

Overview on Smart City DISIT lab solution for beginner

Part 7: Distributed Systems

Distributed Data Intelligence and Technologies Lab Distributed Systems and Internet Technologies Lab

Prof. Paolo Nesi DISIT Lab

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Firenze Via S. Marta 3, 50139, Firenze, Italia

tel: +39-055-2758515, fax: +39-055-2758570

http://www.disit.dinfo.unifi.it paolo.nesi@unifi.it

SMART CITIES AND BIG DATA

Major topics addressed

Smart City Concepts

- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

...verso le città

- Si assiste ad una migrazione verso le città,
 - nel 2050 arriveranno ad ospitare oltre il 75% della popolazione mondiale
 - dovuto principalmente alle maggiori
 opportunità lavorative ma anche ai servizi

 Si aprono scenari di competizione fra città «fra pubbliche amministrazioni, PA»

- le città si stanno adeguando alle crescenti necessità cercando di
 - garantire elevati livelli di qualità della vita
 - fornire *nuovi servizi*
 - limitando i costi, aumento di efficienza
 - allestire strutture decisionali adeguate
 - facilitare la creazione di nuovi servizi anche da parte di terzi
 - Pubblicazione Open Data
 - Creare i presupposti per un mercato dei dati anche privati ma connessi agli OpenData
- per una la crescita sostenibile da vari punti di vista

- I cittadini «imparano» a vivere in città più tecnologiche → in ambienti:
 - interattivi: si aspettano azioni dagli utenti
 - proattivi: agiscono in riferimento al contesto: movimenti o ad altro
 - collaborativi: fra persone e sistemi
- Servizi intelligenti suggeriscono!
- Per esempio:
 - riconoscimento della persona quando accede ai servizi pubblici, in banca, al supermercato, entra in casa
 - parcheggi che conoscono i posti liberi

- Il loro uso può implicare un certo grado di comprensione cognitiva da parte dei cittadini
- «Nascondono», sfruttano…
 - sensori ed attuatori
 - Internet delle Cose, IOT
- Per esempio:
 - Condizioni meteo, ambiente,
 - flussi delle auto, presenza di pedoni
 - contatori intelligenti
 - Lampioni intelligenti, etc...

Movimenti personali

non pubblicati

Relationi personali

non pubblicate

comportamenti

social media

contributi

Privati Statici

- Codice fiscale
- Foto non condivise
- Aspetti legali
- Cartella clinica

Pubblici statici (open data)

statistiche: incidenti, censimenti, votazioni

- Statistiche accessi alla ZTL
- Strutture pubbliche UNIFI

posizione dei punti di interesse

- Musei
- Strutture della città
- Servizi attivi

- Traffico personale
- Posizione mezzi,
- Parcheggi
- Posizione taxi
- Posizione CarSharing

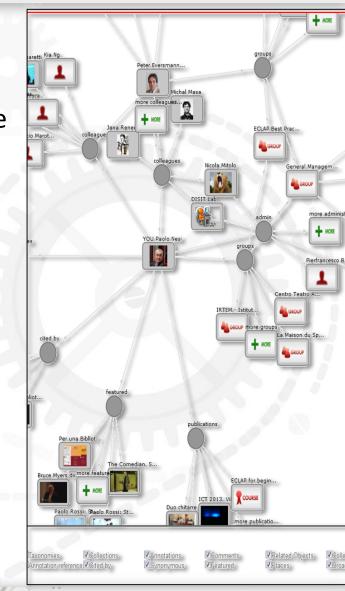
- Info traffico
- video camere
- Info Meteo
- Info Ambiente
- Code ai musei pubblici
- Terremoti
- Parcheggi

Stato accessi alla 271 Stato dei servizi

Privati Tempo reale

Pubblici Tempo reale (open data)

Interoperabilità: valore o vincolo

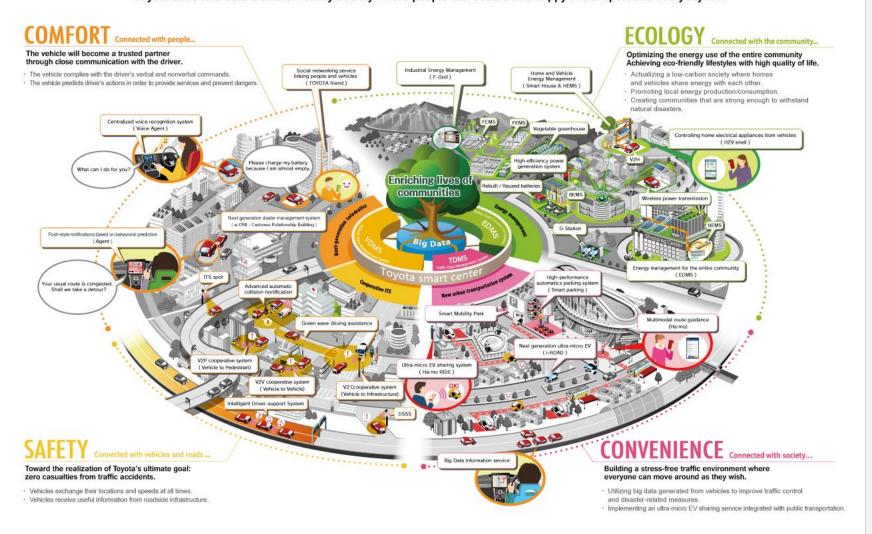

- Moltissimi e con
 - svariati domini: grafo strutturali, geografici, energia, ambiente, salute, servizi, mobilità, etc.
 - Velocità: Statici, quasi statici, real time
 - Modelli multipli per: Formati file, ontologie usate in LD/LOD
- Accessibili ad un costo elevato:
 - Difficoltà nell'identificazione del modello di business
 - Difficoltà rispetto ad alcune Licenze di uso
 - OD abilitano valore se abbinati con #privatedata
 - Mancanza di Interoperabilità
 - Mancanza di Servizi per dati interoperabili

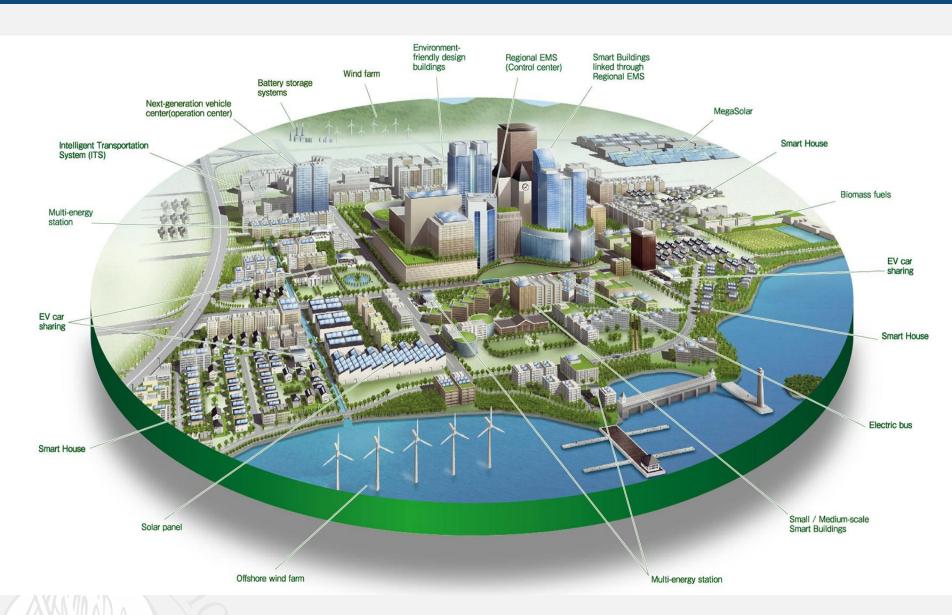
I profili degli utenti

- Gli utenti possono:
 - fornire informazioni preziose sulla citta come «sensori intelligenti» per tenere sotto controllo il livello dei servizi della città e/o nuove necessità
 - essere profilati per ricevere dei servizi personalizzati, benefici diretti
- Informazioni anonime:
 - velocità degli spostamenti: auto a piedi, code e flussi cittadini, temperature, meteo
 - Uso dei servizi
- private in consenso informato, statistiche e attuali:
 - Azioni e dati personali
 - Relazioni con altre persone
 - Movimenti puntuali

Le buone pratiche "Smart city"

- forniscono nuovi servizi e valutano sulla base della risposta del cittadino
- Le PA, per stare al passo con la competizione aprono canali di comunicazione ed ascolto:
 - media tradizionali sono validi per propagare l'informazione
 - canali basati su internet, come social network, mobile,.. per la raccolta di informazioni dalla popolazione, e per informare
 - canali specifici: interviste dirette, totem interattivi, etc.
- Stabilire un processo di miglioramento virtuoso:
 - Informare su disservizi o problemi, e vederli risolti:
 - le buche nella strada, i muri sporchi dei palazzi, la nettezza sulla strada, gli uffici che presentano poco personale, infrastrutture non accessibili, ...
 - In certi casi, le informazioni utili possono essere ricompensate con bonus/sconti su: taxi, entrate in ZTL, parcheggi, etc.




TOYOTA's Activites towards SMART MOBILITY SOCIETY

Toyota aims to create a smart mobility society where people feel secure and happy in transport and everyday life.

Smartness, smart city needs 6 features

- Smart Health
- Smart Education
- Smart Mobility
- Smart Energy
- Smart Governmental
 - Smart economy
 - Smart people
 - Smart environment
 - Smart living
 - Smart Risk management, Resilience
- Smart Telecommunication

Smart health

(can be regarded as smart governmental)

- Online accessing to health services:
 - booking and paying
 - selecting doctor
 - access to EPR (Electronic Patient Record)
- Monitoring services and users for,
 - learn people behavior, create collective profiles
 - personalized health
 - Inform citizens to the risks of their habits
 - Improve efficiency of services
 - redistribute workload, thus reducing the peak of consumption

Smart Education

(can be regarded as smart governmental)

- Diffusion of ICT into the schools:
 - LIM, PAD, internet connection, tables, ...
- Primary and secondary schools → university
 → industry & services
- Monitoring the students and quality of service,
 - learn student behavior, create collective profiles,
 - personalized education
 - suggesting behavior to
 - Informing the families
 - moderate the peak of consumption
 - increase the competence in specific needed sectors, etc.
 - Increase formation impact and benefits

Smart Mobility

- Public transportation:
 - bus, railway, taxi, metro, etc.,
- Public transport for services:
 - garbage collection, ambulances,
- Private transportation:
 - cars, delivering material, etc.
- New solutions (public and/or private):
 - electric cars, car sharing, car pooling, bike sharing, bicycle paths
- Online:
 - ticketing, monitoring travel, infomobility, access to RTZ, parking, etc.

Smart Mobility and urbanization

- Monitoring the city status,
 - learn city behavior on mobility
 - learn people behavior
 - create collective profiles
 - tracking people flows

Providing Info/service

- personalized
- Info about city status to
- help moving people and material
- education on mobility,
- moderate the peak of consumption

Reasoning to

- make services sustainable
- make services accessible
- Increase the quality of service

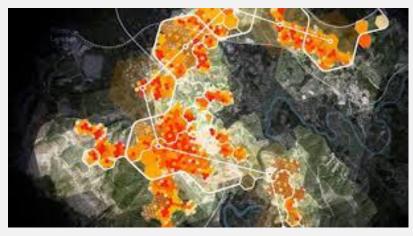
Smart Energy

Smart building:

- saving and optimizing energy consumption, district heating
- renewable energy: photovoltaic, wind energy, solar energy, hydropower, etc.

• Smart lighting:

- turning on/off on the basis of the real needs
- Energy points for electric: c
 - ars, bikes, scooters,
- Monitoring consumption, learn people/city behavior on energy consumption, learn people behavior, create collective profiles
- Suggesting consumers
 - different behavior for consumption: different time to use the washing machine
- Suggesting administrations
 - restructuring to reduce the global consumption,
 - moderate the peak of consumption



Smart Governmental Services

- Service toward citizens:
 - on-line services:
 - register, certification, civil services, taxes, use of soil, ...
 - Payments and banking:
 - taxes, schools, accesses
 - Garbage collection:
 - regular and exceptional
 - Quality of air:
 - monitoring pollution
 - Water control:
 - monitoring water quality, water dispersion, river status

Smart Governmental Services

- Service toward citizens:
 - Cultural Heritage: ticketing on museums,
 - Tourism: ticketing, visiting, planning, booking (hotel and restaurants, etc.)
 - social networking: getting service feedbacks, monitoring
- Social sustainability of services:
 - crowd services
- Social recovering of infrastructure,
 - New services, exploiting infrastructures
- Monitoring consumption and exploitation of services, learn people behavior, create collective profiles
 - Discovering problems of services,
 - Finding collective solutions and new needs...



Telecommunication, broadband

- Fixed Connectivity:
 - ADSL or more, fiber,
- Mobile Connectivity:
 - Public wifi, Services on WiFi, HSPDA, LTE
- Monitoring communication infrastructure
- Providing information and formation on:
 - how to exploit the communication infrastructure
 - Exploiting the communication for the other services,
 - moderate the peak of consumption

Major topics addressed

- Smart City Concepts
- Architecture of Smart City
 Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction
Smart City Engine
Decision Support System

Mobile applications

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

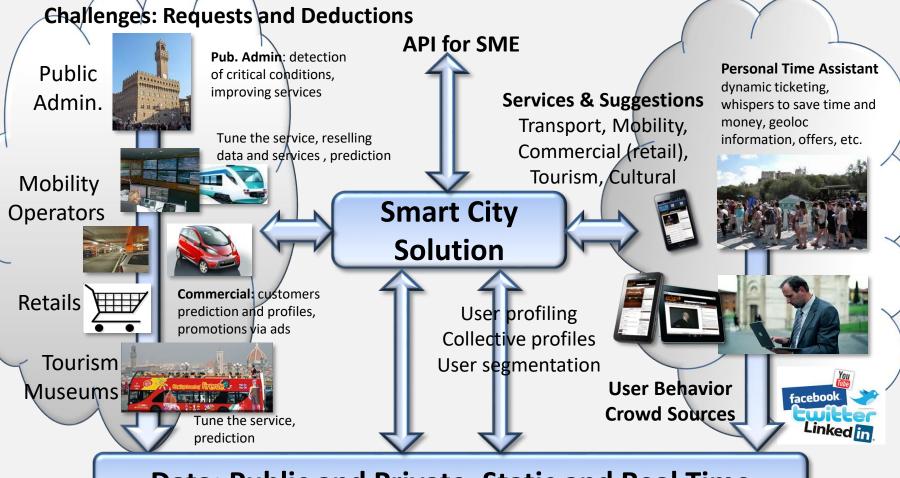
Graph

Projects

SmartCity Project Sii-Mobility
SCN
SmartCity Project Coll@bora SIN
SmartCity Project RESOLUTE
H2020
Mobile Emergency

Smart-City

Main Aim


- Provide a platform able to ingest and take advantage a large number of the above data, big data:
 - Exploit data integration and reasoning
 - Deliver new services and applications to citizens, Leverage on the ongoing Semantic Web effort

Problems & Challenges

- Data are provided in many different formats and protocols and from many different institutions, different convention and protocols, a different time,!
- Data are typically not aligned (e.g., street names, dates, geolocations, tags, ...). That is, they are not semantically interoperable
- resulting a big data problem: volume, velocity, variability, variety,

Data: Public and Private, Static and Real Time

Private: user movements, social media, crowd sources, commercial (retail) **Public:** infomobility, traffic flow, TV cameras, flows, ambient, weather, statistic, accesses to LTZ, services, museums, point of interests, ...

Transport systems Mobility, parking

Public Services Govern, events,

Sensors, IOT Cameras, ..

Real Time data flows

Slow and

Static,

Distributed and parallel architecture on Cloud

DISCES

Environment, Water, energy

Shops, services, operators

Social Media WiFi, network

Km4City Smart City Engine

API

City

Smart

Km4City

The state of the s

User Profiling and Suggestions on Demand

Flow and Origin Destination Matrix Http://www.disit.org/odsf

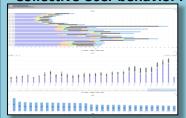
Km4City Tools for Developers

Tools for City Operators and Decision Makers
Smart City Dashboard Smart Decision Support

Http://www.disit.org/dash

Service map browser

Http://servicemap.disit.org


Twitter Vigilance

Http://www.disit.org/tv

Http://Smartds.disit.org

Collective User behavior Analyzer

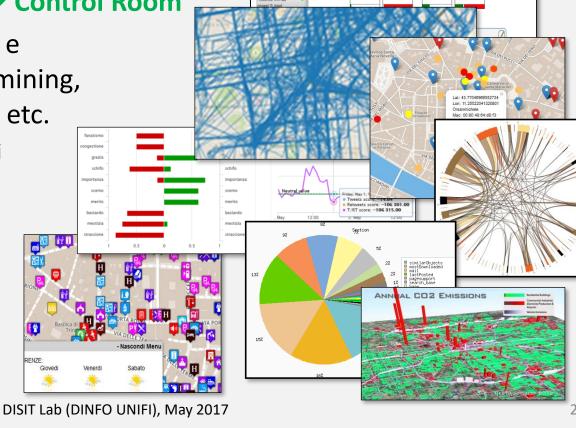
Tools for Final Users

Mobile e Web Apps

Http://www.km4city.org

Decisioni supportate dai dati

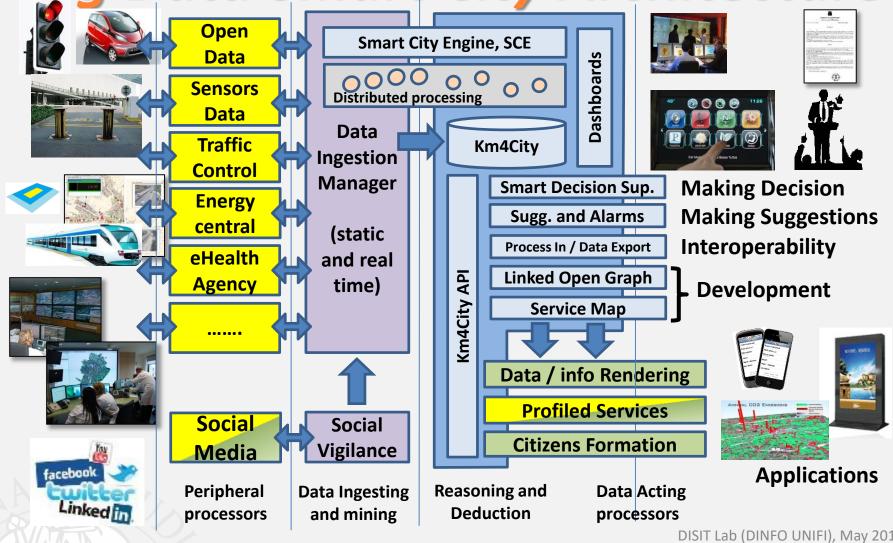
periodiche ed in tempo reale


Condivisione e Integrazione Dati multidominio: semantica e bigdata

Dati → Smart City Engine → Control Room

analisi: monitoraggio, flussi e comportamenti, sondaggi, mining, correlazioni, cause – effetti, etc.

 Per il miglioramento di servizi correnti


- Per reagire ad eventi, incremento della resilienza,
- Per la creazione servizi innovativi

ta Smart City Architecture

DISIT Lab (DINFO UNIFI), May 2017

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors

- Data collectors and Managers
- Blog Vigilance via Natural Language
 Processing
- Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

Challenges (addressed by DISIT)

eGov Data collection

> Sensors control

> > **Traffic** Control

Energy Central

eHealth Agency

Telecom. **Services**

Social

Media **Peripheral** processors

Social Media blog analysis

- **Energy Control for bike sharing**
- Wi-Fi as a sensor for people mobility
- Internet of Things as sensors
 - Low costs Bluetooth monitoring devices
 - Vehicle kits with sensors
 - Sensors networks spread in the city and managed by centrals
 - Traffic flow sensors

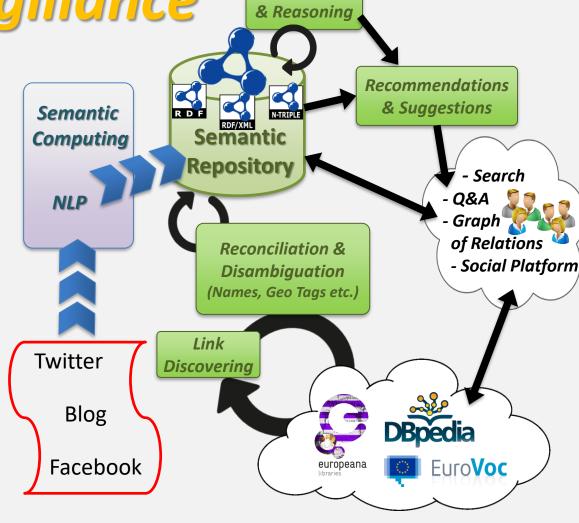
Sorgenti Sul Territorio di Firenze e Toscana

Open Data delle PA (oltre 700 data set):

- Open Data del Comune di Firenze, Provincia, etc.
- Open Data della Regione, grafo regionale, ...
- Open Data da altre citta', dalla commissione europea, da svariati HUB: CKAN,
- LOD Universita' di Firenze: Servizio OSIM
- **Dati Real Time** (centinaia di servizi real time):
 - Osservatorio: AVM, Sensori Parcheggi, Flussi traffico
 - LAMMA: Meteo
 - Social Media: Twitter, blog, etc.
 - Comune: eventi, scuola, protezione civile, ospedali,
 - etc.
- Km4City: Circa 120 milioni di dati fra Statici e Dinamici, con un flusso di circa 6-10 milioni al mese

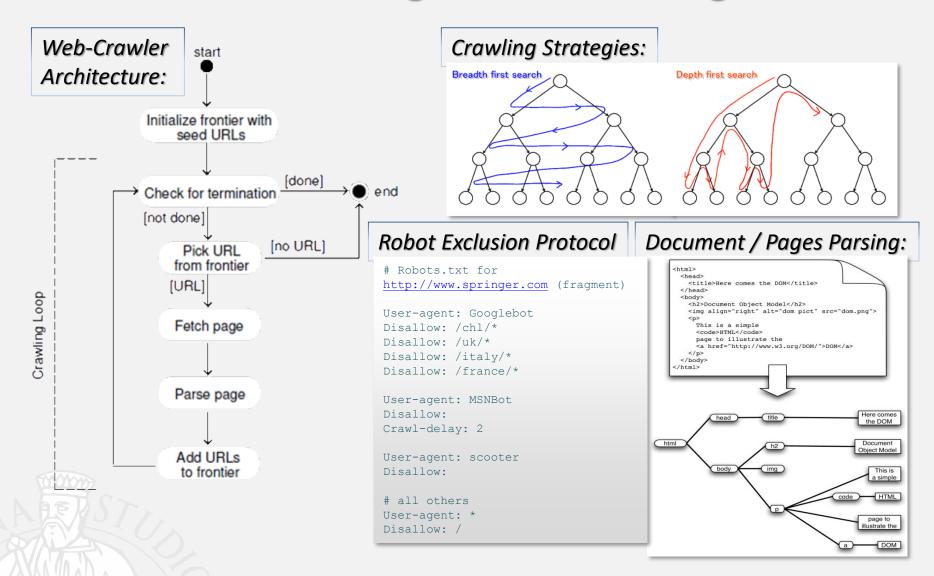
Altre Sorgenti: Toscana e Firenze

• Dati Aggregati e Linked Open Data: Firenze Open Data: Firenze Open Data:

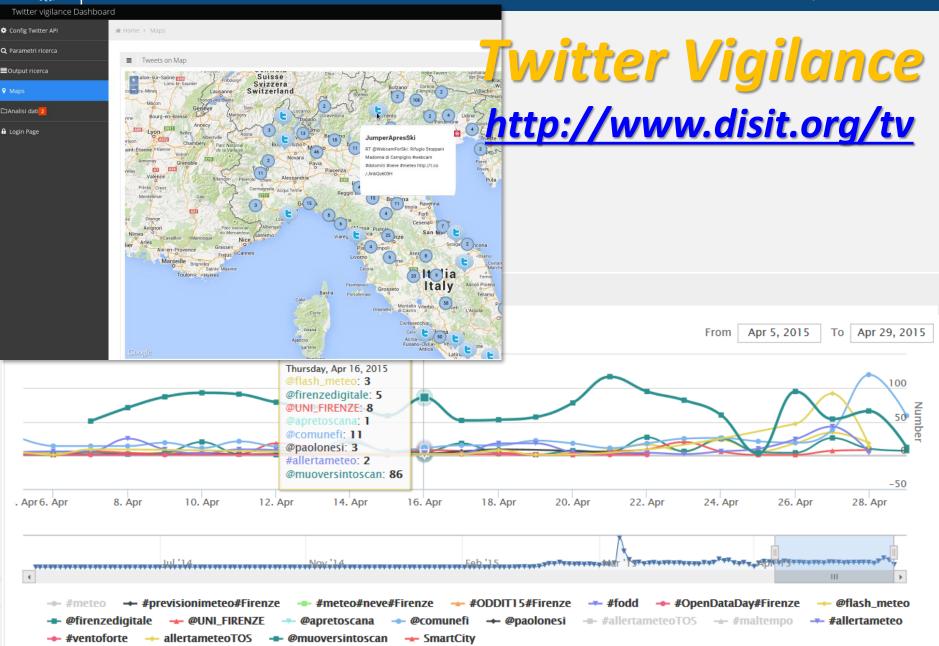

- Da altre citta', a livello regionale, nazionale, ...
- Dalla Commissione europea
- RDF Store aperti: dbPedia, Europeana, Getty, Camera Senato, Cultura Italia,
 - ECLAP.eu, http://www.eclap.eu
 - UNIFI, OSIM → http://osim.disit.org
- Web Crawling → GeoLocator ...
- Social Media → Blog Vigilance ..
- Link Discovering -> riconciliazione, LOD Enricher
- Molti altri dati http://log.disit.org

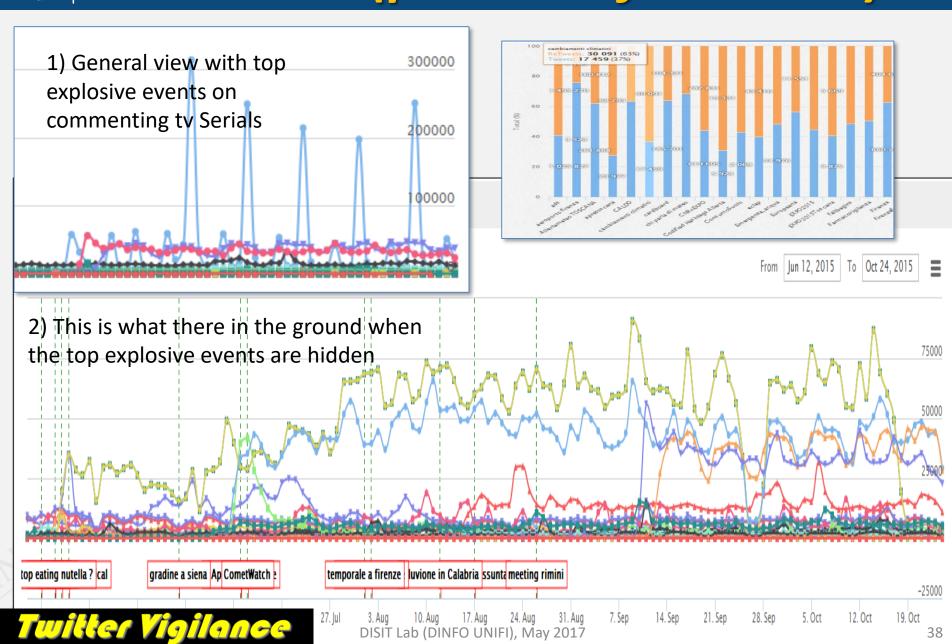
NLP e Blog Vigiliance

- Recuperare informazioni dagli utenti
- Validare le informazioni fornite da siti e utenti in relazione a quelle divulgate da siti istituzionali
- Inserire le informazioni
 estratte nella base di
 conoscenza semantica
 km4city per arricchire i dati
- Fornire le informazioni arricchite agli utenti attraverso il ServiceMap, un portale web, un blog o i social network come Twitter

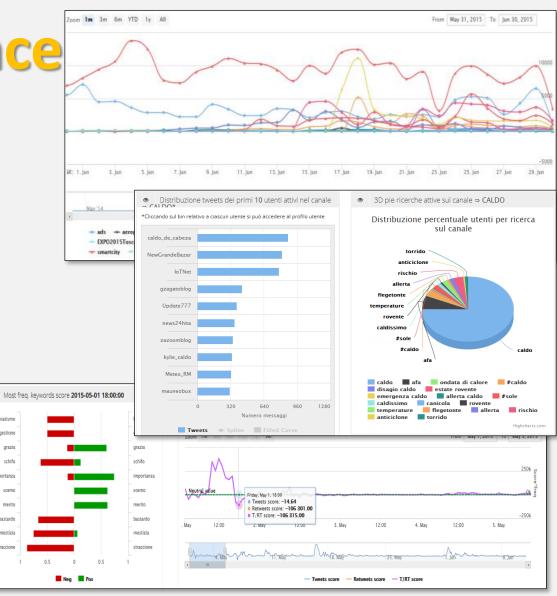


Inference





Web Crawling and Data Mining

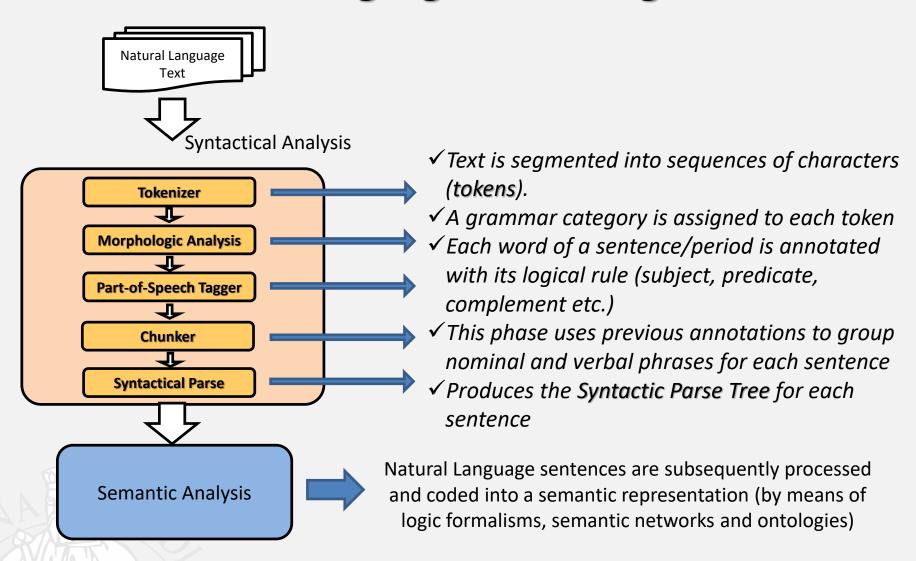


Twitter Vigilance

- http://www.disit.org/tv
- Citizens as sensors to
 - Assess sentiment on services, events, ...
 - Response of consumers wrt...
 - Early detection of critical conditions
 - Information channel
 - Opinion leaders
 - Communities
 - formation

grazia schifo

importanza scemo


merito

bastardo

NLP - Natural Language Processing Phases

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining

- Km4City: Smart City Ontology
- RDF production, reconciliation
- Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

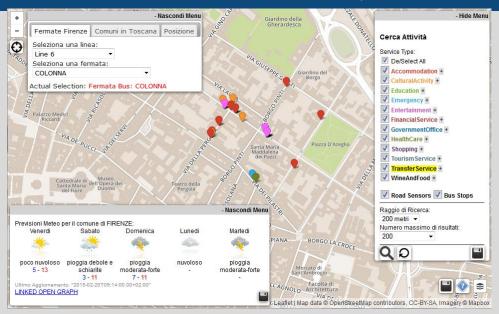
SmartCity Project Sii-Mobility

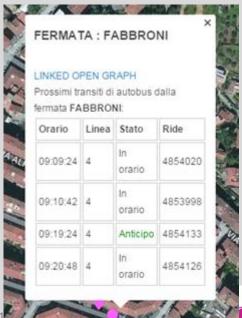
SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020


Mobile Emergency



Ricerche sui dati

- Geografiche: near to here; per comune; per area
- Nel Tempo: dati
 Real Time
- Testuali:
- RDF Store esterni,
 internazionali

Problematiche -> integrazione

- Dati di limitata interoperabilita' semantica e qualita'
- l'interoperabilit a' va conquistata dato su dato, modello su modello
- Gestione grosse moli di dati, flussi, etc.

Creare una base di conoscenza unica fondata su un'ontologia comune per combinare tutti i dati provenienti da diverse fonti e renderli semanticamente interoperabili

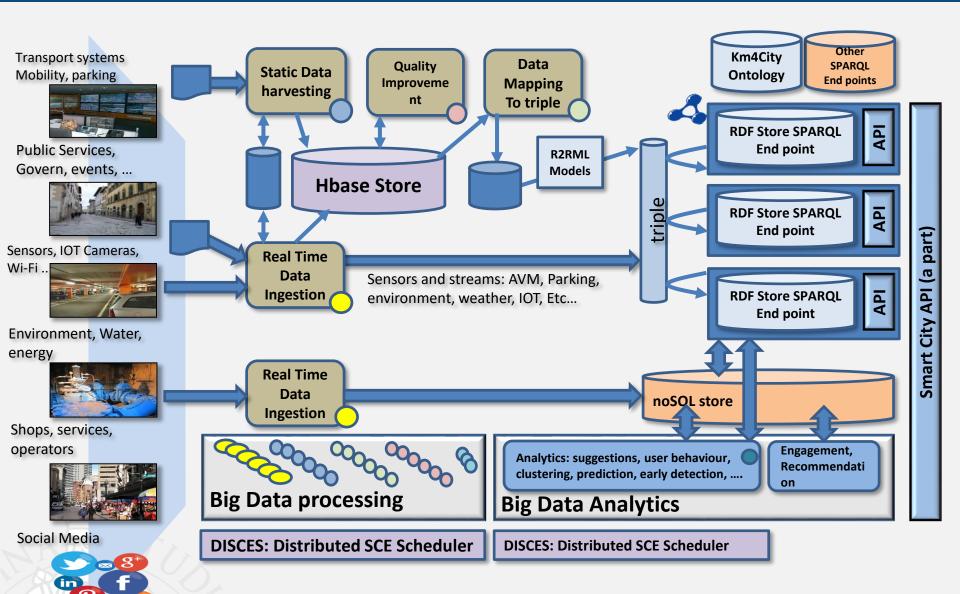
- Creare query coerenti indipendentemente dalla fonte, il formato, la data, l'ora, fornitore, etc.
- Arricchire i dati, renderli più completi, più affidabili, ed accessibili
- Ridurre il rumore e la dipendenza dalla qualità
- Abilitare l'inferenza come materializzazione triple da alcune delle relazioni
- consentire la realizzazione di nuovi servizi integrati connessi alla mobilità
- fornire accesso alla base di conoscenza alle PMI di creare nuovi servizi

Challenges (addressed by DISIT)

Data Sensors

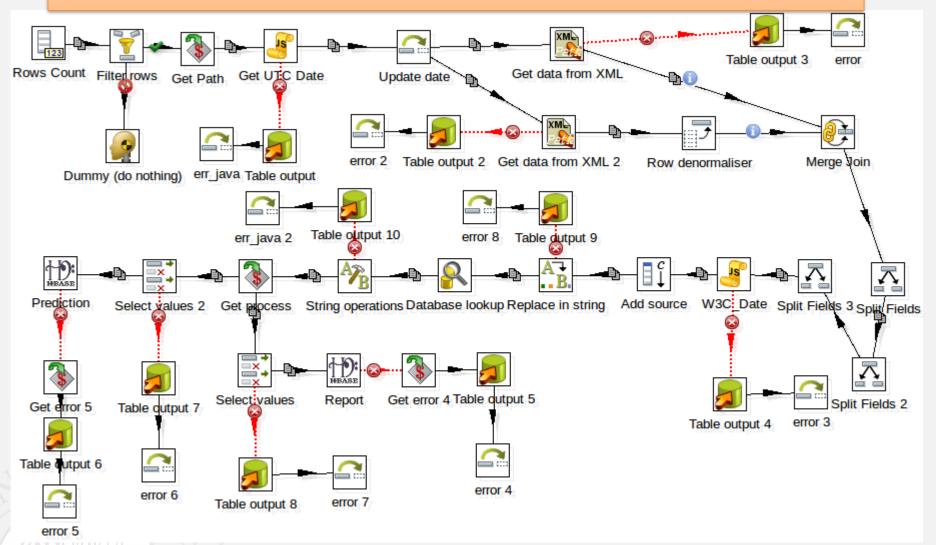
Data Harvesting

Real Time Data


Social Data trends

Data Ingesting and mining

- OD/LOD, Open Data/Linked Open Data:
 - gathering, collection,
- Data Mining:
 - ontology mapping, integration, semantically interoperable
 - reconciliation, enrichment,
 - quality assessment and improvement
- Data Filtering on Streaming

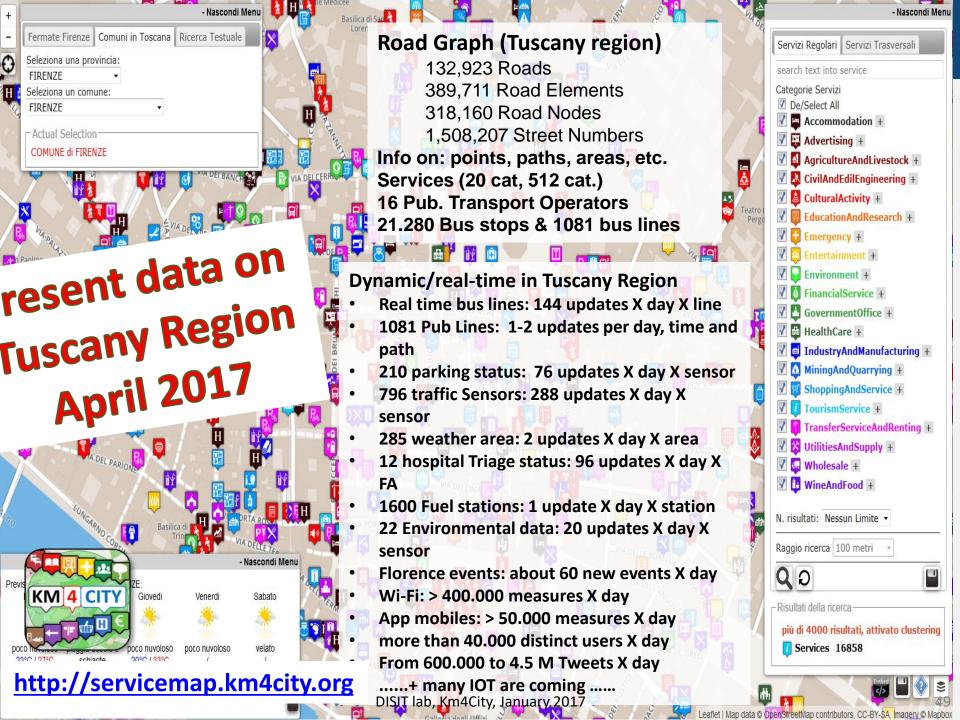

Static Data: harvesting

- Ingesting a wide range of OD/PD: public and private data, static, quasi static and/or dynamic real time data.
- For the case of Florence, we are addressing about **150 different data sources** of the 564 available, plus the regional, province, other municipalities,
- Using *Pentaho Kettle* for data integration (Open source tool)
 - using specific ETL Kettle transformation processes (one or more for each data source)
 - data are stored in HBase (Bigdata NoSQL database)
- Static and semi-static data include: points of interests, geo-referenced services, maps, accidents statistics, etc.
 - files in several formats (SHP, KML, CVS, ZIP, XML, etc.)
- Dynamic data mainly data coming from sensors
 - parking, weather conditions, pollution measures, bus position, etc.
 - using Web Services.

Example of Ingestion process

Data Quality Improvement

Problems kinds:


 Inconsistencies, incompleteness, duplications and redundancy, ...

Problems on:

- CAPs vs Locations
- Street names (e.g., dividing names from numbers and localities, normalize when possible)
- Dates and Time: normalizing
- Telephone numbers: normalizing
- Web links and emails: normalizing

Partial Usage of

Certified and accepted tables and additional knowledge

Data Quality Improvement

Class	%QI	Total rows
Accoglienza	34,627	13256
Agenzie delle Entrate	27,124	306
Arte e Cultura	37,716	3212
Visite Guidate	38,471	114
Commercio	42,105	323
Banche	41,427	1768
Corrieri	42,857	51
Elementari	42,004	335
Emergenze	42,110	688
Enogastronomia	42,078	5980
Formazione	42,857	70
Accoglienza	34,627	13256

•		
Class	%QI	Total rows
Georeferenziati	38,754	2016
Materne	41,479	539
Medie	42,611	116
Mobilità Aerea	41,872	29
Mobilità Auto	38,338	196
Prefetture	39,103	449
Sanità	42,350	1127
Farmacie	42,676	2131
Università	42,857	43
Sport	52,256	1184
Superiori	42,467	183
Tempo Libero	25,659	564

Service data from Tuscany region.

%QI = improved service data percentage after QI phase.

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

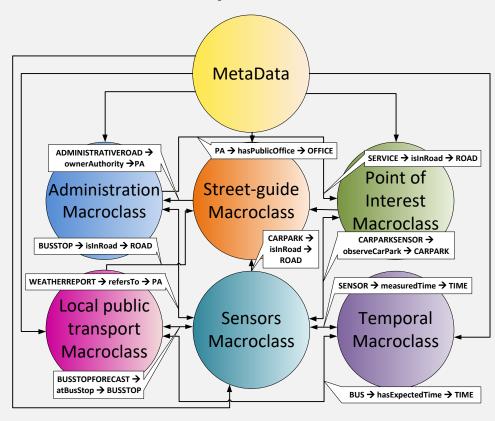
SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020


Mobile Emergency

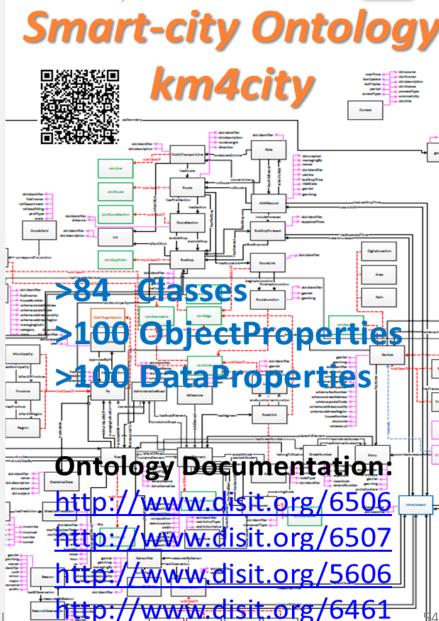
Smart-city Ontology

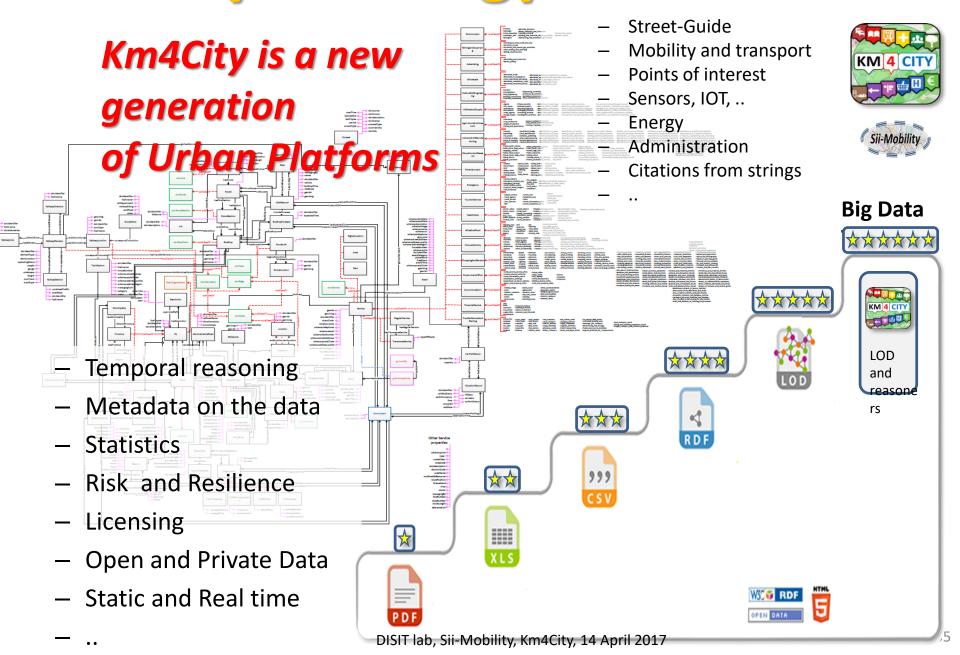
- The data model provided have been mapped into the ontology, it covers different aspects:
 - Administration
 - Street-guide
 - Points of interest
 - Local public transport
 - Sensors
 - Temporal aspects
 - Metadata on the data

Km4City

- Amministrazione
- Aspetti Sociali
- Strade ed elementi
- Punti di Interesse, turismo e cultura
- Trasporti
- Sensori
- Aspetti Temporali
- Eventi: sportivi e culturali
- Spetti legali e descrittori
- Aspetti spaziali
- Servizi pubblici e salute
- · A A

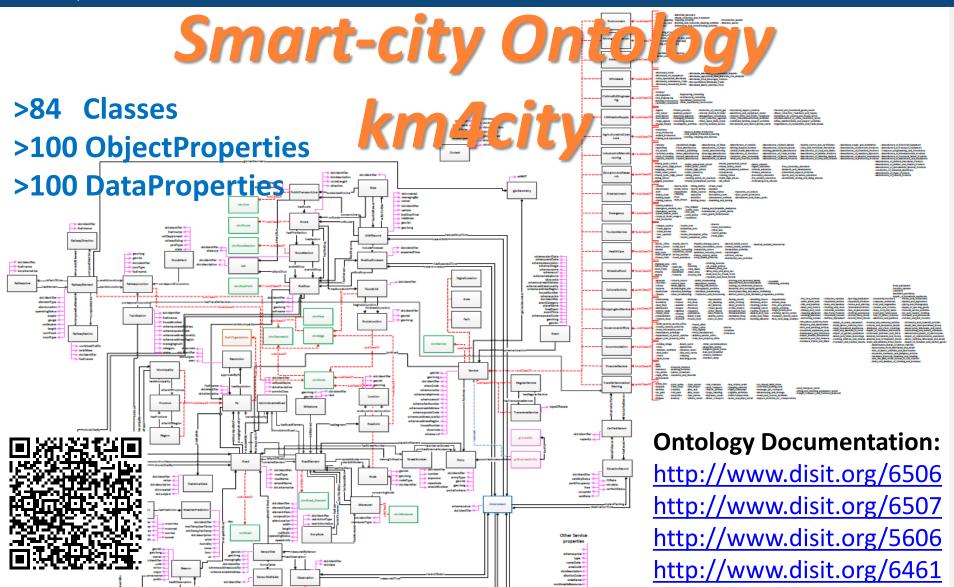
- DC: Dublin core, standard metadata
- OTN: Ontology for Transport Network
- FOAF: for the description of the relations among people or groups
- Schema.org: for a description of people and organizations
- wgs84_pos: for latitude and longitude, GPS info
- OWL-Time: reasoning on time, time intervals
- GoodRelations: commercial activities models





l Dati

- Collezionamento dati statici, quasi statici e real time, stream
 - Dati open: geo localizzati, servizi, statistiche, censimenti, etc.
 - Dati privati degli operatori: con licenze limitate per non permettere di fare profitto ad altri operatori sulla base dei loro dati
 - Dati personali delle persone: profili, comportamenti tramite APP, IOT, sensori, web, etc.
- Integrazione dati per renderli semanticamente interoperabili, ed operare deduzioni (time, space...)
 - I tradizionali collettori di open data danno visioni statistiche ma non sono adatti a produrre servizi integrati
 - Integrazione con modelli semantici unificanti come Km4City



Km4City Ontology - RDF Store

Smart-city Ontology

- Metadata: modeling the additional information associated with:
 - Descriptor of Data sets that produced the triples: data set ID, title, description, purpose, location, administration, version, responsible, etc..
 - Licensing information
 - Process information: IDs of the processes adopted for ingestion, quality improvement, mapping, indexing,...; date and time of ingestion, update, review, ...;

When a problem is detected, we have the information to understand when and how the problem has been included

Including basic ontologies as:

- DC: Dublin core, standard metadata
- OTN: Ontology for Transport Network
- FOAF: for the description of the relations among people or groups
- Schema.org: for a description of people and organizations
- wgs84_pos: for latitude and longitude, GPS info
- OWL-Time: reasoning on time, time intervals
- GoodRelations: commercial activities models

P. Bellini, M. Benigni, R. Billero, P. Nesi and N. Rauch, "Km4City Ontology Building vs Data Harvesting and Cleaning for Smart-city Services", International Journal of Visual Language and Computing, Elsevier, http://dx.doi.org/10.1016/j.jvlc.2014.10.023

Km4City Ontology and tools

- documentation ENG: http://www.disit.org/5606
- documentation ITA: http://www.disit.org/6461
- image: http://www.disit.org/6507
- ontology .. the OWL and triple version http://www.disit.org/6506
- FODD 2015 app http://www.disit.org/6595
- API Service Map: http://www.disit.org/6597
- Service Map: http://servicemap.disit.org

Why an Ontology

- On the basis of Km4City Ontology, via a data mining process, it is possible to built a knowledge base, KB, (and RDF Store) adding instances
 - This process creates inferences on the concepts, making deductions
- KB is query-able via SPARQL exploiting and referring to:
 - hundreds of relationships kind: is-a, is-part-of, is-located, is-near-by, ...
 - Patterns among entities and relations
 - Exploiting inference
- Specific queries can be simplified by adding special and additional indexes and/or relations

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

Data mapping to Triples

Transforms the data from HBase to RDF triples

- Using Karma Data Integration tool, a mapping model from SQL to RDF on the basis of the ontology was created
 - Data to be mapped first temporarily passed from Hbase to MySQL and then mapped using Karma (in batch mode)
- The mapped data in triples have to be uploaded (and indexed) to the RDF Store (OpenRDF – sesame with OWLIM-SE)

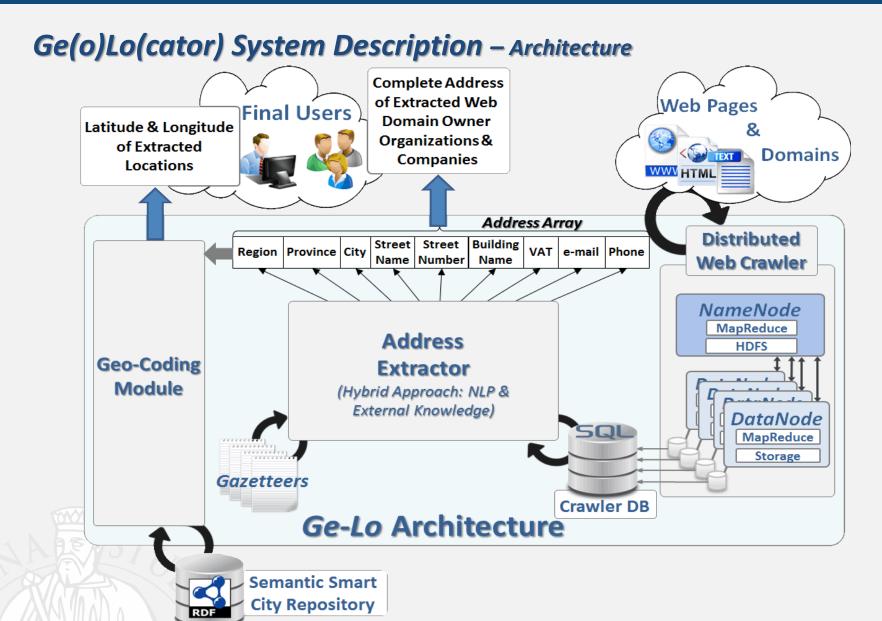
Macro Class	Static Triples	Reconciliation Triples	Real Time Triples Loaded	Total on 1.5 months
Administration	2.431	0		2.431
Metadata of DataSets	416	0		416
Point of Interest (35.273 POIs in Tuscany)	471.657	34.392		506.049
Street-guide (in Tuscany)	68.985.026	0		68.985.026
Local Public			135.952	(static) 646.790
Transport (<5 lines of FI)	644.405	2.385	per line per day, to be filtered, read every 30 s, they respond in minutes	
Sensors (<201 road sensors, 63 scheduled every two hours)		4.240	per sensor per read, every 2 hours, they are very slow in responding	
Parking (<44 parkings, 12 scheduled every 30min)		1.240	7920 per park per day, 3 read per hour, they respond in seconds	51.111.078
Meto (286 municipalities, all scheduled every 6 hours)			per location per update, 1-2 updates per day	
Temporal events, time stamp	-		6 for each event	1.715.105
Total	70.103.935	42.257		122.966.893

Comparing different reconciliation approaches based on

- SILK link discovering language
- SPARQL based reconciliation described above

Method	Precision	Recall	F1
SPARQL –based reconciliation	1,00	0,69	0,820
SPARQL -based reconciliation + additional manual			
review	0,985	0,722	0,833
Link discovering - Leveisthein	0,927	0,508	0,656
Link discovering - Dice	0,968	0,674	0,794
Link discovering - Jaccard	1,000	0,472	0,642
Link discovering + heuristics based on data			
knowledge + Leveisthein	0,925	0,714	0,806
QI - Link discovering – Dice	0,945	0,779	0,854
QI - Link discovering – Jaccard	1,000	0,588	0,740
QI - Link discovering + heuristics based on data			
knowledge + Leveisthein	0,892	0,839	0,865

Thus automation of reconciliation is possible and produces acceptable results!! DISIT Lab (DINFO UNIFI), May 2017



Localization via web crawling

- Using the Ge(o)Lo(cator) framework:
 - Mining, retrieving and geolocalizing web-domains associated to companies in Tuscany (thanks to a Distribute Web Crawler based on Apache Nutch + Hadoop)
 - Extraction of geographical information based on a hybrid approach (thanks to Open Source GATE Framework + using external gazetteers)
 - Validation in 2 steps: Evaluation of Complete Address Array Extraction, Evaluation of Geographic Coordinate Extraction
- New services found, can be transformed into RDF triples and added to the repository!

Localization via web crawling

TABLE I. COMPARISON TABLE REPORTING EVALUATION DETAILS FOR EVALUATION TASK 1: ADDRESS ARRAY EXTRACTION, AND TASK 2: GEOGRAPHIC COORDINATES EXTRACTION (EMPLOYING BOTH THE SMART CITY REPOSITORY AND THE GOOGLE GEOCODING API).

Evaluation Tasks	TP	FP	FN	TN	Precision	Recall	F-Measure
1) Address Array Extraction	74.5%	7.8%	5.9%	11.8%	90.5%	92.7%	91.6%
2a) Geographic Coordinates Extraction (Smart City Semantic Repository)	57.8%	4.7%	29.5%	8.0%	92.5%	66.2%	77.1%
2b) Geographic Coordinates Extraction (Google Geocoding)	48.9%	31.1%	11.1%	8.9%	61.1%	81.5%	69.8%

- Precision rate for geographic coordinates extraction (employing the Smart City Semantic Repository) has increased, with respect to the value obtained in the evaluation of address array extraction.
- ➤ Slightly decreasing *TN* rate for Test (2a) with respect to Test (1): exploiting the extraction of high level features (such as building names) allows the system to obtain correct coordinates even for domains with incomplete Address Array.
- Recall rate for Test (2a) significantly decrease with respect to Test (1). This is due mainly to the noise generated by the supplementary logic and the extended semantic queries required to obtain the geographical coordinates.
- Higher *Recall* rate achieved when using the Google Geocoding APIs: Google Repository is by far larger than DISIT Smart City RDF datastore, so that it is able to index a huge amount of resources, even if this can affect the precision rate.

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction
Smart City Engine

Data Acting processors

Smart City Tools and API

Decision Support System

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

Real Time Data Ingestion

- Sensors on Traffic flow data: Florence, Empoli, Piombino, Arezzo
 - number of catalogs: 63
- Parkings status: Florence (14), Empoli (6), Arezzo (9), Grosseto (4), Livorno (5), Lucca (5), Massa-Carrara (3), Prato (1)
 - Total number: 48
- AVM busses 5 lines, in Florence:
 - 816 rides for Line 4, 1210 rides for Line 6
- Weather conditions and forecast for
 - Municipalities in Tuscany: about 285 cities
- Attualmente sul grafo sono riconciliati solo I parcheggi di Firenze, Empoli, ..., ma tutti mandano dati.

Example for Parking

- To process the parking data for Sii-Mobility
 - real time data from Osservatorio Trasporti of Tuscany region (MIIC).

- 2 phases:
 - INGESTION phase;
 - TRIPLES GENERATION phase.

Example for AVM data

- AVM data area obtained via DATEX2 protocol for all CodeRace (only a small part of them may be active):
 - A CodeRace identifies a Bus race on a given line
- At the same time, on a single Line:
 - A number of Busses (with their code race) are running.
 - For each of them a forecast for each bus-stop is provided.
 - At every new forecast, all obsolete forecasts for next and passed predictions have to be deprecated,
- → thus filtering is needed to avoid growing of not useful data into the RDF Store
 - A different approach on the server side would be much more efficient providing for each line the forecast only for the active races.

Distributed Scheduler

- Use of a scheduler to manage periodic execution of ingestion and triple generation processes.
 - This tool throws the processes with predefined interval determined in phase of configuration.
- Static Data: as Sporadic processes:
 - scheduled every months or week
- Real Time data (car parks, road sensors, etc.)
 - ingestion and triple generation processes should be performed periodically (no for static data).

http://192.168.0.72

Smart Cloud Engine

DISIT - Distributed Systems and Internet Technology Lab

http://192.168.0.72

SCHEDULER NAME	ID ↓	FIRE INSTANCE ID	DATE	JOB NAME	JOB GROUP	JOB DATA	STATUS
% 😭 ► II ■ 🔟 🍠 SCE	297230	hadoopnode01d14183 077042351418307705 019	2014-12-15 15:25:33	sensori47_A	sensori47	#processParameter s= [{"processPath":"/ho	RUNNING
	297229	hadoopnode06c14183 076279641418307629 359	2014-12-15 15:25:33	sensori44_A	sensori44	#processParameter s= [{"processPath":"/ho	RUNNING
% * ▶ ■ / SCE	297228	hadoopnode02141830 838738214183083917 58	2014-12-15 15:22:39	ZTL_notturna_shp_I	ZTL_notturna_shp	#processParameter s=null; #isNonConcurrent=t	SUCCESS
# 🖀 ► II ■ 🖬 / SCE	297227	hadoopnode02141830 838738214183083917 57	2014-12-15 15:22:39	ZTL_notturna_kmz_I	ZTL_notturna_kmz	#processParameter s=null; #isNonConcurrent=t	SUCCESS
% ≅ ► II ■ II / SCE	297226	hadoopnode01c14183 085186101418308520 365	2014-12-15 15:21:49	sensori45_A	sensori45	#processParameter s= [{"processPath":"/ho	RUNNING
SCE ► II ■ II /	297225	hadoopnode06141830 832370214183083258 68	2014-12-15 15:21:49	sensori40_A	sensori40	#processParameter s= [("processPath":"/ho	RUNNING
% 😭 ► II ■ 🔟 / SCE	297224	hadoopnode01b14183 075646221418307566 749	2014-12-15 15:21:49	sensori46_A	sensori46	#processParameter s= [{"processPath":"/ho	RUNNING
	297223	hadoopnode02141830 838738214183083917 56	2014-12-15 15:21:37	ZTL_notturna_kmz_I	ZTL_notturna_kmz	#processParameter s=null; #isNonConcurrent=t	SUCCESS
% ≅ ► II ■ II / SCE	297222	hadoopnode02141830 838738214183083917 55	2014-12-15 15:21:00	sensori31_C	sensori31	#processParameter s= [{"processPath":"/ho	SUCCESS
#	297221	hadoopnode06c14183 076279641418307629 358	2014-12-15 15:21:00	sensori30_C	sensori30	#processParameter s= [{"processPath":"/ho	SUCCESS
# ≅ ► II ■ II / SCE	297220	hadoopnode02141830 838738214183083917 54	2014-12-15 15:18:58	ZTL_notturna_shp_I	ZTL_notturna_shp	#processParameter s=null; #isNonConcurrent=t	SUCCESS
※⇔►Ⅱ■∏ /		hadoopnode01c14183 [DISIT Lab (DINFO	UNIFI), May 201	7	#processParameter _	

Stributed Schedus Distributed Data Intelligence and Technologies Distributed Data Intelligence and Technologies Distributed Systems and Internet Technologies (DINFO)

Sii-Mobility

Smart Cloud Engine

DISIT - Distributed Systems and Internet Technology Lab

- . LAST_CHECK: 2015-05-29 19:08:10
- . SCHEDULER_INSTANCE_ID:
- hadoopnode01b1432798209062
- CPU LOAD: 4.49% • FREE_PHYSICAL_MEMORY: 1.44 GB
- · JOBS_EXECUTED: 1151
- · SCHEDULER NAME: SCE
- · CURRENT_TIME: 2015-05-29 19:08:12
- JOBS/h: 34.22
- RUNNING SINCE: 2015-05-28 09:30:09
- · CLUSTERED: 1
- · REMOTE SCHEDULER: 0 · CURRENTLY EXECUTING JOBS: 2
- · CPU LOAD JVM: 0.07%
- . SYSTEM LOAD AVERAGE: 0.12 OPERATING SYSTEM VERSION: 3.13.0-24-peneric.
- · COMMITTED VIRTUAL MEMORY: 3.44 GB
- · OPERATING SYSTEM NAME: Linux
- FREE_SWAP_SPACE: 11.72 GB
- PROCESS CPU TIME: 377680000000
- . TOTAL_PHYSICAL_MEMORY: 11.74 GB · NUMBER OF PROCESSORS: 4
- . OPERATING_SYSTEM_ARCHITECTURE: amd64
- . TOTAL SWAP SPACE: 12 GB
- · IS SCHEDULER STANDBY: 0
- . IS_SCHEDULER_SHUTDOWN: 0
- . IS_SCHEDULER_STARTED: 1
- . TOTAL_DISK_SPACE: 2.11 TB
- . UNALLOCATED_DISK_SPACE: 1.57 TB
- · USABLE DISK SPACE: 1.46 TB
- PREV FIRE TIME: 2015-05-29 19:01:19

CPU

63.45 GHz

- CPU: Intel(R) Xeon(R) CPU X3470 @ 2.93GHz

- . LAST CHECK: 2015-05-29 19:07:12 . SCHEDULER_INSTANCE_ID:
- hadoopnode01d1432798211042
- · CPU_LOAD: 3.86%
- FREE_PHYSICAL_MEMORY: 1.17 GB
- · JOBS_EXECUTED: 1205
- · SCHEDULER NAME: SCE
- · CURRENT_TIME: 2015-05-29 19:08:12
- JOBS/h: 35.83
- RUNNING SINCE: 2015-05-28 09:30:11
- · CLUSTERED: 1
- · REMOTE SCHEDULER: 0
- · CURRENTLY EXECUTING JOBS: 6
- · CPU LOAD JVM: 0.04%
- · SYSTEM LOAD AVERAGE: 0.22
- OPERATING SYSTEM VERSION: 3.13.0-24-ceneric
- COMMITTED VIRTUAL MEMORY: 3.45 GB
- . OPERATING_SYSTEM_NAME: Linux
- · FREE_SWAP_SPACE: 11.74 GB
- PROCESS CPU TIME: 386070000000
- . TOTAL_PHYSICAL_MEMORY: 11.74 GB
- · NUMBER OF PROCESSORS: 4
- . OPERATING_SYSTEM_ARCHITECTURE: amd64
- . TOTAL SWAP SPACE: 12 GB
- · IS SCHEDULER STANDBY: 0
- · IS_SCHEDULER_SHUTDOWN: 0
- . IS_SCHEDULER_STARTED: 1
- . TOTAL_DISK_SPACE: 2.11 TB
- · UNALLOCATED_DISK_SPACE: 1.57 TB
- · USABLE_DISK_SPACE: 1.46 TB
- PREV FIRE TIME: 2015-05-29 19:03:45
- CPU: Intel(R) Xeon(R) CPU X5690 @ 3.47GHz

Mem Total

70.41 GB

- . LAST CHECK: 2015.05-29 19:07:30
- . SCHEDULER_INSTANCE_ID:
- hadoopnode061432798169292
- · CPU_LOAD: 18.39%
- FREE_PHYSICAL_MEMORY: 925.03 MB
- · JOBS_EXECUTED: 1071
- · SCHEDULER NAME: SCE
- CURRENT_TIME: 2015-05-29 19:08:12 JOBS/h: 31.83
- RUNNING SINCE: 2015-05-28 09:29:29
- · CLUSTERED: 1
- · PERSISTENCE: 1
- · REMOTE_SCHEDULER: 0 · CURRENTLY EXECUTING JOBS: 10
- CPU LOAD JVM: 0.09%
- . SYSTEM LOAD AVERAGE: 0.61
- OPERATING SYSTEM VERSION: 3.13.0-24-peneric
- · COMMITTED VIRTUAL MEMORY: 3.45 GB
- . OPERATING_SYSTEM_NAME: Linux
- . FREE_SWAP_SPACE: 11.8 GB
- PROCESS CPU TIME: 448630000000
- . TOTAL_PHYSICAL_MEMORY: 11.74 GB
- · NUMBER OF PROCESSORS: 4
- . OPERATING_SYSTEM_ARCHITECTURE: amd64
- . TOTAL SWAP SPACE: 12 GB
- · IS SCHEDULER STANDBY: 0
- . IS_SCHEDULER_SHUTDOWN: 0
- . IS_SCHEDULER_STARTED: 1

Mem Free

8.9 GB

- . TOTAL_DISK_SPACE: 2.11 TB
- · UNALLOCATED_DISK_SPACE: 1.57 TB
- . USABLE_DISK_SPACE: 1.46 TB
- PREV FIRE TIME: 2015-05-29 19:01:21

CPU: Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz

Cores

24

- . LAST CHECK: 2015-05-29 19:07:15
- . SCHEDULER_INSTANCE_ID: hadoopnode021432798214027
- · CPU_LOAD: 0.33%
- FREE_PHYSICAL_MEMORY: 3.09 GB
- · JOBS_EXECUTED: 1068
- · SCHEDULER NAME: SCE
- CURRENT_TIME: 2015-05-29 19:08:12
- JOBS/h: 31.75 • RUNNING SINCE: 2015-05-28 09:30:14
- · CLUSTERED: 1
- · PERSISTENCE: 1
- . REMOTE_SCHEDULER: 0
- · CURRENTLY EXECUTING JOBS: 6
- CPU LOAD JVM: 0.09%
- . SYSTEM LOAD AVERAGE: 0.01
- OPERATING SYSTEM VERSION: 3 13 0-24-peneric
- · COMMITTED_VIRTUAL_MEMORY: 3.44 GB
- . OPERATING_SYSTEM_NAME: Linux
- · FREE_SWAP_SPACE: 11.98 GB
- PROCESS CPU TIME: 441090000000
- . TOTAL PHYSICAL MEMORY: 11.74 GB · NUMBER OF PROCESSORS: 4
- . OPERATING_SYSTEM_ARCHITECTURE: amd64
- . TOTAL SWAP SPACE: 12 GB
- · IS SCHEDULER STANDBY: 0
- . IS_SCHEDULER_SHUTDOWN: 0
- . IS_SCHEDULER_STARTED: 1
- . TOTAL_DISK_SPACE: 2.11 TB
- · UNALLOCATED_DISK_SPACE: 1.57 TB . USABLE_DISK_SPACE: 1.46 TB
- PREV FIRE TIME: 2015-05-29 19:01:20
- CPU: Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz Jobs/h

199.55

- . LAST CHECK: 2015,05,29 19:07:17
- hadoopnode011432798216310
- CPU_LOAD: 0.33%
- FREE_PHYSICAL_MEMORY: 1.23 GB
- . JOBS_EXECUTED: 1124

. SCHEDULER_INSTANCE_ID:

- · SCHEDULER NAME: SCE
- CURRENT_TIME: 2015-05-29 19:08:12
- JOBS/h: 33.42 RUNNING SINCE: 2015-05-28 09:30:16
- · CLUSTERED: 1
- · PERSISTENCE: 1
- . REMOTE_SCHEDULER: 0
- · CURRENTLY EXECUTING JOBS: 4
- · CPU LOAD JVM: 0.1%
- . SYSTEM LOAD AVERAGE: 0.0
- OPERATING SYSTEM VERSION: 3.13.0-24-ceneric
- · COMMITTED VIRTUAL MEMORY: 3.44 GB
- · OPERATING SYSTEM NAME: Linux
- FREE_SWAP_SPACE: 11.33 GB
- PROCESS CPU TIME: 484800000000
- . TOTAL_PHYSICAL_MEMORY: 11.74 GB · NUMBER OF PROCESSORS: 4
- . OPERATING_SYSTEM_ARCHITECTURE: amd64
- . TOTAL SWAP SPACE: 12 GB
- · IS SCHEDULER STANDBY: 0
- . IS_SCHEDULER_SHUTDOWN: 0
- . IS_SCHEDULER_STARTED: 1 . TOTAL_DISK_SPACE: 2.11 TB
- . UNALLOCATED_DISK_SPACE: 1.56 TB

Jobs Executed

6712

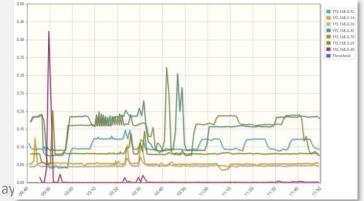
- . USABLE_DISK_SPACE: 1.46 TB
- PREV FIRE TIME: 2015-05-29 19:01:20 CPU: Intel(R) Xeon(R) CPU X3470 @ 2.93GHz

- . LAST CHECK: 2015-05-29 19:07:20
- . SCHEDULER_INSTANCE_ID:
- hadoopnode01c1432798219332
- · CPU_LOAD: 9.83%
- FREE_PHYSICAL_MEMORY: 1.06 GB
- · JOBS_EXECUTED: 1093
- · SCHEDULER NAME: SCE
- CURRENT TIME: 2015-05-29 19:08:12 JOBS/h: 32.5
- RUNNING SINCE: 2015-05-28 09:30:19
- · CLUSTERED: 1
- · PERSISTENCE: 1
- · REMOTE_SCHEDULER: 0
- · CURRENTLY EXECUTING JOBS: 4
- CPU LOAD JVM: 0.06%
- · SYSTEM LOAD AVERAGE: 0.58
- OPERATING_SYSTEM_VERSION: 3.13.0-24-generic
- · COMMITTED VIRTUAL MEMORY: 3.44 GB
- . OPERATING_SYSTEM_NAME: Linux
- · FREE_SWAP_SPACE: 11.02 GB
- PROCESS CPU TIME: 436920000000
- . TOTAL_PHYSICAL_MEMORY: 11.74 GB
- · NUMBER OF PROCESSORS: 4
- . OPERATING_SYSTEM_ARCHITECTURE: amd64
- . TOTAL SWAP SPACE: 12 GB · IS SCHEDULER STANDBY: 0
- . IS_SCHEDULER_SHUTDOWN: 0
- . IS_SCHEDULER_STARTED: 1
- . TOTAL_DISK_SPACE: 2.11 TB
- . UNALLOCATED_DISK_SPACE: 1.57 TB PREV FIRE TIME: 2015-05-29 19:01:36
- . USABLE_DISK_SPACE: 1.46 TB · CPU: Intel(R) Xeon(R) CPU X3470 @ 2.93GHz

(7 days)

93 (0.63%)

14677 (99.37%)


Jobs Failed/Success Jobs Failed/Success

Last updated on: Fri 29-05-2015 19:08:12:897099 generated in 1547 ms (refresh time 3000 ms) Static Push

http://192.168.0.72

CPU Load

3.66 GHz (5.77%)

(24 h)

6 (0.12%)

5063 (99.88%)

DISIT Lab (DINFO UNIFI), May

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

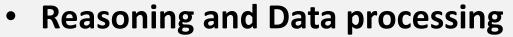
Projects

SmartCity Project Sii-Mobility

SCN

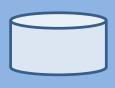
SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE


H2020

Mobile Emergency

Challenges



- Data analytics, Semantic computing
- Link Discovering
- Inferential reasoning
- Identification of critical condition
- unexpected correlations
- predictions, etc.
- "Real time" Computing out of peripherals
 - Action / reaction
- Activation of rules
 - Firing conditions for activating computing
 - Acceptance of external rules

Smart City Engine

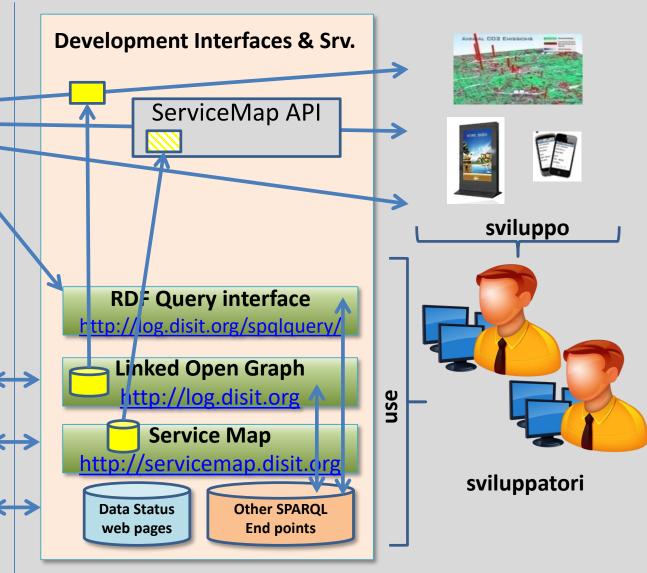
Data processing

Real time Computing

Reasoning and Deduction

Data processing

Distributed Scheduler
Admin. Interface


Distributed Scheduler Database

Data Analytics

Smart City Engine Admin. Interface

Decision Support
System

Reasoning and Deduction

Firenze

Tue 10 Nov @ 12:53:21

ServiceMap, SmartDS

Tue 10 Nov @ 12:53:21 ServiceMap, SmartDS

DISIT Lab, Distributed Data Intelligence and Technologies

ap, SmartDS

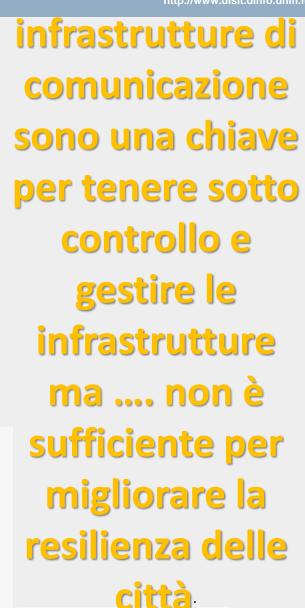
Distributed Lyste is and Internet Technologies

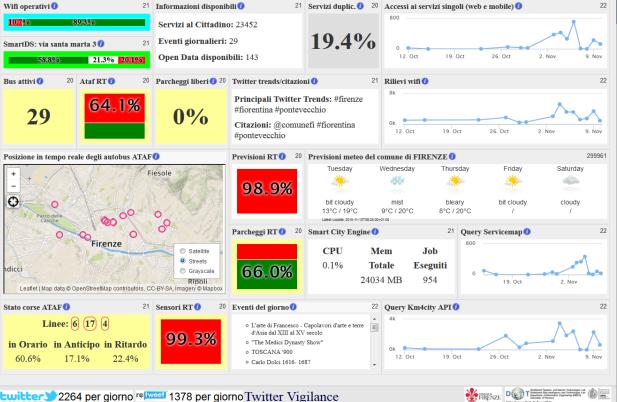
Departme of Internet Technologies

The property of Internet Technologies

Departme of Internet Technologies

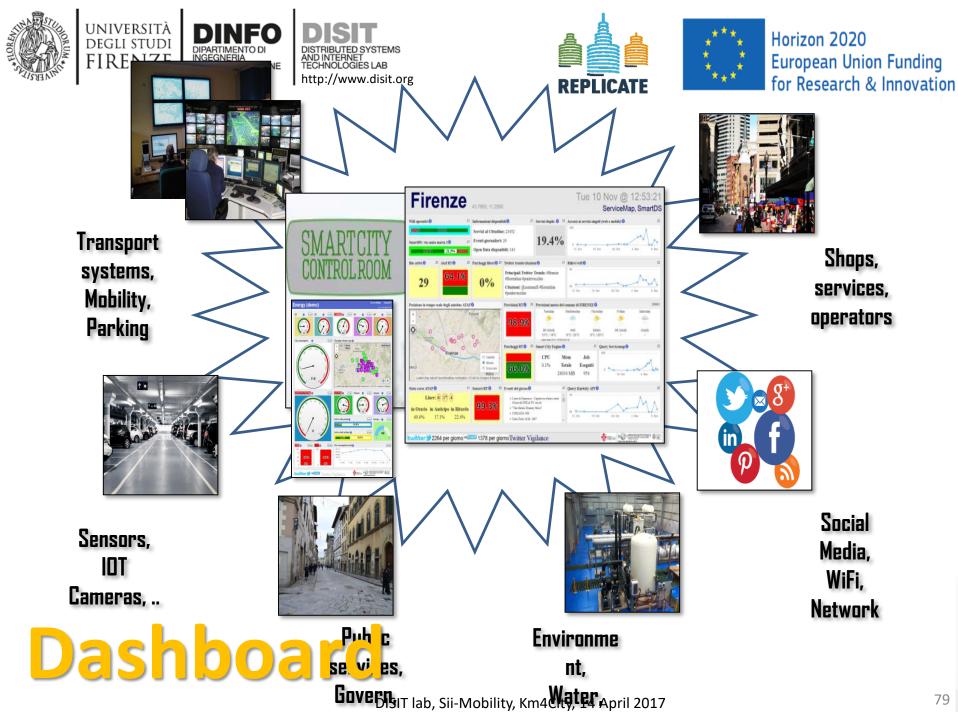
The property of Internet Technologies


Departme of Internet Technologies

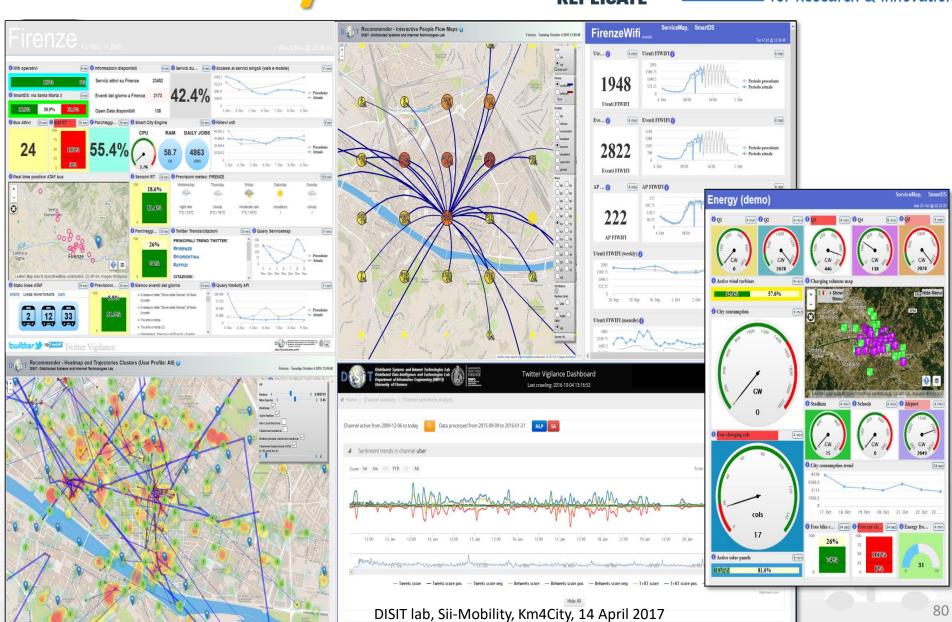

The property of Internet Technologies

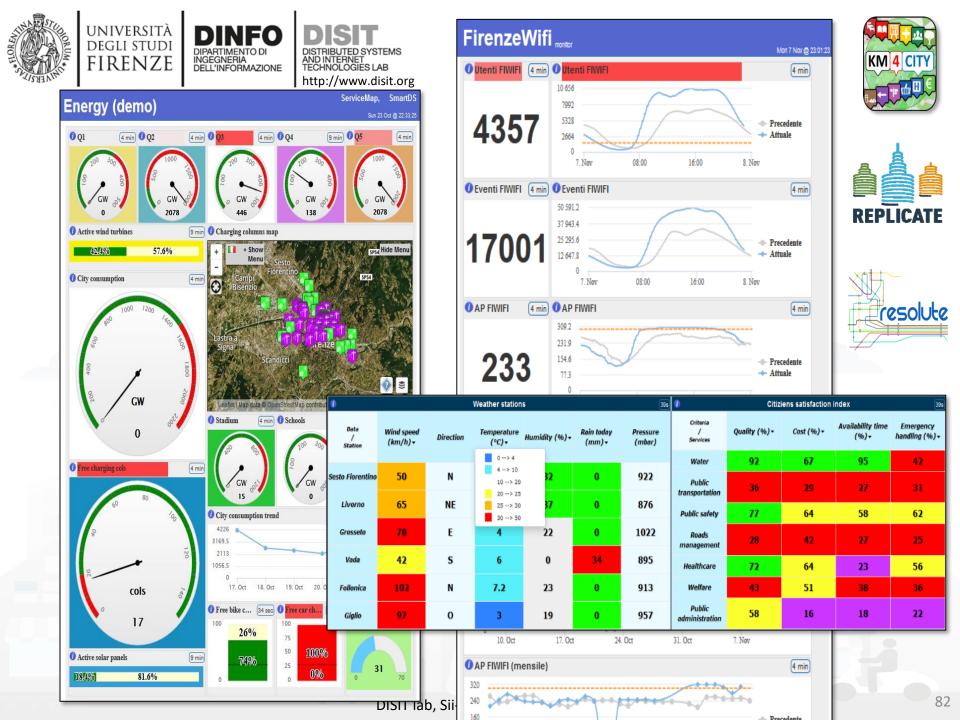
Departme of Internet Technologies

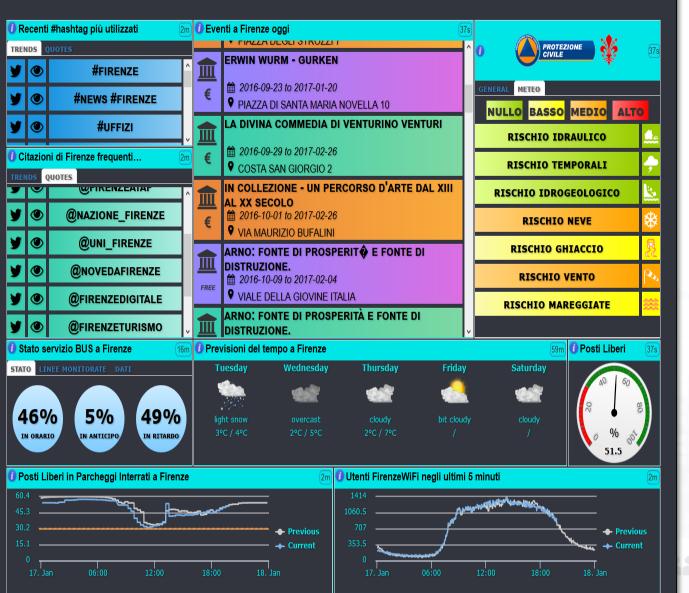
The property of Internet Technologies


Departme of Internet

Control Room delle Città Metropolitane devono:


- arrivare a supervisionare domini multipli e le interdipendenze fra mobilità, energia, comunicazione, servizi, flussi traffico, flussi pedonali, turismo, etc.
- Migliorare la loro Resilienza, capacità di reazione ed assorbimento.


Smart City Dashbo



Servizi agli Utenti

irenze (sperimentale)

Tue 17 Jan @ 19:52:49

Major topics addressed

- Smart City Concepts
- Architecture of Smart City
 Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

Challenges (addressed by DISIT)

Applications

Profiled Services

Profiled Services

Citizens Formation

Data / info Rendering

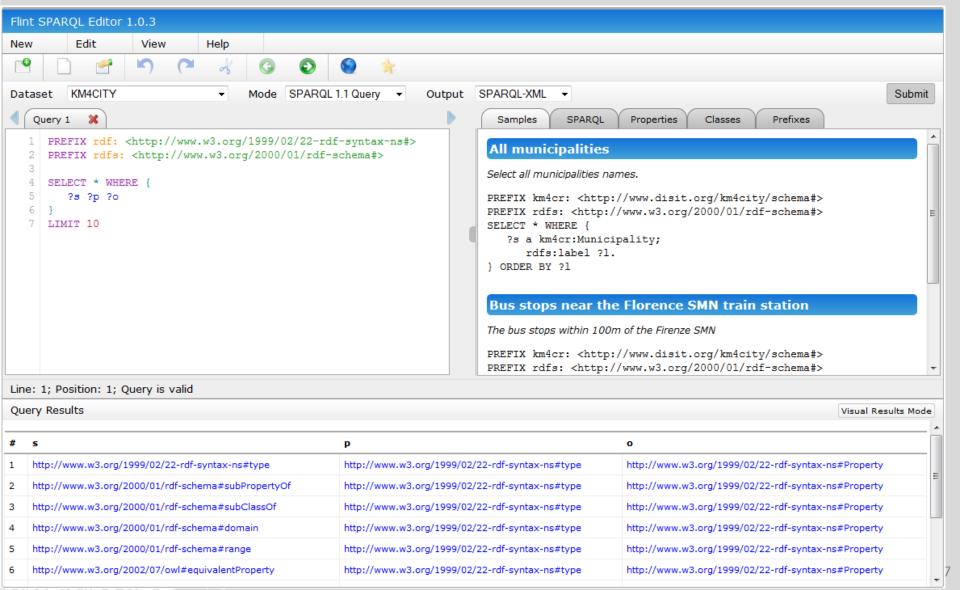
Data / info Exploitation

Suggestions and Alarms

Data Acting processors

Interoperability

- User profiling, collective profiles
- Computing Suggestions:
 - Information and formation
 - Virtuous behavior stimulation
 - For citizens and administrators
 - **—** ...
 - Data export:
 - API, LOD, ..
 - Connection with other Smart City



Development Interfaces

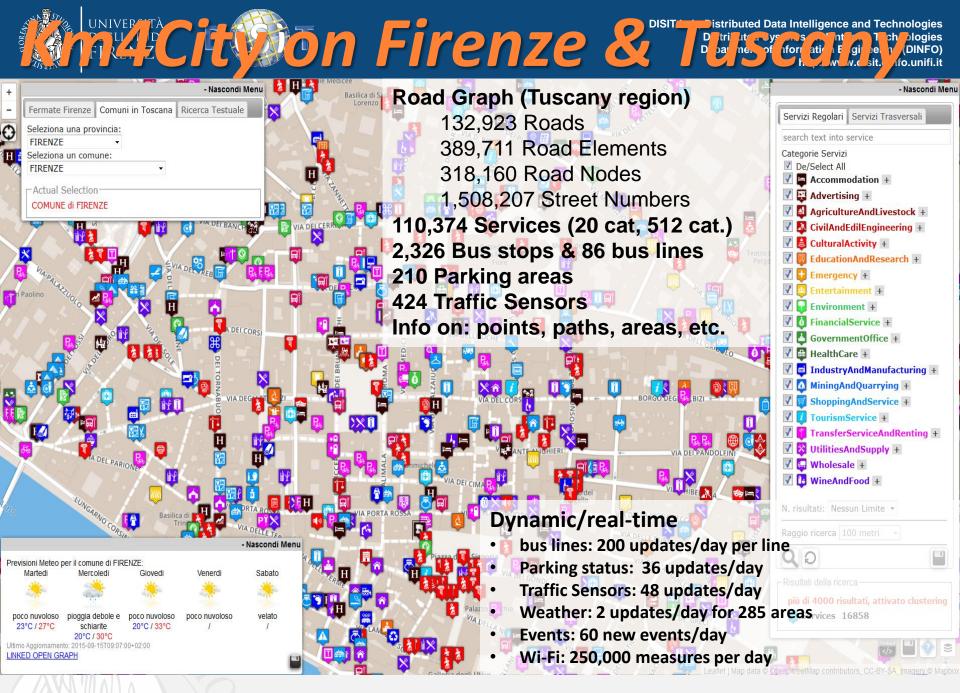
- Service map: http://servicemap.disit.org
 - service based on OpenStreetMaps that allows to search services available in a preset range from the selected bus stop.
- Linked Open Graph: http://log.disit.org
 - a tool developed to allow exploring semantic graph of the relation among the entities. It can be used to access to many different LOD repository.
 - To query Europeana, ECLAP, Getty, Camera, Senato, Cultura Italia,-> digital location
- Ontology Documentation: http://www.disit.org/6507,
 - http://www.disit.org/5606, http://www.disit.org/6461
- Data Status Web pages:
 - active, you have to be registered on <u>www.disit.org</u>, smart city group, send an email to info@disit.org with the request
- LOD UNIFI as RDF Stores:
 - OSIM: to access at UNIFI open data as RDF store on UNIFI competence: http://osim.disit.org
 - ECLAP: to provide access to Performing arts data http://www.eclap.eu
- Visual Query Graph: under development
- SCE as Decision Support System: under development

http://log.disit.org/spqlquery/

Data access and applications

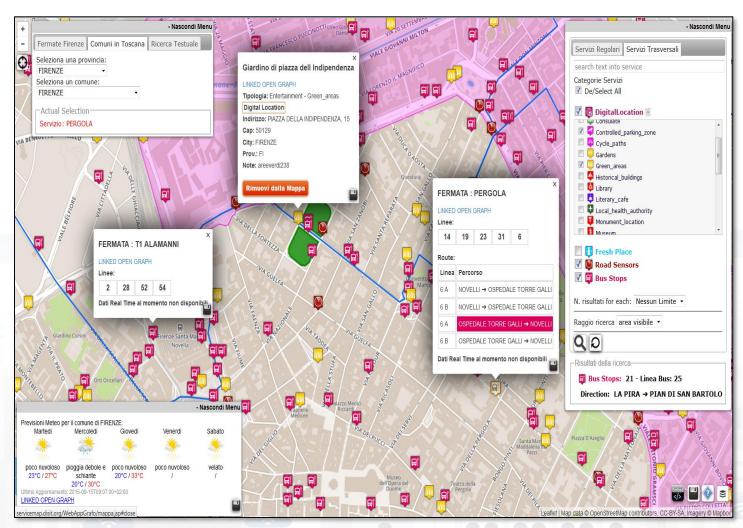
• Linked Open Graph (LOG): a tool developed to allow exploring semantic graph of the relation among the entities. It can be used to access to many different LOD repository.

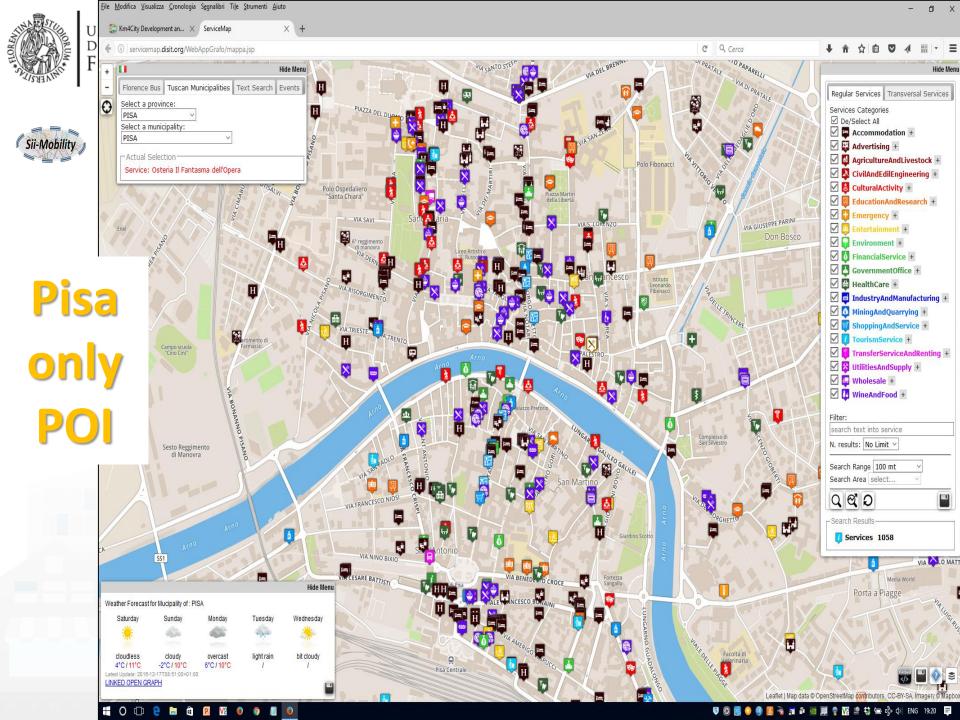
(http://log.disit.org/)

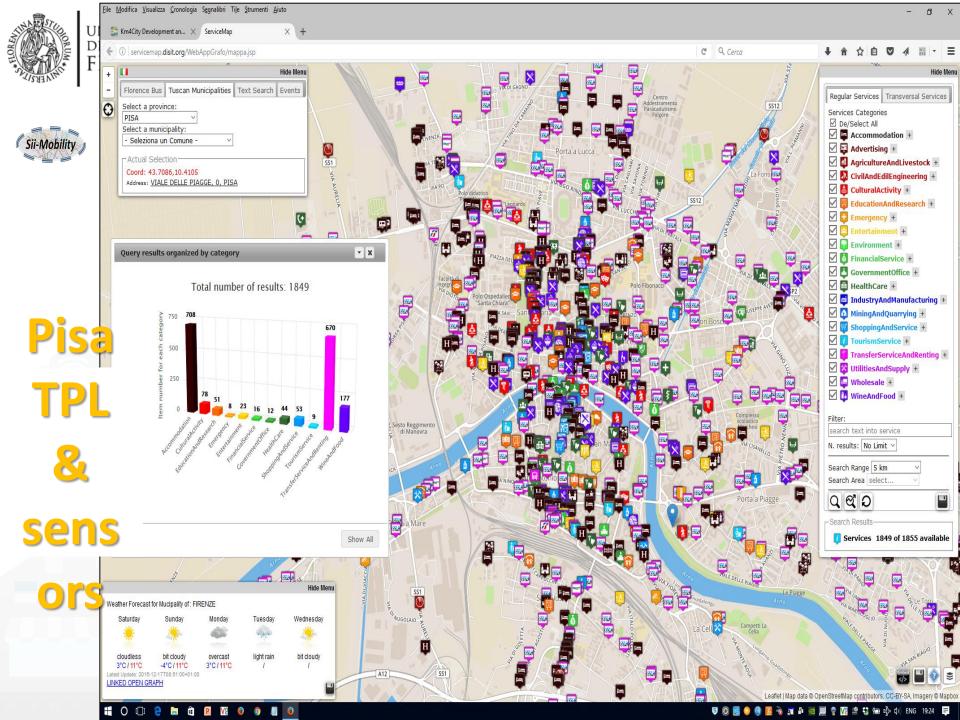

 Maps: service based on OpenStreetMaps that allows to search services available in a preset range from the selected bus stop.

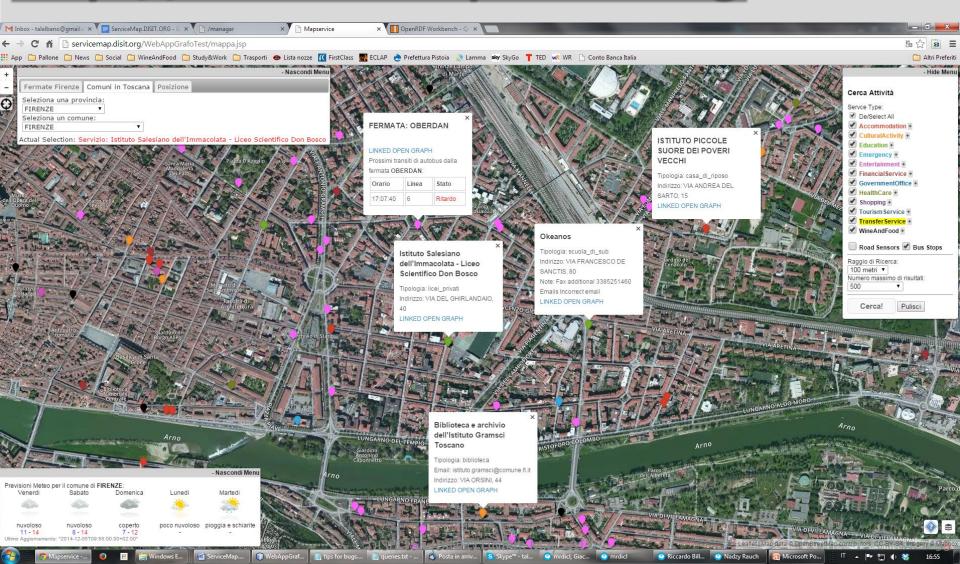
(http://servicemap.disit.org/)

- Service Map: http://servicemap.disit.org
 - Permette allo sviluppatore di realizzare delle query in modo visuale e farsi mandare il codice di richiesta tramite email.
 - Questo codice può essere utilizzato in App mobili e web per semplificare la programmazione e realizzare app che non devono essere manutenute quanto il server cambia...
 - La selezione effettuata può essere richiamata e anche inserita in pagine web di terzi, l'applicazione web è già pronta.
 - Manteniamo le App Vive, la complessità sta sul server e non sulle App !!


http://www.disit.dinfo.unifi.it


DISTRIBUTED SSEMS AND INTERNE THE CHOOLOGIS OF HITCH CITY OF C




Areas, Bus lines, bike lanes, tram, RTZ, etc.

http://servicemap.disit.org

Linea 4

FERMATA: FABBRONI

LINKED OPEN GRAPH

Prossimi transiti di autobus dalla fermata FABBRONI:

Orario	Linea	Stato	Ride 4854020		
09:09:24	4	In orario			
09:10:42	2 4 In orario		4853998		
09:19:24	4	Anticipo	4854133		
09:20:48 4		In orario	4854126		

FERMATA: GIOIA

LINKED OPEN GRAPH

VIA GIOVANNI FABBRON

VIALE GIOVANNI LAMI

Prossimi transiti di autobus dalla fermata GIOIA:

Orario	Linea	Stato	Ride	
09:10:22 4		In orario	4854020	
09:11:40	4	In orario	4853998 4854133	
09:20:22	4	Anticipo		
09:21:46	4	In orario	4854126	

FERMATA: STATUTO 04

4854077

LINKED OPEN GRAPH

Ride

Ritardo 4854072

Ritardo 4854042

Ritardo 4854112

orario

RIO EMANUELE II

FERMATA: GUASTI

LINKED OPEN GRAPH
Prossimi transiti di autobus dalla

Orario Linea Stato

fermata GUASTI:

09:08:02 4

09:08:26 4

09:14:16 4

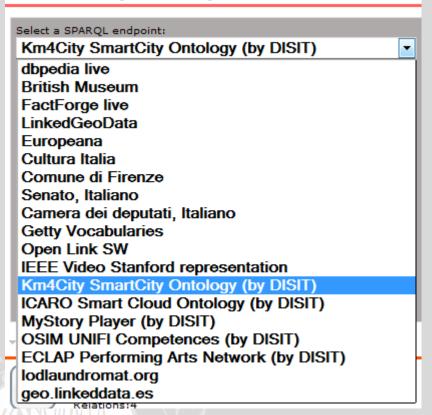
09:15:50 4

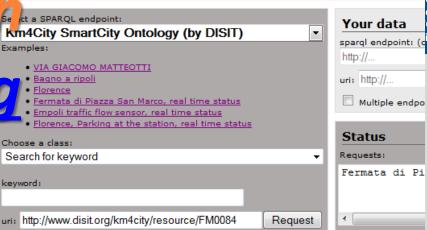
09:25:18 4

09:25:48 4

Prossimi transiti di autobus dalla fermata STATUTO 04:

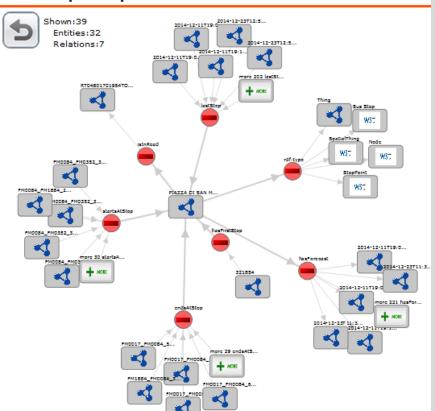
	lermata STATUTO 04.					
Z Yes	Orario	Linea	Stato	Ride		
	09:09:04	4	Ritardo	4854072		
	09:09:28	4	Ritardo	4854042		
	09:15:06	4	Ritardo	4854112		
ANO MIEANESI	09:16:52	4	In orario	4854077		
RICHA	09:26:20	4	In orario	4854020		
HIROTOCH CONTRACTOR	09:26:50	4	In orario	4853998		





http://log.disit.org

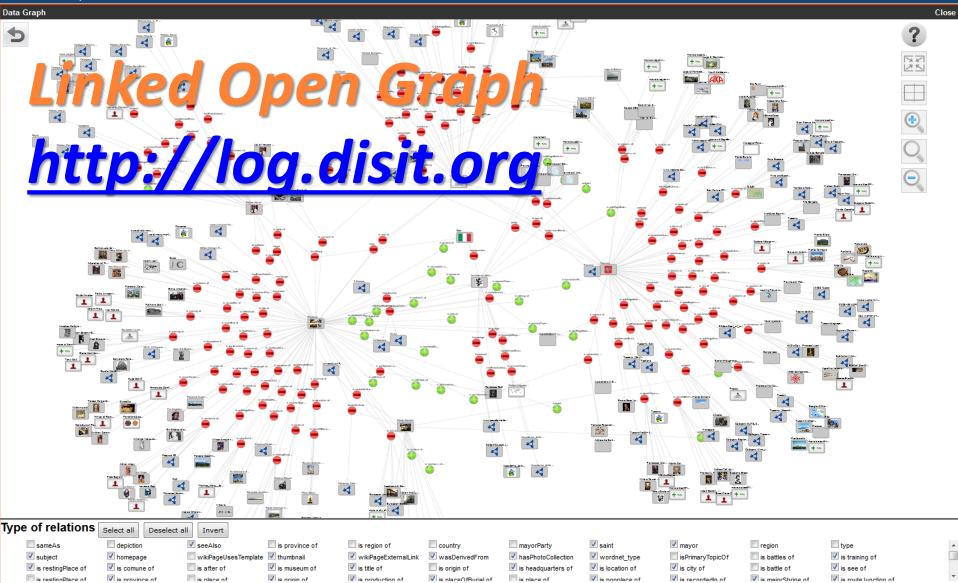
A bus stop info....

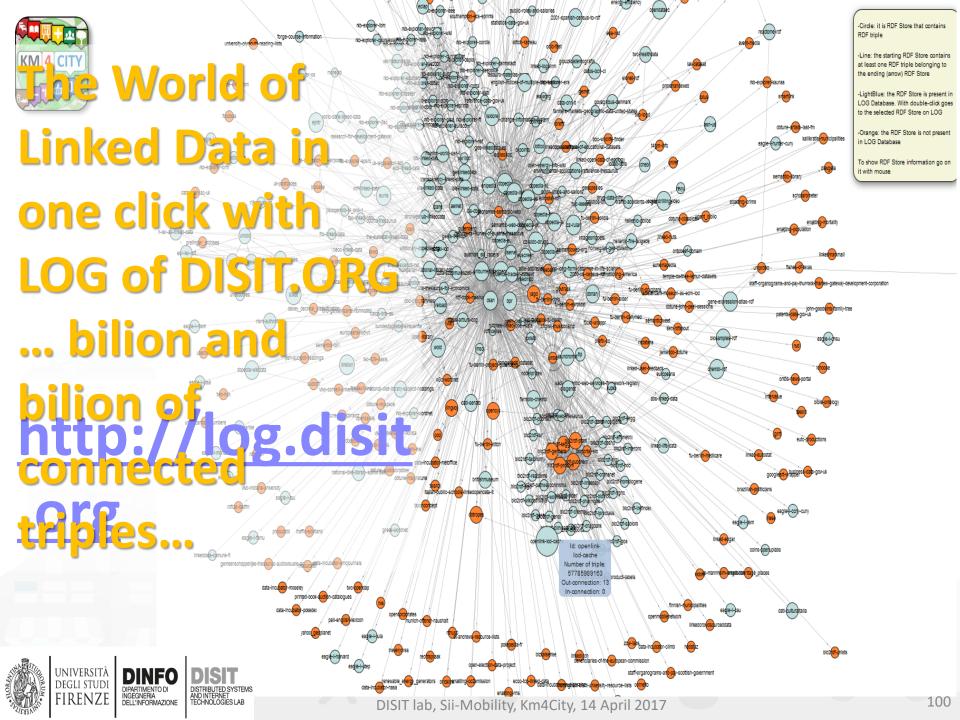

Linked Open Graph

Linked Open Graph

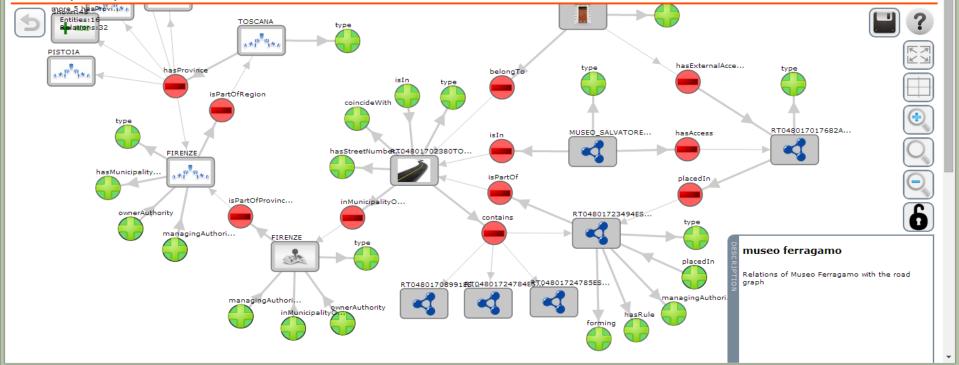
Multiple endpoint search

Remove

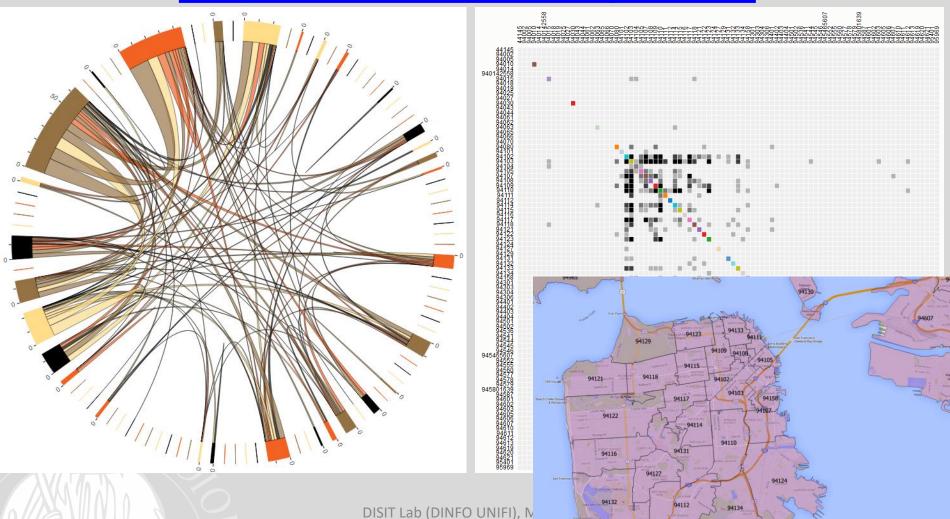

LOG: http://log.disit.org


- Permette allo sviluppatore di navigare nelle strutture complesse di uno o più database RDF accessibili per formulare dei grafici e delle query in modo visuale e farsi mandare il codice di richiesta tramite email.
- Questo codice può essere utilizzato in App mobili e web per semplificare la programmazione e realizzare app che non devono essere manutenute quanto il server cambia...
- Il grafo puo' essere richiamato e anche inserito in pagine web di terzi, l'applicazione web è già pronta.
- Manteniamo le App Vive !!

☆ 🔳


Linked Open Graph

Linked Open Graph



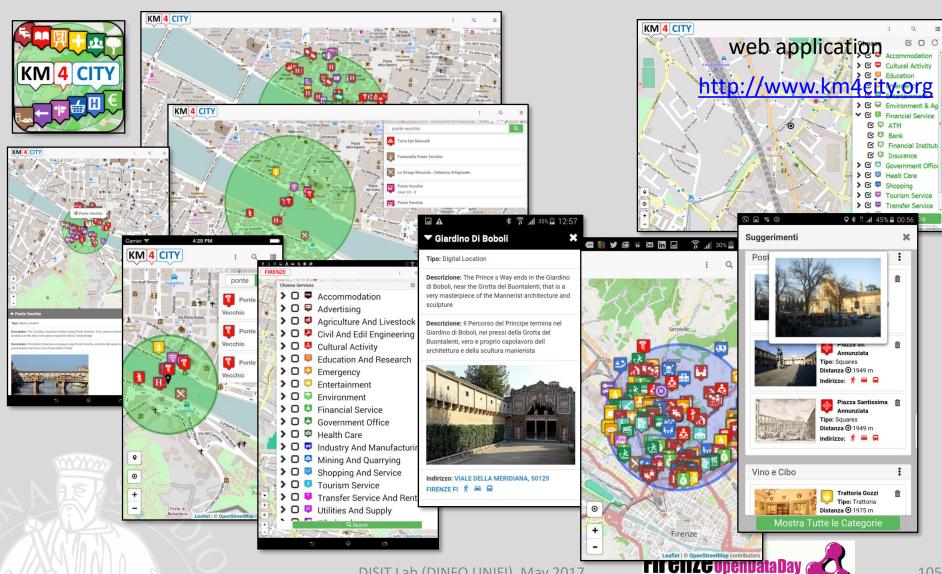
Matrice Origine Destinazione

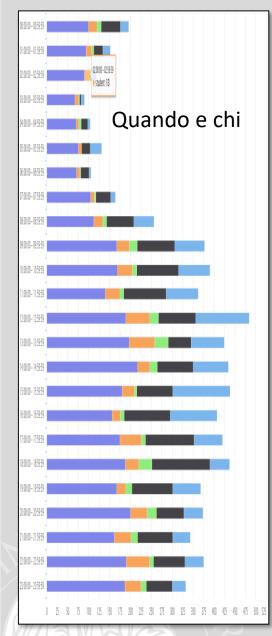
http://www.disit.org/6694

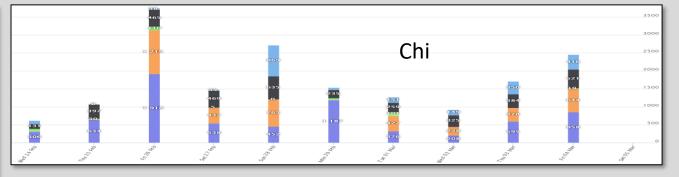
Strumenti: km4city e DISIT

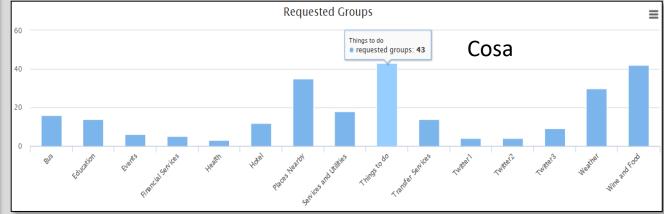
- Service Map: http://servicemap.disit.org
- Linked Open Graph, Multiple RDF Store Visual Browser: http://log.disit.org
- RDF Store SPARQL query tool: http://log.disit.org/spqlquery/
- FODD 2015 applicazione dimostrativa:
 - http://www.disit.org/6595 (pagina)
 - Google Play
 https://play.google.com/store/apps/details?id=org.disit.f
 odd
 - Sorgenti: http://www.disit.org/6596

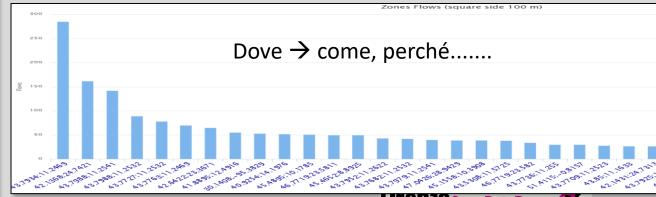
Documentazione Km4City e DISIT

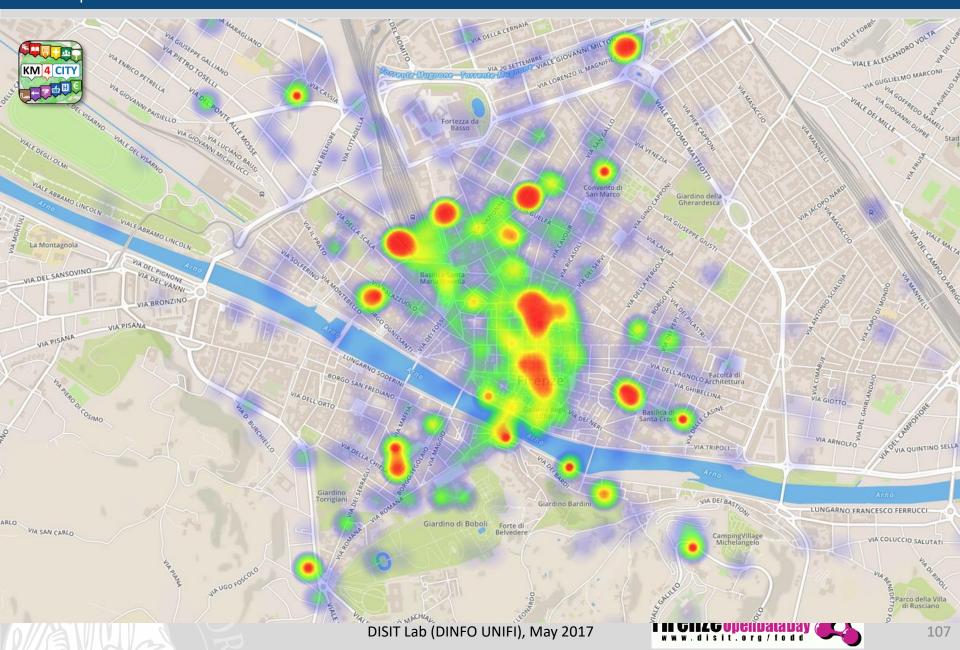

- API Service Map: http://www.disit.org/6597
- Grafo ontologia: http://www.disit.org/6507
- descrizione ITA: http://www.disit.org/6461
- descrizione ENG: http://www.disit.org/5606
- ontologia: http://www.disit.org/6506
- articolo: http://www.disit.org/6573




Km4CityMobile App: all stores

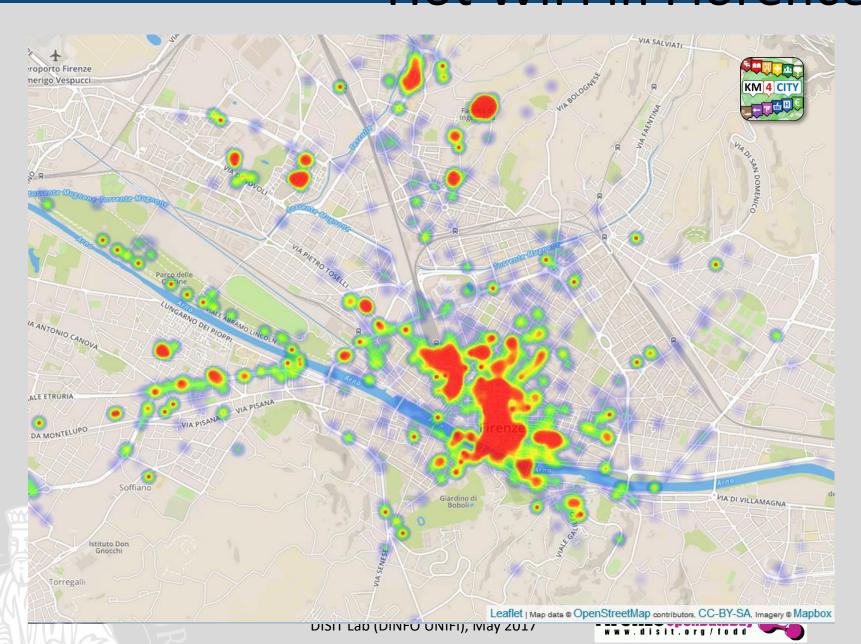






DISIT Lab, Distributed Data Intelligence and Technologies Distributed Data Intelligence and Technologies

Distributed Systems and Internet Technologies


Distributed Systems and Internet Technologies

Distributed Data Intelligence and Technologies

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

Sii-Mobili

Sii-Mobility

• **Title**: Support of Integrated Interoperability for Services to Citizens and Public Administration

- Objectives:
 - 1. Reduction of social costs of mobility;
 - 2. Simplify the use of mobility systems;
 - 3. Developing working solutions and application, with testing memods;
 - 4. Contribute to standardization organs, and establishing relationships with other smart cities' management systems.

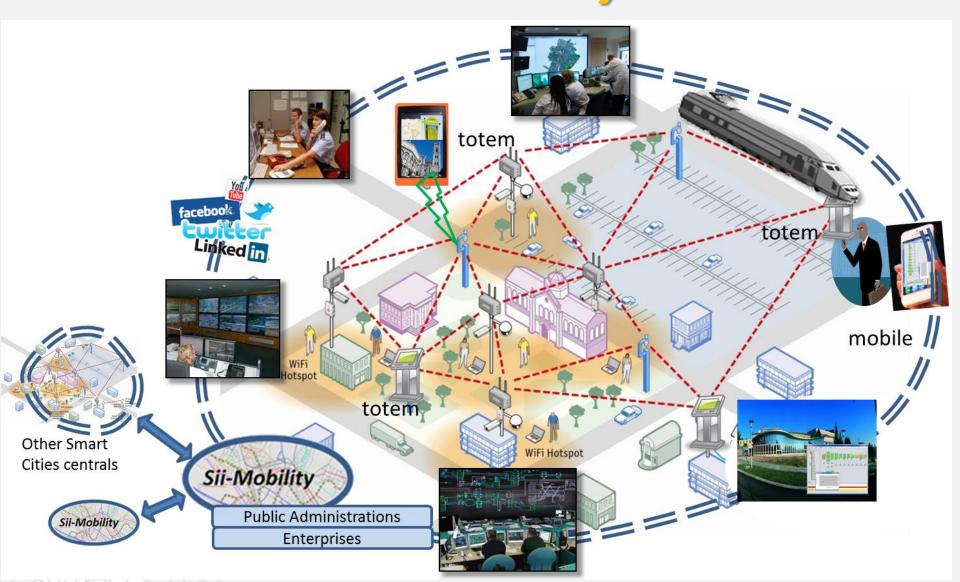
The Sii-Mobility platform will be capable to provide support for SME and Public Administrations. Sii-Mobility consists in a federated/integrated interoperable solution aimed at enabling a wide range of specific applications for private services to citizen and commercial services to SME.

- Coordinatore Scientifico: Paolo Nesi, DISIT DINFO UNIFI
- **Partner:** ECM; Swarco Mizar; University of Florence (svariati gruppi+CNR); Inventi In20; Geoin; QuestIT; Softec; T.I.M.E.; LiberoLogico; MIDRA; ATAF; Tiemme; CTT Nord; BUSITALIA; A.T.A.M.; Sistemi Software Integrati; CHP; Effective Knowledge; eWings; Argos Engineering; Elfi; Calamai & Agresti; KKT; Project; Negentis.
- Link: http://www.disit.dinfo.unifi.it/siimobility.html

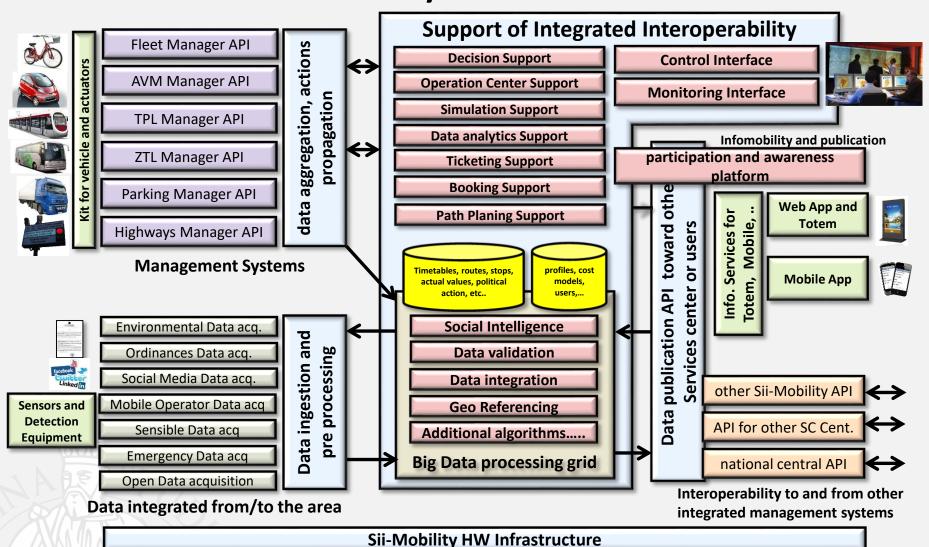
- La sfida va verso l'integrazione di grosse moli dati non omogenei per produrre deduzioni più ampie e precise
 - Dalle infrastrutture di monitoraggio e controllo: energia, ambiente, salute, traffico, taxi, etc.

Sii-Mobility

- servizi personalizzati, connessi alla mobilità nella città
- Piattaforma di partecipazione e sensibilizzazione
- integrazione di metodi di pagamento e di identificazione
- gestione delle aree a traffico controllato
 - dinamica dei confini
 - politiche di accesso
- interoperabilità ed integrazione dei sistemi di gestione
- scambio dati fra PA e privati



DISIT Lab, Distributed Data Intelligence and Technologies
Distributed Systems and Internet Technologies
Department of Information Engineering (DINFO)
http://www.disit.dinfo.unifi.it


- Experimentations and validation in Tuscany
- Integration with present central station and subsystems

Sii-Mobility Architecture

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

Smart City solutions

Sii-Mobility (Smart City) new technologies and smart solutions for improving the interoperability of management and control systems of urban infomobility, mobility and transport in the city and metropolis. (terrestrial transport and mobility)

Coll@bora (Smart City → **Social Innovation)** collaborative tools for the protection of information and data among health care institutions and families for people with imparities. (Welfare and inclusion technologies)

Coll@bora

- Title: Collaborative Support for Parents and Operators of Disabled
- Objectives: providing strong advantages for
 - 1. Relatives interested in facilitating relations with the management team;
 - 2. Associations in order to offer a better service to the families and people with disabilities by providing a collaborative support to the involved teams, but also to manage the wealth of knowledge, to support the training of the staff, etc.

Coll@bora provides a secure collaboration tool for the teams and for the association to support the families and the disabled people.

• Link: http://www.disit.dinfo.unifi.it/collabora.html

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction

Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility

SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

RESOLUTE

Resilience management guidelines and Operationalization applied to Urban Transport Environment

DRS-7-2015 - RIA - start 1/5/2015 - end 30/4/2018 Budget 3.8M

http://www.disit.org/6695



- Develop European Resilience Management Guidelines (ERMG)
 - Develop a conceptual framework for creating/ maintaining Urban Transport Systems
- Enhance resilience through improved support of human decision making processes, particularly by training professionals and civil users on the ERMG and the RESOLUTE system
- Operationalize and validate the ERMG by implementing the RESOLUTE Collaborative Resilience Assessment and Management Support Systems (CRAMSS) for Urban Transport Systems addressing Road and Urban Rail Infrastructures
 - Pilots in Florence and Athens
- Adoption of the ERMG at EU and Associated Countries level

http://www.resolute-eu.org

University of Florence: DISIT lab DINFO (Proj coordinator), DISIA and DST	UNIFI	ΙΤ
THALES	THALES	IT
ATTIKOMetro	ATTIKO	GR
Comune di Firenze	CDF	ΙΤ
Centre for Research and Technology Hellas	CERTH	GR
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.	FHG	DE
HUMANIST	HUMANIS T	FR
SWARCO Mizar	SWMIZ	IT
Associação para o Desenvolvimento da Investigação no Instituto Superior de Gestão	ADI-ISG	PT
Consorzio Milano Ricerche	CMR	IT

Infrastructure Provider

Resilience

RESOLUTE

Balanced Consortium (avoiding overlaps)

Big Data Mining Smart City

Services

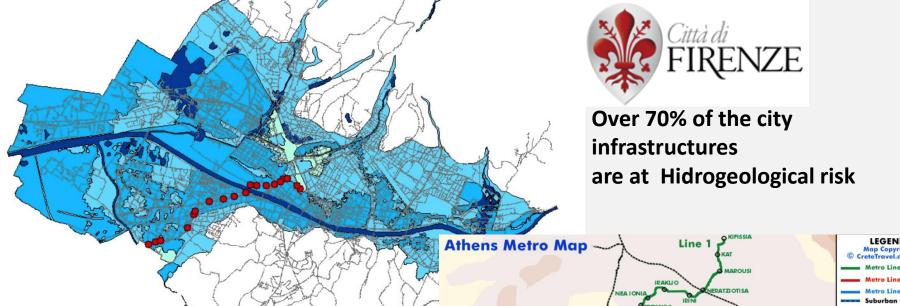
Dissemination

RESOLUTE Objectives

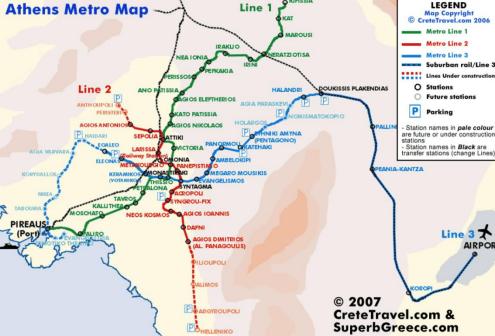
Obj1- Conducting a systematic review and assessment of the state of the art of the Resilience assessment and Management concepts, national guidelines and their implementation strategies in order to develop a conceptual framework for resilience within Urban Transport Systems

Obj2 - Development of European Resilience Management Guidelines (ERMG)

Obj3 - Operationalize and validate the ERMG by implementing the RESOLUTE Collaborative **Resilience Assessment and Management Support System** (**CRAMSS**) for Urban Transport System (UTS) addressing Roads and Rails Infrastructures

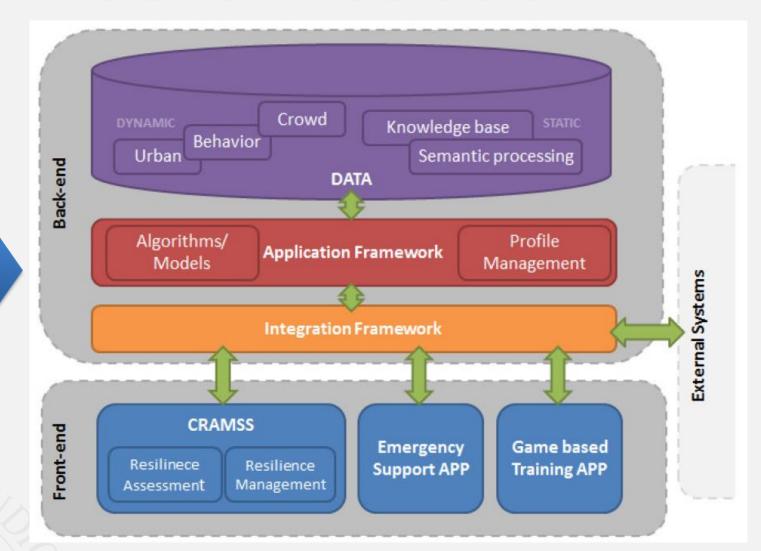

Obj4 – Enhancing resilience through **improved support to human decision making processes**, particularly through increased focus on the training of final users (first responders, civil protections, infrastructure managers) and population on ERMG and RESOLUTE system

Obj5 – **ERMG wide dissemination, acceptance and adoption** at EU and Associated Countries level



RESOLUTE Pilots

98Km metro line 65 stations 1M passenges daily



ERMG

RESOLUTE Solution

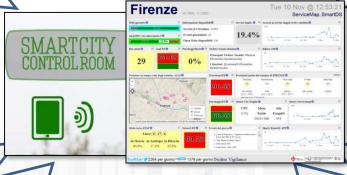
Horizon 2020 European Union Funding for Research & Innovation

REnaissance of PLaces with Innovative Citizenship And TEchnology

- demonstrate Smart City technologies in energy, transport and ICT in districts in:
 - San Sebastian, Florence and Bristol,
 - follower cities of Essen, Nilufer and Lausanne
- Cities are the customer: considering local specificities
- Solutions must be replicable, interoperable and scalable.
 - Integrated Infrastructure: deployment of ICT architecture, from internet of things to applications
 - Low energy districts
 - Urban mobility: sustainable and smart urban services

- 1 (coordinator) FOMENTO DE SAN SEBASTIAN FSS SPAIN
- **2 AYUNTAMIENTO DE SAN SEBASTIAN SAN SEBASTIAN SPAIN**
- **3 COMUNE DI FLORENCE FLORENCE ITALY**
- □ 4 BRISTOL COUNCIL BRISTOL UNITED KINGDOM
- **5 STADT ESSEN ESSEN GERMANY**
- 6 NILUFER BELEDIYESI NILUFER TURKEY
- □7 VILLE DE LAUSANNE LAUSANNE SWITZERLAND
- 8 IKUSI ANGEL IGLESIAS, S.A. IKUSI SPAIN
- 9 ENDESA ENERGÍA, S.A. ENDESA SPAIN
- □ 10 EUROHELP CONSULTING, S.L. EUROHELP SPAIN
- 11 ILUMINACION INTELIGENTE LUIX, S.L. LUIX SPAIN
- 12 FUNDACION TECNALIA RESEARCH & INNOVATION TECNALIA SPAIN
- 13 EUSKALTEL, S.A. EUSKALTEL SPAIN
- □14 COMPAÑÍA DEL TRANVÍA DE SAN SEBASTIÁN DBUS SPAIN
- **15 CONSIGLIO NAZIONALE DELLE RICERCHE CNR ITALY**
- □ 16 ENEL DISTRIBUZIONE, SPA ENEL ITALY
- 17 MATHEMA, SRL MATHEMA ITALY
- **18 SPES CONSULTING SPES ITALY**
- **19 TELECOM ITALIA, SPA TELECOM ITALY**
- 20 UNIVERSITA DEGLI STUDI DI FLORENCE UNIFI ITALY: DINFO.DISIT, DIEF
- **121 THALES ITALIA, SPA THALES ITALY**
- □22 ZABALA INNOVATION CONSULTING ZABALA SPAIN
- **23 TECHNOMAR TECHNOMAR GERMANY**
- **24 UNIVERSITY OF BRISTOL UOB UNITED KINGDOM**
- ■25 UNIVERSITY OF OXFORD UOXF UNITED KINGDOM
- □26 BRISTOL IS OPEN, LTD BIO UNITED KINGDOM
- □27 ZEETTA NETWORKS ZEETTA UNITED KINGDOM
- □28 KNOWLE WEST MEDIA CENTRE, LGB KWMC UNITED KINGDOM
- 29 TOSHIBA RESEARCH EUROPE, LTD TREL UNITED KINGDOM
- □30 ROUTE MONKEY, LTD ROUTE MONKEY UNITED KINGDOM
- 31 ESOTERIX SYSTMES, LTD ESOTERIX UNITED KINGDOM
- □32 NEC LABORATORIES EUROPE, LTD NEC UNITED KINGDOM
- ng commonwheels car club cic co-wheels united kingdom
- □ 34 UNIVERSITY OF THE WEST OF ENGLAND UWE UNITED KINGDOM
- □35 ESADE BUSINESS SCHOOL ESADE SPAIN
- 36 SISTELEC SOLUCIONES DE TELECOMUNICACION, S.L. SISTELEC SPAIN

Horizon 2020 European Union Funding for Research & Innovation


REPLICATE a Firenze: Energia, ICT e Mobilità

Major topics addressed

- Smart City Concepts
- Architecture of Smart City Infrastructures
- Peripheral processors
 - Data collectors and Managers
 - Blog Vigilance via Natural Language
 Processing
 - Twitter vigilance
- Data ingestion and mining
 - Data Mining and smart City problematic
 - Km4City: Smart City Ontology
 - RDF production, reconciliation
 - Parallel and distributed processing

Reasoning and Deduction
Smart City Engine

Decision Support System

Data Acting processors

Smart City Tools and API

Service Map and Linked Open

Graph

Mobile applications

Projects

SmartCity Project Sii-Mobility SCN

SmartCity Project Coll@bora SIN

SmartCity Project RESOLUTE

H2020

Mobile Emergency

- Smart City Group on DISIT and several slides: www.disit.org
- P. Bellini, M. Benigni, R. Billero, P. Nesi and N. Rauch, "Km4City Ontology Bulding vs Data Harvesting and Cleaning for Smart-city Services", International Journal of Visual Language and Computing, Elsevier, http://dx.doi.org/10.1016/j.jvlc.2014.10.023, P. Bellini, P. Nesi, A. Venturi, "Linked Open Graph: browsing multiple SPARQL entry points to build your own LOD views", International Journal of Visual Language and Computing, Elsevier, 2014, DOI information: http://dx.doi.org/10.1016/j.jvlc.2014.10.003
- A. Bellandi, P. Bellini, A. Cappuccio, P. Nesi, G. Pantaleo, N. Rauch, "ASSISTED KNOWLEDGE BASE GENERATION, MANAGEMENT AND COMPETENCE RETRIEVAL", <u>International Journal of Software</u> <u>Engineering and Knowledge Engineering, World Scientific Publishing Company</u>, press, vol.32, n.8, pp.1007-1038, Dec. 2012, DOI: 10.1142/S021819401240013X
- P. Bellini, M. Di Claudio, P. Nesi, N. Rauch, "Tassonomy and Review of Big Data Solutions Navigation", as Chapter 2 in "Big Data Computing", Ed. Rajendra Akerkar, Western Norway Research Institute, Norway, Chapman and Hall/CRC press, ISBN 978-1-46-657837-1, eBook: 978-1-46-657838-8, july 2013, pp.57-101, DOI: 10.1201/b16014-4
- P. Nesi, G. Pantaleo and M. Tenti, "Ge(o)Lo(cator): Geographic Information Extraction from
 Unstructured Text Data and Web Documents", SMAP 2014, 9th International Workshop on Semantic
 and Social Media Adaptation and Personalization, November 6-7, 2014, Corfu/Kerkyra, Greece.
 technically co-sponsored by the IEEE Computational Intelligence Society and technically supported by
 the IEEE Semantic Web Task Force. www.smap2014.org
- P. Bellini, P. Nesi and N. Rauch, "Smart City data via LOD/LOG Service", <u>LOD2014</u>, Workshop Linked
 Open Data: where are we?, organized by W3C Italy and CNR, Rome, 2014

Final Users tools:

http://www.disit.org/km4city

- Km4City mobile applications
- Km4City web application: http://www.km4city.org

Public administrator tools:

- Smart City Dashboards, http://dashboard.km4city.org
- ServiceMap Server, http://servicemap.disit.org
- Smart decision support system, http://smartds.disit.org
- Twitter Vigilance, http://www.disit.org/tv
- Traffic and People Flow Assessment http://www.disit.org/6694

Developers tools: http://www.disit.org/km4city

- ServiceMap Server, plus API, http://servicemap.disit.org
- Ontology Documentation http://www.disit.org/km4city
- LOG LOD browser http://log.disit.org
- Open Source Mobile Application, FODD http://www.disit.org/6595

Back Office tools for Public Administrations

- Data Ingestion Manager, DIM, http://www.disit.org/6732
- Distributed Smart City Engine, SCE, Scheduler, DISCES http://www.disit.org/6515
- RDF Indexer Manager, RIM, http://www.disit.org/6708
- RDF store enricher with dbPedia
- Adopted on projects and real scenarios

Overview on Smart City DISIT lab solution for beginner

Distributed Data Intelligence and Technologies Lab Distributed Systems and Internet Technologies Lab

Prof. Paolo Nesi DISIT Lab

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Firenze Via S. Marta 3, 50139, Firenze, Italia

Via S. Marta 3, 50139, Firenze, Italia

tel: +39-055-4796523, fax: +39-055-4796363

http://www.disit.dinfo.unifi.it

paolo.nesi@unifi.it

