an absolute explicit model of time is used:

VEO(EAT =t) = O(AANT —t < 10ms)

where F is an event. When time is expressed in absolute form, time durations and deadlines
are given directly in seconds or milliseconds (i.e., the absolute time on the clock). There-
fore, the meeting of timing constraints depends on the context (machine type, number of
processes, workload, etc.).

The formula that follows has a relative explicit model of time:
VEO(EAT =t) - O(AANT —t < 10)

Frequently, time is expressed in a relative manner — that is, time durations and dead-
lines are given in time units. In this case, the relationship between these time units and
the absolute measure of time expressed in seconds (or milliseconds) is left until the imple-
mentation phase. However, the validation of specifications becomes almost implementation

independent. A different definition for absolute and relative time has been reported in [82].

2.2.7 Logic Decidability

The decidability of a temporal logic is related to the concepts of validity and satisfiability.
A formula is satisfiable if there exists an interpretation for the symbols in the formula for
which the formula is true, whereas a formula is valid if for every interpretation the formula
is true. This feature is strongly related to the order of the logic. First-order (discrete time)
temporal logic is incomplete, and validity and satisfiability problems are undecidable in the
general case. This is mainly due to the quantification of time dependent variables. The
prohibition of this kind of quantification has often been shown to be a necessary condition
for the existence of feasible automated verification mechanisms such as in TPTL [9].
Satisfiability (validity) is a decidable problem for a logic if there exists a decision proce-

dure for the satisfiability (validity) of every formula of the logic. If one of these problems is
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decidable for the logic then the proof of theorems may be automatic. This property is highly
desirable because it increases the logic’s usability, since automatic instruments to verify and
validate specifications can be built. This property is much more useful for temporal logics
that are based on property proofs for the verification and validation of system properties.
The adoption of a theorem prover confers an absolute certainty about the behavior of the
system.

Other temporal logics have a semantics defined in terms of state evolution. This makes
their application much more operational than descriptive [35]. For these models, verifica-
tion and validation activities are typically performed by using model-checking techniques.
Unfortunately, for real systems, the verification of the system behavior in all its states can
be infeasible because it is too complex and time consuming, even using symbolic model-
checking algorithms. A semantics based on state is frequently associated with the presence
of an event-based temporal logic or of a discrete linear model of time. In both these cases,

the definition of an operational semantics for the temporal logic is quite simple.

2.2.8 Deductive System sound and complete

As expressed in Section 2.1.1, a deductive system is a formalization of the deduction process
that is usually used to make proofs manually. A deductive system permits one to build proofs
manually in simpler way and provides the basis for automating some simple rewriting of
formulas. These mechanisms are typically used in automatic and semiautomatic theorem
provers. Naturally it must be proved that this deductive system is sound, so that all proofs
built are correct.

Another desirable but less “necessary” property, is the completeness of the deductive
system; that is, the capacity to build a proof for every theorem true for the logic. It should
be noted that it is never possible to build a complete deductive system: for example, the
theory of natural numbers on FOL is sound but not complete; that is, there are non-provable

true formulas [48].

2.2.9 Logic Specification Executability

The problem of executability of specifications given by means of temporal logics has often
been misunderstood. This mainly depends on the meaning assigned to executability [60],

[110], [18]. There are at least three different definitions of executability, as follows.

(i) Specification models are considered to be executable if they have a semantics defining

an effective procedure, capable of determining for any formula of the logic theory,
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whether or not that formula is a theorem of the theory [110]. In effect, this property
corresponds to that of decidability of the validity problem rather than to that of

system specification executability.

(i) A second meaning refers to the possibility of generating a model for a given specification
[56]. A detailed version of this concept leads to verifying if an off-line generated
temporal evolution of inputs and outputs is compatible with the specification. This

operation is usually called history checking.

(iit) The last meaning for executability consists of using the system specification itself as
a prototype or implementation of the real-time system, thus allowing, in each time
instant, the on-line generation of system outputs on the basis of present inputs and
its internal state and past history. When this is possible, the specification can be

directly executed instead of traducing it in a programming language.

In the literature, there exist only few executable temporal logics that can be used to build
a system prototype according to meaning (7ii) of executability. In general, the execution or
simulation of logic specifications with the intent of producing system outputs in the correct
time order by meeting the temporal constraints is a quite difficult problem. The difficulty
mainly depends on the computational complexity of the algorithms proposed.

Moreover, while executing propositional temporal logics is a complex task, executing
first order temporal logics is undecidable and highly complex [60], [102]. A solution for
executing propositional temporal logics could be (a) to restrict the logic and providing an
execution algorithm for the remaining part, or (b) to execute the complete logic by using
specific inferential rules and/or backtracking techniques. For first order temporal logics the
solution can be to apply the same approaches used for propositional temporal logics or to
try to build a model for the formula as in (i) and (7i) above.

If a temporal logic is executable the system can be simulated and/or executed. Thus, it is
possible to validate system behavior through simulation and to use the system specification
as a prototype or as an implementation if the execution speed is high enough to satisfy

temporal constraints of the system.

2.3 A Selection of Temporal Logics

This section presents a selection of the most interesting types of temporal logics for the
specification of real time systems. There are many other temporal logics in the literature,
but most of them can be regarded as generalizations or specializations of those discussed

here in.
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The order in which the logics are presented is quite close to the chronological, from
the earliest to the latest, from the simplest to its more complex evolutions (if present).
Several examples are given in order to make the comparisons among the temporal logics
presented possible. The section concludes with a brief discussion of the logics and a table

for comparison purposes.

2.3.1 PTL: Propositional Temporal Logic

The Propositional Temporal Logic (PTL) introduced by Pnueli [124], [125], [126] (see also
[22]), extends the propositional logic introducing temporal operators O, <, O, and U4. The
propositions of PTL describe temporal relationships between states that characterize the
temporal evolution of the system. PTL is an event-based logic and does not provide a
metric for time.

System requirements are specified by describing a set of constraints on the event se-
quences that occur in the system modifying its state. Time consists of a sequence of instants
corresponding with the sequence of states of the system. In a certain sense, the fundamental
entity of the logic is the instant in which the state of the system changes. For these reasons
it is particularly suitable for integration in operational models such as state machines [35].

The temporal structure of PTL is linear, bounded in the past (an initial instant exists),
unbounded in the future (an infinite sequence of future states exists) and discrete (i.e., the
set of instants is modeled with the set of natural numbers). For this reason, only temporal
operators in the future are present. The temporal operators [, < and U correspond to the
operators G, F and until described in Section 2.1.4. The formula O¢ is a valid formula
if the formula ¢ is true in the next state. Operator until in PTL is equivalent to untily
presented in Section 2.2.5. Since PTL provides the operator until it is possible to specify
real-time system requirements about the order of events in the future. The asymmetry of
the logic (due to the boundary in the past) and the absence of the operator since does not
permit specification of requirements about the order of events in the past. Moreover, the
absence of a metric for time does not allow specification of any type of quantitative temporal
constraint. Therefore, PTL is much more suitable for use with reactive and concurrent
systems than with real-time systems. Reactive systems are typically event-driven and do
not present quantitative temporal constraints such as timeouts or deadlines.

PTL is decidable (for example using a decision procedure based on the semantic tables
method) and it is possible to build a sound and complete deductive system for the logic. In
the literature, methods or instruments for executing PTL formulas have not been presented

and, in general, these formulas are not executable.
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In [95], Manna and Pnueli proved that for an extension of PTL built adding symmetric
operators in the past for H, €, ® and S it is possible to transform formulas of a partic-
ular class in finite state machines, thus permitting the execution of some formulas of this
extension of PTL.

Table 2.1 shows some examples of the extended version of PTL. The table also shows
a set of specifications that cannot be expressed by using this temporal logic. In the next
subsections, similar tables are provided to allow comparison of the several temporal logics

on the basis of a collection of equivalent specifications.

In [16], [17], [58], METAMEM is presented. METATEM includes an executable model

and algorithm and can be considered to be based on an extended version of PTL.

Table 2.1: Some specifications in extended PTL.

| meaning | PTL |
Always A in the Past ON4
Always A in the Future Oonoa
Always A HAALA
A Since Weak B @(ASBVHEA)
A Until Weak B O(4uB vUA)

Lasts A up to t1 -
Lasted A from —t; -
A Within —¢; in the Past -
A Within ¢; in the Future -
A Within (—tl,tz) —
A Was true in (—t1, —t2) -
A Will be true in (t1,t2) -
A Could be true in (¢1,t2) -
A Since B during (—t1, —t2) | —
A Until B during (t1,t2) -

2.3.2 Choppy Logic

The Choppy Logic presented by Rosner and Pnueli [131] is an extension of PTL obtained
by adding operator € (chop). This logic has all characteristics of PTL and enhances its
expressiveness with operator € that permits one to concatenate state sequences. In the
first approximation, the Chop operator can be regarded as an operator for dividing time
intervals. In particular, a state sequence o is a model for formula ¢ € if it can be divided in
two sequences ¢’ and ¢” such that: ¢’ is a model for ¢, and ¢” is a model for ). This logic
has a greater expressiveness than PTL, but a more complex decision procedure is required.

Thus, the Choppy Logic maintains all merits and problems of PTL.
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2.3.3 BTTL: Branching Time Temporal Logic

The Branching Time Temporal Logic (BTTL) introduced by Ben-Ari, Pnueli and Manna
[23] is an extension of PTL. It has a temporal structure with branches in the future, and
thus could be used for describing the behavior of non-deterministic systems. PTL operators
are enhanced to deal with branches. Four operators have been defined to quantify both on

different evolution traces and states that are present on the selected traces:

e VO, for all traces m and for all states s € ;
e 10, for at least one trace m and for all states s € m;
e VO, for all traces  and at least one state s € m;

e 3O, for at least one trace 7 and for at least one state s € .

In several aspects BTTL is practically equivalent to PTL. Moreover, it adopts a temporal
structure branched in the future. BTTL also presents a complete axiomatization; it is
decidable; and the satisfiability of formulas can be determined by using a method based
on semantic tables that also produces models for the BTTL formulas. The models for the
formulas are finite and could be used to build finite state machines corresponding to the
formulas. This makes the model operationally executable. Even with this improvement of
PTL it is not possible to specify quantitative temporal constraints. Thus, this logic is also

not suitable for real-time systems specification.

2.3.4 ITL: Interval Temporal Logic

The Interval Temporal Logic (ITL) introduced by Halpern, Manna and Moszkowski [67] and
used /further studied by Moszkowski in [109], [108], [110] can be considered as an extension
of PTL. ITL is a propositional logic with a temporal structure that is bounded in the past,
unbounded in the future, discrete and linear. The fundamental entity of ITL is the interval
made of a sequence of states. The length of an interval is defined as the number of states in
the sequence. ITL does not provide a metric for time and can be considered an event-based
logic. It has been applied for modeling the evolution of digital signals. ITL extends the
propositional logic with the operators O (nexzt), O, & and “” (chop, analogous to operator
€ of Choppy Logic). The semantics of all these operators is defined in terms of intervals
rather then of states as in PTL. From the above basic operators a set of derived operators

has been defined. The presence of operator chop makes the satisfiability of ITL formulas
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undecidable; nevertheless, the satisfiability is decidable for a particular subclass of ITL
formulas. It is possible to build a sound deductive system for ITL.

In [110] Tempura is presented. It is a subset of ITL formulas with some syntactic
properties, for which the problem of building an execution for formula is tractable, even if
unsolvable in the general case. In I'TL only order properties showing qualitative relationships
among the order of events can be specified. This makes this logic less powerful for specifying
real-time systems. To specify order properties the operator chop must be used since ITL
does not have operator until. As a surrogate of the metric for time a special operator
Len(n) is used to count the number of states in a sequence. This allows one to specify the

exact duration in terms of number of transitions among events.

2.3.5 PMLTI: Propositional Modal Logic of Time Intervals

The Propositional Modal Logic of Time Intervals (PMLTI) presented by Halpern and
Shoham [68] is a temporal logic that extends the propositional logic. The fundamental
temporal entity is the interval and the temporal operators can express the possible relation-
ships between intervals, as reported in Figure 2.3. The temporal structure requires only
the total order of the points in the intervals. With this limitation, the time structure can
be linear or branched, bounded or unbounded, dense or discrete. PMLTI does not provide
an explicit metric for time. The selection of a specific temporal structure leads to impli-
cations about the complexity of the decision procedure for demonstrating the validity of
formulas. The problem of validity and satisfiability of PMLTT formulas may be decidable
or undecidable depending on the temporal structure chosen.

PMLTT uses a method of translating temporal logic formulas in FOL formulas of a
specific deductive system to proof theorems of the logic. This approach enables application
of all the techniques which are available for first order logic. To date, the problem of
formula executability has not been addressed. The presence of operators for the specification
of relationships between intervals permits one to easily express event order constraints.
However, the absence of a metric for time makes the expression of quantitative temporal

constraints impossible.

2.3.6 CTL: Computational Tree Logic

The Computational Tree Logic (CTL) presented by Clarke, Emerson and Sistla [41], [42],
[140] is a propositional branching time temporal logic. The fundamental temporal entity is
the point and presents specific operators for reasoning about the system behavior in terms

of several futures, called sequences. It is very similar to BTTL. CTL does not provide
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an explicit metric for time. For verifying CTL specification a model-checking approach is
typically used since the specification can be modeled as a state machine [41]. In [52], [53]
a real-time extension of CTL has been presented, RTCTL, presenting a metric for time.
The satisfiability problem for this logic is doubly exponential. The model-checking has a
polynomial time algorithm, [117]. In [81], a modular version of CTL has been presented,
MCTL.

2.3.7 1IL: Interval Logic

The Interval Logic (IL) presented by Schwartz, Melliar-Smith and Vogt [134], [133] is based
on time interval and propositional logic. The temporal structure is linear, bounded in
the past and unbounded in the future. IL does not present an explicit metric for time.
Time intervals are bounded by events and by the changes of system state described by the
formulas. Therefore, IL is an event-based logic. A typical IL formula is in the following

form:
[Z]ex,

where « is a formula and 7 is the interval that is the context of which formula « has to be
verified. This formula means that the next time the interval can be built then the formula «
will hold in it. The most interesting feature of IL is the set of instruments that can be used
for the determination and construction of time intervals. It presents bounded versions of
operators & and 0. The bound is defined by means of the interval: [Z]Oa means that o can
be true in Z. The interval bounds can be defined by occurrence of events. Given an interval
the initial and final intervals can be extracted. Moreover, the existence of an interval with
certain characteristics is an event. Finally, to describe system behavior operators at, in
and after have been defined; these specify the truth at the start, during and at the end of
the interval, respectively. They may be used as events for construction of intervals. For
instance: A = as interval means that the interval starts when A starts and ends at the end
of the context.

Results for testing the executability of IL do not exist. This is because IL has been intro-
duced as a specification language and is verified by means of automatic instruments, without
taking into consideration the possibility of simulating or executing the specifications.

IL permits one to easily write constraints about the order of events using the instruments
for the construction of context intervals, but it cannot be used to specify quantitative

temporal constraints, as can the extensions discussed in subsections 2.3.8 and 2.3.9 below.
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Figure 2.6: One example for several temporal logics.

2.3.8 EIL: Extended Interval Logic

Extended Interval Logic (EIL) was introduced by Melliar-Smith [101]. It extends IL by
adding the possibility of specifying some types of quantitative temporal constraints. These
extensions have been introduced to eliminate the incapacity of IL to express the typical
requirements of real-time systems. The first extension is the possibility of defining an event
from another event at a constant temporal distance (positive or negative): if E is an event
then E + 1sec is also an event. The second extension is the possibility of limiting the length
of intervals. For example: formula < 2sec is true if the interval in which it is evaluated
has a duration of less than 2 seconds, while > 10min is true if the interval has a duration
greater than 10 minutes. The extensions introduced add the capability of expressing some
of the quantitative temporal constraints that are needed to specify real-time systems. For

instance:
OF = xendA](< te A xstartA)

means that for each occurrence of event F predicates startA and endA (marking an interval
in which A is true) hold and this interval is included from the occurrence of the E and
te (see Figure 2.6, in which ty is time instant in which F occurs). In the above formula
operator x can be read as exists an occurrence of, while = means that the left bound of the

interval is defined by the occurrence of event E.

2.3.9 RTIL: Real-Time Interval Logic

The Real-Time Interval Logic (RTIL) presented by Razouk and Gorlick [128] is another
extension of IL. In this case the goal was to permit the specification of real-time systems
with the specific intention of verifying the consistency between the execution traces and the
system specification itself. RTIL extends IL by introducing a metric for time. It can assign
a temporal value to the extremes of the intervals and can construct intervals by assigning
numerical values at interval bounds, not only by using events and state changes. Moreover,

it is possible to measure the interval duration. This characteristic makes RTIL interesting
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for the specification of real-time systems. For example, the specification described in Figure

2.6 can be written as:
OOF < te] * (O startA = © endA)

In this case, operator * has to be read as exists a subinterval. The special operator ©®A ex-
tracts the time instant in which A becomes true. endA and startA have the same meanings
as in EIL. Instants can be specified absolutely or relative to the beginning of the current
context. RTIL also permits quantification over finite domains. This feature does not en-
hance the expressiveness of the logic but simplifies the writing of complex and repetitive

formulas.

2.3.10 LTT: Logic of Time Intervals

The Logic of Time Intervals (LTI) of Allen [5] is an interval temporal logic of the second
order. Tt is also called Interval Time Logic (acronym ITL). To avoid confusion with the I'TL
presented it will be referred to in this paper as LTI. Intervals can be divided in subintervals.
Intervals that cannot be further divided into subintervals constitute moments. The logic
permits quantification of temporal intervals. The temporal structure is linear, without any
further limitations — even the model of time can be either discrete or dense. LTI does
not provide an explicit metric for time. Temporal propositions are made by declaring the
order relationships between intervals (see Figure 2.3). In [85], it has been shown that LTI
theory is incomplete and proposes a way to make it complete. Furthermore, it is shown
that both the theories, the new and complete, and the early and incomplete versions, are
decidable. An axiomatic system is provided for both, although there are not known results
about logic executability. LTI does not present problems for ordering constraints regarding
the expression of the typical temporal constraints of real-time systems. Specification of
quantitative temporal constraints is impossible since the measure of the length of intervals

is missing.

2.3.11 RTTL: Real-Time Temporal Logic

The Real-Time Temporal Logic (RTTL) presented by Ostroff and Wonham [118], [115],
[119], [117] extends PTL with proof rules for real-time properties. The temporal structure
is linear and discrete; the fundamental entity is the point. Time is limited in the past and
unlimited in the future. Time is defined with both a sequence of state and a sequence of
temporal instants. The presence of a state-based model makes RTTL particularly suitable

for model-checking techniques; thus it can be used as a model to verify small systems. A
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natural number is associated with each time instant; thus, RTTL is based on an explicit
model of time. The clock of the system is periodically incremented and it is accessible for
writing formulas. State changes can occur: (i) corresponding with the changes of time of
system, or (ii) between two successive instants. In the case in which more events occur
between two successive instants, these events are distinguishable only for the order in which
they occur, and not for the temporal instant associated with the occurrences. For this
reason, the metric for time is only partial: non-simultaneous events that occur for the same
value of the system clock may exist. Operator until of PTL and operator until of RTTL are
equivalent to untily presented in Section 2.2.5. In RTTL, quantification of rigid variables
is allowed. Rigid variables are variable in the set of possible executions but are constant
for each execution. RTTL is a first order logic. For RTTL it is essential that the system
clock (T') value be referenced in formulas to express some types of concepts, such as to
establish relationships between different temporal contexts. Table 2.2 shows some RTTL
specifications; no specifications involving the past are shown since RTTL presents only the

future.

Table 2.2: Some specifications in RTTL.

|| meaning | RTTL ||
Always A in the Past -
Always A in the Future OdA
Always A -
A Since Weak B -
A Until Weak B O(AuB) vOA
Lasts A up to #; t=T >t <TAT <t+t)— A)

Lasted A from —¢; -
A Within —#; in the Past -
A Within #, in the Future | t =T 5> O(t < TAT <t+1t1) A A)

A Within (—tl,tz) —

A Was true in (—t1, —t2) -

A Will be true in (t1,%2) t=T >0((t+t1 <TAT <t+t2) > A)
A Could be true in (t1,t2) t=T—><>((t+t1 <TAT <t+t)\NA)
A Since B during (—t1,—t2) | —

A Until B during (t1,t2) t=T > AUBAt+t1 <TAT <t+ts)

All global variables (e.g., ¢ in the table) in formulas are assumed to be universally
quantified [116]. The logic also presents next operator O. “Lasts A up to t;” can be also
written in a more concise notation Q(O,tl)A while “A Until B during (#1,t2)” can be specified

as AUy, 1,)B- The situation described in Figure 2.6 can be specified by using:

O(E — O ((C<y, endA) A =(—startA U endA)))

considering predicates startA and endA as above. Note the adoption of bounded operator
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<. The possibility of adopting (i) an explicit reference to the system clock value, and (ii)
indirect quantifications on values assumed by the clock leads to the ability to write every
type of ordering and quantitative constraints (the above example is implicitly quantified
on t). This is extremely interesting for the specification of real-time systems. However,
this flexibility leads to the production of formulas that are quite difficult to understand
and manipulate with respect to other temporal logics that avoid quantification over time-
dependent variables. A sound deductive system has been built for RTTL (extending a
deductive system of PTL), but the satisfiability problem is undecidable. The suitability of
RTTL for model checking and the presence of a deductive system makes RTTL a dual model
according to the classification reported in [35]. No results about the executability of RTTL
specification are available. TTM/RTTL is a dual approach obtained by the integration of a
state machine model and RTTL [118], [115], [119]. TTM is an operational model based on
communicating finite state machines in which variables with arbitrary domains are used.
The operations allowed are variable assignment, send, and/or receive. The state machine
follows a Mealy model in which conditions on transitions between states are equivalent to

logic formulae on state variables, while the output is an assignment to state variables.

2.3.12 TPTL: Timed Propositional Temporal Logic

In [8], Alur and Henzinger presented the Timed Propositional Temporal Logic (TPTL) and
in [9] they have shown the expressiveness and complexity of this logic. TPTL is an extension
of PTL. Like PTL, TPTL is a propositional logic, where the instant is the fundamental
temporal entity and the time is linear, discrete, limited in the past, unlimited in the future.
An extension with respect to PTL is the presence of a metric for time: every instant
corresponds to a natural number and a monotone function associates a temporal value
with each state of the system, thus making timed state sequences possible. The presence
of operator until permits one to specify order constraints. The possibility of specifying
quantitative temporal constraints is one of the fundamental characteristics of the logic.
For these reasons, this logic is suitable for specifying real-time systems requirements. Its
theoretic bases that facilitate requirement verification and validation. Table 2.3 shows some
specifications in TPTL. No specifications in the past are shown since TPTL presents only
the future. TPTL adopts the freeze operator, thus z and y represent time instants. The
specifications are quite similar to RTTL. Adoption of freeze operator can be very interesting
to model system in which more than a real-time clock is present. A typical application
is the specification of communicating systems in which distinct specifications have to be
synchronized (see APTL in [145]).
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Table 2.3: Some specifications in TPTL.

| meaning | TPTL |
Always A in the Past -
Always A in the Future olnV|
Always A -
A Since Weak B -
A Until Weak B OWBA vOA)
Lasts A up to t1 zly.(z<y<z+t)) > A

Lasted A from —t; -

A Within —¢; in the Past -

A Within ¢; in the Future a:<>y(a: <y<z+t)ANA
A Within (—tl, t2) —

A Was true in (—t1, —t2) -
A Will be true in (¢1,t2) sy (r+ti<y<z+t) > A

A Could be true in (t1,t2) a:<>y(a: +thi<y<z+i)AA

A Since B during (—ti, —t2) | —

A Until B during (t1,t2) s QU (y.BA(z+t <y<z+t))A

The situation described in Figure 2.6 is specified in TPTL by using:

Or.E — (Oy. endA ANy <z +te) A =(U endA —startA)

considering predicates startA and endA as above. In [9], it has been proven that the
choice of the set of natural numbers for a temporal domain is essential to obtaining a
temporal logic for which the satisfiability problem is decidable. In fact, for every temporal
domain with a more complex structure than natural numbers, the problem of satisfiability
is undecidable. PTL’s deductive systems can be extended and transformed for TPTL by
retaining the properties of soundness and completeness. Moreover, a decision procedure
based on the semantic table algorithm and a model-checking algorithm has been presented.
This facilitates the use of this logic for the specification and verification of real-time systems

requirements.

2.3.13 RTL: Real-Time Logic

The Real-Time Logic of Jahanian and Mok [80] is a logic that extends the first-order logic
with a set of elements for the specification of real-time systems requirements. RTL proposes
a logic approach for the specification of real-time systems, but is not a temporal logic in
the classical meaning. It presents an absolute clock to measure time progression. The
value of this clock can be referenced in the formulas: function “@” permits one to assign a
temporal value (execution instant) to an event occurrence. The temporal domain is the set

of natural numbers, and is linear, discrete limited in the past, unlimited in the future, and
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totally ordered. The fundamental entity is the time instant. In RTL, there are no problems
in specifying ordering and quantitative temporal constraints, since it is possible to make
explicit reference to time even through quantification. The main problem with RTL is the
fact that absolute system time is referenced, with a low level of abstraction, leading to very
complex formulas required to describe the system. The example of Figure 2.6 is specified
in RTL by using:

VEVLQ(QE, i) =t — (Fj.(t < Q1T A,5)) A QL A, 7) < t+1t.))

Operator QF states the occurrence of external event F; 1T A the turning true from false of
predicate/signal A; | A the becoming false from true of A; i and j are the occurrences of
the events marked with operator @; ¢ is the time. Note the need of a quantification over
time to specify the example. In [9], it has been shown that RTL is undecidable even when
the syntax is restricted. In [80] a procedure to demonstrate the consistency of safeness
assertions relative to real-time system specification is proposed. A deductive system for
RTL has not been presented, but it seems to be feasible by extending a system for FOL
with laws for the new operators. There are no known results regarding the executability of
RTL. In [13] an approach based on RTL and Statechart was presented. In that case, the

formal verification was provided by using a theorem prover.

2.3.14 TRIO: Tempo Reale ImplicitO

TRIO is a logic language for real-time system specification (Tempo Reale ImplicitO - Im-
plicit Real Time). It has been presented by Ghezzi, Mandrioli and Morzenti [63], [57].
TRIO extends FOL with specific predicates for real-time system specification. The tem-
poral structure is linear and totally ordered: possible temporal domains are the natural
numbers, the integers, the real numbers, or an interval of one of these set. The funda-
mental temporal entity is the point and a metric for time is available. On that basis, it is
possible to measure the distance of two points and the length of an interval. Since TRIO
is an extension of FOL, which is undecidable, then TRIO is also an undecidable logic.
TRIO presents only two temporal operators: Futr(A,t¢) and Past(A,t) for specifying that
A occurs at time instant ¢ in the future and past, respectively (more recently it has been
demonstrated that both these operators can be defined in terms of a unique operator).
Moreover, in TRIO, based on these operators, several other operators can be defined as
parametric predicates. This is frequently allowed by many temporal logics - e.g., TILCO,
MTL. The temporal operators introduced by TRIO, with the possibility of quantification
on temporal variables without any restriction, permit the expression of order and quanti-

tative temporal constraints as needed for real-time systems specification. It is necessary
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to use quantification over the time domain, so formulas are often complex and difficult
to read and manipulate. Table 2.4 shows some specifications in TRIO, the table presents
three columns. The middle column shows the specification written on the basis of TRIO’s
elementary operators, while the column on the right shows the version of the specification
in a derived form. This derived form can be obtained by defining a new temporal operator
(special parameterized predicate) with the specification reported in the middle column or
by using already defined operators. It is possible to define new “temporal operators” by
means of special functions: on the one hand, this keeps the size of formulas low, but on the
other hand, it makes the language harder to understand. A large number of operators can
create confusion during the specification process, especially when these specifications have
to be understood by other analysts who do not know the definitions of the same predicates

implementing complex temporal operators.

Table 2.4: Some TRIO simple temporal specifications.

meaning |

TRIO TRIO derived |

Always Past Vi(t > 0 — Past(A,t)) AlwP(A)
Always Future Vt(t > 0 — Futr(A4,t)) AlwF(A)
Always Vi(t > 0 — Futr(A,¢)) A AAVE(E > 0 — Past(A,t)) | Alw(A)
Since Weak vt'(t" > 0 — Past(A,t"))V

3t(t > 0 A Past(B,t) AVt'(0 < t' <t — Past(A,t))) | Sincew (B, A)
Until Weak V' (" > 0 — Futr(A,t"))V

3t(t > 0 A Futr(B,t) AVt (0 < t' <t — Futr(A,t))) | Until,(B, A)
Lasts Vt'(0 < t' <t — Futr(A4,t)) Lasts(A,t)
Lasted "0 <t <t— Past(4,t)) Lasted(A4,t)

Within Past
Within Future

"(0 <t <tAFutr(A,t))

WithinP (A, t)
WithinF(A, t)

Within

vt'(
(0 < t' <tAPast(A4,t))
3t (
3t'(

"0 <t <t APast(A,t)) vV AV
"0 < ¢ < t2 A Futr(A,t"))

Within(A, t1, t2)

Was Past(Vt’(O <t < t1 —ta — Futl‘(A,t,)), tl) Past(Lasts(A, t1 — tz), tl)
Will be Futr(Vt' (0 <t <t» —t1 = Futr(4,t')),t1) Futr(Lasts(A, t> — t1),t1)
Could be Flltl‘(—!Vt’(O <t < to —t1 — Futl‘(—!A, t’)), tl) Futr(—Lasts(—-A, to — tl), tl)
A Since B (0 < t2 <t < t1) A Past(B,t)A

during (—t1,—t2) | V#'(0 <t <t — Past(4,t")) Sinceg (B, A, t1,t2)

A Until B 3t(0 < t1 <t < t2) AFutr(B,t)A

during (tl s t2)

V' (0 < t' <t — Futr(4,t'))

Untilg (B, A,tl, t2)

For TRIO, the example of Figure 2.6 is obtained by using:

Alw (E — 3t ((0 < t < t.) ANFutr(endA,t) AN WithinF (startA,t)))

In this case, the specification has been obtained by using a user-defined operator WithinF'();
its definition is provided in Table 2.4. Even in this case quantification over time is needed.
The same specification could be given by using operator until without the adoption of the

quantification over time:
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Alw (E — WithinF (endA,t.) A =Until(endA, —startA))

A deductive system for TRIO has been presented. This system has been used to prove
theorems for TRIO and to build a deductive system for Timed Petri Nets. TRIO has
been used mainly for the validation and verification of system requirements through testing
activity (history checking) and not by means of the proof of system properties. TRIO has
been described as an executable logic language in the general sense. It can be used to
build a model of the system under specification as TRIO formulas. Histories of system
variables can be checked against the specification in order to verify whether they satisfy the
specification. Therefore, TRIO must be considered a specific case of model checking and

not a full execution according to the classification of [60].

2.3.15 MTL: Metric Temporal Logic

In [82] Koymans presented Metric Temporal Logic (MTL) that extends FOL with temporal
operators from modal logic:G, F', H, P. MTL includes a metric for time according to some
properties that describe the structure of the temporal domain. One of these properties states
that the order of the temporal structure has to be total, thus leading to a linear temporal
structure. The fundamental entity of the logic is the temporal point. The presence of the
metric for time permits one to modify the temporal operators making temporal versions of
most of the above-discussed temporal operators: G, F, H, P. This allows one to reduce
the needs of using quantifications on temporal domain. The operators until and since can
be obtained on the basis of the other operators as depicted in Table 2.5. These provide
support for avoiding the adoption of quantification over time. In Table 2.5 some MTL
specifications are given. MTL presents both past and future operators. The three columns
in Table 2.5 have the same meaning as the table presented for TRIO (see Table 2.4).
The example shown in Figure 2.6 for MTL can be obtained by using:

E — 3t(0<t<t. NFiendA N F_startA)

The same specification could be written without the adoption of the quantification over

time
E — FyeendA N = (—startA until endA)

As stated in [9] MTL is undecidable, but a deductive system is available. The MTL

operators permit one to specify constraints on event order (until, since) and quantitative
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Table 2.5: Some specifications in MTL.

| meaning | MTL | MTL Derived |
Always A in the Past HA
Always A in the Future GA
Always A HAANANGA
A Since Weak B HAV3t(t>0AP:BAHA) | A since B
A Until Weak B GAVI(E>0NF:BAGA) | Auntil B
Lasts A up to ¢ G A
Lasted A from —t H A
A Within —t in the Past P A
A Within ¢ in the Future Fo A
A Within (—tl,tQ) P<t1A/\A/\F<t2A
A Was true in (—tl, _t2) Pt1 (H<(t1—t2)A)
A Will be true in (¢1,¢2) Fi,(Gety—t)A)
A Could be true in (t1,t2) Gy (Fegp,—1)A)
A Since B dllI'illg (—tl, _t2) at(tz <t<ti1 A\P:BA H<tA) Pt2 (A since<(t1_t2) B) A H<t2A
A Until B during (t1,t2) Jt(t1 <t<t2 AF:B A G A) Fi (Auntilcy,_y B)AG<, A

temporal constraints (G, F, H, P). The executability of MTL has not been discussed in

the literature.

2.3.16 TILCO: Time Interval Logic with Compositional Operators

n [97], [99], and [98], Mattolini and Nesi presented TILCO (Time Interval Logic with
Compositional Operators), a temporal logic for real-time system specification. TILCO
extends the FOL and uses as a fundamental temporal entity the interval even if the interval
is defined in terms of a couple of time instants. The temporal structure is linear and
presents a metric for time that associates an integer number to every temporal instant; no
explicit temporal quantification is allowed. In TILCO, the same formalism used for system
specification is employed for describing high-level properties that should be satisfied by
the system itself. These must be proven on the basis of the specification in the phase of
system validation. Since TILCO operators quantify over intervals, instead of using time
points, TILCO is more concise in expressing temporal constraints with time bounds, as
is needed in specifying real-time systems. The basic temporal operators of TILCO are
the existential and universal temporal quantifiers (@ and ?, respectively), and operators
until and since). These operators permit a concise specification of temporal requirements,
relationships of ordering and quantitative distance among events; thus TILCO fully supports
the specification of real-time systems. TILCO is also characterized by its compositional
operators that work with intervals: comma “,”, which corresponds to A, and semicolon “;”,

which corresponds to V, between intervals. Compositional operators “,” and “;” assume
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different meanings if they are associated with operators “@” or “?”:

AQ@i,j = (AQi) A (AQy),
A%i,5 = (A% A (A?)),
AQ@i;j = (AQi) Vv (AQy),
A5 = (A% V (A?).

Other operators among intervals, such as intersection, “N”, and union, “U”, have been
defined by considering time intervals as sets. Table 2.6 shows some specifications in TILCO.
In this case, the table has only two columns; even in TILCO, special functions can be easily
written for defining new temporal operators, such as in TRIO and MTL. However, in
TILCO this is less necessary since TILCO specifications are quite concise, as can be noted

by comparing Tables 2.4, 2.5, and 2.6.

Table 2.6: Some specifications in TILCO.

|| meaning | TILCO ||
Always A in the Past A@(—00,0)
Always A in the Future A@(0, c0)
Always A AQ@(—00,00)
A Since Weak B since(B, A)
A Until Weak B until(B, A)
Lasts A up to t AQ@(0,t)
Lasted A from —t AQ@(—t,0)
A Within —¢ in the Past A?(—t,0)
A Within ¢ in the Future A?(0,t)
A Within (—tl,tg) A?(—tl,tg)
A Was true in (—tl, —t2) A@(—tl, —tz)
A Will be true in (tl,tQ) A@(tl,tz)
A Could be true in (t1,t2) A?(t1,t2)
A Since B during (—t1, —t2) | B?(—t1,—t2) A since(B, A)@[—t,, —t2] A A@Q[—t2,0)
A Until B during (tl, tz) B?(tl, t2) A until(B, A)@[tl,tl] A A@(O, tl]

For TILCO, the condition depicted in Figure 2.6 can be specified by using:
E — endA?(0,t.] A ~until(endA, —startA)

In [97] and [99] a sound deductive system for TILCO has been presented. This system is
used in the context of the general theorem prover Isabelle [122] to provide an assisted support
for proving TILCO formulas. Using this formalization, a set of fundamental theorems
has been proven and a set of tactics has been built for supporting the semi-automatic
demonstration of properties of TILCO specifications. Causal TILCO specifications are also
executable by using a modified version of the Tableaux algorithm. Since TILCO has aspects

typical of both descriptive and operational semantics, it can be considered a dual approach
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following the classification reported in [35]. Since TILCO extends FOL, it is undecidable in
the general case. However, the subset of formulas that presents only quantifications on finite
sets is decidable. Causal TILCO specifications can be executed with a modified version of

a tableaux algorithm.

2.4 Discussion

In Table 2.7, the main characteristics of the temporal logics reviewed in the previous sections
have been collected. The following discussion considers two main aspects of the logics: the
intrinsic power of expressiveness in terms of logic order and quantification over time variable;

and the readability/ understandability of the logics.

Table 2.7: Comparative table regarding the features of the temporal logics examined.

Logic Logic Fundamental | Temporal | Metric Logic Deductive| Logic Ordering | Implicit,
order' | time entity2 structure® | for time/- decidability4 system4 execut- events?® Explicit5

Quantitativg ability4

temporal

constraints®
PTL P P L N Y Y Y Y I
Choppy | P P L N Y ) ) |Y I
BTTL |P P B N Y Y Y Y I
ITL |P |1 L N ) ) N Y I
PMLTI |P I L/B N (Y) NA NA Y I
CTL P P B N Y NA NA Y I
IL P I L N Y NA NA Y I
EIL P I L Y Y NA NA Y I
RTIL P I L Y Y NA NA Y (D)
LTI 2nd 1 L N Y Y NA Y (1)
RTTL |1 |P L ) N Y NA Y E
TPTL |P P L Y Y Y NA Y (E)
RTL 15¢ I L Y N NA NA Y E
TRIO |15 [P L Y N Y (Y) Y I
MTL |1 |P L Y N) ) NA |Y I
TILCO (177 |1 L Y ) Y N Y I

! P= propositional, 1%* = first order, 2"? = second order;

2 P= point, I= interval;

% L= linear, B= branching;

* N= no, (N)=no in the general case, Y= yes, (Y)=yes in some specific case, NA= not available;
5 I= implicit, E= esplicit.

The temporal logics discussed can be divided into two main categories: temporal logics
without a metric for time and those with a metric for time. PTL, Choppy Logic, BTTL,
ITL, PMLTT, IL, CTL and LTT belong to the first category. These logics are less satisfactory

for the specification of real-time systems since quantitative temporal constraints cannot be
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specified. In the second category, lie the following temporal logics: EIL, RTIL, RTTL,
TPTL, RTL, TRIO, MTL, and TILCO. Some of these logics are characterized by the fact
that they permit explicit quantification on the variable time, whereas for the others it is not
permitted. In [8], it has been observed that not permitting explicit quantification on time
brings about a more natural specification style. Moreover, in [9] the impossibility of explicit
quantification on time was demonstrated to be a necessary condition for the existence of a
practically usable verification method, such as the techniques based on tableaux. In fact, a
logic that allows quantification over time has the expressive power of FOL and is undecid-
able. For this reason, in many cases, logics as EIL, RTIL, TPTL, and TILCO, are typically
preferable to RTTL, RTL, TRIO, and MTL that permit quantifications over time. When a,
temporal logic allows the possibility of quantification on non-temporal variables (even with
some limitations) it can be considered a first order temporal logic. This is a great advantage
since it leads to a more expressive specification language and has a greater power of ab-
straction. Among the logics examined, only RTIL, RTL, TRIO, MTL, and TILCO permit
quantification on non-time dependent variables. More specifically, only RTIL and TILCO
seem to present the most complete collection of interesting characteristics for real-time sys-
tems specification (metric for time, expression of quantitative and events order temporal
constraints, no quantification over time). Both of these logics do not permit quantification
on time but permit the quantification on non-time dependent variables with finite domains.
RTIL permits one only to reference the absolute time, and then only indirectly in a relative
manner. Moreover, the order of events is not complete, since events having a relationship
of successor or predecessor can occur for the same value of the system clock. TILCO does
not have these problems and has a sound deductive system that supports the assisted proof

of theorems and execution of formulas.

From the point of view of readability and understandability of the temporal logic it
is highly relevant to evaluate two aspects: the number of elementary operators, and the
structure of the syntax. The first of these aspects is quite objective, since a lower number
of temporal operators is typically preferred. Temporal logics that have a high number of
operators are, like programming languages, typically hard to learn and hard to understand.
Their expressiveness can be high, since a wide collection of operators or temporal predicates
can be very useful for specifying complex systems, but ease of learning and readability are
low. It has been previously shown that all the most useful specifications can be expressed by
using a very low number of temporal operators. If these operators support a metric for time,
their expressiveness is even higher. As a case limit, all the operators can be defined in terms

of a measuring operator or modeled with delay. On the other hand, having too low a number
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of temporal operators can produce the same effects, since complex specifications have to be
built by using elementary operators even for very simple specifications. This means that
a balance between the power of the temporal logic and its number of temporal operators
is needed. The number of operators also influences the syntax of the temporal logic. In
some cases, the verbosity of temporal logic depends on the presence of a neat distinction
between past and future — e.g., extended PTL, TRIO, MTL. This distinction typically leads
to duplication of the number of operators in order to have specific operators for past and
future. When this distinction is not made, time can considered only in the future — e.g.,
RTTL, TPTL - or more general and flexible operators capable of working continuously from
past to future are defined — e.g., TILCO. In evaluating temporal logics, other interesting
features can be the availability of a graphical representation for the visual specification. The
visual representation of temporal specifications has frequently been addressed by researchers
who have neglected the capabilities of temporal logics. Visual representation may make the
readability of the specifications easier, but their real expressiveness is given by the above-
mentioned features of the temporal logics. An interesting integrated approach can be seen
in [50], [107].



Chapter 3

TILCO

In this chapter temporal logic TILCO is presented in more detail. The syntax and semantics
of the language is provided. Some examples are provided to highlight how to specify typical
requirements. The deductive system of TILCO is shortly presented.

3.1 Definition of TILCO

TILCO extends FOL to create a logic language that can specify both relationships between
events and time, and data domain transformations. TILCO can be used to specify temporal
constraints among events in either a qualitative or quantitative manner. Therefore, interval
boundaries, which specify the length of intervals and actions, can be expressed relative
to other events (qualitatively) or with an absolute measure (quantitatively). This allows
definition of expressions of ordering relationships among events or delays and time-outs.
These features are mandatory for specifying the behavior of real-time systems. TILCO
deductive approach is sound, and thus consistent. It forces the user to write formulae
without using direct quantifications over the temporal domain, thus preventing them from
writing specifications that are overly intricate or difficult to understand [9].

TILCO includes the concepts of typed variables and constants; it provides a set of
basic types and lets users define new types using the mechanisms of enumerated collection
and type constructors. A type-checking mechanism is automatically extended to these new
types. The predefined types are: nat for natural numbers, int for integer numbers, bool for
Booleans, char for text characters, and string for character strings. The usual arithmetic
operators: +, —, %, / , mod, ~ (change sign), are defined for integers and natural numbers.
String manipulation functions are defined for strings. Comparative operators: =, <, >, >,

<, #, can be used with integers, naturals, characters and strings.
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A system specification in TILCO is a tuple

{u’ T’ ‘F, 7)7 V’ W7C’ \7}’

where U is a set of TILCO formulz, T a set of type definitions, F a set of functions, P a set of
predicates, V a set of typed time-dependent variables, W a set of typed time-independent
variables, C a set of typed constants (also called time invariant parameters), and J is a
set of integer intervals. U specifies the rules defining the specified system’s behavior. T
defines the specification types. Functions and predicates have their usual meaning and
are used to manipulate predefined and user-defined data-types. Time-dependent variables
model the specified system’s inputs (read-only), outputs (write-only), and auxiliary vari-
ables (read/write). Time-dependent variables can assume any value in their corresponding
domain. Time-independent variables are used to build parametric formulae that operate on
structured data types (i.e., arrays, lists, etc.) through quantification. Constants are used
for modeling system parameters. Integer intervals — which are connected sets of integers —
are used for specifying quantitative temporal relationships.

A system is specified in TILCO according to the following rules:

e a system is characterized by its input and output ports, which communicate with the
external environment, and by its auxiliary variables representing a part of its internal

state;

e inputs, outputs and auxiliary variables can assume only one value at each time instant.

Each of them is defined by a unique name;
e an input is a typed variable whose value can change due to external events;

e an output is a typed variable that can be forced to assume a value by some predicates

through an assignment, which leads to a change in the external environment;

e an auxiliary variable can be forced to a value by an assignment and it can be read as

an input variable; and

e a system is described as a set of formulae that define its behavior and the data trans-

formation.

3.1.1 Syntax and semantics of TILCO

TILCO extends temporal operators to FOL by leaving their evaluation time implicit. There-

fore, the meaning of a TILCO formula is given with respect to the current time such as in
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other logic languages such as [63], [55]. In TILCO, the time is discrete and linear, and the
temporal domain is Z, the set of integers; the minimum time interval corresponds to 1 time
unit. The current time instant is represented by 0, whereas positive (negative) number rep-
resent future (past) time instants. TILCO formula can be time dependent or independent;
the latter are those that do not present any TILCO temporal operator, and are comprised
only of time-independent subformulz. A time independent formula can be regarded as a
constraint that must be satisfied in each time instant.

The basic temporal entity in TILCO is the interval. Intervals can be quantitatively
expressed by using the notation with round brackets for excluding interval boundaries,
“(”, “)”, or squared brackets for including them, “[”, “|”. Time instants are regarded as
special cases that are represented as closed intervals composed of a single point (e.g., [a, a]).
Symbols 400 and —oo can be used as interval boundaries — if the extreme is open — to
denote infinite intervals. For example, [a,+00) represents set {z € Z|a < z}. In this
way, TILCO lets users specify both facts in intervals and events in time instants. Classical
operators of temporal logic (eventually, <, and henceforth, 00) can be easily obtained by
using TTLCO operators with infinite intervals. For these reasons, TILCO can be regarded
as a generalization of most of the interval logics presented in the literature in the past —
such as [134], [80], [124] — but with the addition of a metric to measure time.

The basic TILCO temporal operators are:

“@”, bounded universal temporal quantification over an interval;
e “?” bounded existential temporal quantification over an interval;

e until, to express that either a predicate will always be true in the future, or it will

be true until another predicate will become true;

e since, to express that either a predicate has always been true in the past, or it has

been true since another predicate has become true.

Operators “@” and “?” are called temporal quantifiers. AQ; is true if formula A is true in
every instant in the interval ¢, with respect to the current time instant. Therefore, if £ is the
current time instant, (A@4)*) = Vz € i.A@+) holds. In particular, A@[t,ty) evaluated in

t means:
Vx € [tl,tg).A(x-'_t).

Obviously #1 and t2 can be either positive or negative and thus the interval can be in the

past or in the future. If the interval’s lower bound is greater than the upper bound, then
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it is null (that is, it is equal to the empty set). Operators “@” and “?” correspond, in the
temporal domain, to FOL quantifiers V and 3, respectively; hence, they are related by a
duality relationship analogous to that between V and 3. “@” and “?” are used to express
delays, time-outs and any other temporal constraint that requires a specific quantitative
bound. Concerning the other temporal operators, until A B (evaluated in t) is true if B
will always be true in the future with respect to ¢, or if B will be true in the interval
(t,z+t) with x > 0 and A will be true in z +¢. This definition of until does not require the
occurrence of A in the future, so the until operator corresponds to the weak until operator
defined in PTL [22]. The operators until and since express the same concept for future
and past, respectively; they are related by a relationship of temporal duality. until and
since can be effectively used to express ordering relationships among events without the
need of specifying any numeric constraint.

Given F, P, V, W, C, J, the syntax of TILCO formula is defined by the following
BNF-like definitions:

interval = (a,b)|(a,bl]|[a,b)|[a,b] for each a,b € Z
interval_list ::= interval
| interval interval_op interval

interval op = | |;

variable := w for each w € W
term = v for eachv €V
|  variable

| ¢ foreachceC
|  f(term_list) for eachf € F
term_list = term

|  term, term_list

atomic_formula := p(term_list) for each p € P
formula == T|L|atomic_formula
—~formula

formula op formula

|

|

|  wv:=term for eachv €V

|  quantifier variable. formula
|

formula temporal_quantifier interval list
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|  temporal_op formula formula

|  (formula)
op == V|A|=]|& |=p|=x
quantifier == V|33
temporal_quantifier = @|?
temporal op := until|since

The use of parentheses in TILCO expressions is reduced by using the operators’ precedence

relationships reported in Tab. 3.1.

‘ prec. ‘ operators ‘

1 ~
2 x / mod

3 + -

4 |= > < > < #
0 -y

6 =

7 @ ?

8 A

9 \%

10 |& = = =«
1 (v 3 A

12 until since

Table 3.1: Precedences among TILCO operators.

Before defining the semantics of TILCO, it is important to introduce the concept of in-
terpretation of a TILCO formula. This concept is also used to define the validity and the
satisfiability of TILCO formulae.

Given a syntactically correct TILCO formula A, with {¢;,...,%,} set of types used in
A, {p1,...,pr} predicates, {fi,..., fi} functions, {v1,...,v,} time-dependent variables,
{c1,..., ¢4} constants, and {ji,...,7,} intervals present in A, then an interpretation T is a

tuple
({D1,....,Dp},{R1,..., R}, {F1,....,F},{Vi(t),.... Vi () }, {C1, ..., Co}, {J1,. .., Jr})
where:

e {Dy,...,D,} assigns a domain D; to each type ¢;;
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{Ry,..., Ry} assigns an n-ary relation R; over D;, x...x D; to each n-ary predicate

p; with arguments of type ¢;,,...,t; ;

{F,..., F;} assigns an n-ary function F; over D;, X ... x D; to each n-ary function

fi with arguments of type ¢;,,...,%; ;

{Vi(t),...,Vim(t)} assigns a function of time V;(t) : Z — D, to each time-dependent
variable v; of type t,, specifying the history of that variable in every time instant

(where t is the absolute time);

{C1,...,C,} assigns a value C; € D,, to each constant ¢; of type ¢,;

{J1,...,J} assigns an interval value J; to each integer interval j;.
Given a TILCO formula A and an interpretation Z for A, notation
Z,tEA

expresses that Z is a model for A evaluated in the time instant ¢. The evaluation of Z, ¢ = A,

stating the semantics of TILCO, is inductively defined on the structure of A by the following

rules:
b Iat |: T;
o 7.t L;

o I, t=-Aif It~ A

e It A NAy iff Z,t = Ay and Z,t = Ay;

o 7,t|= A1V Ay iff either Z,t |= Ay or Z,t |= Ay;

o It A1 = Ay iff T, t = —A1 V Ag;

o 7, |= Ay=pAy iff either Z,t = —Ay or Z,t + 1 |= Ag;
o 7.t |= Aj=wxAy iff either Z,t = —A; or Z,t — 1 | As;
e Tt A & AT Tt = Al = A N Ay = Ay;

o 7,t = z := exp iff there exists a constant k& € D, such that Z,¢ = =z = k and
Z,t—1 | exp =k, where D, is the domain assigned to the type of z by Z;
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o 7,t=Vz.A(x) iff, for each y € D it is true that Z,t |= A(y), where D, is the domain
assigned to the type of z by Z;

e 7,t = dz.A(x) iff, there exists a y € D, such that Z,¢ = A(y), where D, is the
domain assigned to the type of = by Z;

e 7,t |=3lx.A(x) iff, there exists one and only one y € D, such that Z, ¢ |= A(y), where
D, is the domain assigned to the type of x by Z;

e 7.t |= AQj iff, for each s € i, Z,s +t = A is true;
o 7,t = A?i iff, there exists an s € 7 such that Z,s + ¢ = A;

e 7,t = until A; Ay if either Z,t = A2@(0,+00) or there exists 7 > 0 such that
IZ,t+ 7= A and Z,t = A2@(0, 7);

e 7,t = since A; A, if either Z,t = A2@(—00,0) or there exists 7 < 0 such that
IZ,t+ 7= A and Z,t = A,Q(7,0);

o I,t = AQ@i,j iff T,t = (AQ@i) A (A@j);
o I,t|= A%i,5 iff T,t = (A7) A (A?));
o I,t = AQ@i;j iff T,t = (AQ@i) V (A@j);
o I,t = A%i:j it 7.t |= (A79) V (A?));

o 7.t =piler,...,ey), iff (E1,...,E,) € R;, where R; is the relation assigned by Z to
p; and Ej, for each j = 1,...,n, are the results of the expressions e; when the values
assigned by Z are substituted for the constants and variables, and the variables are

evaluated in ¢.

The semantics of predicates also includes that of functions, variables and constants.

Remark 3.1.1 In the case where the interval is null, it holds:

AQO = T,
AT = L.

O

Some useful definitions follow.
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Definition 3.1.1 Given an interpretation

( (Dy,...,Dy} )
{Ry1,...,R;}

T {Fy,....,F} g
{Vl(t)a"'avm(t)}
{C1,...,C4}

L {1} )

its temporal translation by s € Z time units is defined by:

¢ )

{D1,...,Dy}
{Ry,..., Ry}
ar ) {F1, ..., Fi}

T(I,S) = 9
Vit +8),..., Vit + s)}
{Cy,...,C}
(Trer )

\ /

Definition 3.1.2 A TILCO formula A is said to be satisfiable if there exists an interpre-
tation Z and a value t € 7 such that Z,t |= A.

Definition 3.1.3 A TILCO formula A is said to be valid in an interpretation Z if for each
t € Z it is true that Z,t |= A. The notation used is T = A.

Definition 3.1.4 A TILCO formula A is said to be valid if for each interpretation T and
for each t € Z it is true that Z,t = A. The notation used is = A.

Definition 3.1.5 Given a set of TILCO formule, U = {Ay,..., Ay}, U is said to be
satisfiable if there exists an interpretation T such that T |= Ay,... T |= A,. T is said to be a
model for U. U is said to be unsatisfiable if for each T there exists an i such that T [~ A;.

Definition 3.1.6 Given a set of TILCO formule U and a TILCO formula A, if every
model T for U is such that T = A, then A is said to be a logic consequence of U. The
notation used is U = A.

Definition 3.1.7 Given S(U) = {A|U = A}, S(U) is called theory of U and the elements
of S(U) are called theorems of U. The elements of U are called axioms of S(U).
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3.1.2 Comments

e In a TILCO specification, a system is described by a formula consisting of the con-
junction of all the formulae of U, each describing a different aspect of the system. A
specification is defined in a specification temporal domain by means of operator “@7”.
For example, if U = {Fy, Fy, F3} and the temporal domain is i, then the system is
described by:

(F1 N\ Fy A\ F3)Q1,

which means that all properties Fy, F5, F3 must be valid in each time instant of 4.

e Each TILCO formula used in a system specification must be closed, in the sense
that each time-independent variable in a formula must be quantified. For instance,
formula 3s. f(k,s) = P is open, while 3s. 3k. f(k,s) = P is closed. If a TILCO
formula is open, it is replaced by its universal closure (that is, an external universal
quantifier is introduced for each of the time independent variables which are not
quantified). According to the syntax definition, each quantified variable must be time
independent, otherwise (i) it would be possible to write higher order formulae and (ii)
time could not be left implicit because the formula’s meaning would change during

system evolution.

e In a TILCO specification, predicates and functions with typed parameters can also
be defined. Predicates are functions that return a value of type bool. Predicates and
other functions define operations and relationships over predefined and user-defined
types. Predicates and other functions are incrementally defined using predefined func-
tions and predicates over the basic data types and type constructors. The body of
each predicate must be specified by means of a TILCO formula, in which the only
non-quantified variables are the predicate parameters. Predicates are only instru-
ments used to simplify the writing; hence, more complex temporal expressions and
formula can be hidden in predicates. Predicates are functions also extend the number
of temporal operators of TILCO, since they can be used to constitute a user-defined
library, thus improving the specifications reusability. For example, a predicate for

specifying that A occurs only once in an interval ¢ could be defined as:

OnlyOnce(A : int — bool, i : interval) : bool & . A(m)?4,
where each occurrence of A is characterized by a different value of m:

= Vm.A(m) = —(A(m)?(—00,0)),
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so that J'm.A(m)?i specifies that the event A happens only once during the interval
i. m can be regarded as a time-stamp. The adoption of time-stamps for distinguishing
different occurrences of events has been introduced in [83], to overcome the temporal
logics’ limitation in recognizing different occurrences of an event. Since TILCO is
an extension of FOL, the use of time-stamps in specifications is simply obtained by

adding them to predicates whose different occurrences must be distinguished.

The two predicates
rule(A : bool) £ A@(—o0, +0),
fact(4 : bool) £ A?(—o0, +0),

express that a predicate A is always or sometimes true, respectively. These predicates
are often used in specifications to express the concepts of necessity and possibility

over the whole temporal domain.

The classical henceforth operator, O, can be expressed in terms of TILCO operator
“@”: AQ[0,+00), which means that A will be true forever from the current time

instant. Analogously, the eventually operator, &, can be expressed by A?[0, +oc0).

Operator “?” could also be defined in terms of operator “@” by using the duality

relationship:

A?i = —~(~A@i).

In order to simplify writing specifications the symbol = (=) has been introduced
to express that a formula implies that another formula will be (has been) true at the

next (previous) time instant:

A=»B = A = BQ[1,1],
A=«B = A = BQ[-1,—1].

TILCO is also characterized by its compositional operators that work with intervals:
comma “,”, which corresponds to A, and semicolon “;”, which corresponds to V,
between intervals. Compositional operators “,” and “;” assume different meanings if
they are associated with operators “@” or “?”. Other operators among intervals, such
as intersection, “N”, and union, “U”, could be defined by considering time intervals
as sets. However, the introduction of U is problematic because the set of intervals is

not closed over this operation.
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e until A B operator does not consider the evaluation time instant as an instant where

A could happen, then operator untily has been introduced. It is defined as:
untily A B= AV (B A until A B)

and also a “strong” until is sometime needed, for this reason the operator until’ has
been defined as:
until’ A B = A?(0,+00) A until A B

for completeness also the untilf has been defined as:
untily A B = A?[0,+00) A untilp A B

in a similar manner sinceyg, since’ and since, operators have been defined.

3.1.3 Short examples

Tab. 3.2 provides examples of TILCO formulz. To provide a clearer view of TILCO’s
expressiveness the formula are accompanied by an explanation of their meaning. In Tab. 3.2,
t stands for a positive integer number.

A more complex example is a formula that specifies a system with an input I7 : int and
an output O; : bool. The system produces an output signal for ¢; time instants with a

delay of ¢y time instants every time that the input assumes the value val:
I = val = O1Q][tg, t1 + ta].
The same system is also specified by the formula:
I = val = 0,@Q|0, t1]Qlts, ta].
Another example is the specification of a system for generating periodic events:
(=B@(0,10] & (BQ@(10,20]A—~B@(20,30]))A((—-B?[—1,—1]AB) & (AQ]0,2]A—-AQ@(2,20))).

This TILCO formula specifies that signal B is periodic with a duty-cycle of 50 percent and
a period of 20 time units while, being associated with each transition of B (from false to
true) signal A stays true for 2 time units. Fig. 3.1 depicts the histories of signals A and B.
Once system behavior is specified by means of a set of TILCO formule, the specification
can be validated to verify its correspondence to system requirements. In TILCO, system

validation is performed by proving that high-level properties (such as, safety, liveness, and
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AQlty, t1], (t2, t3]
A?[t1, 1], (t2, 3]
AQlty, t1]; (t2, t3]
A@[t, 1] A -A@(0, 1)

AQ@Q[—t, —t] A ~A@(—

A?[0,t1]Q[0, +00)
AQJ0,%1]?[0, +00)
(A = B)Q@0,+0)
(A= B)?[0,%]
(A= B?i)Qj
(A = B@i)@j

(A= B@i)?;

A will be true at the next time instant

A is true from now for ¢ time instants

A has been, is and will be always true

A will be always true in the future

A will be sometimes true in the future

A is true in [ty to]

A is true in an instant of [t1,2)

A is not always true

A is always false

A is true at t1, and in (¢2, t3]

A is true at ¢, and is true at least once in (¢, ¢3]
A is true at t1, or in (o, t3]

t is the next time instant in which A will be true

t,0) —t is the last time instant in which A has been true

A will become true within ¢; for each time instant in the future
(response)

A will be true, and since then it will remain true for ¢; time
units (persistence)

A causes B always in the future

if A is true within ¢, then also B will be true at the same time
A leads to an assertion of B in 4 for each time instant of j

A leads to the assertion of B in the whole interval i for each
time instant of j

A leads to the assertion of B in the whole interval 4 in at least
a time instant of j

Table 3.2: Examples of TILCO formulse.

e |7 L

A

] ]

T T2 T+10 T+20 T+22 T+30

Figure 3.1: Histories of signals A and B.
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so on) are satisfied by the TILCO system specification. These properties can be expressed
by other TILCO formulse, and thus TILCO specifies both the system and its high-level
properties. As a result, the classical safety conditions, such as AQj (where A is a positive
property), and —B@j where B is a negative condition) must be satisfied by the system
specification, where the interval 7 can be extended to all or part of the specification temporal
domain.

Moreover, users can also specify liveness conditions, such as A?i (A will be satisfied
within %) or deadlock-free conditions, such as (—=A?:)@j;. During the specification valida-
tion, if a desired property (constituting a system requirement) cannot be deduced from the
system specification given in terms of TILCO formula, then the specification is incomplete.
If the system must satisfy that property, a new TILCO formula should be added to the sys-
tem specification, provided that this formula does not contradict any existing specification
formula. This formula may itself be the desired property or a formula that completes the
system specification to prove the desired property, thus allowing the incremental system

specification.

3.1.4 A more complex example

In this subsection, a more significant real-time system example is presented: an allocator
that serves a set of client processes by sharing a resource according to several temporal
constraints — [16], [57]. In every time instant and for every process a, the resource is
assigned to process a (gr(a)) if and only if, since the last time the resource was granted

(gr(b)) the resource has been released (fr) and

e a requested the resource (rq(a,d)) and that request has not already expired;
e since the request was issued, the resource has not already been assigned to a;

e there are no ¢’ and ¢ such that:

—a#d
— a' requested the resource (rq(a’,0’)) and that request has not already expired;

— since when the request was issued, the resource has not already been assigned to

a;

— a' requested the resource before a (i.e.: a’ did not request the resource after a).
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Equation (3.1) shows the TILCO system specification.

since(—3b.gr(b), fr) A
rq(a, d)?[—4, —5] A
since(rq(a, d), —gr(a)) A
Va.gr(a) > 5 a #a A @(—o00,00) (3.1)
348" rq(a’,d8")?[—4", —5] A
since(rq(a’,d’), —gr(a’)) A
since(rq(a, d), —rq(a’,d"))

3.2 Deductive System

FOL’s deductive system in natural deduction style has been enhanced with added rules for

introduction and eliminating TILCO temporal operators. In stating rules
e I A, means that A is provable in every time instant;

e I A, means that A is provable in the time instant ¢.

I T 1FE ::—IJ;

vg VO f;R TR VIl % VI2 %
=T % = E(MP) szi% -P

\24 % x free only in P VE %f/(mﬁ)

3 % iFE - Elx'P(ﬁz QP(x) ) z free only in P

Rule = T is also called deduction rule (DR), rule VI is also called generalization rule (GEN),
and JF is called ezistential instantiation rule (EI). An alternative and often simpler to use
way of stating rule EI is:

- 32.P(z)
F P(a)

where ¢ is a new constant

The following introduction and elimination rules have been specifically proven for TILCO

operators:
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Fro=k Fi_1e=k Frvi=e FH_1e=k

=1 Ep— k constant =F E— k constant
€Eilgpry P F, PQi; Fzeq
QJ % z not free in any assump. QF ¢ ";Z t Px !
+
. . bauP Fz€i
|_x+tP Fxeid F P74 WT .
?1 - P ?E R x not free in any assump.
) Five P H QQ(0,z) FO<z ) Fe Q@(0, +00)
til7'1 til2 ——
“nl -, until P Q H -, until P Q
sincel 1 e P H1 Q@(2,0) F2<0 sincel?2 —I_t QQ(=20,0)
F; since P Q) F; since P Q)
. FeroP HQ@0,0) HO<z  HQ@(0,400)
mtilE Fpuntil P Q —& et SRS
FR
Csi p O ft=P F:Q@(z,0) Fz<0 +HQQ@(—0,0)
sincel  — since P Q bR —R

FR

For certain operators introduction and elimination rules have not been proven. Therefore,
a set of equivalencies are used to arrive at formulae that contain only operators for which

introduction and elimination rules are available:

(—=P) = P=1 —-equiv
(Pe@Q) = (P=Q AN Q=P =-equiv
(Fz.P(z)) = (Fz.P(z)A (Vy.Ply) =y ==x)) ITl-equiv
A=>B = A= (BQ]L,1)) =b-equiv
A=«B = A= (BQ[-1,—-1)) =K-equiv
AQi, g = (AQ@i) A (AQ@j) @,-equiv
A%, = (A%) A (A7) ? -equiv
AQi; g = (AQi)V (AQ@y) @;-equiv
A% g = (A%)V (A?)) ?:-equiv
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Since each TILCO formula is defined with respect to the implicit time, a formula specifies
a behavior that holds in different contexts — even if the interpretation is translated in

1

the temporal domain*. Thus, the following theorem, called the translation rule, has been

proven:

Theorem 3.2.1 If A is a TILCO formula, T is an interpretation for A and s,t € Z then
Z,t = A if and only if 7(Z,s),t—s E A.

where T is the temporal translation — see definition 2.1.

Corollary 3.2.1 From the previous theorem it follows as a corollary that
ATt Z,t = A if and only if Vt.3T.Z,t = A.

As in [143], [55], [72], in TILCO the generalization rule cannot be applied to time-dependent
variables and predicates, thus having a time generalization rule (TG). This is due to the
implicit model of time. Therefore, TILCO needs a different kind of rule to permit gener-
alization over the temporal domain. Thus, as a consequence of TG, the following rule has

been proven:

FA
F AQ@(—o0, +00)"

This rule states that, if formula A is provable in every time instant, then formula A@(—o0, +00)
is true in every time instant. Formula A in the rule’s premise must be provable in every
time instant, otherwise — because a formula is true in a given time instant, it could be
deduced that the same formula is always true, which is clearly unacceptable. Moreover, it

can be easily shown that A = (AQ(—o0,+00)) is not provable.

3.3 Property Proof

To support the validation of TILCO system specifications, TILCO theory has been for-
malized in Isabelle [120], [122], an automatic theorem-proving environment. It allows the
definition of new theories and the demonstration of theorems by using either manual or
automatic techniques. Isabelle is written in Standard ML [121] language, which is also used
for constructing functions and tools for automatic theorem proving.

TILCO theory was built atop Isabelle/HOL [123], an implementation of Church’s High
Order Logic [39]. The use of HOL to construct FOL theories has been justified in [28],

!This is possible since the specification of temporal constraints is given with respect to events and actions.
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[29], where this is shown that it not only demonstrates theorems in the object logic (i.e.,
TILCO), but also theorems about the object logic.

Intervals are implemented as connected sets of integers using HOL’s set theory. Interval
theory provides constructors for using intervals with the usual mathematical notation with
round and square brackets. TILCO theory is based on integer and interval theories; it
defines the TILCO syntax and semantics using Isabelle/HOL as a metalogic for defining
operator semantics. A comprehensive set of TILCO operator theorems were proven to
simplify the construction of theorems either in manual or semi-automatic manner.

TILCO-theory support in Isabelle/HOL permits an absolute degree of confidence in a
proven theorem’s truth. It is much safer than using a pencil and paper approach, because the
use of Isabelle ensures that the demonstrations built are, in fact, correct. In general, with
logical approaches, the problem is to demonstrate high-level properties by using low-level
specifications, which usually describe uncorrelated elementary system properties. This can
be simplified by using an incremental approach to specification through theorem proving,

thus allowing either a top-down or a bottom-up approach:

e Top-Down Approach — A high-level specification is refined into a lower-level specifi-
cation using theorem proving techniques to validate the refinement, until a detailed

specification of the system is achieved;

e Bottom-Up Approach - Theorem proving techniques are used on low-level specifi-
cations to prove higher-level properties. This process is repeated until the desired

top-level properties are proven.

This approach easily supports the validation of high-level properties — constituting a high-
level specification with respect to the system specification, where intermediate lemmas
can also be viewed as intermediate system specifications. The approach also supports the
reuse of specifications from commonly used systems with proven characteristic properties

to specify more complex systems.
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Chapter 4

An extension of TILCO for the

specification of complex systems

In this chapter, an extension of TILCO to support the specification of complex systems is
presented. In TILCO, the specification of a system is given as a set of TILCO formula that
represent the system behavior in response to external stimuli, that are modeled as temporal
variables. This approach is feasible for systems of little/medium size, for large/complex
systems where to specify the system behavior there are hundreds or even thousands of
formulae, this approach is unmanageable. Typically not all the formulz are related each
other, some specify the behavior of parts while other specify other features, therefore it is

natural to divide the complex system in parts.

4.1 Introduction

Composition/decomposition techniques are mechanisms to cope with the general system
complexity. Most of software development methodologies address the structural compo-
sition/decomposition of the systems. A composite object is defined in terms of its sub-
object/components and their relationships. Object-based and object-oriented approaches
include and formalize composition/decomposition concepts. Different communication mech-
anisms among components: shared variables, synchronous or asynchronous communications
are chosen. Components can be separately developed, tested and then combined for mod-
eling the whole system. Problems arise when the combination of components produces
unexpected and, thus, difficulty controllable and verifiable behavior for the presence of

communication among components. To this end, verification and validation criteria for

73
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compositional methods are used [34], [20]. These must address the verification and vali-
dation of composition of components and their relationships with the requirements of the
composite object.

For complex and large systems, the compositional approaches are typically accompanied
by the availability of a layering support. The verification of consistency between composite
object and its components at each level of the structural hierarchy guarantees the satisfac-
tory of the abstract specification and thus of system requirements — for example, [57],[92],
[34], [20].

4.2 CTILCO Overview

A system specification in C-TILCO is a hierarchy of communicating processes whose spec-
ifications are written in TILCO. Many instances of the same process can be present in the
specification. Processes can have some general static parameters and every instance could
have different values.

The communication between processes is based on typed synchronous input/output
ports connected through channels. The connection is 1:1, each output port is connected to
at most one input port and vice versa. In the following, the way in which processes are
modeled in C-TILCO is introduced and in the next sections the formalization of commu-
nication between processes in TILCO and the way that could be used for reasoning about
communicating processes are presented.

In the following a process represents a class according to object-based formalism. In

C-TILCO a process is represented by two views:

1. the external view that basically describes the input/output behavior of the process;

2. the internal view that describes the process decomposition into subprocesses or a

low-level formalization of the process behavior if it cannot be furtherly decomposed.

A C-TILCO process is externally characterized by:

e a set of external input ports used to acquire information from the outside;
e a set of external output ports used to produce information to the outside;

e a set of external variables used to give some general information about the process

state or to simplify the external behavior specification;

e a set of external parameters used to permit general process specification to make easy

process reuse, since different process instances may have different parameters;
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e a set of external TILCO formule that describe the external process behavior by means

of the messages exchanged and constraints on the external variables,

while is internally characterized by:

e a set of C-TILCO subprocesses;

e a set of internal input ports, used to get information from subprocesses;

a set of internal variables;

a set of internal output ports used to send information to subprocesses;

a set of internal TILCO formule, that describe the internal behavior of the process.

The ports of subprocesses can be directly connected to the containing process ports (of the

same type, input to input and output to output) or can be connected through channels to

the complementary internal ports (output to input and input to output). In Figure 4.1, a

decomposition is exemplified. The use of internal ports permits even a partial decomposi-

tion, when not all the process behavior is partitioned in subprocesses and some interactions

with the subprocesses is done in the internal specification TILCO formulse.

In TILCO formule, to access process components the dot notation is used, for example

if p is a process with a variable v then p.v is used to refer to the variable of p. Moreover, if

process p has a subprocess s with a variable v then p.s.v is used to access to the subprocess

variable.
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Since many instances of the same process can be present in the system, its specification
is valid for all of them. For example, if in the internal specification of a process with a

variable var we have the following formula:
swar = 1= (tivar = 0)Q[20, 20]

it means that if svar is equal to 1, then after 20 time units svar will be equal to 0. This
will be true in each process independently.

With the colon operator, within a formula, process and local variables can be easily
identified. This leads to a great readability of formulse.

Since in TILCO the time axis is infinite in both directions there is not a time instant
that can be regarded as the start instant of execution process. In the specification of a
system it is natural to think at a reference time instant in which the process starts its work
and before that the signals are stable. For this reason a boolean variable process_start has
been introduced to each process. This variable is true only in one instant for each process.
It should be noted that each process has its own start instant and a formula of the internal
specification is used to define the start time instant of its subprocesses, typically when a

process starts all its subprocesses start.

4.3 CTILCO Communication Model

The communication between two processes is structured in two layers: the low-level com-
munication model for transmission of typed messages and of acknowledgements (ACKs);
and the high-level communication model that uses the low-level to realize a synchronous
communication protocol.
4.3.1 Low-level communication
Properties assumed for the low-level are:

e no data creation: a message (or ACK) arrived has been surely sent;

e no data loss: a message (or ACK) sent will be received;

e constant delay: a message (or ACK) sent will be received after a constant delay

greater or equal than zero.

From these assumptions the no reorder property can be derived (messages arrive in the

same order as they are sent). The no data creation assumption is fundamental (without
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this assumption communications have no sense). The no data loss and constant delay
assumptions have been introduced to have a deterministic behavior.

In this layer, the following four low-level temporal predicates are defined:

<outPort>.send(<expr>)
is true when output port <outPort> sends the value obtained by evaluating expression

<expr>.

<outPort>.receiveAck

is true when an ACK has been received by output port <outPort>.

<inPort>.receive(<expr>)
is true when a message has been received by input port <inPort> with the value

indicated by <expr>.

<inPort>.sendAck

is true when input port <inPort> sends an acknowledgement.

There is also a connection predicate between ports:
d .
outP — inP

that asserts that output port outP is connected to input port inP and messages (and ACKs)
sent are delayed of d time units.

Please note that connections are static assertions, design-fixed. With a little definition
effort C-TILCO may be extended to permit dynamic connections.

The rules introduced to manage low-level communication are reported in the following:

message transmission:
(outP 4 inP) = rule(outP.send(k) <= inP.receive(k)Q[d,d])
This rule states: if port outP is connected to port inP then in every time instant,
outP sends a message if and only if inP receives the same message after d time units.

From this rule, we have that the message sent is received after d time units (no data

loss) and that the message received has been sent d time units ago (no creation).

ack transmission:

(outP N inP) = rule(inP.sendAck <= outP.receiveAck Q[d, d])

This rule is similar to the previous except that it deals with the ACKs and that the

direction is opposite (from input port to output port).
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send one value:
rule(outP. send (k) A outP.send(v) = k = v)

This rule states: if at the same time instant two values are sent on the same port

these values have to be equal.

receive one value:

rule(inP. receive(k) A inP.receive(v) = k = v)

This rule states: if at the same time instant two values are received on the same port

these values have to be equal.

4.3.2 High-level Communication

The high-level layer introduces synchronous ports, the basic operators on these ports are

Send (1) and Receive (77) these are easy to remember due to their similarity with CSP:

<outPort> !l <expr> [<whileExpr>|;; <thenExpr> sends through output port <outPort> the
value obtained by evaluating expression <expr>. When the communication ends
TILCO expression <thenExpr> is asserted, while during the waiting the temporal

expression <whileExpr> is asserted.

<inPort>?? [<whileExpr>];;<thenExpr> waits for a message (if not already arrived) from
input port <inPort>. When the message arrives TILCO expression <thenExpr> is
evaluated as a function of the value received, while during the waiting the expression

<whileExpr> is asserted.

In order to specify that a process has not to send a message on a port or that the process
has not to ask for a message other two operators: outP!! and inP ?? have been introduced.
These conditions cannot be specified by using —(inP !! v [P];; W) which has a different
meaning.

High-level synchronous operators are defined in TILCO by using the low-level predicates
as reported in the following. In Figure 4.2 the two cases of synchronous communication are
reported: (i) the emitting process sends a message, and after the receiving process asserts
that wants to receive a message; (ii) the receiving process waits for a message and after the

emitting process sends the message.

e operator Send emits the message and waits for an ACK. While it is waiting wait
formula, Wy, is asserted and no other messages are sent. When the ACK arrives
the “end of communication” formula, P, is asserted. The behavior of Send can be
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High-level

S(v) = send(v)

r = receive(v)

sa= sendAck

ra = receiveAck
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nr = not receive(v)
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nra = not receiveAck
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Figure 4.2: Examples of synchronous communications with no delay.

specified in TILCO with the following axioms:

rule((outP !! v [Ws];; Ps) = outP.send(v)A

rule(out P! = =3k.outP. send(k))

untilg (out P. receiveAck AP;)

(outP.receiveAck V
(moutP.receiveAck A
until(out P. receiveAck)

(—outP. receiveAck ATV )A

(—out P. receiveAck AoutP1))))
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the untily formula is used to state that P; is true when the ACK is received and W

is true until this time instant. The other part of the formula states that during the

waiting for the ACK no message is sent.

operator Receive has two possible situations. If there exists a message received in
the past that was not acknowledged the ACK must be sent and the “end of commu-
nication” formula, P,, is asserted with the value received. In the other case, a new
message has to be waited asserting wait formula W,.. When a message is received (if
any) the “end of communication” formula, P,, is evaluated with the value received.
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The behavior of Receive can be specified in TILCO with the following axioms:

rule((inP ?? [W,];; P.) AinP.RValue v =
inP.sendAck AP, (v))
rule((inP 7?7 [W,];; Pr) AinP RWait —
untily (3k.inP. receive(k) A inP.sendAck AP, (k))
(=3k.inP.receive(k) A W,)A
(Fk.inP. receive(k)V
(=3k.inP.receive(k) A = inP.sendAck A
until(3k.inP. receive(k))
(=3k.inP.receive(k) A inP??))))

rule(inP ?? = = inP.sendAck)

rule(inP ?? [W,];; P, AinP?? = 1)

where:

inP.RValue v = since’(inP.receive(v) A minP.sendAck) (—inP.sendAck)

is a formula indicating that there exists a pending v message; and formula

inP.RWait = —3v. inP.RValue v

states the absence of a pending message to be elaborated (the current instant is not

considered).

In Figure 4.3, the more complex case in which there is a delay in transmission is shown.
Even in this case there are two situations: (i) when the distance from the Send and the
subsequent Receive is greater than the delay, thus the message is received prior to the
Receive action; and the opposite case (ii) when the Send action is performed after the

Receive or before it but with a distance lower then the delay.

4.4 CTILCO Communication Theorems

In the definition, many properties have been proved about the communication operators, in
order to validate the definitions of operators and to aid the construction of proofs involving
these operators. The proofs were made by using a formalization of TILCO and C-TILCO
in Isabelle/HOL.

Theorems proved can be divided in two groups:
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Figure 4.3: Examples of synchronous communications with delay.

e theorems used to prove internal properties of a process. They substitute operators

Send and Receive with their semantics;

e theorems used to prove properties involving connected processes.

In the first group, there are the theorems that can be used to eliminate a Send from the
assumptions of a goal.

[t p. send(v)]

Fep Mo [Ws];; Ps b4 p.receiveAck?]0, +00)
F untily P, W

Fep Mo [W];; Ps
'_t llIltilo Ps Ws

The first theorem states that: if the process wants to send a message at time ¢ and the
message is sent receiving the ACK, then a time instant exists in which P; is true and until
that time instant, predicate Wy is true. This theorem can be used to substitute the Send

with a strong until in the assumptions of the goal within the backward proofs of Isabelle.
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Figure 4.4: Theorems for synchronous communication

The second theorem is similar to the previous one but without the assumption that if a
message is sent an ACK will be received, in this weaker condition the same condition, but

with the weak-until, can be derived.

For the Receive, similar theorems have been proved:

Fep?? (Wel;; Pr b 3k, p.receive(k) ? [0, 4+00)
F; Jv. untily P,.(v) W,

Fep?? [(Welss Py
F; Jv. untily P, (v) W,

The first theorem of Receive states that, if a message will be received the operator
Receive may be substituted with a strong until. The other theorem substitutes the Receive

operator with a weak until, making no assumptions about the message arrival.

In Figure 4.4, the visual descriptions of the next two theorems proved are reported. The

assumptions of the theorems are depicted over the time axis while consequences are below.

In the theorems used to prove properties for connected processes, the RWait operator
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plays an important role. It summarizes the communication status:

Fout % in
Fein?? (W, ];; Pr
Fige, out 1o [Wi];; Ps
Fiin?? Q[ts —d,0)
ts < —d
F: Pr(v)
Feqa Ps
b W,Qts, d)
Fiout 1 Q(ts, d)
Fi+1 in.RWait

This means in the premises: if two ports are connected with a delay d, a Receive is
asserted at time ¢, and a Send is asserted t; instants before the Receive. In the implication:
the message is received at time ¢, P; is true after d time instants, the wait formula of Send
is true from the Send time instant to the end of communication time instant, and at ¢ + 1

RWait is true stating that no message is pending.
The following theorem covers the opposite case, that is when there is not a pending
message, and the Send is done after the Receive or within the delay.

F+ in.RWait

Fout % in

Fein?? [(We];; Pr
Fete, out 1Mo [We];; Ps
F.in?? Q[ts — d,0)

e outﬁ@[—d, ts)

—d < tg

Fegtora Pr(v)
Fettot2a Ps

- W, @[0, £, + d)
e, Wo@[0, 2d)
Fiin?7@(0,ts + d)
Fite, in11@(0, 2d)
Fitts+d+1 tn.RWait

Using these theorems the following ones can be derived for communication with no delay,
it should be noted that some premises have been removed since in this case it refers to an
empty interval:

Fout = in +Fin?? [Wy];; Pr Fege, out 1o [We];5 Ps inﬁ@[ts, 0) ts<0
FePr(v) +F¢Ps FWsQ[ts,0) Fpout@(ts,0) F¢p1in.RWait

Fiin.RWait  Fout = in  Fin?? [Wy];; P boge, out 1o [Ws];; Py Feout@Q[0,t) 0 <t
Fives Pr(v) Foge, Ps FeWo@[0,ts) Fiin?7@(0,t5)  Fige, 41 in.RWait
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Other theorems consider the case in which a process is sending/receiving on a port and
the other process will never receive/send on the connected port. In this case, the waiting
formula is always true in the future and the process will never send/receive on the related
ports:

F.in.RWait | out 2 in Fein?? [We]5; P Hy outﬁ@[—d, +00)
F: W, @[0, +00)  F+(in??)@(0, +00)

Fout % in Feout I v W] Ps b4 inﬁ@[—d, +00)
F, Ws@[0, +00)  F¢(out N@(0, +00)

Other theorems have been proved, some about the RWait operator. In particular, the
followin theorem:

F.in.RWait | out 2 in e outﬁ@[—d, s—d) 0<s
|_t+s anWalt

permits to deduce that if RWait is true for an input port and the connected emitting

process is not sending, then RWait will remain true.

Another case is when the emitting process has never sent a value, from this we can
deduce that RWait is true:

Fout % in e outﬁ@[—oo, —d)

F: in.RWait

4.5 CTILCO Specification Validation

In order to validate a CTILCO specification, properties can be proved by using the Is-
abelle/HOL theorem prover with the formalization of TILCO and CTILCO. In that envi-
ronment, theorems reported in the previous section and many others facilitate the proofs of
properties manually or automatically. It should be noted that in this environment properties
can be proved for the entire system as well as for single processes with generic parameters.

Properties proved are typically safeness (nothing bad will never happen) or liveness
properties (something good will happen). Other kind of properties that can be proved is
the verification of the process decomposition, that is, the proof of the external properties
stated for a process by means of its internal specification (decomposition).

Since TILCO specifications can be executed by using a causal inferential engine (see
chapter 6) even a C-TILCO specification can be executed. Obviously, not all the specifica-

tions can be executed, quantifications have to be done on finite domains, the specifications
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have to be deterministic and no generic parameters have to be present. However, the speci-
fication can be time incomplete, that is the behavior of the system can be partially specified

for all the time instants.

4.6 An Example

In this section, an example to highlight the composition and reuse capabilities of C-TILCO
is presented together with some validations.

The system under specification is an abstraction of a train system that connects a set
of stations. Every train passes from a fixed set of stations with a cyclic path. A train needs
bounded time duration to go from a station to the next one. In order to enter in a station
the train has to ask the permission; once the permission is granted the train remains in the
station for a constant time duration and then it leaves the station for the next one. Every
station can have only one train inside as the same time. As an example we consider the

system shown in Figure 4.5. The system is decomposed with three types of processes:

Sa
Stationl

Station2

Ral e EXL

Ent2
Rg2 Ext2

Th
Train2

Rql L] Extl
Ra[ ] [ e

Stationl

Figure 4.5: The railway system and its decomposition.

e process Station! (Sa and Sb) manages the access of only one train.

e process Station2 (Sc) manages the access of two trains.
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e process Train2 (Ta and Tb) models a train that accesses to two stations.

Please note that the specification at system level only consists in the definition of process
relationships and a global start predicate.

In order to mange the access to a station, three ports are needed, one for the request
to enter in the station (Rq), another to give access to the station when the station is free
(Ent), and the last to notify at the station that the train has left the station (Ext).

4.6.1 Process Stationl

Process Stationl has three ports (Rq, Ent, Ext) to communicate with the train and three

Boolean internal variables:
e hasTrain stating that the station has a train inside.
e waitRg that is true when the process has to wait for a request of the train.

e waitErt that is true when the process has to wait for the notification of the train

exiting.

When the process starts, it has to wait for a request and before the starting the station
has no train inside and no communication has been issued:

:process_start = :waitRq A (= :hasTrain)Q(—oo,0)
:process_start = (:Rq??A:Ent!'A:Ext??)Q(—0c0,0)

The general behavior is specified with the following formula:

cwaitRg = :Rq?? [~ :hasTrainA :Ent'A :Ext77] ;;
:Ent ! enter [~ :hasTrainA :Rq?? A : Ext 77];;
:Ext ?? [-hasTrainA : Rq?? A : Ent 1] ;;

rwattRq

stating that if the process has to wait for a request a Receive is performed on port Rq and
when a request is received the grant is immediately sent. During the waiting of the Receive
on Rq and the Send on Ent, the train is not in the station (- :hasTrain). When the grant
is received the process waits for the exit notification. In this while, it asserts that the train
is in the station. When the notification is received the waitRq variable is newly asserted
to begin the waiting for a new request. It should be noted that during the waiting on a
certain port the waiting predicate states that the process is not sending/receiving on the

other ports. This is given for granted in the following.
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4.6.2 Process Station2

This kind of process has six ports (Rql, Entl, Ext1l, Rq2, Ent2, Ext2) to communicate with
the two trains and two Boolean variables hasTrainl and hasTrain2 stating that the station

has train 1 or 2 inside, respectively.
A general requirement is that only one train can be inside the station at the same time
instant:
(=(:hasTrainlA :hasTrain2))Q(—oo, +00)

For the internal specification of process Station2 the following Boolean variables have

been used:
e free states that the station in free;

e waitRql and waitRq2 when true indicate that the process has to wait for an access

request of train 1 or 2, respectively;

e reql and req2 indicate the receipt of an access request for train 1 or 2, respectively.

It remains true until the train has access to the station;

o sendEntl and sendEnt2 when true indicate that the process has to send to train 1

or 2 the enter notification and to wait for the exit notification.
For the specification the following shortcuts have been used:

A=»B A= BQ[L, 1]
inv(4d) = A& AQ[-1,—1]

The free variable is defined as:
: free <= - :hasTrainl A = :hasTrain2

When the process starts, it has to wait for the requests, until a request is received reql/2
is false and when the request is received reql/2 becomes true:

:process_start = :waitRqIN : waitRg2A : free @Q (—o0, 0]

:process_start = (:Rql7? A :Ent1!1'A : Ext17?7) @ (—00,0)
=
=

:process_start (:Rq277 A : Ent2IA : E2t277) @ (—00, 0)

:Rq17?? [~ :reqIA :Ent1'A : Ext177];;
:reql A = :hasTrainIA : Ent1 A : Ext17?

twaitRql
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cwaitRq2 = :Rq277 [~ :req2A : Ent2IA : Ext277];;
:req2 A = :hasTrain2A : Ent2 '\ : Ext2 7?7

When no requests have been received hasTrainl/2 remains stable (with the same value):
—:reql = inv(:hasTrainl)
—:req?2 = inv(:hasTrain2)
When the station is free and a request is received for a train but not for the other the enter
notification is sent:
:free A\ ireql A — :req?2 = :sendEntl
:free A\ :req2 A — :reql = :sendEnt2

If two requests are contemporaneously received train 1 has the precedence:
:free A ireqIN req2 = :sendEntIA :req2 A = :hasTrain2

If the station is not free and a request is received the request is maintained active and no
communication is issued:
—:free A ireql = :reql A - :hasTrainIA :Rql?? A :Ent1IA : Ext1 77
- ifree A ireq? = :req2 A - :hasTrainA : Rq277 A : Ent2TA : Ext277
When sentEntl/2 is true the enter notification is sent and then the exit notification is
waited, in this while hasTrainl/2 is true and no requests have to be received. When the
exit notification is received, hasTrainl/2 becomes false and, at the next time instant, the
process begins to wait for a new request (to leave the chance for a pending request to be
served):
:sendEnt] = :Ent1!! enter [:hasTrainl A — :reqIA :Rql1?7 A : Ext17?];;
:Ext1?? [:hasTraind A = :reqIA : Rqg1?? A :Ent111];;
= thasTrainl A = :reqIA :waitRql Q[1,1]
:sendEnt2 = :Ent2!! enter [:hasTrain2 A — :req2A : Rq2 77 A\ : Ext277];;
:Ext27?? [-hasTrain2 A — :req2A : Rq27? A :Ent211];;
- thasTrain A = :reg2A :waitRq2Q[1, 1]

4.6.3 Process Train2

Process Train2 managing the access to two stations is decomposed in two kind of processes

connected as depicted in Figure 4.6. Processes of type TrainAtStation manage the access
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to a station while processes of type MinMazDelay are used to model the time spent by the

train to reach the next station. A deterministic delay can be fixed depending on the railway

Tokin
0 S2ToS1 Tokout
MinMaxDelay
TokOut Tokin

path length.

rafl] e
wl ats AtsL  [Ie
TrainAtStation TrainAtStation
e[ NES

Tokin TokOut

Tokin

Tokout S1ToS2
MinMaxDelay

Figure 4.6: Train2 decomposition.

Ports TokIn and TokOut are used to sequentially activate the processes. When a
message is received from port TokIn the process is activated and when the process has
finished a message is sent via the T'okOut port. It is a sort of token passing.

Reusing the above processes strongly more complex configurations can be defined and
validated.

4.6.4 Process TrainAtStation

Process TrainAtStation manages the access to the station, the presence in the station and
finally the departure from the station. It can be decomposed with three processes as shown
in Figure 4.7. Process EnterStation manages the request of access to the station and the
wait for enter notification. Process MinMaxDelay (already presented in the upper levels)
is reused to model the time spent by the train in the station. Process EzxitStation states

the exit from the station.

4.6.5 Process EnterStation

This process has to wait for the token, then it sends the access request, waits the enter

notification, sends the token and waits for the token again.
:process_start = :waitTok A (:TokIn?? A : Ent?? A :TokOut!') @(—o0,0)

cwaitTok = :TokIn?? [- :waiting/A : Rg''A : Ent 77 A :TokOut!] ;;
:Rq ! request [:waitingA :TokIn?? A : Ent?? A :TokOut 1] ;;
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Figure 4.7: TrainAtStation decomposition.

: Ent ?? [:waitingA :TokIn?? A :Rq"' A :TokOut 1] ;;
:TokOut ! token [ :waitingA :TokIn?? A :Rq'A :Ent?7];;
rwaitT ok

4.6.6 Process ExitStation

This process has to wait for the token, then it sends the exit notification, sends the token

and waits for the token again.

:process_start = :waitTok A (:TokIn?? A : Ext' A :TokOut ) @(—o0,0)
cwaitTok = :TokIn?? [- :waitingA : Ext A :TokOut ] ;;
: Ext ! exit [waitingA : TokIn?? A :TokOut!];;
:TokOut ! token [ :waitingA :TokIn?? A : Ext!1];;
rwaitT ok

4.6.7 Process MinMaxDelay

This process has to wait for the token and to send the token to the next process after a

delay between MinDelay and MaxDelay.

:process_start = :waitTok A (:TokIn?? A : TokOut!!) @(—o0,0)
cwaitTok = :TokIn?? [— :waitingA :TokOut!!];;
(= :sendT'ok @Q[0,: MinDelay) A

:sendTok ?[: MinDelay, : Max Delay] A
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untily : sendTok (- :waitingA :TokIn?? A :TokOut 1))
:sendTok = :TokOut ! token [— :waitingA : TokIn?7];;
rwaitT ok

4.6.8 Validation

Using the proved rules reported in the previous sections several properties have been proved.
The specification has been formally validated with success by using Isabelle theorem
prover. In addition, each single process can be tested with the TILCO executor. In this
case, several typical histories for inputs and outputs can be generated and viewed by using
a signal editor.
For example, for process Station2, the external mutual exclusion requirement has been
derived from the internal specification, this can be considered as a decomposition verification

and is also a safeness property proof.
For example, for the train Ta, the following liveness property has been proved:

up(:Ta.inStationl) =

up(:Ta.inStationl) ? [minTa, mazra)

that is, the distance between two successive time instants in which the train enters in the
first station is bounded. In the best case, the minimum time needed to across the path is:

minta = Ta.timeInS1+ Ta.minS1ToS2 +
Ta.timeInS2 + Ta.minS2ToS1

while in the worst case we have:

marTa = Ta.timeInS1+ Ta.mazxS1ToS2 +
Tb.timeInS2 + Ta.timelnS2 +
Ta.maxS2ToS1

where: timelnS1, timelnS2, mazS1ToS2, maxS2ToS1, minS1ToS2 and minS2ToS1 are
generic parameters of process Train2 expressing the time spent in each station and the
maximum/minimum time to pass from a station to the next. inStation! is a Boolean

variable indicating that the train is in the first station of its path.
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Chapter 5

An extension of TILCO to simplify

formulae

In this chapter a further extension of TILCO is presented. With this extension Dynamic
Intervals and Bounded Happen have been added. The first permits to specify intervals
not only with constant integer values but also using other formulse. The second permits
to quantify the number of times a formula is true within an interval. The new syntax an
semantics is presented and the new deductive system is introduced. An example is used to

highlight the language expressivity.

5.1 TILCO-X, TILCO eXtension

TILCO, MTL and TRIO are first order temporal logics for real-time system specifications.
They have a metric of time and thus can be profitably used for specifying qualitative and
quantitative temporal constraints. Many other logics produce specifications structurally
similar to TRIO and MTL or have similar operators; while, other logics can be difficult to
use in comparison to those of TRIO, MTL and TILCO, since they are based on elementary
operators that lead to the production of overly complex specifications.

For the specification of real-time systems, the conciseness, readability and understand-
ability of the temporal logic used are strongly relevant. These features depend on the ex-
pressiveness of the logic, on the number of operators, on the structure of formulas (nesting
levels, number of calls to special functions/parameterised predicates, presence of quanti-
fiers), on the needs of user defined special operators, on and the need of adopting temporal
quantifications.

A formal proof of TILCO’s conciseness with respect to other temporal logics would

93
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be difficult, mainly due to the lack of a formal definition of conciseness or readability.
Moreover, an examination of the elementary specifications for TILCO, TRIO and MTL,
has demonstrated that the typical specifications produced in TILCO use fewer distinct
operators than in TRIO and MTL [99]. In addition, some specifications can be written in
TRIO and/or MTL only by using nested operators, while simple direct operators are used
in TILCO.

TILCO specifications are based upon four fundamental operators. A greater number of
operators are used in TRIO/MTL-like formulas. Thus, complexity increases and conciseness
decreases for both TRIO and MTL; and this leads to a higher cognitive complexity (or
comprehensibility complexity) as in programming language (demonstrated by the validation
of several cognitive metrics [100], [37], [151], [45], [112]).

TRIO and MTL are both based on points and present a sharp distinction between past
and future. MTL and TRIO have distinct operators for past and future (e.g., MTL: G,
H; TRIO: Past() and Futr()). In contrast, TILCO is an interval temporal logic with a
uniform model for time from past to future. TILCO specifications can describe facts and
events without to use different operators for past and future [99].

In the analysis of TILCO and several other temporal logics performed by the authors
[21], two specific fields of improvement have been identified for the specification of real time

systems:

e TRIO, MTL and many other temporal logics adopt since and until operators to
specify dependencies between events. Also TILCO [99] adopts since and until oper-
ators for the same purpose. These operators make a strong distinction between past
and future and, thus, their adoption frequently makes the specification complex and
hard to read. The adoption of a unique operator for defining ordering relationships
between events reduces in several cases the needs of the adoption of nested since and

until operators.

e The needs of specifying the occurrence of one event from the repeated occurrence of
another is quite frequent (operators for events counting are needed). For instance, A
has to start after the arrival of 5 messages on channel B within interval 1. Specifi-
cations with these constrains are quite complex to understand and difficult to realise
by using classical temporal operators such as those proposed in TILCO, IL, TRIO,
MTL, RTL, etc. This is the reason for which some temporal logics present specific
operators for this purpose. In RTL, a special operator capable of recovering at which
instant the particular occurrence of an event happens has beeen proposed [80]. These

constraints can be specified in FOL and thus also in first order temporal logic but
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the specification results to be strongly complex with respect to the complexity of the

concept under specification and involves several quantifications.

These facts are a limitation for specification conciseness and readability and thus for
the adoption of logical languages for the specification of real-time systems. To this end, the
operators called Dynamic Intervals and Bounded Happen have been defined in TILCO-X by
extending TILCO to enhance its readability and conciseness, especially for the expression of
order relations. The new operators can be combined allowing the definition of very powerful

real-time constraints in a strongly concise manner.

5.1.1 Dynamic Intervals

Dynamic Intervals have been introduced to: (i) avoid the needs of distinguishing between
past and future for ordering relationships; (ii) avoid in several cases the nesting of since
and until operators; (iii) reduce the number of quantifications; (iv) allow the combination
of order and quantitative relationships.

These capabilities have been introduced in TILCO-X by making possible to write tem-
poral intervals not only as constant integer sets, but also by using a formula as an interval
bound.

For example, the following TILCO-X formula

A@[10,+B)

states that A is true from 10 time units in the future until B is true for the first time,
where +B identifies the first future instant in which B is true (from the evaluation time
instant), if such an instant does not exist A is true forever in interval [10, +00). These two

conditions are represented in Figure 5.1.
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Figure 5.1: Example of Dynamic Interval: A@[10,+DB)

In a similar way, an interval bound can be located in the past; for example, formula
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A@(-B,0]

states that A is true since the last time instant in which B is true until the current instant.
Where —B identifies the last instant where B is true.
It should be noted that, until and since operators can be defined by means of the

following formulas:

until A B B @(0,+A4),
since AB = Ba(-A4,0).

In the following, the above mentioned applications of the Dynamic Interval solution are

presented and discussed.

Distinction between past and future

The following specification is a typical case in which a distinction between past and future
has to be performed for adopting of since and until operators: since the last occurrence of
C and until the first occurrence of D, for every occurrence of A there will be an occurrence
of B at the same time. In TILCO, it can be formalised as:

(since C (A= B))A (A= B) A (untilD (A = B)).

In MTL and TRIO structurally similar formulas are obtained.
With TILCO-X, it is possible to write intervals starting from the past and ending in the

future; thus, the above specification results to be strongly simplified:
(A= B)a(-C,+D).

This TILCO-X formula can be read as: A = B is true from the last occurrence of C' in the
past and the first occurrence of D in the future, with respect to the evaluation time instant.
Another example in TILCO-X is the following formula specifying that A or B happened in

the last ten instants or will happen until C' and D are true:
(AV B)?7[—10,+(C A D))].

This example shows, how it is possible to write specifications in which the interval has a
fixed lower bound in the past and a dynamic upper bound in the future. This last example

can be written in TILCO in the following way:

(AV B)?[~10,0] V = until(C A D)(~(A V B)).
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Nesting levels

The definition of intervals with dynamic bounds (identified by the validity of a generic
formula) avoids in many cases the adoption of nesting temporal quantifiers. Thus, TILCO-
X produces more concise and readable formulas.

An example could be the following TILCO-X formula

AQ[+B,+0)

stating that after the next occurrence of B, A is always true. The same behaviour can be

specified in TILCO by using nested until and @ operators such as in:

until (B A[A@[0, +00) ) (~B) |

The box around formulas highlights the nesting levels of the temporal operators.

A more complex example can be the following TILCO-X formula
A?+B,+C).

This formula states that A happens between the next occurrence of B and the next occurrence
of C. The interval boundaries are included; therefore, A may happen even at the same time
instant as B or C'. Without the avalability of the new construct the same formula has to

be written by using two nested until operators.

B?(0,+00) A (until B =C) A|until (B A (AV = ((until (C A ~A) =A))) (=B)

B must happen in the future because otherwise the interval [+ B, +C] is empty and A cannot

happen on an empty interval.

Reduction of the number of quantifications

Temporal quantifications are not allowed by TILCO language since their prohibition has
been shown to be a necessary condition for the existence of feasible automated verification
mechanisms [10], [99]. Therefore, in TILCO is very complex to specify certain constraints

without the adoption of a direct temporal quantification. For example:

After every occurrence of event S, a signal A has to be true after the first
occurrence of event E (if it happens) and A remains true until a certain deadline

d (value relative to event S).
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Figure 5.2: A complex constraint.

Figure 5.2 reports a representation of the constraint proposed which is complex to be spec-
ified without temporal quantification.

The specification complexity is due to the fact that, the above constraint is comprised
of two parts: one relating S to next occurrence of F; and the second, relating S to the
end of the temporal interval d (that is constant). In order, to specify the second part an
@ operator could be used. The identified time instant in which E will occurs has to be
considered as the starting bounds for its interval. This dependency, between the two parts,
can be only defined by using a quantification.

A way to specify this requirement in TILCO is to introduce a clock variable “Ck” with
the following property:

((Ck=0A=S)@(—00,0] A (Fv.Ck=v = (Ck =v+1)@ll,1]) @(0,+00))?(—00, +00)

stating that an instant (the initial) exists before Ck is zero and S does not happen, and
that Ck is incremented by one at every time instant, after the initial time instant.

Using Ck, the above reported constraint can be written as follows in TILCO:

SAE?0,d) = (Fv. Ck = v A until (F A until (Ck > v +d) A) (-E). (5.1)

A little bit more complex formulas, but structurally similar, can be obtained by using
MTL or TRIO. This writing modality for constraint specification should be avoided since
it produces poorly readable specifications. This fact is much more relevant for complex

specifications.

In other temporal logics that support time quantification such as TRIO, the above

reported constraint can be rewritten as follows:

Vit SAFutr(E,t) A (0 <t <d)A(t<t <d) — Futr(A,t).



99

A structurally similar formula can be obtained in MTL.

In TILCO-X, the above constraint is simply stated by the following formula:

S= Aa(+E,d),

that is simpler than both TRIO and TILCO versions.
Therefore, it has been shown that the adoption of new TILCO-X operators reduces the
number of quantifications and operators, thus, increasing the readability and coinciseness

of formulas.

Combination of order and quantitative relationships

Using TILCO-X is easy to write ordering relations between events, especially those that
combine order and quantitative relationships.
For example, the following TILCO-X formula states that A happens after B within 100

time units:
A?(+B,100].

In Figure 5.3, the visual representation of this condition is reported.
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Figure 5.3: Example of Dynamic Interval: A 7(+B5,100]

The above formula is quite similar to TILCO formula
A7?(0,100] A —until A (=B).

These two formulas are not equivalent (the second implies the first); because according
to TILCO-X formula, A may be true or not before B is true. This is not possible for the
TILCO formula, as depicted in Figure 5.4.

In order to have the equivalence, A has to be false until B is true, thus the correct
TILCO formula is:
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Figure 5.4: A model for formula A 7(0,100] A —until A (-B)

A?(0,100] A ~until A (~B) <= (=A4) @(0,+B] A A?(+B, 100].

This is a further example of the TILCO-X conciseness with respect to TILCO. As
demonstrated in [99], quite structurally similar formulas can be written for TRIO and
MTL, but they result even less concise than TILCO formulas.

5.1.2 Bounded Happen

Bounded Happen has been defined to increase the readability of constraints which includes
the dependence from the counting of occurrences. Sometimes constraint implies the counting
the number of occurrences of an event or in general the number of times that a formula
is true in a given time interval. In TILCO, as well as in TRIO, MTL and other temporal
logics, such a requirement can be specified by using a variable to count the number of
times that a formula is true from an instant to another. This can be performed by using
formula (C_,(A,n4)) stating that n4 is a variable that counts the occurrences of A from
the evaluation time instant.

For example, to state that an event E occurs at most five times in [2, 10), the following

formula can be used:

where:

CL(A,n4) -A—=ng=0)A
(VE.AN(na=k)@[-1,-1] 5 na=k+1)A

=
(A—=nga=1)A
(
(VEk. 2AAN(na=k)a[-1,—1] = na = k)) @(0, +0).
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When E occurs at least three times in [2,10), the formula is:
CL(E,ng)@[2,2] A (ng > 3) ?7[2,10).

Therefore, a formula stating that the above formula is true in every time instant has to

manage the variability of distinct counters that should be activated in each time instant:
(CL(E,np)@[2,2] A (ng > 3)?[2,10)) @[0, +00).

A different solution can be based on the adoption of a unique counter for the whole constraint

and an existential quantification:
CL(E,ng) A (Fk.(ng =k)Q[2,2] A (ng >k + 3) ?[2,10)) @[0, +00).

Bounded Happen operator has been introduced to specify the family of the above pre-
sented constraints in a concise manner. It can be used to state that a formula is true in an

interval from a minimum to a maximum number of times. For example, TILCO-X formula:
A79[1,15)

states that A is true at least two times in interval [1,15). While TILCO-X formula
A?31,15)

states that A is true up to three times in [1, 15).

With the combination of these operators, it can be stated that a formula has to be true
in the interval from a minimum to a maximum number of times; as it is shown with the
following TILCO-X example:

A?3[1,15).

Bounded happen can be used with Dynamic Interval operator. The following formula

states that A happens two or three times until B happens:
A?3[0,+B).

The bounded happen may be used to state that a formula becomes true a limited number

of times in an interval, this can be achieved with the derived operator up (1) defined as

def

tA=AN(-A)@[-1,-1].
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Figure 5.5: Example of Bounded Happen: (1 A) ?3[L, 15)

Therefore, formula
(T 4)73[1,15)

states that A becomes true exactly two times in [1,15). A possible model for this formula
is reported in Figure 5.5.

Additional interesting examples are:
(A A B7%(-100,0)) = ~A@(0, 10)

which states that if A is true and in the last 100 time units there were two occurrences of
B, then A will be false for 10 time units; and

A?73[0,+(B A C))

stating that A will happen from one to three times until B and C' are true.

5.2 TILCO-X Syntax & Semantics

Given F, P, V, W, C as defined for old TILCO, the syntax of TILCO-X formulz is defined
by the following BNF-like definitions:

interval ::= open limit, limit close
| [limit ]
|  open limit , 400)
|  (—o0, limit close
| (~00,+0)
limit == ¢ for eachi €7

|  +formula | — formula



open
close

interval_list

interval_op
variable

term

term_list

atomic_formula

formula

op
quantifier

temporal_quantifier

(I
1)

interval

interval interval_op interval
o |

w  for each w € W

v for each v €V

variable

¢ for eachceC
f(term_list) for eachf € F
term

term, term_list

p(term_list) for each p € P
T|L]atomic_formula
—formula

formula op formula

v :=term for eachv €V

quantifier variable. formula

formula temporal_quantifier interval list

(formula)
VIAN]= | & ==«
MEIEL

Q| ?] 2|2 22 for each m,M € N

103

Before defining the semantics of TILCO-X, it is important to introduce the concept of

interpretation of a TILCO-X formula. This concept is also used to define the validity and

the satisfiability of TILCO-X formula and has been derived from the corresponding concept

of TILCO [99)].

Given a syntactically correct TILCO-X formula A, with {¢,..
in A, {p1,...,px} predicates, {f1,...

{c1,..., ¢4} constants then an interpretation I is a tuple

., tn} set of types used

, f1} functions, {v1,..., vy} time-dependent variables,
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({D1,...,Dp},{R1,..., R}, {F1,..., E.},{Vi(t),..., Vi (©) }, {Ch1, ..., Cy})

where:

e {Dq,...,Dp} assigns a domain D; to each type t;;

{Ry,..., Ry} assigns an n-ary relation R; over D;, x...x D; to each n-ary predicate

p; with arguments of type ¢;,,...,t; ;

{Fy,..., F;} assigns an n-ary function F; over D;, X ... x D; to each n-ary function

fi with arguments of type #;,,...,%;,;

{Vi(t),...,Vim(t)} assigns a function of time V;(t) : Z — D, to each time-dependent
variable v; of type t,, specifying the history of that variable in every time instant

(where t is the absolute time);

{Ci,...,C,} assigns a value C; € D,, to each constant ¢; of type tp;
Given a TILCO-X formula A and an interpretation Z for A, notation
I,t= A

expresses that Z is a model for A evaluated in the time instant ¢.
To properly define the TILCO-X temporal operators (@ and ?7) a function, to interpret

an interval I, is needed:
[I]z: C Z.

This represents the set of time instants corresponding to instant ¢ where a formula defined
over I has to be evaluated. The definition of this function, which makes TILCO-X strongly
different with respect to TILCO, is reported later.

Moreover, to formally define the Bounded Happen operator, a function (Nz.(I,A)) to
count the number of time instants where formula A is true in an interval I is needed. Its

definition is

Nz (LA i €T | Li+t = A},
where | - | gives the number of elements in a set if the set is finite, or +oo if it is infinite.
The evaluation of Z,t |= A, stating the semantics of TILCO-X, is inductively defined on
the structure of A by the following rules:
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e I,t=T;

o 7.t~ L

o I, t=-Aif It} A

e Tt = A NA it Z,t = Ay and Z,t |= Ao;

o I,t = Ay V Ay iff either Z,t |= Ay or Z,t |= Ay;

o 7,t = z := exp iff there exists a constant k& € D, such that Z,¢ = = = k and
Z,t—1 = exp =k, where D, is the domain assigned to the type of z by Z;

o 7,t|=Vz.A(x) iff, for each y € Dy it is true that Z,t |= A(y), where D, is the domain
assigned to the type of z by Z;

e 7,t = dz.A(x) iff, there exists a y € D, such that Z,¢ = A(y), where D, is the
domain assigned to the type of z by Z;

e 7,t |=3lx.A(x) iff, there exists one and only one y € D, such that Z, ¢ |= A(y), where
D, is the domain assigned to the type of x by Z;

e 7.t =A@l iff, for each s € [I]7, Z,s +t = A is true;

o 7,t = A?I iff, there exists an s € [I]z; such that Z,s + ¢ |= A;
o T,t|= A2, iff, m < Nz y([I]z4, A);

o I,t =AM iff, Nz ([I]z,, A) < M;

o T,t E AMMTiff, T,t = (A7) A (ATMI);

o 7.t =piler,...,ey), iff (E1,...,E,) € R;, where R; is the relation assigned by Z to
p; and Ej, for each j = 1,...,n, are the results of the expressions e; when the values
assigned by Z are substituted for the constants and variables, and the variables are

evaluated in ¢.

The semantics of predicates also includes that of functions, variables and constants.

In TILCO-X, the definition of [I]z,; depends on two functions: I (A,t) and I (A,1).
They are used to locate the next/previous time instant, corresponding to time instant ¢,
where a formula A is true. These functions return +oo/—o0, if such an instant does not

exist. Their formal definition is:
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I7 (4,1)

17 (A1)

x if 0O<zandZ,z+tFE AandZ,t} (—A)@(0,z)

+oo

if 7.t (~A) @0, +o0)

—z if 0<zandZ,—z+tFEAandZ,t = (-A)Q(—z,0)
—oo if Z,t = (0A) @Q(—o0,0)

All the possible typologies of intervals that can be written in TILCO-X are reported in

Figure 5.6, with their corresponding semantics. For example, to interval [+ A, b] is associated

the set of integer values lower or equal to b and greater or equal to l‘IIr (A, t) that represent

the next time where formula A is true. If b is negative the set is empty.

[la, 8] 1z,¢
[[+A, 0] Iz,
[[=A,0] ]z,
[[a,+B] 1z,
[la,=B]1z,:

[[+A,+B] 1z,
[[-A,+B] ]z,
[[-A,—B]]z,:
[[+A, =Bl ]z,

[ (a,0]1z,¢
[(+A,6] Iz
[(=A,0] ]z,
[ (a,+B] 1z,
[(a,=B]lz,:

[ (+A,+B] 1z,
[(=A,+B]1z,:
[(=A,=B]lz,:
[(+A,—-B]]z,:

[fa, ) 1z,¢
[[+A4,0) Iz
[[-A,0) ]z,
[la,+B) 1z,
[la,=B)1z,+

[+A,+B) Iz
[[-A,+B) ]z,

{z€Z|a<z<b} (5.1)
{zeZ|1F(A ) <z<b} (5.2)
{eeZ|l7 (A ) <z <b} (5.3)
{ze€Zla<az<IF(B ) (5.4)
{eeZ]a<az<I7 (B, t)} (5.5)

ez |iFA ) <z<ifB, O} (5.6)
{eeZ|l7(At) <z <IF(B, 0} (5.7)
{e € Z |17 (A t) < e <I7(B,t)} (5.8)
{eezZ|1F(A,t)<z<I7(B, )} (5.9)

{z€Z|a<z<b} (5.10)
{eezZ|lF(A,t)<z<b} (5.11)
{e € Z|I7(A,t) <z <b} (5.12)
{z€Zla<az<IF(B ) (5.13)
{e€Z]a<az<I7 (B, t)} (5.14)

{z e Z|1F(At) <o <1 (B, 1)} (5.15)
{z € Z |17 (At) <z <IE(B, 1)} (5.16)
{2 € Z|17(At) <z <I7(B,H)}(5.17)
{z € Z|1E(At) <o <I7(B, )} (5.18)

{z€Z|a<z<b} (5.19)
{eez|lf(A,t)<z<b} (5.20)
{eeZ|l7(At)<z<b} (5.21)
{eeZla<z<lf(B )} (5.22)
{eeZ|a<z<I7(B,t)} (5.23)

{eezZ|iF(A,t) <z <if(B, )} (5.24)
{weZ |17 (At) <o <IE(B, 1)} (5.25)

[[-A,=B)]z,:
[[+A,=B) ]z,
[ (a,b) ]z,

[ (+A,0) Iz,
[(=A,0) ]z,

[ (a,+B)Iz,¢
[(a,—=B) 1z,

[ (+A,+B) Iz,
[(=A,+B) ]z,
[(-A,-B) ]z,
[(+A,—-B) ]z,
[la,+o0) Iz,¢
[[+A, +00) Iz,¢
[[-A,+00) Iz
[ (a,400) Iz,

[ (+A, +00) Iz
[(=A,+00) ]z,
[ (—o0,8] 1z,

[ (=00, +B]Iz,:
[ (o0, =B] Iz,
[ (=o00,b) 1z,¢

[ (=00, +B) Iz,¢
[ (=00, =B) Iz,

[ (o0, 400) Iz,

Figure 5.6: Definition of [ - |z

{e € Z |17 (A, ¢t) <z <7 (B,t)}(5.26)
{eeZ|1f(At) <z <I7(B,t)}(5.27)

{z€%Z|a<z<b} (5.28)
{eeZ|If(A,t) <z <b} (5.29)
(e €Z |17 (A t) <z <b} (5.30)
{ee€Zla<a<if(B )} (5.31)
{reZla<e<i(B,t)} (5.32)

{e e Z|1£(A,t) <z <IF(B,t)}(5.33)
{e € Z|I7(At) <z <If(B,1)}(5.34)
(e € Z |17 (A, t) <z <17 (B,t)}(5.35)
{e € Z|1f(At) <z <I7(B,t)}(5.36)

{z€Z|a<a} (5.37)
{eez|if(At) <z} (5.38)
{e€Z|l7 (A ¢t) <z} (5.39)
{z€%Z|a<z} (5.40)
{eeZ|if(At) <z} (5.41)
(e €Z|l7 (A t) <z} (5.42)
{z€Z|x < b} (5.43)
{feeZ|z<iF(B,t)} (5.44)
{ee€Z|z<I7(B, b))} (5.45)
{z €7 |z < b} (5.46)
{feeZ|z<iF(B,t)} (5.47)
{e€Z|z <17 (B, t)} (5.48)
Z (5.49)

Other TILCO-X operators are treated with the following definitions:
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A= Ay € —A VA AL € (A?D) v (A?))

Ale Ay & A= ANAy= A A0 = (A?7,0) A (A7)
A=Ay € A= Ay@[l,1] A J = (A?7,0)V (A7)
Aj=xdy € A = Ay@[-1,-1] AMMI g (A A (ATM)
Aal,J ¥ (AaI)A(A@J) A g € (A v (ATM )
A?1,0 = (ATI)A(A?J) AMMI g &AM A (AM )
Aal;J £ (Aal)Vv(A@J) AMI g € (ALY v (ATM )

Where the TILCO interval composition operators “,” and “” are extended to bounded

happen in a way similar to regular happen.

In the case where the interval is empty, it holds:

Aal T;
AT = L.

5.3 Deductive system

In this section, the deductive system used to prove properties in TILCO-X is introduced.

The FOL’s deductive system in natural deduction style has been enhanced by adding
rules for introduction and elimination of TILCO/TILCO-X temporal operators.

The deduction rules for basic logical operators are the following:

I T 1FE ::—;;
vg CPVaQ I:ZR QFR it % o Hng
=1 % = E(MP) Hyzi% -P
VI %I(f()x) z free only in P VE %f/g)
F P[t/z] F3z.P(z) P(z)FQ

=/ JE

F 3z.P(x) FQ

z free only in P
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The introduction and elimination rules for @ and ? are:

Fiexin T s
HPQ@l F I
Ql % x not free in any assump. QF ! @l_ﬁt Iix =
. 2 Fw+tP Ftl‘ in Tl
i |_I+t |]_D Pl_?tIx in I 7FE m PTT R FR z not free in any assump.
t .

These rules are similar to the ones provided for TILCO except that operator in replaces
the standard € set operator. The in operator establishes if an integer value is in a Dynamic
Interval and its evaluation depends on the evaluation time £.

The in operator applied to a Dynamic Interval can be defined in the following form:

p

o> bl Az =< b2 if 1= [b1,b2]
(@ —1)>= bLA(z+1)< b2 if I = (b1,52)
zinl = { x> blA(z+1)< b2 if 1= [b1,b2)
(@ —1)>= bl Az < b2 if 1= (b1,b2]
(2= bAz=D if I =1[b]

This definition uses two new operators, = and <, to check if an integer value is after or
before an interval bound, where a bound can be an integer value, plus or minus infinity or
a dynamic bound as +A or —A. Since a dynamic bound depends on the evaluation instant
also = and =< operators depend on the evalutation instant.

These operators (=, < and in) have been introduced to avoid the specification of two
rules (introduction and elimination) for each of the 49 possible combinations of intervals,
and to permit to prove generic properties about intervals.

For example:
12> +B

is true in the evalutation time instant if there exists an instant in the future where B is
true, B is false upto that instant, and this instant is distant less or equal to 12 time units
from the evaluation time instant.
Formula

8= +B

is true in the evaluation time instant in two cases: if B will not be true in the future, and
if the first time when B will be true is after 8 time units from the current time.

These examples are reported in Figure 5.7
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B : ) S | B e et et ee oo
LA L = S L I T R B N s S
8 12
12 after GB -x after +B
8 before +B x before +B

10 after +B
10 before +B

Figure 5.7: Examples of = (after) and < (before)

= and =< operators are defined in the following way:

b<z if b is an integer
L if b= +o00
T if b= —00
Jt. tAt < N(t
v b = { FPOSEALSTANMOA Ly

V0 <t <t— -N(t)
(Ftt<0OAt <z AP()A

Vit <t' <0—=P(t))Vv ifb=-P
V't <0— —P(t)

\

z<b if b is an integer
T if b=+o00
il if b= —o0

(Ft0<tAz <tAN()A
Vo<t <t—-N({'))Vv ifb=+N
V0 <t — -N(t)
Jtt <O0Az <tAP()A
Vit <t <0— =P(t)

z=<b =

ifb=-P

where P(t) (or N(t)) is true if expression P (or N) is true ¢ time instants from the evaluation

instant (in the future or in the past, it depends on the sign of t).

It should be noted that > and < operators are not strict, since the bound value is also

considered to satisfy the relation (so they are an extension of > and <).
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The introduction and elimination rules for > operator are:

< -
ol Fosz >~ oF Frxzw
Feaz v Fo<z
'_t x>~ +00
-0l ——m— > P =
=T Rar e S * F L
l_ 1 N I— —|N ! l_ ! '_ I<
=nextl te t @(0,2') FO<w ¢ <z
Fox>= +N
N - b x> +N Frpar N )—iﬁN@(S}:’) Fo<az' Fa'<z
= nex %
Firo P e =P@(2',0) F2' <0 F2' <z
- I1 =
= prev e
k¢ 2P @(—00,0)
= 2 - — "2
=prey Fraz> —P
F, z>= —P Figar P H—IP@(z'I%O) Fz' <0 Fa'<z
> prevE

FR

Introduction and/or elimination rules are reported for each kind of bound: integer value,

plus and minus infinity, next (+N) and prev (—P).

Rules for < operator are similar to the previous:

< <
<of TSV <yp T2V
Fex<w Fe<w
l_tZL"<—OO
< ] ——— {—E —/—— —
= oo F: 2 < 400 =7 F L
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Firw N F=N@0,2') FO<2' Faz<a

<nextll

I_t T j +N

F ~N @(0, +00)
=< t12
< nex e

Fiyor N FimN@(0,2') H0<z’' Fa<a’

l_t r<+N +
<nextE = LR
< nex —

Firo P FeoP@(2',0) F2' <0 Fa<a
< I =
< prev ey

l_t .’,Uj —P }_i+z’P Ftﬁp@(z’léo) |_$I<O ".TS.T’
<prevE

FR

Introduction and elimination rules for in operator have been provided for each combi-
nation of interval parenthesis (open/close):

. Fearxl FHao=<u . by vin(lu] fer=l ezl
I — — FE
e Fe zin[l, u] tee FR
. H(z—1)>=1 Fez=<u . b win (l,u] Bzl Felu
I = = E
o e zin (I, u] o FR
o < - inll Fiez= 1 FH(z+1) < u
in col mEa=y l_,t (z+1) 3w incoFE ¢ xinfl,u) bR
bt zin(l, u) FR
i H@-1)>=1 F+D)=<u Fewin (lu) RlZD2l Rt S
in ool - inookE
Fe zin(l,u) FR

Bounded Happen

For bounded happen, a more complex formalization has been provided. Happen-min, 7,,,

has been defined using a list datatype, in the following way:

P?,I =3 flength(f) =mANVii <m — P(fi])Af[i]in )A(V0 < j <m — f[j—1] < f[J])
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stating that exists a list f that enumerates m instants in I where P is true, and these
instants are strictly monotone!. Note that the [ ] operator is used to access to the elements

of the list starting from 0. Happen-max,?™ | has been defined, using happen-min, as:

P™M[ = ~(P?y1])

stating that P happens at most M times in [ if P does not happen more than M + 1 times
in I.
The introduction/elimination rules of bounded happen are based on inductive properties

of happen-min and happen-max:

m#0= P7yla,b < 3z € [a,b].PQ[z,z] A (P ?p_1[z + 1,b] VP ?p_1]a,x — 1))

meaning that P happens at least m > 0 times in interval [a,b] iff exists a time instant z in
the interval where P is true and P happens at least m — 1 times before or after time instant

. Moreover property P79l = T is used to terminate the recursion.

Similar properties hold for happen-max:

M #0= PM™][a,b] & 3z € [a,b.PQ[z,2] A ((-PQ[a,z —1] APz +1,b])V
(P?M~Ya,z — 1] A ~PQ[z + 1,b]))

In this case, the additional constraint that P must not happen before or after time instant

x has been added and property P ?°T = ~PQI is used to terminate recursion.

The previous properties have been presented for a constant interval while similar ones
hold for any type of interval. To avoid providing specific introduction/elimination rules for
each kind of interval, functions sublft() and subrgt() have been introduced. sublft() and
subrgt() are functions that from an interval and a value in it give the left or right subinterval
excluding the given value - e.g., sublft([+B,10),z) = [+B,z) and subrgt([+B,10),z) =
(z,10) so I = sublft(I,z) U {z} Usubrgt(f,z) holds.

!The strict monotone condition is not strictly necessary. Instants have only to be different, but in that
case there exists a monotone list of instants where P is true. Therefore this definition has been used to have
simpler proofs.
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Using the definition of happen-min and these functions the following inductive intro-

duction/elimination rules have been proved:

Firg P Fm#0 bFyzinl +F; P7,_qsubrgt(l,x)

P71

P Fm#0 bFyzinl +, P?, qsubrgt(/,x)

FR

FR

Fiqo P Fm#0 Fyzinl F; P?,_1sublft(l,z)

F, Pl

P Fm#0 btyzinl +H; P?7,_qsublft(l,x)

FR

i S
0 -, Pl
T minTgtl

oy Pl Tt
?mm’l"gtE
Pminl fLT

-, P, T b
?minl [LE

FR

Note that, there are different introduction/elimination rules for considering the interval

split on the right or on the left.

Similarly for happen-max, the following rules have been derived:

?ma:vIl

AT gt 2

PMAT] £470

Mgt B

AT 4 7

F,-Pal

F, P?MT

Fsa P M A0

Frzin I ~P@sublft(l,z) +; P?M~!subrgt(I, )

Fsa P M A0

F P7M]

Frxzin I+ ~P@subrgt(l,z) +; P?M~!sublft(I, )

?M Ftﬁp@f
S it

e PTMT

FiqoP FM#0 Hi=P@sublft(l,z) kFexin I =P M~ subrgt(1,z)

FR
FR

FiteP FM#0 F=P@subrgt(l,z) Ferin I F P ?M—1sublft(l,z)

?M Ftﬁp@f
b, PV el

FR
FR
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Properties

Using these deduction rules and the induction principle some properties have been proved:

Intervals

r=b=>(x+1)=b
—(z>=b)=(x+1)=<b

zin[bl,b3] = zin [bl,b2] V zin (b2, b3]

yin sublft(I,z) Azin I = y <z

yin subrgt(l,z) A zin I = zin sublft(/,y)
zin I A yin sublft(I, z) = sublft(sublft(7, z),y) = sublft(I,y)

TILCO-X

The following properties hold for happen-min:

ANl

A T

A% [a,b]
ANA?,[0,b]

AN A2, [0,0]
A?yla, 00 NAQ[L, 1]
A7y [a, 00 AN —AQL, 1]
Vm. A 7,0, +00)
AQ[0,m)

vEEE e

=
=

ATl
Al 1 1
1 ifm>b—a+1
A1 [0,b—1] if m >0
A?,[0,6—1]

Ay a—1,0]

Ay a—1,0]

(A?(0,+00))@[0, +00)
A7,[0,m)

ifm>0

and the following properties hold for happen-max:

N
o

(=)
~

tEe by L0

—A@lT
AMALT

T ifM>b—a+1
AM=110b—1]if M >0
AM™[0,b—1]

AMM+Lg —1,0]

AM™ [ —1,0]

-
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and

AT T o | if min > max

‘min

5.4 Specification example

In this section, a specification example to highlight the use of TILCO-X is presented. It is
considered a system where a process has to respond to an external stimulus within 100ms.
If the process does not respond within the given time, a controller has to retry up to 3 more
times. If after all the temptatives the process does not respond the operation is aborted.
After an abort the process cannot be started again for 500ms and an eventual request has to
be ignored. If three consecutive operations are aborted the system is blocked until system

reset by the user.

Start

— Begin

OK Controller Process
Aborted Ready
B |
Blocked
B B

Reset

Figure 5.8: An example of a process control system

In Figure 5.8 the system structure is reported. Process is the process under control
that has to respond to the Begin signal with a Ready signal being true within 100ms. The
Controller is specified by using TILCO-X with the formulz reported in the following. An
internal signal Enabled is used to state that the Controller is enabled to consider the Start
signal externally issued.

The response of the Controller to the Start signal is specified with the formulae:

Start A ~Blocked A\ Enabled = Begin
Start A =Enabled = (—Begin A ~Aborted A =Ok) @[0, +Start)
Start A Blocked = (—Begin A -~ Aborted A\ ~Ok) @[0, + Reset)

The first condition states that if the Start signal is true, the system is not Blocked and

is Enabled the signal Begin is asserted. The second formula specifies the behavior of the
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system if it is not Enabled. In this case signals Begin, Aborted and Ok are false until
the next Start. The last formula specifies the response to the Start signal if the system is
Blocked. In this case signals Begin, Aborted and Ok are false until the next Reset.

When signal Begin is true, then the system has to wait for Ready within 100ms. If it
happens signal Ok is true. This behavior can be specified with:

Begin A Ready?(0,100] = (—Begin A = Aborted A ~Enabled A\ (Ready < Ok)) @(0, +Ready]
Begin A ~Ready@(0,100] = (—=Begin A = Aborted A -Ok A =Enabled) @(0, 100)
Begin = —Aborted A Ok

The condition on the repetition of the Begin signal is specified using Bounded Happen:

Begin @[—100] A =Ready @(—100,0] A Begin ?3[—(Start A Enabled),0) = Begin A ~Enabled
Begin @[—100] A =Ready@(—100,0] A Begin 74[—(Start A Enabled),0) = Aborted A Ok

The first formula specifies that, if the last Begin has failed and the Begin has been issued
up to 3 times, since the last enabled Start, then the Begin has to be retried. The second
formula specifies the case in which Begin has been retried more than 3 times, and in this
case, the signal Aborted is asserted.

The behavior of the Enabled signal is specified with formulze:

Aborted = -—Begin A 7Enabled @[0,500) A (Enabled @[0, +Start])Q[500]
Ok V (Reset A\ Enabled) = Enabled @(0,+Start]

The first formula specifies that, when Aborted is true the system is not enabled to satisfy a
Start request for 500ms and after this period the system is enabled until a Start is received.
Similarly, when Ok or Reset is true the system is enabled until the next Start.

The system is Blocked if and only if Aborted is true more than 3 times since last Ok or

last Reset, in formula:
Blocked < Aborted 73(—(Ok V Reset),0)
After Ok or Aborted are true or after a Reset signals Begin, Aborted and Ok are false:

Ok V Aborted = (—Begin A ~Aborted A ~Ok) @(0, +(Start A Enabled))
Reset A\ Enabled = (—Begin A ~Aborted A —~Ok) @Q[0, +Start)
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Validation

This specification has been firstly validated by using the TILCO-X executor (presented in
the next chapter). In Figure 5.9 temporal traces of the system execution are reported.
A Reset at time 0 has been issued for the proper initialization, after that, signal Start is
asserted and since the Ready signal is false the signal Begin is issued four times and then the
signal Aborted is trued. The signal Start is asserted other two times and since the Process
does not response the operations are aborted. The failure of three operations brings up the
Blocked signal. The Reset is issued and enables the system to the receipt for the Start
signal. The Start is issued again and at the second temptative the Ready signal is received
and Ok asserted.

= ==
| File Signals Option
2
Time 0 5 10 15 20 25 30 35 40 45 50 55 B0 65 70 75 80 85 90 95 100
Name [ T e e e e e e B I B
iStartio 1 I N I
IReady.io I
i:Resetio —| ﬂ
0:Begin.io H_H
0:0k.io I
o:Abarted.io ﬂ ﬂ H
o:Blocked.io :(
wEnabledia | M [ \ L] B
/
-l —

Figure 5.9: Execution of the TILCO-X specification

Moreover, some properties has been proved using the TILCO-X theory within Isabelle:

Start A Enabled = —~Enabled @(0,+(Ok V Aborted)]
Start A Enabled = Enabled ?(0,

Start A Enabled = (Ok V Aborted) 7(0,

Start A Enabled = Ok ?(0,+500) V Aborted @[500]

+00)
+00)

o0

The first property states that the controller is not enabled until the termination (with
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success or failure); the second property states that, if the process is started there will be
a future instant in which it will be enabled to be started again; the third property states
that, if the process is started it will terminate with success or failure; the last property gives

more details on when signals Ok and Aborted will be true.



Chapter 6

Executing TILCO

In this chapter a new way of executing temporal logics is presented. In order to simplify
the execution of TILCO specifications a basic temporal logic (BTL) with lower number
of operators has been introduced, this is capable of expressing all complex operators of
TILCO. In the following it is briefly described how to translate the propositional part of
TILCO and TILCO-X to BTL. Inference rules for BTL are presented and it is described
how to graphically represent the BTL specifications as Temporal Inference Networks. An
algorithm for executing temporal inference network is presented and the possibility of real-

time execution is highlighted.

6.1 Execution of temporal logics

The validation of a logic specification usually consists in proving high-level properties, which
are also given in the form of logical expressions, by means of theorem provers [98]. Other
techniques are based on the so-called history-checking which is a restricted version of the
model-checking technique, which is typical of operational approaches [57]. In these cases, the
time ordering is not satisfied, history-checking is mainly oriented to validating specifications
against off-line generated histories of system inputs and outputs.

The problem of executability of specifications given by means of temporal logics has
often been misunderstood. This mainly depends on the meaning assigned to executability
[59], [60], [110], [18]. There are at least three different definitions of executability, as follows.

(i) In many cases, specification models are considered as executable if they have a semantics
defining an effective procedure capable of determining for any formula of the logic

theory, whether or not that formula is a theorem of the theory [110]. In effect, this

119
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property corresponds to that of decidability of the validity problem rather than to

that of system specification executability.

(i) Another meaning for the property of executability refers to the possibility of generating
a model for a given specification [56]. A detailed version of this concept leads to verify
if an off-line generated temporal evolution of inputs and outputs is compatible with

the specification. This operation is usually called history checking.

(1i2) The last meaning for executability consists in using the system specification itself as
a prototype or implementation of the real-time system, thus allowing, in each time
instant, the on-line generation of system outputs on the basis of present inputs and
its internal state and past history. When this is possible, the specification can be

directly executed instead of traducing it in a programming language.

In the literature, there are only few executable temporal logics which can be used to
build a system prototype according to the (7ii) meaning of executability. In general, the
execution or simulation of logic specifications with the intent of producing system outputs
in the correct time order by meeting the temporal constraints is a quite difficult problem.
The difficulty mainly depends on the computational complexity of the algorithms proposed
in the literature which makes their adoption for executing logic specifications in real-time
impossible. In many cases, the computational complexity depends on language semantics
and on the specification itself. Usually, the computational complexity is O(D") where D
is the domain size of the nested quantifications (for both time dependent and independent

variables), and A is number of these quantifications.

A temporal logic specification is generally composed of:

1. a set of input signals, that represent information acquired from outside (i.e., water

level, temperature, etc.);

2. a set of output signals, that is the information produced to outside (i.e., alarm to be

switched on/off, pump to be switched on, etc.);
3. a set of internal signals/variables, that represents information produced internally;

4. a logic formula that represents the temporal behavior of the specified system (i.e.,
if the water level is over the alarm level for three time instants then switchs on the

alarm);
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To execute such a specification means, given the facts acquired from the outside (input
signals) and the specification, to deduce new facts to be sent outside (output signals). Or
in a logic view, it means, given interpretation Z; of input signals, to find the interpretations

Zo,Lint of outputs and internal signals that satisfy the specification formula S:
LiUZint UL, |: S

For example in a control system to monitor the level of a reservoir, the input signal is

Logic
Specification

Input . Output
Signals L ogic Executor Signals

Figure 6.1: Execution of a logic specification

the water level (wlevel) and the output signal is the alarm. The system behavior can be
specified with the following TILCO formula:

up(wlevel > 150) — alarm@[1, 100] A until wlevel < 150 alarm

meaning that if the water level becomes grater than 150 the alarm is switched on for at least
100 time units and until the level becomes lower than 150. To execute this specification
means to deduce the history of signal alarm knowing the history of signal wlevel, as depicted
in Figure 6.2. As can be seen in this example, specification can be partial, in fact nothing
is said about the falseness of the alarm. For the instants in which the water level is lower
than 150 nothing can be derived from the specification, so the logical value of alarm in such
instants is unknown.

The executor can be deterministic or non deterministic, in the sense that it can execute

Q
2
3

Figure 6.2: Example of execution



122

even a non deterministic specification. For example, the formula:
up(alarm)?(—200,0) A since up(alarm) (—reset A =pump) — up(pump)?(0,10]

means that if the alarm is switched on in the last 200 time units and since this time instant
the reset button has not been pressed and the pump is off; then within 10 time units the
pump has to be switched on. This specification cannot be executed deterministically, in
fact, if the condition is satisfied, it is not specified in which instant of the interval the pump

is turned on.

6.2 Basic Temporal Logic

Basic Temporal Logic (BTL) is a propositional 3-value logic, with And (A), Or (V) and
with the Delay (9) operator, where signals associate a true/false/unknown value for each

time instant. The BTL syntax is the following:

formula = signal
—signal

formula A\ formula

0 formula

|

|

| formulaV formula
|

| akformula

|

(formula)

As can be noted from the syntax the — operator can be applied only to signals and not to

complex formulse.

A BTL formula can be evaluated at an instant ¢ with @ operator
e (FQ@t) = T means that formula F' is true at time t;

e (F@t) = 1 means that formula F is false at time t;

e (F@t) =7 means that formula F' is unknown at time t;

This operator is inductively defined in the following manner:
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is the value of signal s at instant ¢,

is Tifs@t =1 ,is L if s@t =T, is ? otherwise

is Tif AQt =T and BQt =T, is L if AQt = 1 or BQt = 1, is ? otherwise
is Tif AQt =T or B@t =T, is L if AQt = 1 and BQt = 1, is ? otherwise
is the value of (9 A)@t

is Tif AQ(t —k) =T, is L if AQ(¢t — k) = L, is ? otherwise

A BTL specification is a formula always true, that is written as X S. For example, if ¢ and

b are signals then

Na(—ua\/ —Ib) Vb

that means: if @ and b were true at the previous time instant then b is true at the current

time instant.

6.2.1 TILCO in BTL

TILCO temporal operators can be translated to BTL. The TILCO @ operator can be

translated by using the following formula:

M
AQm,M] =9 AN ™V AN AgTMA= N oA

i=m

Since AQ[m, M] is true if A is true in all time interval instants.

Similarly, TILCO ? operator is translated with:

M
A?m, M) =9 ™AV M Av.. vaMA=\/o"4

i=m

Since A?[m, M] is true if A is true in one time interval instant.

The until operator is translated using the following property:

until(4,B) = AV (B A9 ' until(4, B))

and a similar one for since operator:

since(4, B) = AV (B A 9'since(A, B))

In order to translate a propositional TILCO formula to BTL some setps are needed. As

a first step, the = and < operators are translated by using the following rewriting rules:

A=B — -AVDB
A& B — (A= B)A(B=A)
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after that, the — operator has to be propagated down to the signals using the following

rewriting rules:

-(AAB) — -AV-B
-(AVB) — -AA-B
—(-4) — A
-(A?I) — -—AQJ
-(AQI) — -A?]

Since there is no rule to propagate — operator for until and since operators, the — until and

- since operators are translated by using the following properties:
—until(-4,-B) = AA(BV§ !-until(-4,-B))
—since(—~A4,-B) = AA(BV 9" —since(-4,-B))

Moreover, since the —until and —since operators generally are not in the form needed to

use these properties, the following rewite rules can be used:
—until(4,B) — -—until(-(-A4),~(-B))
—until(—A4, B)
—until(A, -B)

- since(—

111113
2
5
3
d

- since(A4, B)
, B)
- since(A, - B)

For example, TILCO formula:
A?(-3,0) Asince(A,-B) = until(4, B)
after = substitution and — propagation becomes:
-AQ(—-3,0) V - since(—(—A),-B) V until(4, B)

then the substitution of the temporal operators (@, —since, until) is made, leading to the
BTL formula:

(02 =AN9 1 =A) Vnsince V until) A

(-nsince V (mA A (B V gnsince))) A

(—until V AV (B A 9~ until))
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where signals nsince and until have been introduced to represent the —since and until

formulae.

6.2.2 TILCO-X in BTL

The translation of TILCO-X formulae to BTL is a complex task, since the translations of at,
happen and bounded happen operators have to be made for all the possible combinations of
dynamic intervals (see section 5.2). Generally, TILCO-X formula are translated in TILCO
by using at, happen (on constant intervals), until and since and then translated to BTL.

For example formula;:

Ea@ [-A,D] (b>=0)
is substitututed with a signal U and the following condition is added:
U = 9-since (-E,-A) A E@ [0, D]

While formula:
Ea@[+A,+B)

is substituted with a signal U’ and the following condition is added to the specification:
U' A9~" —until (B,-A) = 9~ ~until (-(4 = until (B, E)),-A)

Similar translations are used for the happen operator over dynamic intervals.

For bounded happen the conditions are more complex, for example formula:
E?, (—A,0] (b<0)
is substituted with signal U” and the following conditions are added:

U' = -AQb—m+1,-1A§ " E,

5
¥

—AQ[-m+1,00A(~E=3'Ep ) A (E = 0" Ep_1) AN Ep_y
Eyn 1 = -AQ[-m+2,00A(mE=0"Epn 1) AN(E=0"En 2)AEn 2

E;, = -AQ[-1L,0JA(E=09"E)AN(E=09"E)NE,
E, = -AA-since (A,—FE)

where signal E; indicate that i occurrences of ¥ happened from the last occurrence of A.
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6.3 Temporal inference with BTL

An inference process produces new information applying inference rules to known facts.
These rules generally are composed of an antecedent that represents the condition to be
satisfied, and the consequent that represents the new information inferred.

For example
(A A B)aQt - AQt, BQt

is an inference rule that indicates that if A A B is true at time ¢ then A and B are true at

time ¢. The inference rules of BTL are the following:

(AAB)Qt + AQt, Bat 1T

—-(A A B)@t, AGt + -BGt L
-(A A B)@t, Bat + -AQGt L
-AQt + —(AAB)at 1L

-B@t + —(AAB)at 1L

A@t,Bat + (AAB)at +T

(AV B)at,-A@t + Bat 1T
(AV B)@t,~BQt F AQt 1T
-AQt,-BQt F =(AV B)at 1L
-(AV B)at + -AQt,-~Bat L

A@t + (AV B)at +T

B@t F (AvV B)at +T

(oFA)at + AQ(t —k) 1T
-(gFA)Qt + -AQ(t — k) 1L

Aot + (pFA)Qt+Ek) 1T

—AQ@t F =(gFA)a(t+k) 1L

lat F —(-l)at — 1L

()@t F (=1)at T

(=)@t - =()at 1

~(-hat + lat - T

This set of rules have been classified in the following types of rules:

J T rules that propagate the truth from a parent formula to a child formula;
1T T rules that propagate the truth from a child formula to a parent formula;

J} L rules that propagate the falseness from a parent formula to a child formula;
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1 L rules that propagate the falseness from a child formula to a parent formula;
— T rules that propagate the falsity of a signal to truth of the complementary signal;

— L rules that propagate the truth of a signal to falsity of the complementary signal;

This set of inference rules is correct but not complete, in the sense that not all the true
statements can be inferred. For example, from (A V A)Qt we cannot deduce that AQ¢ is
true using the presented inference rules.

It should be noted that for all operators, after applying a 1 rule a | rule cannot produce
new information. For example if AQ¢ it true then rule AQ¢ - (AV B)@Qt (1 T rule) can be
applied and if -B@t is true then from (A V B)Qt,~BQt - AQt (| T rule) can be found
that AQt is true, but it was already known. Moreover if we consider all the L expressions
at a given time instant these were not found using | L rules. This is true if we consider
that all the apriori information is known true (the specification). For this reason this kind
of rules can be dropped. Also the 1T T rules are not needed since to their result cannot be
applied a 1 L rule (the rule produces a T while this rule needs a L) nor a | T rule (no
new information can be inferred), only another 1 T rule can be applied but this rules will
never produce new knowledge about a signal. For this reason also the 1 T rules have been
dropped. As a result also the — T rules have been dropped since their result could be used
only with T T rules that are anymore present.

Therefore, the final set of inference rules for BTL is:

(AAB)Qt + AQt, BQt 1T

—AQ@t + —(AAB)at T L

-B@t + —(AAB)Qt L

(AV B)at,-A@t + Bat 1T
(AV B)@t,~BQt - AQt 1T
-AQt,~BQt + =(AV B)Qt T L
(FA)at F AQ(t — k) 1T

-AQt + =(gFA)Q(t+k) 1L

ot + (=)@t -1

(-n@t F =)ot -1

6.3.1 A graphical view of temporal inference

Given a BTL specification a graphical view of the formula can be built from the syntax tree

of the formula. For each operator a component presented in Figure 6.3 can be used.
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ANB AV B AA
A B A B A
Joint Gate Delay Positive Negative  Always

signal signal true

Figure 6.3: The basic components

For example formula:
X(Q—s A s = up)

states that signal up is true if at the previous time instant signal s was false and now s is
true. This formula is not written in BTL since there is the imply (=) operator, but using
the rewriting rules: A = B =-AV B, -(AAB) = (-AV -B),~(AV B) = (A A =B),
——A=Aand -9" A= 9" -A it can be translated to BTL. Then it is obtained:

MX(9sV sV up)

The syntax tree of this formula is depicted in Figure 6.4.

Figure 6.4: The basic components

A direction can be associated with the arcs connecting a parent to a sub-tree, in the

following way:
e an arrow from the parent to the sub-tree if the sub-expression is true;
e an arrow from the sub-tree to the parent if the sub-expression is false.

This association depends on the evaluation time instant, thus for each time instant different

arrow directions may exist. For example, in the up example, if S if known false at time
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t there is an arrow from the S signal to the delay component, moreover since the always
operator means that the expression is always true there is also an arrow from the always

component to the gate as depicted in Figure 6.5. With the association of true/false with

Figure 6.5: The up example, arrow configuration

the arc direction, the inference rules reported in the previous section can be represented in
a graphical manner, see Figure 6.6 where the black arrows represent the antecedents of the
rules and the white arrows the consequences.

Returning to the up example, applying rule (D2) to the configuration presented, an
arrow from the delay to the parent gate can be drawn at the following time instant. If
at this time instant signal S is true, an arrow from the —S component to its parent gate
can be added. At this point, rule (G3) can be applied to draw an arrow from this gate to
the upper one. Since the always component imposes an arrow from it to the upper gate
then rule (G1) can be applied to draw an arrow from the gate to the up signal that can be
interpreted as up being true. This is correct since S is true and it was false at the previous
time instant. This deduction sequence is depicted in Figure 6.7. The inference rules can be
applied also to the cases in which signal up is known false and the signal S is known true,

in fact using these rules can be derived that S has to be true at the previous time instant.

6.4 Temporal inference networks

A temporal inference network, is built from the syntax tree of a specification appling the
simplifications reported in Figure 6.8 to eliminate the X component. The simplification (1a)

is based on the following property:
Vi.(A A B)Qt <= (Vt.AQt) A (Vt.BQt),

That permits the propagation of X to the lower levels.
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Joint

T e

(1) (J2) (33
Gate
(G2 (G3)
@(t+k)
@k at ,
D1 D
Signals (DY) (D2)
S -S S -S
(S (2)
Always
l for every t
(A1)

Figure 6.6: Graphical inference rules

Simplification (1b) is based on property:
Vt.(98 A)Qt = (Vt.AQ(t — k)) < (Vt.AQ¢),

which also permits the propagation of X.
Simplification (1c) has been derived by considering the two | T inference rules of Vv

operator:

(AV B)at,~AQt + Bat
(AV B)@t,~Bat + AGt

if (AV B)@t is true for all ¢, if sub-expression A is false then B is true, it means that if there

is an arrow from A to the gate then there is an arrow from the gate to B, the same in the
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@t @(t+1) @(t+1) @(t+1)

Figure 6.7: The up example execution

reverse order (from B to A) as reported in Figure 6.6. The same behavior is accomplished
connecting directly sub-tree A to sub-tree B.

Other substitutions to eliminate also signals components have been found. These are
reported in Figure 6.9. Simplification (2a) permits to substitute two signal nodes of the
same type (same signal and both positive or negative) with one signal node, the behavior
is the same. If the signal (positive or negative) is false, the arrow is from the signal node to
the joint node, the application of rule (J1) permits to derive the correct directions of arrows
for the connections of the two signals. And, if a signal (positive or negative) is derived as
true from the upper levels, using rule (J2) or (J3) the signal node is derived as true. Using
this substitution rule, all the signals of the same type can be replaced with one signal node.

Simplification (2b) permits to substitute two complementary signal nodes (one positive
and one negative) with a wire connecting its parents. In fact, if the signal is known true,
an arrow from the positive to the negative can be drawn (since the negative signal is false);
in the other direction if it is known false (since the positive signal is false). Moreover, if
the signal is derived as true then an arrow from the positive parent to the negative one
can be drawn, in the opposite sense if the signal is derived as false. In this way a signal is
represented in the network by an arc labeled with the signal name and with an arrow in
the middle meaning the direction to be given when the signal is true.

If for a signal s there exist only positive or only negative nodes then tautology (s V —s)
can be added to the specification to allow the substitution for this signal.

Using these simplifications the resulting graph has only the three basis types of nodes

(joint, gate and delay), and it can be executed by using the defined inference rules.

The Temporal inference network of the up example can be derived in the following way:
Have to be noted that the signal up is present only as positive, for this reason the tautology

up V —up has to be added to the specification. The BTL specification is:

M((9sV =sVup) A (upV —up))
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Simplification (1a): /T ) T )

Simplification (1b):

Simplification (1c):

Figure 6.8: Simplifications to eliminate X

The syntax tree of this formula is reported in Figure 6.10 (the up left) with the application
of the simplifications. Simplifications (1a) and (1c) can be applied to eliminate the X node.
Simplification (2b) is applied to eliminate signal S, for signal up simplification (2a) is applied
to have only one up signal node and then simplification (2b) is used to eliminate the up

signals.

6.4.1 The execution algorithm
A temporal inference network A is formally defined as:
N =< N,t,p,l,r >
where:
e N is the set of nodes;
o t: N — {A,V,0*} is a function that gives for each node its type;
e p: N — N is a function that gives for each node its parent;

e [: N — N is a function that gives for each node its left son;
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Simplification (2a):

Simplification (2b):

Figure 6.9: Simplifications to eliminate signals

e r: N — N is a function that gives for each node its right son;

An arrow from node ny to node ny for the network is represented as a couple (ny,ns),
but at each time instant the network can have different arrow directions, thus each arrow
has a time instant. This is represented as the 3-ple (ni,n2,t) or in a more readable way
(n1,n92)@t meaning that at time ¢ there is an arrow from node n; to node ng, such an
element is also called an event.

The set T = [0, Tynaz] C Z represents all time instants. The known information of a
network is a subset of D = N x N x T'. The inference process can be seen as a sequence
of subsets of D, Qy C Q; C ... C Q, C D. The elements of Q1/Q represent the new
information, that can be inferred from {2, using the inference rules or acquired from the
outside via inputs.

A general schema for the algorithm is:

repeat forever
acquire information from outside;
if there is information to be processed
select an event to be processed;
infer new events from the event selected;
end if
add new information (inferred or acquired) to information to be processed;

end repeat

This kind of process can be more detailed.

In the following algorithm where:

e (o C D is the initial knowledge;
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1. Initial 2. After simplification (1a) 3. After two simplification (1c)
up
s
s

4. After simplification (2b) 5. After smplification (2a) 6. After amplification (2b)

Figure 6.10: Simplifications of the up example

e w() is a function that for each evaluation gives a subset of D representing information

acquired from the outside;

e \v(e@t,S) C D is a function that determines the events derivable from e@¢ for the
network N based on knowledge S.

e variable ® C D represents the set of available knowledge;
e variable A C D is the set of acquired information not yet elaborated;

e variable V¥ is the set of knowledge found in the current iteration;

® < Qp; // initial information
A < Qy; // initial information that has to be processed
repeat forever
U+ w()\®; // acquire new information from outside
if A # () then // if there is something to process...
choose e@Qt € A with the minimum ¢;
U+ U UM(e@t,®\ A)\ ®; // determine the new information inferred by e@t
A+ A\ {e@t}; // drop e@t from information to be processed
endif
A+~ AU, // add the new information as to be processed
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S+ DU, // add the new information to the current knowledge
endrepeat

The function A = Ay ((n;, no)@t, ®) can be computed with the following algorithm using
the temporal inference rules presented in the previous section.

function A\ ((n;, n,)@t, S)
if t(n,) = A then
if n; = p(n,) then
A+ {(no,1(n,))Qt, (ny,7(n,))@t}; // rule (J1)
else
A & {(n0,p(n,))Gt}; // rules (32)/(33)
endif
elseif t(n,) =V then
if (n; = p(no) A (I(no),ne)Qt € S) V (n; = 1(ny) A (p(no),n,)@t € S) then
A+ {(no,7(n,))@Qt}; // rule (G1)
elseif (n; = p(no) A (r(no),n,)@t € S) V (n; =r(no) A (p(no),n,)@Qt € S) then
A+ {(no,1(n,))Qt}; // rule (G2)
elseif (n; = r(ny,) A ([(no),n,)Qt € S)V (n; =1(n,) A (r(ny),n,)@Qt € S) then
A & {(n,p(n,))@t}; // rule (G3)
else A + 0;
endif
elseif t(n,) = 9" then
if n; = p(n,) then
if t—keT then A« {(n,,l(n,))@Q(t — k)}; // rule (D1)
else A + 0
endif
else
if t+keT then A+ {(n,,p(n,))Q(t+k)}; // rule (D2)
else A + 0;
endif
endif
endif

return A

In order to evaluate the complexity of the execution algorithm, data structures and the
algorithm have to be better defined.
The main data structures that have to be considered are those needed to represent the

sets ® and A.

In order to manipulate the ® and A sets the following operations are needed:
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On set ®: (i) to add an element to the set, (ii) check if an element is in the set. These
two operations can be performed in a constant execution time for example using a vector

of boolean variables.

On set A: (i) add an element to the set, (ii) drop an element from the set, (iii) find
an element with the minimum ¢. For the last operation the representation with a boolean
vector is not convenient, we used a list where each element contains a list of the arcs to be
elaborated, all with the same time instant and the main list is ordered with increasing time

instants. For example:
A = [[(n1,n3), (n2,n5)]Q5, [(n1,n3)]@6, [(n5,n2), (n3,n1)]QT]

Considering the complexity of operations on A an element can be added with O(card T)
or in costant time if the time instant of the event to be added is always lower than those in
A. The event with minimum ¢ is found in constant time (is the top of the list) and the top
of the list can be dropped in a constant time d duration.

Functions add, choose and drop are used to add an element to the list, to get the head of
the list and drop the top from the list. These functions can be specified in a functional-style
programming language where z | L represents the list with head z and list tail L, [] is the

empty list and [z] is equivalent to z | [].

function add(XQt' | L, eQt)
if ¢ <t then
return [e]Qt| (X@Qt' | L);
elseif ¢ = ¢ then
return (e| X)Qt | L;
else
return XQt' | add(L, eQt);
endif

endfunction

function choose((e| X)@Qt | L)

return eQt;

function drop((e| X)@t| L)
if X #[] then
return XQt| L;
else



return L;
endif

endfunction
The execution algorithm can be written as:

algorithm executen (2, w)

O «+ 0

S« 0;

A [];

foreach s €
S+ dU{s};
A <+ add(A, s);

endfor

repeat forever
if A #[] then
eQt < choose(A);
foreach s € A\y(e@t,S) // first cycle
if s € ® then
O +— dU{s}
A < add(A, s);
endif
endfor
S+ Su{eqt};
A <« drop(A);
endif
foreach s € w() //second cycle
if s € ® then
O — dU{s};
A + add(A, s);
endif
endfor
endrepeat

endalgorithm
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The evaluation of the asimpthotical complexity for the “repeat” body that in the fol-

lowing is also called a deduction step or simply a step has to be discussed.
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Functions choose and drop do not contribute to the complexity, since they can be
executed in a constant time and are not dominant instructions, complexity of function add
depends on the event instant or better on the distance of this event from the head. The
complexity of a deduction step is the sum of complexity of the first cycle and the second
cycle. In the first foreach cycle, the add is repeated a number of times up to the maximum
size of A\y/(e@t,S) that is 2 (as it can be seen from its definition). The maximum distance
of events time in Ay (e@t, S) from ¢ is the maximum of the absolute value of delays present
in the network (D). The evaluation of A can be done in a constant time, thus the
contribution to complexity of the first cycle is O(2 Dy,q4) then an O(Dypa,). For the second
cycle, the number of elements in w() is at most equal to the number of inputs (card I) and
the time of these events is at most equal to the size of the temporal domain (card T') thus
the complexity of the second cycle is an O(card I card T) giving a global complexity of
O(Dpaz + card I card T'). If the time instants of the input events is less than the time
of events in A then complexity of the second cycle is an O(card I) because function add
adds the element to the top of the list, and then the complexity is an O(D,,q, + card T). Tt
should be noted that O(Dy,q, + card I) is the complexity of a deduction step, not that to
produce all the inferable information for a time instant, to infer this information a certain
number of deduction steps are needed.

To obtain an evaluation of the time needed to produce the whole information for a given
time instant, the inference function A has to be causal. This means that it infers events in

the present or in the future with respect to event e@t:
Ve@t, S,dQt'. dQt' € \y(e@t,S) =t >t

With this assumption, and assuming w() = () (meaning that no inputs are acquired) to
drop from A all the events with time ¢ (where ¢ is the minimum time in A) in the worst
case a number of steps equal to the number of the network arcs are needed. In fact, at
each step the algorithm chooses an arc with time ¢ (for causality lambda cannot introduce
events previous than ¢) and if an arc is processed it will be never reprocessed in the same
time instant. From this we can deduce that in the worst case all the arcs of the network are
processed. In this case, the number of steps of the algorithm is equal to the number of arcs.
From this considerations we can deduce that the time needed to infer all the information

for a given time instant ¢ is an:
O((Dpaz + card T) N,)

where N, is the number of arcs of the network and assuming A a causal inference function.
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6.5 Real-time execution

The execution algorithm has been developed even for on-line execution. Let us consider a
sampled time system where continous input signals are sampled at a given rate and outputs
are produced.

If the specification is strictly causal, meaning that outputs depend only on past samples
of inputs and internal variables, then at a certain discrete time instant, knowing the cur-
rent/past inputs, using the inference process, the output values for the next time instant
can be desumed as depicted in Figure 6.11.

The time duration between two consecutive output generations or input acquisitions

may be not enough to produce the information about outputs.

Acquireinputs at timet Acquireinputs at time t+1 Acquireinputs at time t+2
Sepsto infer new info Sepsto infer new info Sepsto infer new info
frominfo @t frominfo @ t+1 frominfo @ t+2

f f f

t t+1 t+2

Produce outputs for time t-1 Produce outputs for timet Produce outputs for time t+1

time sample

Figure 6.11: Real-time execution

As showed in the previous section, if the inference function is causal, N, inference steps
are needed to produce all the inferrable information for time ¢, where N, is the number of
network arcs.

The maximum time needed for one step of the algorithm can be evaluated depending on
the machine (clock, CPU timings, etc.) and the inference network (D;4z), multiplying this
time duration for the number of arcs of the inference network the maximum time needed to
produce the outputs for an instant can be found. If this time is less then the time sample

then real-time execution can be done, in formula:
TS > Tma:r Na

where: T is the duration of the time sample and T),,, is the maximum time needed to
execute an inferential step.
In order to have a more precise evaluation of the time needed, T},,; can be split in two

times:

1. Tipput the time needed to add inputs to set A;



140

2. Tiper the time needed to infer information.

Considering that during execution, only in the first step after the acquisition of inputs

there is new information, then condition on the time sample becomes:
T > Tz'nput + Tinfer N,

Even condition on N, can be slightly reduced. Considering that the elimination of input

signals from the syntax tree produced a situation similar to that depicted in Figure 6.12.

—S =S —=Ss =S —S S S S S S

False Part True Part

6 arcs generated
when Sisfalse

10 arcs generated
when Sistrue

Figure 6.12: Inputs of the system

When the input S is true at time ¢, using rule J1, all the arcs of the false part are
generated (—S is false): one for each inference step. It should be noted that the arcs
connected to the true part are not generated (for time ) and therefore they will be never
inserted in A (for time ¢). Assuming that the signal is true, the maximum number of
inference steps are N, minus the number of arcs in the true part that will be not generated.
In the worst case, considering an input signal ¢, a number of inference steps equal to N,
minus the number of arcs of the part with less arcs are at most needed. Considering all the
inputs, N, can be decreased of the minimum number of arcs of each part for each input.

The number of arcs connected to the n occurrences of the same input (positive or
negative) is:

2 (n—1).

If 7 is an input, n"(4) is the number of positive occurrences of input 7 in the specification
formula and n~ (i) is the number of negative ones, then the maximum number of steps to

produce the information for time £ is:

Ny —2 ) (min(n"(i),n™ (i) — 1).

el
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Finally, the condition on the sampling time becomes:
Ty > Tinput + Tinfer (No —2 Y _ (min(n™(i),n™ (1)) — 1))
el
The conditions presented do not change the asimphotical complexity of the algorithm
evaluated in the previous section. While, these more detailed conditions can be useful when

the evaluation of condition Ts > T}, N, fails. In this case, if the difference T},,4, No — T

is very small, the following condition should be checked:
Ty > Trnag (Na =2 Y _(min(n* (i),n™ (i) — 1)),
i€l
and if it fails, this more detailed condition:
Ts > Enput + ,I'infer (Na -2 Z(min(’nfk(i),n* (IL)) - ]-))
el

will be surely useful for the verification of T.
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Conclusions

In this work two extensions of temporal logic TILCO have been presented: C-TILCO for the
specification of complex/large systems and TILCO-X to simplify the writing of temporal

expressions. Moreover, a new way of executing temporal logics has been presented.

C-TILCO

C-TILCO is well suited for system composition/decomposition, it permits the construction
of hierarchical specifications in a top-down approach, it permits to reuse the specification
of components within the same system or the development of other systems. Communica-
tion mechanisms between processes have been specified using TILCO. C-TILCO has been
formalized within Isabelle/HOL theorem prover. Properties for the whole system as well
as for a single process can be proved. This logical framework permits also the validation
of the decomposition of a process. The possibility to execute the specification is an impor-
tant feature since well-known conditions can be quickly tested. The language used for the
specification is expressive, simple and concise with a limited “time to learn” since it has
inherited conciseness from TILCO [21]. C-TILCO can be profitably used for the formal

specification of critical complex real-time systems.

TILCO-X
TILCO-X is a temporal logic for the specification, validation and verification of real-time
systems. The introduction of the Bounded Happen and Dynamic Interval operators en-
hanced the expressive power of TILCO. TILCO-X enhances the readability and conciseness
of formulas with respect to TILCO, especially for requirements that include the event or-
dering. In this case, it removes the differences between past and future maintaining at the
same time the implicit time specifications.

In summary, TILCO-X differs from other temporal logics proposed in the literature.

TILCO-X is a first order interval logic that (i) provides a metric for time (thus allowing
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specification of qualitative and quantitative timing constraints); (ii) presents a linear im-
plicit time model; (iii) adopts a uniform manipulation of intervals from past to future for
actions, events, event ordering; (iv) present specific operators for defining temporal con-
straints including the counting the occurrence of events; (iv) provides decidability for a
wide set of formulae (non-temporal quantifications must bind only variables with types over
finite domains); (v) TILCO-X allows execution of specifications for validation and also for
system implementation. In TILCO-X no explicit quantification over the temporal domain
is allowed and with the new operators this limitation is strongly less relevant since the
demand of quantification has been reduced with respect to the old TILCO version; and
TILCO-X is particularly suitable for requirements analysis and the incremental specifi-
cation of real-time systems. TILCO-X supports validation during all phases of the system
life-cycle by means of its formalisation in the automatic theorem prover Isabelle/HOL. This
allows validation for refinement and the proof of properties. Moreover, the final opera-
tional validation is also supported by a TILCO-X Ezxecutor, which allows execution and the

model-checking of systems specifications.

TILCO/TILCO-X Executor

The execution of temporal logics has been studied, in particular the possibility of real-time
execution has been analyzed in order to define and implement an executor for TILCO and
TILCO-X specifications.

To this end, the specifications written in TILCO or TILCO-X are translated to BTL a
temporal logic with a low number of operators. A visual representation of BTL formulae
has been given, and inference rules for the deduction of logical values of output signals has
been presented. Also a visual representation of the deduction process has been proposed.

In the case of causal inference, the complexity of the time needed to deduce the value of
outputs from the value of the inputs is proportional to the number of arcs of the inference
network an therefore is linear with the “size” of the specification and proportional to the
maximum delay in the network. From this result, conditions for the feasibility of real-time

execution has been found.



Appendix A

Tools for TILCO specification

A.1 Architecture

For the validation of TILCO, TILCO-X and C-TILCO specifications some tools have been
developed. These tools are used to aid the validation of specifications by means of theorem-
proving (using Isabelle) and/or by simulation using the temporal logic executor. In Fig-

ure A.1, the relationships between the developed tools are represented. In the following, a

TILCO C-TILCO || TILCO-X
Theory Theory Theory

Figure A.1: Tools for TILCO specification

short description of each tool is reported:

e Isabelle is the validation environment, via property proof, for TILCO specifications,
Isabelle theories for TILCO, TILCO-X and C-TILCO have been developed and are

used for the validation of specifications.

145



146

e Giselle is a graphic user interface for Isabelle, its aim is to aid the interaction with

Isabelle that is a text oriented application;

e TILCOXZ2TIN is a translator, it reads textual specifications written in TILCO/TILCO-

X and produces a temporal inference network (TIN) for executing the specification.

e TIN Edit is a graphic editor for the visual specification of system properties. It
permits the direct production of TIN files, it supports the basic components of TINs
(joint, gate, delay, signal) and moreover other components such as at and happen
(over constant intervals) can be used and also generic sub-nets can be defined and

used.

e TINX is the executor. Basically, it gets in input the TIN file that contains the
specification. Then it is capapble of reading the inputs and producing the outputs

according to the specification.

e Sgn Edit is a signal editor. It permits to create, view, and change the files repre-

senting the inputs/outputs of the system.

A.2 Isabelle TILCO theories

For the validation of TILCO specifications within Isabelle, some Isabelle theories have been

developed.
e TILCO theory

— Interval.thy extends the integers theory to define constant intervals.

— Tilco.thy extends Interval.thy to define all the operator of logic TILCO.
e C-TILCO theory (see Appendix B)

— PPorts.thy extends the TILCO theory to provide primitive ports that permit

to send/receive messages. It represents the low-level communication layer.

— Ports.thy extends PPorts.thy to provide synchronous ports that permit to
send/receive messages synchronously. It represents the high-level communica-

tion layer.

— Process.thy extends Ports.thy to provide the concept of process with its vari-

ables, parameters, sub-processes.

e TILCO-X theory (see Appendix C)
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— Time.thy extends the integers theory to provide the basic logical operators (and,

or, not, forall, exists, etc.) over temporal variables.

— IntervalX.thy extends Time.thy to provide the concept of dynamic intervals,

it defines the after and before operators.

— TilcoX.thy extends IntervalX.thy to provide at and happen operators as well

as the other temporal operators with exception of Bounded Happen.

— TilcoXX.thy extends TilcoX.thy to provide Bounded Happen operators.

A.3 Giselle

Giselle is a graphic user interface for Isabelle. Isabelle is a text oriented application, then

to increase the usability the user interface called Giselle has been developed. Other user

interfaces for Isabelle can be found (Proof General, XIsabelle) but are plug-ins for Emacs/X-

Emacs or use tcl/tk.

The main window of Giselle, presented in Figure A.2, is divided in tree parts: on the left,

there is the current proof state; on the right, the tactics applied to the goal (the property

to be proved) that produced the current proof state are reported; on the bottom, there are

the tactics that can be applied to the current proof state. Clicking on a button a dialog

appears where arguments of the tactic can be chosen. The interface to tactics is completely

[

File Cammand Tactics Macto  Option
NEE RN EEEE
Level § Goal "R & [A-—>C) ——» 0"
s & (A --> 0) --» C v (resolve_tac [impI]i);
o subgoals! v (eresolve_tac [conjE] 1);
v (eresolve_tac [impE] 1);
¥ (assume_tac 13:
v (assume_tac 1);
4%E S [ A A--=Cll==C
S| & & --=C [ ==>C
Blast ‘ rasolve ‘ dresolve ‘ agsume ‘ REPEAT | THEM | hlast | egassume |
autoiac ‘ eresolve ‘ forward ‘ Fast ‘ ORELSE | INTERLEAVE | custom tactic | malch |
-1 I -
|Shuw/h\dden the proof tree window | |

Figure A.2: Giselle main window and proof tree window
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configurable. In a textual configuration file, there is, for each tactic, its textual form and
the corresponding user inputs are highlighted.
In Giselle, it is also possible to see the proof tree, where is reported how a particular

sub-goal has been proved.

A.4 TILCOX2TIN

TILCOX2TIN is a translator that is used to generate from a textual specification containing
TILCO/TILCO-X formulae the .tin file for the executor TINX. In Table A.1, the transla-

tions used from the symbolic mathematical language to the textual language are reported.

name symbolic ‘ textual ‘
and A &

or v |

not - -
imply — -—=>
coimply > <-=>or ==
delay-k " #k
delay 0 #

at @ Q
happen ? ?
until untilA B | until(A,B)
since since A B | since(A,B)
happen-min Tm 7_m
happen-max M 7" M
happen-minmax M 7" mM
infinity 00 inf

Table A.1: TILCOX2TIN: Translation from symbols to text

A specification file .t1lc starts with a prologue where the signals used as inputs and outputs
and eventually the initial conditions for some signals are reported. After the prologue a list
of TILCO/TILCO-X formula separated with a semicolon is reported. All these formula are
considered in and, and are assumed always true.

For example:

inputs: S

outputs: A
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inits:

upS == S & #°S; //upS is true iff S is true now and
// false in the prec. instant
upS --> A @ [0,+upS); //if upS is true then A is true
//upto the next time upS is true

A.5 TIN Edit

The TIN Editor is a graphic editor that permits the visual creation of temporal inference
networks. It can be regarded as a visual specification interface for TILCO. In Figure A.3, the
main window is depicted, where the user arranges the temporal logic elements, connecting
them together in order to create the desired network. To this end, one can select the

required element from the toolbar.

B up.dia ™ Il

File Edit Diagram Help

DS ERE SR

- -

Figure A.3: TIN Edit main window

The main characteristics of the TIN editor are:

e it permits the construction of the TIN using the basic elements as joint, gate, delay,
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always and signals, connecting them together with arcs;
e it permits to use non basic elements as the at and the happen operators;

e it permits to use TIN networks within another network, giving the possibility of

decomposition/composition of the system specification;
e it permits to save/load/print the networks;

e it checks if some information is missing (the value of a delay, or the intervals of the

at component, etc.).

e it permits to generate the .tin file for the TINX executor.

A.6 TINX

TINX is the temporal logic executor, it executes the specification written in a .tin file
describing the temporal inference network of the system. Each input/output signal is asso-
ciated with a file .io where the values of the signal are stored. TINX reads the .io files of
input signals and produces .1io files of output signals.

A .tinfile is a textual representation of the network. In the file the list of nodes of the

network is reported. For each node, there is a line with the following form:
<node name>: <node type>; <parent node>,<left son>[,<right son>]

where: <node name> is the unique node name, <parent node><left son> and <right
son> are name references to other nodes. <node type> can be: G for a gate node, J for
a joint node, D for a delay node eventually followed by an integer representing the delay
value.

After the lines representing the nodes of the network, there are the lines where arcs are

bound to input/output files. Each line has the following form:
<io mode> <filename> (<node name>,<node name>)

where: <io mode> can be ! for an input signal and ? for an output signal; <filename>
is the name of the file associated with the signal (without .io) and the two <node name>
represent the extremes of the arc.

For example the following is a valid .tin file:



g0:
jo:
ji:
j2:
do:
di:

O O u o g @

5 32,
; 80,
3 32,
31,
; g0,
; 30,

11 (§1,52)
? up (g0,3j0)

jo, do
j1, di
do, jo
di, g0

j1
j2

a char with ASCII code 0. The file is ended with char *.’.

reported. Optionally the execution can be made by using only causal inference.

A.7 SGN Edit
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A .io file is a sequence of chars 0, 1 (false/true) and unknown value represented with

The executor can generate also a log where the events generated during execution are

SGN Edit is a signal editor used to create, view and modify signals. It allows reading the

signals associated with a TIN file. Figure A.4 shows the main window where the signals of

the up example are reported.

| File  signats  option

e R T T T O I
ccoek [LLEEREREAER AR AL AL A
S ) B I I I T B O

L

Figure A.4: SGN Edit main window

The values of a signal can be changed by clicking on the desired time instant and the logical

value toggles form true to false, from false to undefined and from undefined to true. The

values can be changed also selecting a portion of the signal and these instants can be forced

to assume value all true, false, undefined, randomly true or false, or alternating true/false
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values. The executor can be directly invoked from the menu to quickly see the response of

the system when an input signal is changed.



Appendix B

Isabelle C-TILCO Theory

B.1 PPorts.thy

(*
File: PPorts.thy
Theory Name: PPorts
Logic Image: HOL

*)

PPorts = Tilco +

classes

Port < term

inPort < Port
outPort < Port
types
(* typed primitive ports x)
’a p_inPort
’a p_outPort

arities
p_inPort :: (term) inPort
p_outPort :: (term) outPort

consts

(* transmission and reception primitives x*)
p_send :: [’a p_outPort, ’al => tbool ("_.psend _" [50,50] 50)
p_receiveAck :: ’a p_outPort => tbool ("_.preceiveAck" [50] 50)
p_receive :: [’a p_inPort,’a] => tbool ("_.preceive _" [50,50] 50)
p_sendAck :: ’a p_inPort => tbool ("_.psendAck" [50] 50)
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connectd :: [’a p_outPort,nat,’a p_inPort] => bool
("_ ->_>- _" [50,50,50] 50)

syntax

connectO0 :: [’a p_outPort,’a p_inPort] => bool ("_ ->- _" [50,50] 50)

connectl :: [’a p_outPort,’a p_inPort] => bool ("_ ->>- _" [50,50] 50)
translations

"outP ->- inP" == "outP ->0>- inP"

"outP ->>- inP" == "outP ->1>- inP"
rules

(* rules for transmission of Msg and Ackx*)
p_tr_msg_rule " (outP ->d>- inP) --> \

\ rule((outP.psend k) #= (inP.preceive k)@single($#d))"
p_tr_ack_rule " (outP ->d>- inP) --> \
\ rule((inP.psendAck) #= (outP.preceiveAck)@single ($#d))"

(* in each instant only one value can be sent/received x*)
p_uni_send_rule " rule( ((outP.psend k) #& (outP.psend v)) #--> \

\ ((const v)#=(const k)))"

p_uni_rec_rule " rule( ((inP.preceive k) #& (inP.preceive v)) #--> \
\ ((const v)#=(const k)))"
end

B.2 Ports.thy

(*
File: Ports.thy
Theory Name: Ports
Logic Image: HOL
*)

Ports = PPorts +

types
(* high level ports *)
’a s_inPort (* synchornous reception *)
’a s_outPort (* synchronous emission *)
arities
s_inPort :: (term) inPort
s_outPort :: (term) outPort
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consts
(* synchronous emission *)

s_out :: ’a s_outPort => ’a p_outPort

s_SendW :: [’a s_outPort, ’a, tbool,tbool] => tbool
v/ Q1557 (O [60,50,10,10] 9)

s_noSend :: ’a::outPort => tbool ("_.~!!" [60] 50)

(* synchronous reception *)

s_in :: ’a s_inPort => ’a p_inPort
s_ReceiveW :: [’a s_inPort, tbool, ’a => tbool] => tbool
(m_.?7? (D1 55/ (" [60,10,101 9)
s_Receive :: ’a::inPort => tbool ("_.~7??" [50] 50)
s_RWait :: ’a s_inPort => tbool ("_.RWait" [50] 50)
s_RValue :: [’a s_inPort, ’a ]=> tbool ("_.RValue _" [50,50] 50)
syntax
s_Send :: [’a s_outPort, ’a, tbool] => tbool
(tr_arr () 5/ () [650,50,101 9)
s_Receive :: [’a s_inPort, ’a => tbool] => tbool

(Mm_.7?? ;5 (OO [60,10] 9)
send :: [’a::outPort, ’b] => tbool
("_.(send (_))" [50,50] 50)

receive :: [’a::inPort, ’b] => tbool
("_.(receive (_))" [50,50] 50)

receiveAck :: ’a::outPort => tbool
("_.receiveAck" [50] 50)

sendAck :: ’a::inPort => tbool
("_.sendAck" [50] 50)

translations
"p.send v" == "(s_out p).psend v"

.receive v"

"p "(s_in p).preceive v"
"p.receiveAck"
Ilp

"(s_out p).preceiveAck"

.sendAck" == "(s_in p) .psendAck"
"p.!! v ;; P* == "p. !l v [ true ] ;; P"
"p.?? ;; P" == "p.?? [ true ] ;; P"
defs
s_RValue_def "(siP.RValue v) == (since’ (siP.receive v #& #~ siP.sendAck)
(#~ siP.sendAck))"
s_RWait_def "(siP.RWait) == (#~ (#7 k. siP.RValue k))"

s_aSend_def "(soP.!!) == (#? v W Q. (soP.!'!' v [ W] ;; @)H"

s_aReceive_def "(siP.??) == (#? W Q. (siP.??2 [ W] ;; Q) "
rules

s_SendW_rule
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" rule((soP.!'' v [ W] ;; Q) #-—>

(soP.send v) #&

(until0 (soP.receiveAck #& Q)

(#~ soP.receiveAck #& W)) #&
(soP.receiveAck #|
(#~ soP.receiveAck #&
until (soP.receiveAck)
(#~ soP.receiveAck #& soP.~!!))))"
s_noSend_rule

" rule( soP.~!! #--> (#! k. #~ soP.send k)) "

s_SendW_unique
" rule((soP.!! vi [W1];;P1)#&(soP.!! v2 [W2];;P2) #-->
((const v1) #= (const v2)) #&
((Wi#=W2) #& (P1#=P2))@<-inf,inf>)"
s_SendW_noSend_rule
" rule((soP.!! v1 [W1];;P1) #& (soP.”!!) #--> false)"

s_ReceiveWl_rule
" rule((siP.?? [ W 1 ;; Q) #& siP.RWait #-->
(until0 (#7? k. siP.receive k #&
siP.sendAck #& Q k)
(#7 (#7 k. siP.receive k) #& W)) #&
((#7? k. siP.receive k) #|
(#~ (#? k. siP.receive k) #& #"siP.sendAck #&
until ((#? k. siP.receive k))
(#~ (#7 k. siP.receive k) #& #"siP.?77))))"
s_ReceiveW2_rule
" rule((siP.?? [ W 1 ;; Q) #& siP.RValue v #-—>
siP.sendAck #& Q v) "
s_noReceive_rule
" rule(siP.~?? #--> (#~ siP.sendAck)) "

s_ReceiveW_unique
" rule((siP.?? [Wi];;P1) #& (siP.?? [W2];;P2) #-->
((Wi#=w2) #& (#! v. (P1 v) #= (P2 v)))0<-inf,inf>)"
s_ReceiveW_noReceive_rule
" rule( (siP.?? [W1];;P1) #& siP.~7?7? #--> false )"
end



B.3 Process.thy

(*
File: Process.thy
Theory Name: Process
Logic Image: HOL
*)
Process = Ports +
classes
process < term
tComponent < term
types
(’a, ’b) tVar

’a tProp
(’a, ’b) tSubproc
(’a, ’b) tSInPort
(’a, ’b) tSOutPort
arities

tVar :: (process,term) tComponent
tProp :: (process) tComponent
tSubproc :: (process,process) tComponent
tSInPort :: (process,term) tComponent
tS0utPort :: (process,term) tComponent
consts
pvar::[’a::process, (’a, ’b) tVar] =>
ppro::[’a::process, ’a tPropl =>

psub::[’a::process,

(’a,
psip::[’a::process, (’a,
(’a,

psop::[’a::process,

’b) tSubproc] =>
’b) tSInPort] =>
’b) tSOutPort]=>

pstart :: ’a::process => tbool ("_.process’_start" [50] 55)

system_start :: tbool
syntax

pdot::[’a::process, ’b::tComponent ] => ’c::term

pcolon::’b::tComponent =>’c::term
cstart :: tbool (":process’_start")

rules
uni_start

"rule (system_start 7! <-inf,inf>)"

uni_pstart

"rule (p.process_start 7! <-inf,inf>)"
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’b tfun ("_.var _" [50,50]
tbool ("_.pro _" [50,50]
b ("_.sub _" [50,60]
’b s_inPort ("_.sip _" [51,51]
’b s_outPort ("_.sop _" [51,51]
("_._" [50,60] 55)
(":_" [60] 55)

55)
55)
55)
55)
55)
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pstart_noReceive
"rule (p.process_start #-——> ((p.sip inP)."??) @ <-inf,$#0>)"
pstart_noSend
"rule (p.process_start #-—-> ((p.sop outP).”!!) @ <-inf,$#0>)"
end
ML



Appendix C

Isabelle TILCO-X Theory

C.1 Time.thy

(*
File: Time.thy
Theory Name: Time
Logic Image: HOL

*)

Time = IntArith +

types
time = int
tbool = (time => bool)
’a tfun = (time => ’a)

consts
T :: time
now :: [tbool, time] => bool
true :: tbool
false :: tbool
g :: tbool => tbool ("¢~ _" [40] 40)
"#y" :: [tbool, tbool]l => tbool (infixr 35)
N :: [tbool, tbool] => tbool (infixr 30)
D=1 :: [’a tfun, ’a tfun] => tbool (infixr 25)
=1 :: [tbool, tbool] => tbool (infixr 33)
NH——>" :: [tbool, tbool]l => tbool (infixr 25)
TIF :: [tbool, ’a tfun, ’a tfun] => (’a tfun)

("(IF (_)/ THEN (_)/ ELSE (_))" 10)
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TA1l
TEx
TEx1
TBall
TBex

const
unary
binary

syntax
"xTBall"
"xTBex"

translations
"A #~= B"
"#! x:A. P"
"#7 x:A. P"

defs
now_def

Ttrue_def
Tfalse_def

Tnot_def
Tand_def
Tor_def
Tequiv_def
Timply_def

TIF_def

TA1l_def
TEx_def
TEx1_def
TBall_def
TBex_def

const_def

unary_def

binary_def
end

(’a => tbool) => tbool
(’a => tbool) => tbool
(’a => tbool) => tbool
[’a set, ’a => tbool] => tbool
[’a set, ’a => tbool] => tbool

’a => (’a tfun)
[’a => ’b, ’a tfun] => (°b tfun)
[[’a,’b] => ’c,’a tfun,’b tfun] => (’c tfun)

(binder "#! " 10)
(binder "#7 " 10)
(binder "#7! " 10)

[idts,’a set,tbool]l=>tbool (" (3#! _:_./ _)" 10)
[idts,’a set,tbool]l=>tbool ("(3#7 _:_./ _)" 10)
J— u#~ (A #= B)"
== "TBall A (%x. P)"
== "TBex A (%x. P)"
"now A t == A(T+t)"
"true == (%x. True)"
"false == (%x. False)"
"H#T A == (%x. ~ A x)"
"A #& B == (%x. A x & B x)"
"A #| B == (%x. A x| Bx)"
"A #= B == (%x. A x =B x)"
"A #--> B == (%x. A x -=> B x)"
"TIF P x y == (%z. if (P z) then (x z) else (y z))"
"TA1l P = (hy. ! x. P x y)"
"TEx P == (hy. 7 x. P x y)"
"TEx1 P == (%z. ?! x. P x 2)"
"TBall A P == (%y. I x:A. P x y)"
"TBex A P == (hy. ? x:A. P x y)"
"const K == (%x. K)"
"unary f B == (%t. £ (B t))"
"binary £ A B == (%t. £ (A t) (B t))"
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C.2 IntervalX.thy

(*
File: IntervalX.thy
Theory Name: IntervalX
Logic Image: HOL

*)

IntervalX = Time +

datatype bound = Val int ("# _") |
Pinf ("+inf") |
Minf ("-inf") |
Next tbool ("++ _") |
Prev tbool ("-- _")
datatype interval = oo bound bound ("<_,_>
cc bound bound ("[_,_]1"
oc bound bound ("<_,_]
co bound bound ("[_,_>"
sng bound ("[_1")

consts

win :: [int, interval] => tbool

after :: [int, bound] => tbool

before :: [int, bound] => tbool

sublft :: [interval, int] => interval

subrgt :: [interval, int] => interval

eq :: [interval, interval] => bool (infixr 20)
primrec

after_val "(after x (# v)) = const (v <= x)"
after_pinf "(after x (+inf)) = false"
after_minf "(after x (-inf)) true"
after_next "(after x (++ N))
(Jhv. (7 t. #0 < t & t <= x & N (v+t) &
(" 7. (#0 < £ & t°< t) -=> “N(v+t?))))"
after_prev "(after x (-- P)) =
(hv. (7 t. t < #0 & t <=x & P (v+t) &
(1 t2. (£ <t & t< #0) -—> “P(v+t?))) |
(Y 2. t2<#0 -=> "P(v+t’)))"
primrec
before_val "(before x (# v)) = const (x <= v)"
before_pinf "(before x (+inf)) = true"
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before_minf "(before x (-inf)) = false"

before_next "(before x (++ N))

hv. (2 t. #0 < t & x <=t & N (v+t) &

(1 t2. (#0 < t2 & t’< t) —-=> "N(v+t’))) |
(! t7. #0<t? -=> "N(v+t’)))"

before_prev "(before x (-- P)) =

(hv. 2 t. t <#H0 & x <=t & P (v+t) &

(" t2. (£ <t & t’< #0) --> “P(v+t?)))"

primrec
win_cc "(win v [1,u]) = ((after v 1) #& (before v u))"
win_oo "(win v <1,u>) = ((after (v-#1) 1) #& (before (v+#1) u))"
win_oc "(win v <1,ul]) = ((after (v-#1) 1) #& (before v u))"
win_co "(win v [1,u>) = ((after v 1) #& (before (v+#1) u))"
win_sng "(win v [b]) = ((after v b) #& (before v b))"

primrec
sublft_cc "(sublft [1,u] v) = [1,#v>"
sublft_oo "(sublft <1l,u> v) = <1,#v>"
sublft_oc "(sublft <1,u] v) = <1,#v>"
sublft_co "(sublft [1,u> v) = [1,#v>"
sublft_sng "(sublft [b] v) = [b,#v>"

primrec
subrgt_cc "(subrgt [1l,u]l v) = <#v,ul"
subrgt_oo '"(subrgt <1,u> v) = <#v,u>"
subrgt_oc "(subrgt <1,u] v) = <#v,ul]"
subrgt_co "(subrgt [1,u> v) = <#v,u>"
subrgt_sng "(subrgt [b]l v) <#v,b]"

defs
eq_def "(il eq i2) == (!'x. (win x il)=(win x i2))"

end

C.3 TilcoX.thy

(*
File: TilcoX.thy
Theory Name: TilcoX
Logic Image: HOL

*)
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TilcoX = IntervalX +
consts
at [tbool, interval] => tbool ("_ @ _" [36,37]
happen [tbool, interval] => tbool (m_ 7 _" [36,37]
happen1 [tbool, interval] => tbool (m_ 7 " [36,37]
n_>>n [tbool, tbool]l => tbool (infixr
noggn [tbool, tbool] => tbool (infixr
ne=n [’a tfun, ’a tfun] => tbool (infixr
until [tbool, tbool] => tbool
since [tbool, tbool] => tbool
up :: tbool => tbool
down :: tbool => tbool
tinv :: (’a tfun) => tbool
rule :: tbool => bool
fact :: tbool => bool
syntax
"y [interval, interval] => interval (infixr
R [interval, interval] => interval (infixr
"@tEval":: ’a tfun => ’a tfun ("tEvall[_]")
translations
"Ae  (i&& " = "(Ae@ i) #& (A Q@ )"
"A 7 (1 & )" =>"(A 7 i) #& (A 7 "
"A?PL (L& )" => (A 7! i) #& (A7 )"
"Ae (Il " o=>tnae i) # (Ae )
A7 G T = a7 i) #] (A7 G
"A?Y (@ g = (ATt i) #| (A?Y
defs
at_def "A Q@ == (%x. ! t. (win t 1) x -=-> A(x+t))"
happen_def "A 7 == (%x. 7 t. (win t 1) x & A(x+t))"
Tnext_def "A ->> B == A #--> (B @ [##1])"
Tprev_def "A << B == A #-> (B @ [##-1])"
Tassign_def "A := exp == (hx. A x = exp (x+#-1))"
until_def "until P Q == Q @ <##0,++P>"
since_def "since P Q == Q @ <--P,##0>"
up_def "up A == (%t. “A(t+#-1) & A t)"
down_def "down A == (%t. A(t+#-1) & “A t)"
tinv_def "tinv A == (hx. A x = (A (x+#-1)) )"
rule_def "rule A == (! t. now A t)"
fact_def "fact A == (? t. now A t)"

36)
36)
36)

25)
25)
38)

40)
40)
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end

C.4 TilcoXX.thy

(*
File: TilcoXX.thy
Theory Name: TilcoXX
Logic Image: HOL

*)

TilcoXX = TilcoX + List +

consts
happenmn :: [tbool, nat, interval] => tbool ("_ ?-_ _" [36,30,37] 36)
happenmx :: [tbool, nat, interval] => tbool ("_?~_ _" [36,30,37] 36)
bhappen :: [tbool, nat, nat, interval] => tbool

(m_?f_ 1 _" [36,30,30,37] 36)
happeneq :: [tbool, nat, interval] => tbool
("_ ?=_ _" [36,30,37] 36)
monotone :: int list => bool
translations
"Pp ?=n I" => "P ?[n n] I"

primrec
mono_nil "(monotone []) = True"
mono_seq "(monotone (a # 1)) = (if 1=[] then True
else ((a < (hd 1)) & monotone 1))"

defs
happenmn_def "(P ?- m I) ==
(%t. 7 (f::int list). (length f)=m &
(i, i<m --> P (t+(nth f i)) & (win (nth f i) I) t) &
monotone f)"
happenmx_def "(P ?~ M I) == (# (P ?-(Suc M) I))"
bhappen_def "(P ?[m M] I) == ((P ?-m I) #& (P ?°M I))"

end
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