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Projection of the 3D velocity of real objects on the image 
pl~ne. is often cal/ed the 'velocity field'. The estimation of 
thlS fleld lS one of the most important research top ics in 
computer vision. In the literature, there are numerous 
solutions which adopt a sort of continuity equation 
cal/ed optical flow constrain (O FC). The solution of this 
constraint equation is usual/y called the 'optical flow' 
fie/d, and can be considered equal to the velocity field 
under particular assumptions. The structure of the OFC 
equation makes the oprical flow estimation an ill-posed 
problem, like many other inverse problems in early­
vision. For this reason, many reglarization techniques 
were used in the past for estimating optical flow. The 
major drawback of these solutions is the presence of 
propagation effects which produce the loss of the 
information associated to the discontinuities. On the 
other hand, the dicontinuities are very important for 
estimating precise optical flow fields, and detecting the 
shape of moving objects. In this paper, we propose a 
new solution based on variational techniques for optical 
flow estimation and regularization, which takes into 
account the discontinuities, and strongly reduces the 
related problems. The proposed method is called 
'discontinuity-dependent variational solution'. 

Keywords: computer vision, motion ananlysis, motion 
estimati.on, .. image flow, optical flow. regularization. 
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Motion analysis is based on the estimation of the 
velocity field which is the perspective projection of the 
real 3D velocity on the image piane. Basically, two 
approaches are discussed in the literature for the 
estima.tion of velocity on the image piane: the 
mat~hIng-based (correspondence) approach, and the 
gradlent-based approach. In the first approach, local 

matchi~g techniques are used to evaluate the displace­
ments In sub-sequent frames for particular elements 
belonging to moving objects in the scene such as edges, 
corners, patterns, etc. I - 3 • The estimation of velocity 
vectors on the image piane by using the matching 
technique leads to obtain a sparse velocity field, since 
the estimation of displacement is only possible for some 
well-identifiable elements. On the other hand where 
the matching problem is solved, the estimated ~elocity 
vectors are accurate. 

The gradient-based approach begin with observa­
tion~ of brightness changes on the image piane, thus 
leadIng to the motion estimation of image brightness 
features4--8. This technique is based on the fact that the 
changes of image brightness E(x(t), y(t), t) with respect 
to t can be denoted by: 

dE aE aE dx aE dy 
-= - +--+ -
dt at ax dt ay dt 

(1) 

If the image brightness of each point of the image is 
supposed to be stationary with respect to the time 
variable (i.e. dE/dt = O), then the following expression 
holds: 

(2) 

where the abbreviation for parti al derivatives of image 
brightness has been introduced, and u, v correspond to 
dx/dt, dy/dt, and represent the components of the local 
velocity vector V along the x and y directions, respec­
tively. Equation (2) is usually called the Optical Flow 
Contraint (OFC). 

The solutions of this equation are referred to as 
'optical flow' or 'image fio w' . In generai, boundary and 
smoothness conditions are necessary for obtaining a 
computational solution for the OFC. However, these 
additional conditions can limit the correctness of the 
computed solutions. Department of Systems and Informaties. Faculty of Engineering. 

University of Florence. via di S. Marta 3. 50139 Florence. Italy In accordance with the previous discussion, the 
optical flow was defined by Horn and Schunck as the 
local velocity of the image grey value patterns, and 
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represents an approximation of the velocity field 5. In 
generaI, the velocity field and the optical f10w are not 
equal, and restrictive hypotheses are needed to make 
these two fields equaI 9 • 1O • Nesi et aL. 11 have pointed out 
that these two fields are the same if the objects in the 
scene have Lambertian surfaces, the motion is con­
tained in a pIane parallel to the image pIane, the optical 
system is calibrated, and the scene is unde: i~otwpic 
iIIumination. These conditions are very restnctIve wlth 
respect to conditions which are usually present in areaI 
environment. On the other hand, the estimation of an 
approximated velocity field, such as an optical f1ow, 
can be very useful in many app\ications. 

Nature of optical flow estimation problem 

The problem of optical f10w estimation from the OFC 
equation is not a well-posed problem in the sense of 
Hadanard5, 12, 13, since the solution of the OFC .equa­
tion is not unique, and for the presence of ?ISCOn­
tinuities. In addition, as can be seen by observmg the 
OFC, the motion cannot be estimated if V E is close to 
zero, i.e. when the spatial changes in image brightness 
are small. 

In the literature, another constraint has al so been 
proposed for estimating optical f1ow, which is dV El 
dt = 08,14. In the past, it has been pointed out that 
optical f10w estimation by using the system of equations 
dV Eldt = O is not generally an ill-posed problem15 
when det H 1= O (where H is the Hessian of the image 
brightness). It should be noted that det H = E xx E yy -

E 2 and hence it is therefore strongly related to the 
xy, h' 

Gaussian curvature of image brightness. T IS means 
that optical f10w estimation by using the ~V Eldt = ~ !s 
either ill-conditioned when the curvature IS low, or It IS 
mainly present only along one direction. In such cases, 
the problem of optical f10w etimation results to be 
mildly ill-posed (well behaved)16. This reasoning agrees 
with the fact that the matching-based algorithms only 
estimate reliable velocity vectors for well-identifiable 
elements such as corner points (where the Gaussian 
curvature is relevant), but they have problems when 
the element under matching is a \inear edge with a 
strongly mono-dimensional curvature. It ~hould be 
noted that by solving the system of equatlOns dV El 
dt = O leads to obtain an optical f10w which is theoreti­
cally different with respect to the one defined by. the 
OFe. 'This is confirmed by the fact that the dlrect 
solution of the system of equations dV Eldt = O does 
not usually verify the OFC equation. 

In generaI, there are two main problems in estimat­
ing optical f1ow. The first consis~s in the prese~ce of 
discontinui ti es in the local veloclty, related to Image 
brightness dscontinuities that are originated .by the 
presence of noise, too crisp patterns, too large dlsplace­
ments, and occlusions beween moving objects. Discon­
tinuities in optical f10w fields are al so present between 
the moving object and the stationary background along 
the so called 'object boundaries'. In the cases in which 
the optical f10w is estimated by using dV Eldt = 0: the 
presence of discontinuities in the optical f10w flelds 
makes the problem of optical f10w estimation strongly 
ill-conditioned15. Generally speaking, this difficulty can 
be partially overcome by convolving the image wit? a 
2D or 3D Gaussian smoothing operator transformmg 
the problem into well-posedI4. 
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Figure l. lnstance o[ the probLem o[ aperture and the 
associated constraint Lines in the (u, v) space 

The second problem is the so-called 'problem of 
aperture' which also exists in human vision. This. is 
related to the impossibility of unequivocally recovenng 
the motion direction if the object is observed through 
an aperture smaller than the object itself. In this 
context, the features on the object under observation 
(such as textures - patterns) are not enough to allow 
the perception of the transversal component of. the 
object motion. This is coherent with human perceptlOn, 
which is not able to detect the true direction of the 
velocity of an object if it does not have enough 
references, such as a pattern or an edge curvature. In 
such cases, only the component of the velocity field 
which is parallel to the spatial gradient V E: 

Et VE 
V - -----

.L - IIVE II II VE II (3) 

can be estimated and perceived, where dEldt = O and 
Il V E 11 1= O, are assumed. 

As often pointed out by many researchers, the OFC 
can be seen as the equation of a line in the u, v piane. 
According to this, all the points of this line are possible 
solutions of the OFC5. A solution can be obtained as 
the intersection of the constraint lines in a neighbour­
hood where it is possible to define distinct constraints 
(such as at the edge boundary points in Figure 1). For 
this reason, the problem of aperture can be seen as an 
effect of the ill-conditioned nature of optical f10w 
estimation. 

In generai, both the above-mentioned problems can 
be regarded as due to the ill-posed nature of the 
problem, since iIl-posed problems have a conditi.on 
number equal to 00, and therefore the problems whl.ch 
are strongly iIl-conditioned belong to the class of the 111-
posed problems, and could be treated in the same 
manner15 . 

In this paper, a new OFC-based solution for optical 
f10w estimation is proposed. This solution is based on 
variational convergence to manage the iII-posed nature 
of the problem, and avoids the problems usually 
present when the classical regularization techniques are 
used. The mathematical bases of this approach were 
elaborated by Giorgi17 , and by Ambrosio and 
Tortorelli18. 

OPTICAL FLOW ESTIMATION TECHNIQUES 

Two main gradient-based approaches for optical f10w 
estimation can be found in the literature: reguLarization 
and muLticonstraint-based approaches. 

image and vision computing 



The regularization-based approaches consider optical 
flow estimation as an ill-posed problem in the sense of 
Hadamard l2 , 13, such as many other inverse problems in 
early-vision 15, 1 9~23. As in the classical regularization 
theori 5 ,24 these methods use a smoothness constraint 
to regularize the solution of OFC by minimizing a 
functional. In these functionals, the influence of the 
smoothness constraint is weighted with a positive 
constant. The functional can be minimized by using 
calculus of variations or stochastic relaxation (deter­
ministic and stochastic regularization). Basically, these 
methods le ad to iterative solutions, therefore the 
optical flow depends on the number of iterations 
involved. 

The solutions based on regularization can be divided 
into two main classes: area- and countour-based 
solutions. The regularization area-based solutions lead 
to the evaluation of dense optical flow fields. The 
optical flow is called 'dense' when the estimation 
process yields the optical flow field also inside the 
objects under motion and not only on the contours. 
The results mainly depend on the number of iterations 
and on the weighting factor value. 

Horn and Schunck5 pointed out the ill-posed nature 
of the problem, and proposed a solution based on the 
minimization of the functional: 

F= J f[(Ex u + E v v+Et)2 

+a2(u;+u~+v;+v~)]dxdy (14) 

where the first term is the OFC (measure of the 
goodness of OFC approximation), the second is taken 
as a measure of departure trom smoothness in optical 
flow, and a is a weighting factor that controls the 
degree of -the smoothness. constraint influence. The 
functional is minimized by using ca1culus of 
variations25 , This approach leads to a system of two 
coupled differential equations obtained from the Euler 
equation, which can be decoupled and solved by using a 
discrete approximation. This method yields dense 
optical flow fields for the propagation of velocity values 
trom the estimation points, and the depth of the 
propagation depends on both the number of iterations 
and the weight factor. The iterative process starts at the 
first iteration by estimating the optical flow vetors 
which are parallel to V' E, and it continues by 
smoothing the field which is constrained by the OFC. 
Even though it converges to a minima, the iterative 
process does not converge to an optimal solution, since 
the lowest error in estimating the optical flow does not 
correspond to the iteration in which the process obtains 
the minimum of functional. 

Terzopoulos23 analysed the multigrid approach for 
solving Euler-Lagrange equations for some early­
vision problems. Among these, a multigrid approach to 
the solution of Horn and Schunck5 has been also 
presented. In generaI, the multigrid approach can 
be used for increasing the convergence velocity of 
low-frequency components (smooth modes) of the 
optical flow, while at the same time, high-frequency 
components (such as diséontinuities) are strongly 
eliminated. 

Schunck26 presented the so~called 'Iine dustering' 
algorithm to estimate the optical flow in the presence of 
discontinuities. This technique works in the neighbour-
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hood of the pixel under observation, and extracts a very 
probable velocity value by using a clustering technique. 
Moreover, an area-based algorithm is presented to 
regularize the optical flow estimated by means of the 
line clustering algorithm; this technique can be used 
only when the boundaries of the moving objects are 
known, and is based on the minimization of the 
functional: 

F=Jf[(u-uf+(v-iif 

+ a 2 (u; + u~ + ii; + ii~)] dx dy 

where u and ii denote the estimated and smoothed 
optical flow fields. The first term can be seen as the 
deviation between the 'optical flow field estimated with 
line clustering' and the 'optical flow field estimated and 
smoothed'. The second term is the cost of the lack of 
smoothness in the solution. Minimizing this functional 
by using the calculus of variations yields two linear 
decoupled parti al differential equations, and conse­
quently an iterative solution can be easily obtained. 

Yachida27 used the same approach as Horn and 
Schunck to evaluate optical flow. In addition, a 
criterion for controlling the undesiderable propagation 
effects based on a measure of local brightness was 
reported. 

Nagel6 derived a different functional, and solutions 
were obtained in a closed form only at the corner points 
of an image . In the functional, a smoothing constraint 
which depends on the second-order partial derivatives 
of the image brightness has been used. Nagel and 
Enklemann28 applied the solution proposed earlier6 to 
every point of the image, and performed an accurate 
study of the properties of Nagel's orientation­
dependent smoothness constraint. In the same paper, 
it was pointed out that the iterative solving process 
starts by estimating the velocity vectors in the corner 
points (where the velocity estimation can be made 
accurately), and continues with the propagation of 
estimates in the rest of the image. 

Konrad and Dubois29 presented two approaches for 
motion estimation that use the regularization based on 
Bayesian estimation. The first approach used a multi­
grid algorithm to handle large displacements for a 
Maximum A Posteriori Probability (MAP) estimation 
of optical flow by simulated annealing. The second is 
an application of the Minimum Expected Cost (ME C) 
estimation. 

Bertero et al. 15 and Poggio19 an;llysed the ill-posed 
problems for early-vision. In this context, the bases of 
the regularization approach for optical flow estimation 
were al so reported. 

Schnorr30 presented an approach to estimate optical 
flow and moving object shape at the same time. This 
method is based on the fact that a priori knowledge 
can be useful to improve the method proposed by Horn 
and Schunck5 . In particular the ego-motion (3D motion 
of the observer) is given as known or estimated 
separately. The knowledge is used to decompose the 
optical flow in two domains, one for the ego-motion, 
the other for the moving object. The boundary between 
these two domains is defined as a closed curvè . At this 
point an iterative process starts, to minimize the energy 
of domai n separation, by modifying the closed curve, 
and estimating the optical flow fields in each domain. 
The opti ca I flow in each domain is estimate by using the 
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algorithm of Horn and Schunck5. In Schn6rr30, only 
contexts having a single moving object with quite 
uniform motion have been fully investigated. More­
over, the process complexity depends on the number of 
the moving objects in the scene. 

In the regularization contour-based solutions, the 
optical flow field is only evaluated on the edge of 
objects. This approach uses the OFC after the identifi­
cation of the edges by means of an edge detection 
operator2,31,32. 

The multiconstraint-based approaches for optical 
flow estimation are based on the consideration that the 
condition dF!dt = O can be valid for any motion­
invariant function F. This leads to the definition of a 
generai constraint: 

(5) 

where many kinds of functions F can be used, such 
as contrast, entropy, average, variance, curvature, 
gradient magnitude, moments of local intensity, colour 
spectrum, images obtained with different light sources, 
etc. By using a set of these constraints, evaluated at the 
same point of the image, a solvable system of equations 
with u and v as unknowns can be obtained33-35. 

Some less generai methods adopt other constraints 
having second-order partial derivatives of image bright­
nesso These constaints can be seen as obtained by 
taking the derivative of OFC with respect to x, y 
or t7.8,14. 

To obtain smoother solutions, some researchers have 
considered that the constaints evaluated in the neigh­
bourhood of the pixel under consideration represent 
the same velocity value, as a first approximation. In this 
way, a set of similar constraints in the neighbouring 
pixels can be used for building an over-determined 
system of equations. This assumption is valid only if the 
optical flow under observation is smooth36,37. 

Most of the previously mentioned techniques adopt 
an over-determined system of equations and obtain a 
solution by using the least-squares method. In such 
cases, the problem of optical flow estimation is not 
generally iII-posed, but can be strongly iII-conditioned 
depending on the presence of discontinuities and on the 
curvature of the image brightness. In generai, this 
problem can be solved or simply attenuated by adopt­
ing (a) a pre-filtering, to regularize the data (sequence 
ofimages); (b) a large neighbourhood to collect a great 
number of constraints; and (c) a post-filtering of the 
estimated optical flow field, to smooth the solution. 
Such techniques can also be seen as a regularization 
method15 , but these lead to loss in resolution and make 
the estimated optical flow unsuitable for 3D object 
reconstruction. 

V ARIATIONAL CONVERGENCE FOR 
OPTICAL FLOW ESTIMATION 

The main goal of the optical flow estimation is to obtain 
smooth optical flow fields on uniform regions, while 
maintaining the information on velocity vectors esti­
mated on the boundaries profiles, and on the edges 
of the moving objects. Such optical flow can be 
profitably used for 3D motion estimation as well as for 
3D object reconstruction, since the structural informa-
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tion related to discontinuities (i.e. the moving object 
boundaries and edges) is not destroyed. For this fact, 
the main problem in obtaining a precise optical flow 
field is to maintain the discontinuities. 

As a generai consideration, the multiconstraint­
based approaches are much more sensitive to discon­
tinuities than regularization-based techniques. This is 
mainly due to two facts: (i) the adoption of constraint 
equations with second-order partial derivati ves of the 
image brightness (it is known that the derivation 
process exaIts noise); (ii) the adoption of the least­
squares technique to solve the over-determined system 
of constraint equations (the least-squares technique is 
not strongly robust with respect to the noi se in data). A 
partial solution to these problems could be the adop­
tion of a post-fiItering action where the smoothness of 
the solution can be improved by increasing the area 
filter dimension, even though at the expense of a loss in 
resolution on object boundaries. In the regularization­
based approaches, noise effects are reduced in the early 
iteration steps; however, during the iterative process, 
unacceptable optical flow estimates are obtained for 
the propagation of incorrect velocity vectors due to 
noi se (estimated in the early iterations). Moreover, 
problems also occur in the presence of occIusions 
between moving objects, since the depth of propaga­
tion depends on both the number of iterations and the 
weighting factor. 

In this paper, we proposed a solution for the 
estimation of smooth optical flow fields which main­
tains the information associated with discontinuities. 

In the standard Tikhonov regulaization theory, the 
cIass of admissible solutions of an ill-posed problem is 
restricted to a Sobolev space of smooth functions24 . 
Regularization with discontinuities needs a more 
generai cIass of functions. Blake and Zisserman38 
proposed the weak membrane modeI to manage 
discontinuities. This method was generaIized for other 
early-vision problems involving the regularization of iII­
posed problem with discontinuities, such as visual 
reconstruction39 and image segmentation40. In generaI, 
this variational method looks for a function g(x, y) that 
minimizes the functional: 

F(g) = II (g(x, y) - d(x, y))2 dx dy 

+ a 2 I I Il V'g(x, y) 11 2dxdy + f32 P 

The first term is the measure of the error in the 
etimation, the second term is the smoothness con­
straint, and the Iast term is a measure of the discon­
tinuities in g(x, y). The penalty term (f32 P) can be 
defined in many different ways38. In this case, the 
values of P are related to the presence of discon­
tinuities. In this functional, a and f3 are the para­
meters of the problem. Blake and Zisserman discussed 
the meaning of these parameters in term of discon­
tinuity detection, obtaining a as the scale factor and 
T = V2f32/a as the ·threshold, for detecting the 
discontinuities. As the value of a increases, the effect 
of the smoothing factor (i.e. the second term) al so 
increases, and so this value should be related ' to the 
signal-to-noise ratio. The veIocity values which are 
higher than the threshold T are maintained, while the 
others are smoothed38 . 

In generai, this problem can be regarded as an 
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extension of the classical regularization method used 
for managing the presence of discontinuities. Even 
though it has not yet been proved that this problem is 
well-posed, however, the results obtained lead to the 
supposition that this is true39 . In addition, Blake and 
Zisserman demonstrated that in two important cases 
(i .e. for isolated discontinuities and for a pair of 
interacting discontinuities which are closer than a 
certain factor), their graduated non-convexity method 
finds the global minima, and is therefore correct38 . 

Recently, a new concept of convergence for 
sequence of functionals has appeared in mathematical 
analysis 17,18,40,41. This particular therory of variational 
convergence, called r-convergence17 , leads to deter­
mining, from a functional F(g), a sequence òf 
k-dependent functionals Fk(g), which minimized lead 

2 

I I I I I I I I I I ,l' . 

- .... , I '" I , " I '" I _" 
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to a solution for the minimization problem that is also 
valued for the functional F(g) for k that tends to 
infinity. 

A sequence of functionals that approximates the 
functional F(g) in the sense of the r-convergence is: 

Fk(g, z) == 

J J[(g(x, y)-d(x, y)f+a 2 z 2 11 V'g(x, y) 11 2 

2( II V'z I12 k(1-Z)2)] 
+ f3 --+ dxdy 

k 4 

In this way, the problem is more tractable, but the 
additional variable z has been inserted. This variable is 

6 

Figuré 2. Sequence of images where an object with a 
superimposed plaid pattern is moving ai 45 ° with respect 
to the x-axis. Moreover, 20 % Gaussian noise was added 
to. whole image (2nd and 6th frame 128 x 128 image 
resolution). Optical flow estimated at the first iteration 
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related to the presence of discontinuities, and has a 
variation range between O and l, This function can be 
considered a control variable which assumes the value O 
in presence of discontinuities, and it is dose to 1 in 
smooth regions, when k is large, At this regard, 
Ambrosio and Tortorelli18 proved that the sequence of 
these functional Fk(g, z) converges to the sum of the 
last two terms of the functional F(g) with k tending 
towards infinity, In addition, the functional is con­
tinuous if the function that implements the estimation 
error is continuous, Moreover, the f-limit of the 
sequence Fk(g, z) does not depend on the variable z, as 
shown elsewhere39 , 

In this paper, it is shown that this technique can also 
be profitably used for motion estimation, where in this 
case the functional Fk takes the form: 

Fk(u, v, z) = 

J J[(ExU+EyV+Et)2+a2z2(u;+u;+v; + v;) 

+f32( IV;"2 + k(l~Z?)JdXdY 

where the first term is the optical flow constraint; the 
second is the smoothness constraint adopted by Horn 
and Schunck5 muItiplied by the control function z 2, and 
the last term is the penalty function that takes the 
discontinuities into account, and is cali ed the 
'discontinuity-dependent penalty constraint', 

The solution of the defined functional by the caIculus 
of variations leads to three coupled non-linear partial 
differenti al equations: 

a 2 Z2(uxx + Uyy ) + 2a 2 z(uxzx + UyZ y) 

- E;u - ExEy v - ExEt = O 

a 2 Z2(vxx + Vyy ) + 2a 2 z(v xZx + VyZ y) 

- ExEyu - E;v - EyEt= O 

These Euler equations can be solved by using natural 
boundary conditions, By discretizing the above 
equations, with the finite difference method, the 
following coupled equations are obtained: 

2 2 - 2 . 4a z . (u" - u· . ) + 2a z ' (u ' , z ' , l,l,t l,l,t l,l,t 1,J,t Xl,],! Xl,],! 

+ U z " ) - E 2 , U ,· y' ,),t yl,),t Xl,),t l,),! 

4a 2 Z 2, (v' - v ' ) + 2a 2 Z, , (v ' , z " l,),t l,),t l,),t l,) ,t Xl,),t Xl ,),t 

+ Vyi,j,t Z yi,j,t) - E Xi,j,tEyi,j,tUi,j,t 

- E 2 v' - E ' , E = O (7) yl o1 ,1 1,),1 YI,),I 11,),1 

f32 f3 2 k 
4 -(i, - z ' ) + - (1 - z , , ) k 1,),1 l,),t 4 l,),t 

2 (2 + 2 2 2 ) - 0 - a Zi,j,1 Uxi,j,t Uyi,j,t+Vxi,j,t+Vyi,j,t -
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where the follow approximations are used: 

EXi,j,t = (Ei+l,j,t - E i- l ,j,t)/2 

Eyi,j,t = (Ei,j+I,t- E i,j_l,t)/2 

Eti,j,l = (Ei,j,t+1 - E i,j,t- I)/2 

and: 

Uxxi,j,1 + Uyyi,j,t = 4(Ui,j,t - Ui,j,t) 

with: 

Ui,j,t = (Ui + l,j,t + Ui-l ,j,t + Ui,j+ l ,I + Ui,j_l,t)/4 

that can be regarded as the average in the neighbours of 
the point located by (i, j) at time t, and: 

U · ' t=(U'+l' - u ' 1,)/2 Xl,) , l ,),t 1- ,l,t 

U " = (u , '+1 -U " 1 )/2 y',),t l,) ,t l,)-,t 

Analogously for the variables v and z, An explicit 
iterative solution can be obtained from the discrete 
version of these equations by using the method of 
Jacobi42 : 

4a 2(zn, )2U n - E " E ' , v n l,l,t l,) ,! Xl,),! y',) ,t l,),t 

-E " E " +2a 2z n , (un , zn, 
Xl ,),! fl ,] , t l,l,t Xl,},! XI,],t 

n+1 + U;i,j,tZ;i,j,t) U i,j,t = --------::-----::----::--"'--''''--''-'.~ 

4a 2(z 7,j,t)2 + E;i,j,1 

4a 2(zn )2V n - E .. E ' , un 1,),1 l,l,t Xl,),t yl,),t l,l,t 

-E " E +2a 2z n (v n , zn , yl,),t tl,),1 l,l,t Xl,),t Xl,),! 

n+1 + V;i,j,tZ;i,j,t) 
V i,j,t = 

3 21 

33 99 

Figure 3, Optical flow estimation referred lo the 5th 
frame of the sequence in Figure 2 (a = 3, f3 = 1,3, k = 
3) (iterations: 3, 21, 33, 99) 
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n+l 
Z i,j,t = 

k 2 + 4k(a2/f32)((U~i,j,t? + (U~i,j/ 
+ (V~i,j,t? + (V~i,j,t?) + 16 

where n is the iteration number. 
The eonvergenee veloeity of the iterative solution 

defined by these eoupled equations is not very fast. 
Faster and smoother estimates are obtained by using 
the averaged values u7,j,t , v7,j,t, and i7,j,t instead of the 
loeal values u7,j,t, v7,j,t, z7,j ,t in some points of the 

, f n+l d n+l b ' , expressIOns or Ui,j,!' an Vi ,j,t' o tammg: 

3 

33 

n+l 
U i,j,! = 

n+l 
V i,j,t = 

21 

99 

4a 2(in )2U n - E . . E .. vn 
I,J,t I,J,t Xl,J,t yl,J,t I,J,t 

- Exi,j,tEti,j,1 + 2a 2 i7,j,t(u ~i,j,IZ~i , j,t 
+ U n . Zn . ) Yl,J,t yl,J,t 

4 2(-n )2 E 2 
a Z i,j,l + xi,j,t 

4a 2(i n )2V n - E .. E .. un I,J,t I,J,t Xl,J,t Yl,J,t l,l,t 

E E + 2 2 _n (n n 
- yi,j,t ti,j,t a Z i,j,t V xi,j,t Z xi,j,t 

+ V~i,j,tZ~i,j,t) 

Figure 4. Maps of the control function Z corresponding to the optical flow fields shown in Figure 3 (iterations: 3, 
21,33, 99) 
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This method yields a dense optical flow for the 
propagation of velocity values in the regions where the 
discontinuities are lower than the threshold Y2f321a. 
The value of a has only effect in those regions, since 
the control function inhibits the smoothing action 
where there are discontinuities. This mechanism main­
tains the profiles of the moving objects and improves 
the signal-to-noise ratio with respect to the solutions 
not using the discontinuity-dependent penalty con­
straint. By using the solution presented, the propaga­
tion depth depènds on the number of iterations, on the 
weight factor, and on the presence of'discontinuities 
(being controlled by z). This avoids problems of the 
loss of moving object boundaries where one moving 
object occludes another. In addition, the iterative 
process can be ueful for shortening a terilporal 
sequence of estimation processes, since a guess for the 
optical flow values (estimated at time t) is available 
from the previous time-step (at t-l). 

EXPERIMENT AL RESULTS 

The analysis is carried out by comparing the estimates 
obtained through regularization-based solutions with 
the discontinuity-dependent penalty constraint (des­
cribed in the previous section) with respect to the 
solutions obtained without this constraint. The latter 

Ca) 99 

Cb) 33 Cb) 99 

Figure 5. Optical flow estimation referred to the 5th 
frame of the sequence in Figure 2 obtained without 
penalty constraint. (a) a = 0.6, iterations: 3 and 9; (b) 
a = 3, iterations: 3, 21, 33, 99 
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solution is taken as a re~resentative of the c1assical 
regularization approaches ,28,43, and corresponds, at 
least in prinicple, to the solution proposed by Horn and 
Schunck5 • The multiconstraint-based solutions are 
not taken into consideration, since they present too 
different a behaviour with respect to the regularization­
based solutions, and their results are usually very 
sensitive to discontinuities. The behaviour of the 
algorithms is analysed with reference to sequences of 
both synthetic and real senes. The choice of a, 13, k 
parameters is made on the basis of suggestions pro­
posed by B1ake and Zisserman38 . 

In the tests presented, the estimates of the optical 
flow fields were obtained by using a grid equal to one 
image pixel (1 xl). To make the optical flow fields 
more readable, these are shown with a grid of 3 x 3 
obtained from the 1 x 1 grid by averaging the estimated 
optical flow values in a 3 x 3 neighbourhood around 
the point of the dense grido In addition, for the iterative 
solutions obtained using the discontinuity-dependent 
penalty constraint, the starting value for the control 
variable z is equal to 1 everywhere. This means that the 
absence of discontinuity detection is assumed at the 
first iteration . 

Discontinuities 

Figure 2 shows a test sequence where a quadrilateral 
with a superimposed plaid pattern is moving with 
translational motion at 45° with respect to the x-axis, 
and is used to test the algorithm with respect to 
translational motion. The object with a plaid pattern 

F, 
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100000 .... . .... . .. . .... .. . ...•. .. ••.... .. .... . ..... 

l 0000 '---___ _ ....L. ____ ---.J~ ____ ....L._---' 

o 100 200 300 

Number of iterations 

Figure 6. Values of the functional Fk with the 
discontinuity-dependent penalty constraint as a function 
of the iteration number n 

RMS errar 
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Figure 7. Values of the RMS errors in estimating optical 
flow as functions of the iteration number n (for the 
image sequence presented in Figure 2) for the cases with 
and without discontinuity-dependent penalty constraint 
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Figure 9. Optical flow estimation using the discontinuity­
dependent penalty constraint on the 5th frame of the 
sequence in Figure 8 (iterations: 6, 42) (ex = , f3 = 1.3, 
k =3) 
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10 

Figure 8. Scene where two real objects are moving in 
translational motion along the x-axis (3rd and 10th 
frame, 128 x 128 image resolution). Optical flow esti­
mated at the first iteration 

6 42 

Figure lO. Optical flow estimation on the 5th frame of 
the sequence in Figure 8 obtained without penalty 
constraint (ex = 3, iterations: 6, 42) 
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was obtained by superimposing two sinusoidal patterns 
with orthogonal directions on the object grey leve\. 
Moreoever, 20% of Gaussian noi se was added to the 
images to test the algorithm's response in the presence 
of discontinuities due to noise. Due to the presence of 
the plaid pattern on the moving object, the optical flow 
is also estimated inside the object's boundaries for the 
solutions presented (see Figures 3 and 5). In Figure 2 
the optical flow obtained after the first iteration is al so 
presented; this has been reported since it represents the 
initial field for solutions both with and without penalty 
constraint. 

In Figure 3 some optical flow estimates at different 
iteration numbers obtained using the discontinuity­
depedendent penalty constraint on the image sequence 
presented in Figure 2 are reported. This solution was 
obtained with a = 3, ,8 = 1.3 and k = 3 (i .e. T = 
1.06). In Figure 4, the respective maps of the control 
function z for the same iterations proposed in Figure 3 
are shown. In the maps of the control function z, the 
values which are close to zero have a darker grey level, 
while a medium grey level represents the 1 value. From 
these figures it can be seen that the control function 
tends to select the boundaries of the moving object by 
controlling the regularization of discontinuities. The 
adoption of the discontinuity-dependent penalty con­
staint is very useful to avoid the propagation effect (see 
Figure 3) that occurs in the solution without penalty 
constraint (see Figure 5). This very appreciable effect 
does not disturb regularization inside the boundaries of 
the moving object very much, as can be seen by 
comparing Figure 3 with Figure 5 for the same iteration 
number. 

In Figure 5, optical flow fields estimated without the 
discontinuity-dependent penaIty constraint for two 
different values of a are reported. In the solution 
without the penalty constraint, low values of a may 
not be sufficient to reject noise. However, when high 
values of a are used, incorrect velocity vectors appear 
as the iteration number increases. These incorrect 
vectors grow (during the iterative process) around 
small velocity vectors which are due to noi se in the 
early iterations (seeFigure 5) . This effect is greatly 
redueed by the diseontinuity-dependent penalty con­
straint, as shown in Figure 3, even if the a value is the 
same. With the classical regularization technique, 
smoother solutions can be obtained by inereasing the 
value of a, but as a consequence the undesirable 
propagation effect smoothing the boundries of the 
moving objects also increases (see Figure 5). These two 
eontradictory factors can be controlled by using the 
discontinuity-depended eonstraint, where the iterative 
process produees good solutions, since it does not 
destroy the correct results obtained in the early 
iterations (see Figure 3). 

In Figure 6, the values of the funetional Fk with the 
penalty constraint as a function of the iteration number 
n are reported. In Figure 7, RMS error values for the 
optical flow fields estimated by minimizing the func­
tional Fk with and without penalty constraints are 
presented, referring to the optical flow estimates for 
the sequence in Figure 2. It can be seen that the lowest 
error is obtained in a few iterations (21st iteration), but 
for the same number of iterations, the solution with the 
penalty constraint produces an optical flow with a lower 
error. In addition, the solution with the penalty 
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constraint obtains the lowest error at the 33rd iteration, 
which is about 10 times lower than the errar obtainable 
by the solution without the penalty eonstraint. It should 
be noted that the plots were evaluated using the same 
a value for both solutions. Moreover, by using the 
solution with the penalty constraint, it is possible to 
increase the a value without increasing the propaga­
tion effe et if the value of threshold T is maintained as a 
constant. 

(a) 6 

(b) 6 

Figure ll. Optical flow fields (6th iteration) super­
imposed onthe 5th frame of the sequence in Figure 8, 
obtained using the solutions (a) with the discontinuity­
dependent penalty constraint (a = 3, ,8 = 1.3, k = 3), 
and (b) without the penalty constraint (a = 3) 

image and vision computing 

- - --~-----------' 



In Figure 8 a sequence were two toys moving (on a 
partially reflective piane) in opposite directions is 
reported. The optical flow fields estimated at different 
iteration numbers using the presented algorithm on this 
test sequence are reported in Figure 9. Figure 10 
illustrates corresponding results (for the same a value) 
obtained without the penalty constraint . It can al so be 
noted that in this case, the discontinuity-dependent 
solution avoids the propagation effect and increases the 
signal-to-noise ratio. In particular, the solution without 
the penalty constraint tends to propagate estimates 

8 
Figure 12. Sequence of images where two objects with a 
superimposed plaid pattern are moving in opposite 
directions (at 180 0 and 45; with respect to the x-axis, 
respectively). (lst and 8th frame, 128 x 128 image 
resolution) 
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starting al so from incorrect velocity vectors caused by 
noise. The differences between the two types of 
solution are particularly evident in Figure Il, where the 
optical flow fields are superimposed on the reference 
image. In this figure, velocity vectors lower than 0.001 
are not drawn, while the largest velocity vector is c10se 
to 1. 

The synthetic sequence in Figure 12 shows two 
objects with a superimposed plaid pattern moving in 
different directions. This sequence was used to test the 
behaviour of the proposed solution in the presence of 
discontinuities due to occ1usions among moving 
objects. Usually, solutions obtained by multiconstraint­
based approaches produce less satisfactory velocity 
estimates at points which are c10se to the occ1usion 
profile between the moving objects. In solutions 
obtained by the traditional regularization-based 
approach, the dicontinuities are strongly reduced. 
Unfortunately, these methods are affected by the 
undesiderable effect of propagation, which consists in 
the loss of object boundaries on the occ1uding profiles 
(see Figure 15). Aiso in these cases, the presented 
solution, which adopts the discontinuity-dependent 
penalty constraint, produces good results, maintaining 
the profi!es of the moving objects even in the presence 
of object occ1usion (see Figure 13 and the respective z 
maps in Figure 14). 

The sequence in Figure 16 shows a very noisy rea! 
outdoor environment where two vehic1es are moving 
with different 3D motions. This sequence was used to 
test the algorithm's behaviour with respect to rea! 
imagery. The responses of the algorithm are reported 
in Figure 17. In this case, a high value for the (3 
parameters (a = 3, (3 = 4, k = 4) was used for esti­
mating the optical flow by using the solution with the 
penalty constraint, because the test image is very noisy. 
Since the moving objects in this test case present areai 
3D motion, the control function also selects the 
discontinuities along the moving edges. As can be seen 

3 6 

9 99 

Figure 13. Optical flow estimation on the 8th frame of 
the sequence in Figure 12 (iterations: 3, 6, 9, 99) (a = 
3, (3 = 1.3, k = 5) 
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3 6 

9 99 

Figure J 4. Maps of the control functi(m z corresponding to the optical flow field.~ shown in Figure J 3 (iterations: 3, 6, 
9, 99) 

3 

430 

99 

Figure /5. Optical flow estimation on the 8th frame of 
the sequence in Figure 12 obtained using the solution 
without the penalty constraint (ex = 3, Ìlerations: 3, 99) 
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Figure 16. Sequence of a rea l environment where two vehicles are moving with different 3D motions (lst and 10th 
frame, 128 X 128 image resolution). Optical flow estimated at the first iteration 

in Figure 17, the discontinuity-dependent solution, also 
in this case, avoids the propagation effect and increases 
the signal-to-noise ratio. In Figure 18 the optical flow 
fields for both solutions are superimposed to the 
reference image. 

In Figure 19 the optical flow field estimated using the 
discontinuity-dependent penalty constraint super­
imposed on the reference image is shown. In this case, 
the image sequence is taken by using a TV-camera 
mounted on a vehicle which is moving on the road. 
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For this reason, each object in the background is 
moving with respect to the camera. In addition, there 
is another veicle (i.e. a car) which is moving along the 
road in the opposi te direction. The estimated optical 
flow presents velocity vectors with different directions 
for different moving objects. The corresponding 
z map shows the detected discontinuities; these have 
been used in the optical flow estimation process 
to avoid the propagation effect, preserving the 
object shapes. 
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Problem of aperture 

As pointed out in the introduction, the problem of 
aperture is related to the ill-posed nature of the optical 
flow estimation problem . In particular, the obtainable 
results depend on the kind of constraint used, and on 
the image brightness curvature. The multiconstraint­
based approaches which define an over-determined 
system of equations can have several intersections 
among the adopted constraint lines in a neighbour­
hood. In such cases, the robustness of the system of 
equations with respect to the ill-conditioning depends 

. . . . . ~ " - .... , . . .' . , , . " . 

. , 
• • - - - • , • - •• • - " /' I _ •• __ , __ • 

(a) 40 

(a) z at the 20th iteration 

on the kind of constraints used to define the system. 
A test sequence in which a sinusoidal transversal 

pattern moves in a translational motion has been used 
to study the aperture problem (i.e. very similar to the 
famous 'barber pole' sequence) (see Figure 20). In 
every point inside the aperture the Gaussian curvature 
of the image brightness pattern is equal to zero, even if 
the second-order parti al derivati ves of the image 
brightness are different from zero. This means that the 
Gaussian curvature is equal to zero in every point of the 
image except for the points on the aperture boundary . 

Like many other regularization-based solutions5 •44 

.. . I .. . . . ... . 
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-' Z~~~~,:~0~~~~~~~~~-: -~ 

(a) 100 

Figure 17. Optical flow fields (itefations: 40, 100) on the 2nd fra:ne of the sequence in Figure 16 obtained using the 
solutions: (a) with the discontinuity-dependent penalty constraznt (a = 3, f3 = 4, k = 4); 
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(b) 40 (b) 100 

Figure 17. (b) without the penalty constraint (a = 3) 

(a) 40 (b) 40 

Figure 18. Optical flow fields (40th iteration) superimposed on the 2nd frame of the sequence in Figure 16 obtained 
using the solutions: (a) with the discontinuity-dependent penalty constraint (0' = 3, f3 = 4, k = 4); (b) without the 
penalty constraint (a = 3) 

the method proposed estimates, at the first iteration, 
velocity vectors which are parallel to the image bright­
ness gradient, V E in accordance with equation (3). In 
the absense of the aperture problem, the opti ca l flow 
vectors, estimated at the first iteration, tend to assume 
the correct directions with an increasing number of 
iterations; while in the presence of the aperture 
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problem, the iterative process again tends to regularize 
the estimated optical flow, but the obtained velocity 
vectors maintain a direction parallel to the image 
brightness gradient. This leads to incorrect results with 
respect to the real motion of the pattern inside the 
aperture (see Figures 21 and 22) . On the other hand, 
also in this case , the solution proposed maintains the 
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(a) 20 (b) 20 

Figure 19. (a) Optical flow field estimated using the solution with the discontinuity-dependent penalty constraint 
(o: = 3, f3 = 1.5, k = 3) (20th iteration), superimposed on the 23rd frame of the test sequence) (b) corresponding map 
of the control function z, 1 x 1 pixels of resolution 

6 

Figure 20. Sequence of images where a transversal sinusoidal pattern moving at 180 0 with respect lo the x-axis is seen 
through an aperture (lst and 6th frame, 128 x 128 image resolution) 

profile of the aperture and again avoids all propagation 
effects . 

REGULARIZATION OF OTHERWISE 
ESTIMATED OPTICAL FLOWS 

In many cases, the optical flow fields estimated with 
multiconstraint-based methods ne ed to be filtered to be 
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profitably used7 •8 . For example, it is better to have 
smoother solutions in order to use the optical flow for 
moving object segmentation and object tracking, as 
well as for estimation of ego-motion. On the other 
hand, the filtering can destroy important information 
for both 3D object reconstruction and 3D motion 
estimation. 

In this section, it is shown that the penalty constraint 
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Figure 21 . Optical flow and maps of the control function Z on the 5th frame of the sequence in Figure 20 obtained using 
the solution with the discontinuity-dependent penalty constraint (iterations: 3, 99), (a = 3, f3 = 1.3, k = 5) 
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Figure 22. Oprical flow estimation on the 5th frame of 
the sequence in Figure 20 obtained using the solution 
without the penalty constraint (a = 3, iterations: 3, 99) 
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can be profitably used to define a method for 
smoothing noisy optical flow fields estimated by other 
methods, such as the multiconstraint-based method. 
This method can be used instead of other techniques 
such as optical flow filtering (e.g. post-filtering). The 
goals of this smoothing action are to reduce the 

- discontinuities caused by noise, and to preserve the 
discontinuities due to the object boundaries with 
respect to the background and other moving objects. In 
this way, the problem of object boundary loss, caused 
by the use of wide Gaussian fiIters or averaging of the 
estimated optical flow, are strongly reduced. 

The regularization problem is formulated as the 
minimization of a functional comprised of three terms: 
the first is the lack of regularity of the estimated optical 
flow field (u, v) with respect to the smoothed optical 
flow (U, V); the second is a measure of the smoothness 
of the final opti ca I flow; and the last is the 
discontinuity-dependent penalty constraint: 

F = f f [ (u - uf + (v - V)2 

+ a 2z 2(U2+ U 2+ V 2+ V 2) x y x Y 

+13 2( Il v; 11
2 + k(1~Z)2)JdXdY 

where a 2 is a weighing factor which controls the action 
of the smoothing factor, and z is the control function. 
Also in this case, the factors 13 and k assume the 
same meaning as discussed earlier in the section on 
variational convergence for optical flow estimation. 
The functional is minimized by using the calculus of 
variation to obtain three linear parti al differenti al 
equations: 

a 2z 2(Uxx + Uyy ) +2a 2z(Uxz x+ UyZy) 

+ u - U = O (8) 

Figure 24. 
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a 2 Z2(Vxx + Vyy ) + 2a 2 z(Vxzx + VyZ y) 

+ v - V = O (9) 

A discrete version of these equations can be obtained 
using the finite difference method: 

2 2 - 2 4a z·· (U · - U . ) + 2a z· (U Z l,l,t l,l,t l.l,t l,l,t Xl,],t Xl,},t 

+ Uy;,j,tZy;,j,t) + U;,j,t - U;,j,t = O (10) 

2 2 - 2 4a z· . (V· - V . ) + 2a z· (V Z l,l,t l,l,t l,l,t l,l,t xl,l,t Xl,l,t 

+ V . . Z . ) + v · - V· = O (11) Y',j,t Y',l,t l,l,t l,j,t 

13 2 13 2 k 
4 k (ii,j,t - Zi,j,t) + 4(1 - Zi,j,t) 

- a 2 Zi,j,t(U~i,j,t + U;i,j,t + V~i,j,t + V;i,j,t) = O 

By adopting the method of Jacobi, and by using the 
average of the control function ii j t instead of the local 
value Zi,j,t, the expressions for' 'U~:t, V~:t for the 

Figure 23. Noisy optical 
flow field estimated using 
a multiconstraint-based 
method on the sequence 
presented in Figure 2 
(5th frame) 
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Figure 24. Optical flow field and maps of the control function z. 1st, 5th, and 10th iterations of the regularization of 
noisy optical flow presented in Figure 23 (a = 3, {3 = 1.3, k = 5) 

proposed iterative solution becomes: 

U7,j,t+ 4a2(i7,j,t? (;7,j,t 

+2a 2 i n (Un.. zn.. +Un.. zn. . ) 
U n + 1 = _______ 1 ,,-,l_, t __ X_l,,-,l;....' t_X_l,-'...l ,_t_---"y_l"-,l_,t--'-y_l,-'...l ,_t 

l,l,t 2 n 2 
1 + 4a (i i,j,t) 

n 4 2(.n )2 V· n 
V i,j,t + a Z i,j,t i,j,! 

V n + 1 = ____ +_2_a_2_i__=7.:.!.,j~,t..:..(_V__=~:..:.i:.!.,j:..:., t_Z..:..~..:..i ,,,-j,:.:.t_+_V-,,~_i,,-,j:....,t_Z-,-~_i,,,-j,:....:...t) 
l,l,t 2 n 2 

1 + 4a (i i,j,t) 
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n+ 1_ i7,j,! 16 + k 2 

X i,j,! - k 2 4k( 2/ 2)« n )2 ( n )2 
+ a {3 U xi,j,t + U yi,j,! 

+ (V~i,j,!)2 + (V~i,j,!?) + 16 

where i, j are the point coordinates of the optical flow 
estimation grid, t is the time, n is the iteration number, 

d n Un n V n an u i,j,! = i,j ,t, V i,j,! = i,j,!' 
These smoothing equations can be used on noisy 

optical flow fields (such as that in Figure 23) to improve 
their quality. As can be seen by observing the example 
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reported in Figure 24, a smoother optical flow field is 
obtained in a few iterations while maintaining . the 
object boundaries. 

CONCLUSIONS 

One of the main problems in estimating optical flow is 
the presence of discontinuities. In the past, many 
different regularization techniques were adopted in an 
attempt to solve this problem. The main drawback of 
these solutions is the presence of propagation effects, 
which produce a loss of information associated with the 
discontinuities. On the other hand, this information is 
very important for detecting the shape of moving 
objects. In this paper, the theory of variational 
f-convergence has been adopted to obtain a new 
solution for optical flow estimating which maintains the 
information related to the discontinuities. It is shown 
that this solution produces good results in the presence 
of discontinuities caused by noise, occlusions, and also 
maintains the moving object profiles. In addition, it has 
been shown that this theory can also be profitably used 
to define an iterative process to regularize the optical 
flow fields estimated by other methods, such as the 
multiconstraint-based methods, which usually adopt 
filters that destroy the information associated with 
discontinuities. 
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