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Abstract 
Formal specification models provide support for the formal verification and validation of the 
system behaviour. This advantage is typically paid in terms of effort and time in learning and 
usage of formal methods and tools. The introduction and usage of patterns has a double 
impact. They are examples of covering classical problems with formal methods in many 
different notations, so that the user can shortening the time to understand if a the formal 
method can be used for covering his purpose and how. In addition, they are used for 
shortening the specification time, reusing and composing different patterns for covering the 
specification, thus producing more understandable specifications referring to commonly 
known patterns. For these reasons, the interests and the usage of patterns are growing, thus a 
number of proposals for patterns and pattern classification/organisation have been presented 
in literature. In this paper, the analysis of the state of the art for real-time specification patters 
is presented in order to organise them in a systematic and uniform manners, providing the 
missing models. The proposed organization is based on the effective behavioural relationships 
among the patterns. In addition, during the discussion the patterns have been formalised in 
TILCO-X (an extended version of TILCO temporal interval logic), offering in this manner an 
additional formalism to be compared with those already publicly acessible in the literature for 
exposing patterns.  
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1 Introduction 
Many applications must meet some temporal constraints in order to avoid critical and/or 
degenerative conditions; examples are in the area of avionics, robotics, process control, 
patient monitoring, etc. These applications are frequently considered real-time systems, and 
are in many cases modelled by using suitable specification techniques, which allow the 
verification and validation of the specified behaviour. For their specification, a set of 
formalisms for defining relationships expressing temporal constraints among events are used 
– for example: properties of invariance, ordering among events, periodicity, liveness and 
safety conditions, etc.  
To cope with the above problems, in many cases, formal models have been used as 
requirements analysis and/or specification techniques. The selected methods/formalisms are 
in many cases formal enough to verify and validate the specification with respect to system 
requirements by using theorem provers and/or model-checking techniques.  
Among the scenarios of formal methods for the requirements analysis and specification of 
real time systems, those based on temporal logics play a relevant role [Bellini, Mattolini and 
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Nesi, 2000], [Alur and Henzinger, 1992]. The real-time system specification by using 
temporal logics is a time consuming work which can be performed with a reasonable 
efficiency only by accurately trained people. 
Recently the presentation of specification patterns for temporal logics has improved their 
usability. They can be used for training and guiding analysts and developers to express 
requirements and specifications directly in a formal language [Dwyer et al, 1999], thus 
shortening the specification time and producing specifications which are more understandable 
since refer to common well-known design patterns.  
In [Dwyer et al, 1999], a set of specification patterns have been proposed by using LTL 
(Linear Time Temporal Logic) [Manna and Pnueli, 1992], and CTL (Computational Tree 
Logic) [Clarke, Emerson and Sistla, 1986] temporal logics. Those specification patterns were 
mainly focussed on formalising specification properties such as occurrence and ordering of 
events. The identification of those patterns has been produced by analysing a large set of 
typical specifications to extrapolate the typical recurrent formal structures in the requirements 
and in the specifications, i.e., the patterns. Thus, similarly organised requirements may be 
formalised by using the same specification pattern.  
 
In the literature, a wide work has been performed to identify many kind of pattern to better 
formalise and shortening the analysis and designed processes. See for instance: analysis 
patterns [Fowler, 1997], architectural patterns [Shaw, 1996], [Douglass, 2003], design 
patterns [Gamma et al., 1994]. A different classification has been discussed in [Konrad and 
Cheng, 2004].  
 
In the area of real time systems, more recently, Konrad and Cheng [Konrad and Cheng, 
2005], [Konrad and Cheng, 2006], have proposed some real time specification patterns with 
the aim of extending the early defined patterns in [Dwyer et al, 1999], with more specific 
patterns including quantitative temporal constraints. In [Konrad and Cheng, 2005], a set of 
real-time specification patterns expressing concepts of duration, periodic and real-time 
ordering has been presented, by using the temporal logics formalizations in MTL (Metric 
Temporal Logic) [Koymans, 1990], [Koymans, 1992], TCTL (Timed CTL) [Alur, 1991] and 
RTGIL (Real-Time Graphical Interval Logic) [Moser et al., 1997]. Konrad and Cheng, in 
their works, have also presented a classification of patterns based on the structured English 
formalization of the patterns that helps the user to understand the patterns. Patterns with real 
time properties have been also discussed in [Gruhn and Laue, 2005] considering the pattern 
structure (e.g., scope, behaviour and events or occurrences) and presenting patterns 
models/mappings by means of timed automata.  
 
In [Konrad and Cheng, 2005], in order to allow the specification of real time patterns, the 
temporal logics selected were in most cases quantitative extensions of the logics used in  
[Dwyer et al, 1999]. On the other hand, observing the state of the art of temporal logics, only 
a few of them present a metric of time; that is the possibility of expressing temporal 
constraints in a quantitative manner [Bellini, Mattolini and Nesi, 2000]. Therefore, the 
patterns presented in [Dwyer et al, 1999] can be regarded as qualitative patterns with respect 
to the quantitative patterns proposed in [Konrad and Cheng, 2005]. 
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Among the temporal logics endowed of a metric of time, we can classify the above mentioned 
MTL, TCTL, and RTGIL temporal logics, but also TILCO (Temporal Internal Logic with 
Compositional Operator) [Mattolini and Nesi, 2001], and TRIO [Felder and Morzenti, 1994]. 
They have been discussed and partially compared with the former in [Bellini et al, 2001], 
[Mattolini and Nesi, 2001] and [Bellini, Nesi and Rogai, 2006]. All of them have a metric of 
time and therefore they can be profitably used for specifying both qualitative and quantitative 
temporal constraints. In this category, MTL, TILCO and TRIO are first order temporal logics. 
Please note that, other temporal logics produce specifications structurally similar to the above 
logics or have similar operators [Bellini, Nesi, and Rogai, 2006], [Mattolini and Nesi, 2001]. 
Among the above mentioned temporal logics for quantitative reasoning, TILCO and RTGIL 
are the only interval logics, and TILCO presents interesting operators that make the 
specification quite compacts. Therefore, we think very interesting to present TILCO 
specification of the proposed patterns.  
 
TILCO has been designed for the specification of real-time systems, and extends the FOL 
(First Order Logic) with a set of temporal operators. TILCO can be regarded as a 
generalization of the classical temporal logics operators eventually and henceforth to time 
intervals [Mattolini and Nesi, 2001]. TILCO allows defining expressions of ordering 
relationships among events, delays, time-outs, periodicity, liveness and safety conditions, etc. 
The TILCO logics and theory have been further developed so as to create more powerful 
formalisms; such as TILCO-X [Bellini and Nesi, 2001A] and CTILCO [Bellini and Nesi, 
2001B]. TILCO-X extends TILCO introducing the new syntax and semantics of major 
TILCO (dynamic intervals and bounded happen). This extension allows both removing since 
and until TILCO operators and writing simple predicates, including counting of events that 
may occur in intervals. CTILCO supports process composition and decomposition by 
allowing the specification of communicating TILCO processes. 
 
In this paper, the analysis of the state of the art for real-time specification patterns is presented 
in order to organise them in a systematic and uniform manner. The proposed organization is 
based on their classification and considers behavioural relationships among the patterns. 
These relationships are discussed and proved along the paper. The usage of patterns has a 
double impact. They are an occasion to provide examples of the usage of formal methods in 
many different notations with respect to the same cases, so that the user can shortening the 
time to understand if a the formal model can be used for modelling the cases under 
specification. In addition, they can be used for shortening the specification time, reusing and 
composing different patterns for the specification of more complex problems and thus for 
producing more understandable specifications referring to other users at the commonly known 
patterns. For these reasons, the practice of exploiting specification patterns is mainly 
conceived as collecting and providing organised properties ready to be used.  
During the presentation of pattern organisation and analysis of their relationships, the pattern 
mappings have been formalised in TILCO-X [Bellini and Nesi, 2001] (an extended version of 
TILCO temporal interval logic [Mattolini and Nesi, 2001]), offering in this manner an 
additional formalism to be compared with those already used in the literature for exposing 
patterns. With TILCO-X is possible to formalise all the patterns proposed in [Dwyer et al, 
1999] and in [Konrad and Cheng, 2006]. Moreover, in some cases, the specification provided 
resulted quite compact and concise due to the presence of some specific operators in TILCO-
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X with respect to other specification models; namely: the uniform management of past and 
future, dynamic internal operator, banded happen operators. For this reason a short overview 
of TILCO-X is also reported in the paper. During the formalisation of patterns in TILCO-X a 
particular attention has been given in separating the specification of the pattern scope with 
respect to the description of the pattern behaviour. In this manner, we think that the patterns 
proposed result to be more re-usable. A comparison of the patterns produced in TILCO-X 
with respect to those accessible from the literature and produced in other formalisms is 
presented in Appendix 1.  
 
The paper is organised as follows. Section 2 presents an overview of TILCO-X temporal logic 
with its major operators and formalisms, this will allow us to use the TILCO-X for reasoning 
on patterns and scopes. In Section 3, an overview of qualitative and quantitative specification 
patterns is presented. In Section 4, a discussion on organisation of the patterns and on the 
scopes is reported. Section 5 presents both qualitative and quantitative patterns specified in 
TILCO-X together with their relationships and related demonstrations. A discussion on 
patterns’ scope is offered in Section 6. Conclusions are drawn in Section 7. Appendix 1 
reports all the patterns considered and references to specifications of the same patterns that 
can be accessed from the literature.  
 

2 TILCO-X overview 
TILCO is a logic language which can be used to specify temporal constraints in either a 
qualitative or a quantitative way; the meaning of a TILCO formula is given with respect to the 
current time. Time is discrete and linear and the temporal domain is the set of integers . The 
minimum time interval corresponds to one instant, the current time instant is represented by 0 
and positive (negative) numbers represent future (past) time instants. The basic entity in 
TILCO is a temporal interval, the boundaries of which can be either included or excluded by 
using the usual notation with squared, (“[”, “]”) or round (“(”, “)”) brackets, respectively. 
TILCO has to be considered for the specification of synchronous systems, meaning that each 
system state update increments the system’s clock by 1 time unit. The basic TILCO temporal 
operators are:  

 “@ ”, universal quantification over a temporal interval:  44,2@A  means that A 

will be true from 2 and 44 time units, with respect to the evaluation time instant;  

 “? ”, existential quantification over a temporal interval;  
Interval can be also defined as a single time instant. In this case, a compressed notation can be 

used, e.g.,   3@3,3@  AA . 

  
Many temporal logics adopt since and until operators to specify dependencies among events. 
The first version of TILCO [Mattolini and Nesi, 2001] adopted since and until operators for 
the same purpose. These operators make a strong distinction between past and future and, 
subsequently, their adoption often makes the specification complex and difficult to read. The 
adoption of a unique operator, as in TILCO-X, for defining ordering relationships among 
events reduces in many cases the need of adopting nested since and until operators.  
Specifying the occurrence of one event with respect to a number of occurrences of another 
event is a situation that arises quite often (operators for event counting are needed). For 
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instance, A has to start after the arrival of 5 messages on channel B within interval I. 
Specifications with these constraints are quite complex to understand and difficult to be 
realized with classical temporal operators [Bellini, Mattolini and Nesi, 2000]. This is the 
reason why some temporal logics present specific operators for this purpose. These 
constraints can be specified in FOL and therefore also in first order temporal logic; the 
specification turns out to be complex with respect to the complexity of the concept being 
under specification and it involves quantifications.  
TILCO-X temporal logic has been defined by extending TILCO so as to enhance its 
readability and conciseness, especially when it comes to express order relationships, thus 
canceling the distinction between past and future and generalizing the Since and Until 
concepts. To this end, operators called Dynamic Intervals and Bounded Happen have been 
included in TILCO-X. They can be combined to allow defining complex real-time constraints 
by using a small number of operators.  
Please note that the semantics and the deductive system of those operators and therefore of 
TILCO-X logic are reported in [Bellini and Nesi, 2001A]. TILCO-X presents a different 
semantics and deductive system with respect to TILCO. This has been mandatory, since the 
new operators cannot be defined in terms of the previous TILCO operators. On the contrary, 
since and until operators can be defined in terms of the new TILCO-X operators, as presented 
in the next section.  

2.1 TILCO-X Dynamic Intervals 

Dynamic Intervals have been introduced to avoid any needs of distinguishing between past 
and future for ordering relationships and to avoid the nesting of since and until operators in 
many cases. They reduce the number of quantifications and allows the combination of 
ordering and quantitative relationships. These capabilities were introduced in TILCO-X by 
allowing one to write temporal intervals, not only as constant integer sets, and also by using 

formula as an interval bound. For example, TILCO-X formula  BA ,10@ states that A is 

true from 10 time units in the future until B is true for the first time, where B  identifies the 
first future instant in which B is true (from the evaluation time instant), if such an instant does 

not exist A is forever true in interval  ,10 . These two conditions are represented in Figure 

1 where blue bars depict the defined interval in which predicate A has to be true.  
 
 

B

evaluation
time instant

A

10

1st

evaluation
time instant

A

10

 
Figure 1: Example of Dynamic Interval:  BA ,10@  

 
In a similar way, an interval bound can be located in the past; for example, formula 
A@(−B,0] states that A has been true since the last time instant in which B was true until the 
current instant. Where −B identifies the last instant where B was true.  
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Noted that, until and since operators can be defined with the following formulas:  

 ABBA  ,0@until  

 0,@since ABBA   

The adoption of the Dynamic Interval operator allows writing expressions when events have 
to refer to time intervals defined in terms of other events.  
 
The following specification is a typical case in which a strong distinction between past and 
future has to be performed to adopt since and until operators: since the last occurrence of C 
and until the first occurrence of D, for every occurrence of A there will be an occurrence of B 
at the same time. In TILCO, it can be formalized as follows:  

       BADBABAC  untilsince  

With TILCO-X, writing intervals which start in the past and end in the future becomes 
possible; therefore, the above TILCO specification is greatly simplified:  

   DCBA  ,@  

This TILCO-X formula can be read as: A  B is true from the last occurrence of C in the past 

and the first occurrence of D in the future, with respect to the evaluation time instant.  
In many cases the definition of intervals with dynamic bounds (identified by the validity of a 
generic formula) is of great help in avoiding the adoption of nesting temporal quantifiers. The 
following TILCO-X formula provides another such example:  

 CBA  ,?  

This formula states that A happens between the next occurrence of B and the next occurrence 
of C. The interval boundaries are included; therefore, A may happen even at the same time 
instant as B or C. Without the new construct the same formula would have been written using 
two nested until operators.  

         BAACABCBB  untiluntiluntil,0?  

B must happen in the future, otherwise the interval  CB  ,  is empty and A cannot happen 

in an empty interval. Explicit temporal quantifications are not allowed in TILCO language, as 
demonstrated in [Alur and Henzinger, 1990]. On such grounds they have been excluded as a 
necessary condition to have automated verification mechanisms [Mattolini and Nesi, 2001]. 
For these reasons, in the early version of TILCO, it was complex to specify certain constraints 
without the adoption of a direct temporal quantification. This problem has been solved with 
TILCO-X that allows writing complex ordering relationships among events, especially those 
combining order and quantitative relationships. 

2.2 TILCO-X Bounded Happen 

Bounded Happen has been defined to increase constraint readability which includes the 
dependency on the counting of occurrences. Sometimes a constraint implies counting the 
number of an event occurrences or in general how many times a formula is true in a given 
time interval. 
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Bounded Happen can be used to state that a formula is true in an interval from a minimum to 
a maximum number of times. For example, TILCO-X formula: 
 

 15,1?2A  

states that A is true twice or more times in interval  15,1 . While TILCO-X formula 

 

 15,1?3A  

states that A is true up to three times in interval  15,1 . 

By combining such operators, it can be stated that: a formula has to be true in the interval 
from a minimum to a maximum number of times; as it is shown with the following example: 
 

 15,1?3
2A  

Bounded happen can be used with the Dynamic Interval operator. The following formula 

states that A happens two or three times from now until B happens (see Figure 2): 

 

 BA ,0?3
2  

 

A B

evaluation
time instant

A
1st 2nd 1st

A AA

 

Figure 2 – Example of Bounded Happen:  BA ,0?3
2  

3 Overview of Specification Patterns 
In [Dwyer et al, 1999], a classification of specification pattern has been proposed. Then, in  
[SAnToS] details about qualitative specification patterns are published covering all the typical 
situations in which a developer may be when trying to define reactive systems. 
 
Patterns are typically formalised considering the: 

 Pattern: the pattern itself which is the property, the behaviour that has to be specified, 
modelled, mapped with the chosen formalism (formal model in this case); 

 Scope: the extent of the program execution over which the pattern behaviour must hold. 
The scope is determined by specifying a starting and an ending state/event for the pattern: 
the scope consists of all states/events beginning with the starting state/event and up to and 
not including the ending state/event. Also the Scope has to be formalised with the chosen 
formalism. On this aim, who is going to formalize the pattern can be more or less 
interested in making evident the distinction among, to have the so called “separation of 
concern”.  
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Both pattern and scope refer to the occurrence of events/states that could be substituted with 
more complex predicates in the aim of creating more complex specifications/models, let say 
for “composition of patterns”.  

3.1 Patterns scope 

In [Dwyer et al, 1999], five basic kinds of scopes have been proposed, as shown in Figure 3:  
 global – the property has to hold for the entire program execution; 
 before R – the property has  to hold up to the occurrence of state/event R; 
 after Q – the property has to hold after the occurrence of state/event Q; 
 between Q and R – the property has to hold in every interval having state/event Q on 

left and state/event R on right; please note that multiple overlapped intervals having 
the same end point are included in the mapping, see Figure 3 for the this scope and 
interval covering Q-Q-R sequence; 

 after Q until R – the property has to hold in every interval having state/event Q on 
left and state/event R on right or no ending event; this means that this property holds 
even when the interval is not closed by R. 

R R

Q Q

Q Q R Q R Q

Q Q R QR

begin end

Global

Before R

After Q

Between Q 
and R

After Q 
until R

R R

Q Q

Q Q R Q R Q

Q Q R QR

begin end

Global

Before R

After Q

Between Q 
and R

After Q 
until R

 

Figure 3 – Pattern Scopes 

The experience strongly indicates that in most cases requirements are specified as properties 
of (i) the whole program execution or of (ii) specific segments of the program execution. 
Thus a pattern system for properties allows one to specify the system behaviour regarding 
specific status fragment/condition of the program execution [Dwyer et al, 1999].  
 
In [Konrad and Cheng, 2006], other scopes have been presented: 
 in the presence of F –   a property has to hold only in an interval in which F occurs 

at least once; 
 in the absence of F –   a property has to hold only in an interval in which F never 

occurs; 
 from when F never holds –   a property has to hold only from the state/event in 

which F is going to stay false forever. 
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Explicit scope operators are not present in most specification formalisms; interval logics can 
be considered an exception, if the operators to define the interval is used for modelling the 
scope. Generally, it could be also possible to use scopes which are open on left and/or rights. 
A discussion on these additional scopes and other aspects related to the scopes are reported in 
Section 7.  

3.2 Patterns models 

In [Dwyer et al, 1999], patterns are classified as: 

 Occurrence Patterns are used to express properties related to the existence or lack of 
existence of certain states/events in the pattern scope. They have been classified in four 
subtypes:  

o Absence, also known as never happen. The event will never occur within the 
scope; 

o Universality, also known as henceforth. The event will always occur within the 
scope; 

o Existence, also known as eventually. The event may occur within the scope; 
o Bounded Existence. The event has to occur a fixed number of times within the 

scope. Variations of this pattern may be defined replacing the fixed counting of 
events with “at least” or an “at most” construct.  

 Order Patterns are used to express requirements related to pairs of states/events during -
defined scopes. There are two order-related patterns:  

o Precedence. P event has always to precede Q event within the scope.  
o Response, also known as Follows, Leads-To. P event has always to be followed 

by Q event within the scope. 
o Chain Precedence. A sequence of Pi events has always to precede by a sequence 

of Qi events within the scope. It can be regarded as a generalisation of the 
Precedence pattern. 

o Chain Response. A sequence of Pi events has always to be followed by a 
sequence of Qi events within the scope. It can be regarded as a generalisation of 
the Response pattern. 

 
In the above classification, the Chain Precedence and Chain Response patterns can be 
regarded as specific cases of Precedence and Response patterns, respectively; since the 
occurrence of a sequence or of a chain of events can be regarded as the occurrence of the 
single event (chain or sequence) and in the patterns the event P may be intended in that 
manner.  For this reason in the following they have not been reproduced in TILCO-X.  
 
In [Dwyer et al, 1999], proposed patterns are defined in terms of what happen in the future 
and never on what has been occurred in the past. The decision of presenting only patterns 
referring to the future may be due to the formalisms used. In the presentation of TILCO-X 
pattern in some cases both approaches have been offered, see Appendix 1, since TILCO-X 
allows reasoning in a uniform manner in both past and future.  
 
In [Konrad and Cheng, 2006], a set of real time patterns have been proposed considering 
MTL, RTGIL and TCTL temporal logics. They have been classified as: 
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 Duration Patterns are used to express requirements related to the duration of a condition 
with respect to quantitative value. There are two basic patterns: 

o Minimum Duration. When P becomes true it remains in that condition at least 
for a minimum time duration t; 

o Maximum Duration. When P becomes true it remains in that condition at most 
for the maximum time duration t; 

 Periodic Patterns are used to express requirements related to definition of periodic 
events/states. There is one related pattern:  

o Bounded Recurrence (called Time-Constrained Recurrence in the classification 
proposed in this paper). Limits the period within which a given occurrence has to 
happen. P occurs every t time instants;  

 Real Time Order Patterns are used to express requirements related to formalising 
patterns in which the time duration among events occurrences is limited. There are two 
basic patterns:  

o Bounded Response (a specific cases also included in the Time-Constrained 
Response in the classification proposed in this paper). Limits the maximum time 
duration from the event/state in which a formula is true until another formula 
become true; 

o Bounded Invariance (called Time-Constrained Activation in the classification 
proposed in this paper). Limits the minimum time duration from the event/state in 
which a formula is true once another formula is true. 

 
Please note that, in the set of patterns proposed in [Konrad and Cheng, 2005] the term 
bounded is used for describing a bound in time, while in [Dwyer et al, 1999] the same terms 
is used to refer to a limit in the number of event occurrences. For this reasons, in order to 
avoid confusion, some of the patterns presented in [Konrad and Cheng, 2005] have been 
renamed in this paper as reported above, mainly by substituting “Bounded” with “Time-
Constrained”. In addition, we performed another change in the naming proposed in [Konrad 
and Cheng, 2005], specifically changing “Invariance” with “Activation”, this will be more 
clear when the related pattern will be presented. 
 
Analysing the relationships among all the above mentioned patterns several similarities have 
been identified that convinced us to produce an integrated classification as reported and 
discussed in the next section.   

4 Specification Patterns Organization  
In this section, the above mentioned organization of patterns is presented considering both 
qualitative and quantitative patterns. This approach required a reorganization of the existing 
pattern catalogue, and an extension of the scope concept. It has been chosen to put in strict 
relation real-time patterns with those already present which do not consider a metric of time. 
 
Differently from [Konrad and Cheng, 2006], in our pattern organisation no radical distinction 
has been performed from qualitative and quantitative (also called real time) patterns. The 
organisation proposed in [Konrad and Cheng, 2006] maintained the [Dwyer et al, 1999] 
hierarchy and added an additional hierarchy for the real time patterns. In turn, for their 
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purpose, they have been organised grouping together those that may have a common root in 
terms of pattern description as “structure English”. Our organisation is based on a different 
purpose as described in the following.  
 
In Figure 4, the proposed organisation is presented. At the first layer, the pattern categories 
are considered as in [Dwyer et al, 1999] and [Konrad and Cheng, 2006]. After that layer, the 
patterns are grouped according to the categories and present some relationships among them 
highlighted with empty arrows. The proposed organisation has been created after to have 
analysed and identified the relationships among patterns and discovered some “behavioural 
generalisation” among some of them as discussed in the rest of the paper.  
 

 

Figure 4 – Pattern hierarchy and relations 
 
The “behavioural generalization” has been used to model the fact that the un-timed properties 
can be obtained by relaxing the time constraints from the timed properties. For example, 
Time-Constrained Response Pattern, which models properties like “S responds to P between 
kmin and kmax” can be used to obtain a Response Pattern by simply imposing qualitative time 

bounds as 0min k and maxk . In the diagram, the generalization is depicted by using a 

white arrow to represent the “is a” relationship. 
 
This generalization has brought a unified hierarchy with respect to what has been defined by 
[Konrad and Cheng, 2006]. In fact, the categories only distinguish which kind of constraint 
the pattern is applying to the predicates: 

 Occurrence: properties which express if a given predicate has to occurs, always, never, 
periodically or for a given amount of times. It has been defined in [Dwyer et al, 1999]. 

 Duration: properties that without imposing the occurrence, requires a predicate to hold 
for a given duration. It has been defined as a real-time type category in [Konrad and 
Cheng, 2006]. 

 Order: properties that put in relation more predicates, by ordering them. It has been 
defined in [Dwyer et al, 1999]. 

 
In these categories, both qualitative and quantitative patterns are organized while the latter 
(real time) have been marked in grey to put them in evidence. 
The category of Periodic patterns proposed [Konrad and Cheng, 2006] with only one pattern 
(Bounded Recurrence and called Time-Constrained Recurrence in this paper) has not been 
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used since the single pattern Time-Constrained Recurrence has been classified as a 
occurrence pattern – i.e., periodic occurrences.  
The category of Real Time Order proposed [Konrad and Cheng, 2006] with two patterns 
Bounded Response (a specific case of Time-Constrained Response in this paper) and 
Bounded Invariance (called Time-Constrained Activation in this paper) has been fused with 
that or Order. In effect there exist strong behavioral relationships among them  as 
demonstrated in the following.  
In the above hierarchy, Precedence Chain and Response Chain have not been presented, since 
a chain of events can be considered as an event itself as stated before and in [Gruhn and Laue, 
2005]. 
 

5 Specification Patterns with TILCO-X 
In this section, the patterns organisation reported in the previous Section is discussed 
presenting the evidence of the relationships among the patterns. The formalism used in the 
presentation of the patterns is TILCO-X, which resulted quite effective in the formalisation of 
many complex structures. TILCO-X can be used to formalize both qualitative and quantitative 
real-time patterns. 
 
According to the previous discussion, qualitative and quantitative patterns have been 
presented by using several different temporal logics such as: RTGIL, MTL, TCTL, LTL, GIL, 
etc. (see  [Konrad and Cheng, 2005], [Dwyer et al, 1999]). In all these cases, the patterns have 
been presented by: 

 Referring to a point in which the process start, nothing happen before; 

 Considering the pattern behaviour from the process start to the infinite; 

 Describing the actions towards the future, fixing a point and stating what is going to 
happen in the next status or state evolution. 

 
By using TILCO-X for the pattern mapping, we have noticed some differences that make 
some of the mappings more intuitive and in some how different with respect to those 
presented for other logics. The main differences are based on the fact that in TILCO-x: 

 it is possible to specify formulas in the past and in future in an uniform manner 
[Bellini et al., 2006]; 

 a specific process start is missing; while one can be defined by means of  

AstartprocessAstart  _):(   thus process_start is the given time instant 

from which any property has to be satisfied; 

 once defined the start, it is possible to define a rule that impose the validity of the 
formula from the process start to the time limit (e.g., infinite) 

),0@[):(  AstartArule  

In effect, start identifies an expression which has to be verified on the sole initial time instant, 
while rule imposes the expression to be verified on the entire time domain. Thus, the patterns 
are typically presented in the form of start or of rule depending on the needs.  
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Therefore, one of the contributions of the paper is also to present the TILCO-X formalisation 
for specifying patterns that can be compared with those presented in other formalisms by 
following the Appendix 1. In Appendix 1, all patterns discussed in this paper are reported in 
TILCO-X for all the scopes and for each of them references to other documents or web sites 
containing the same pattern mappings in other formalisms are reported.  
 
In the following, a description of the patterns considered by following the organization 
described in the previous Section is reported (please refer to Appendix 1 when an exhaustive 
view of all formulas for a pattern is needed). The description is focused on presenting and 
stressing the main relationships among the patterns. Those relationships are in some cases of 
behavioural specialization as shown in the sequel. 

5.1 Occurrence specification patterns  

As stated in Section 4, the category of the Occurrence patterns includes: Absence, 
Universality, Existence, Bounded existence and Time-Constrained Recurrence (called 
Bounded Recurrence in [Konrad and Cheng, 2006]).  
 
The Absence Specification Pattern aims to describe a portion of a system's execution that is 
free of certain events or states. Thus, as can be noted observing the Absence (Occurrence) 
pattern reported below, the scopes are modelled by dynamic intervals. Thus, the TILCO-X 
mapping appears to be very concise for every occurrence pattern on each scope. 
 

Pattern Name and Classification 
Absence: Occurrence Specification Pattern 
 
Temporal Logic Mappings 
TILCO-X 

Globally: ),0@[: Pstart  

Before R:    ),0@[,0?: RPRstart   

After Q:  ),@[:  QPstart  

Between Q and R:  RQPRrule  ,@),0?(:  

After Q until R:   RQPrule  ,@:  

 

The definition of interval-based operators like “@ ”, “? ”, and “ max
min? ” allows to reuse the 

pattern mappings for all the other Occurrence specification mappings. 
In fact to map all the other Occurrence patters on the on the five scopes it is only needed to 
replace the operators on the left while the scopes remain independently modelled by intervals,  

 Globally:   ,0  

 Before R:    R,0  

 After Q:    ,Q  

 Between Q and R:  RQ  ,  

 After Q until R:   RQ  ,  
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For example, all the occurrence patterns for the “After Q until R” scope are. 

 Universality:    RQPrule  ,@:  

 Absence:    RQPrule  ,@:  

 Existence      RQPRQtruerule  ,?,?:  

 Bounded Existence:     RQPRQtruerule  ,?,?: max
min  

 Time-Constrained Recurrence     ),@[),0?[,?: RQkPRktruerule   
 

Please note that formulas share the same structure. The same structuring applies for all the 
other scopes. TILCO-X operators model in a quite simple manner the occurrence patterns, 
while leaving to the intervals the definition of the pattern scope, keeping separate the two 
concepts into the specification.  
 

The only difference is in the semantic of “@ ” and “? ” when the specified time interval is 

empty (i.e., R  happens before Q with respect to the evaluation instant). In that case the “@ ” 

operator is vacuously true, while “? ” operator on an empty interval is evaluated as false 

[Mattolini and Nesi, 2001]. For example, in the Existence Pattern, formula  RQtrue  ,?  

states that, with respect to the evaluation time instant, a non-empty interval Q-R will occur in 
the future. 
 
According to the definition of the scope in [Konrad and Cheng, 2006], the model accepts the 
presence of multiple Q instances in the interval and it is valid in all of them from Q to R. If 
the scope needs to be restricted to start from the first Q, the Q in the scope should be 

substituted by:   0,@ RQQ  . This rewriting can be applied, for the same purpose, 

also to some other patterns. Please note that the “past” semantic of dynamic interval allows 
identifying the first Q of a Q-R sequence with a quite simple formula, this would be more 
complex with only future operators. 
 
Among the Occurrence patters, a relationship of behavioural specialization has been 
identified. In fact, a model of the Bounded Existence pattern is also a model of the Existence 
pattern in the corresponding scopes: if P exists in a limited number of times from a minimum 
to a maximum, it surely occurs at least once. TILCO-X semantics maps this concept with this 
substitution: 

iPiP ??1   

Where: i is any time interval (dynamic or not) [Mattolini and Nesi, 2001]. This relationship is 
also confirmed among the pattern mappings in LTL or CTL proposed by [Dwyer et al, 1999].   
Please note that, in TILCO-X, the specification of the Bounded Existence patter results to be 
quite simple with respect to the specifications performed in formalisms that does not present 
operators for modelling/counting the occurrences (e.g., LTL).   
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5.2 Duration Specification Patterns 

As stated in Section 4, the category of the Duration patterns includes: minimum duration and 
maximum duration of events. The minimum duration describes a condition in which “ once P 
becomes true, it holds for at least k time instants” , while the maximum duration states that 
“once P becomes true, it holds for at most k”. 
 
Observing and comparing those patterns as reported in Appendix 1, it can be noted that the 
scopes are put in evidence and thus the same pattern specification and scope can be managed 
independently.  
 

In the following patterns, the specification segment  PP  1@  identifies the occurrence 

of a false-true transition of P.   
 
The duration constraints can be imposed with quantitative intervals. For example, considering 
both patterns in the same scope “After Q”. 

 Minimum duration         ,@,0@1@: QkPPPstart  

 Maximum duration         ,@,0?1@: QkPPPstart  

 
The first property is dual with respect to the second since 

    kPkP ,0?,0@  . 

5.3 Order Specification Patterns 

Order specification patterns include: Precedence, Response, Time-Constrained Precedence, 
Timed-Constrained Response (similar to the Bounded Response in [Konrad and Cheng, 
2006]). Activation and Time-Constrained Activation (called Bounded Invariance in [Konrad 
and Cheng, 2006]).  

5.3.1 Precedence pattern 

The Precedence Specification Pattern is used to describe relationships between a pair of 
events/states where the occurrence of the first is a necessary pre-condition for an occurrence 
of the second. We say that an occurrence of the second is enabled by an occurrence of the 
first. Precedence properties occur quite commonly in specifications of concurrent systems.  
 
The precedence property is intuitively a “past-based” formula; in the following example two 
different mappings of “S precedes P” on “Between Q and R” are presented. 

 with past mapping    ),@[)0,?[),0?(: RQQSPRrule   

 pure future mapping    RSPRRQrule  ,0@),0?(:  

 
Please note that the past form allows keeping independent scope and pattern intent; the future 
form uses the dynamic interval with the conjunction of S and R (scope boundary). 
Furthermore the past form is more readable since it is still recognizable that “if P occurs, then 
S has occurred before”. 
The use of past in the intervals is a fundamental feature in order to obtain such an intuitive 
mapping of the Precedence concept. The use of past keeps intact the actual “aim” of the 
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expressed property, which is to verify a condition regarding the past with respect to the 
occurrence of P. 
The model for pattern “S precedes P between kmin and kmax” is more general and includes the 
case of “S precedes P” when kmin is the evaluation time instant (i.e., 0, zero) and kmax is the 
left bound of the scope. This is presented in Section 5.3.5.  
 

5.3.2 Response pattern 

The Response Specification Pattern is used to describe cause-effect relationships between a 
pair of events/states. An occurrence of the first, the cause, must be followed by an occurrence 
of the second, the effect.  
 
Similarly to Precedence, Response pattern is quite commonly used in specifications of 
concurrent systems. Note that a Response property is like a converse of a Precedence 
property. Precedence says that some cause precedes each effect, and Response says that some 
effect follows each cause. They are not equivalent, because a Response allows effects to 
occur without causes (Precedence similarly allows causes to occur without subsequent 
effects). 
The mappings with TILCO-X of Response pattern preserve the same structure of Precedence, 
while using dynamic interval with future bounds. In fact, “S responds to P” in “Between Q 
and R” can be expressed as: 

    ),@[),0?[,0?: RQRSPRrule  . 

In this case, the interval in which S has to occur is between the occurrence of P and the end of 
the scope, while, in the corresponding Precedence mapping, the interval is between the begin 
of the scope and the occurrence of P. 
Similarly to Precedence, the model for pattern “S responds to P between kmin and kmax” is 
more general and includes the case of “S responds to P” when kmin is the evaluation time 
instant and kmax is the right bound of the scope. This is demonstrated in Section 5.3.6. 

5.3.3 Activation Pattern 

Another pattern for imposing activation property (where an event triggers another to hold) can 
be defined as Activation. It is related to the Response in the sense that S has not only to occur, 
but to hold until the end of the scope. 
Even in this case, TILCO-X operators allow maintaining a well-defined structure. For 
example, “P activates S” on “Between Q and R” can be written as 

    ),@[),0@[,0?: RQRSPRrule  . 

Please note that only the TILCO-X operator in the pattern mapping has been changed with 
respect to Response Pattern. This remarks the powerful of using interval-based operators for 
modeling Existence or Universality. 
The model for pattern “P activates S at least for k” is more general and includes the case of 
“P activates P” when k is right bound of the scope. This is shown in Section 5.3.7.  
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5.3.4 Consideration on Order Specification Patterns 

Please note that interval-based logic is capable of modelling the scopes in a readable manner, 
and keeping them  separate from the specification of pattern behaviour, since the scope can be 
viewed as an interval. In fact, in a general way all the Precedence, Response and Activation 
Specification patterns can be generally expressed by defining “beginning of the scope” and 
“end of the scope”, these event/states need to be expressed like viewed at any time instant 
inside the scope. The definitions are reported in the following Table. 
 

Scope Beginning of scope End of 
scope w.r.t. process_start w.r.t time instants inside scope 

Globally 0  startprocess _    

Before R 0  startprocess _  R  

After Q Q  Q    

Between Q and R Q  Q  R  
(must exist) 

After Q until R Q  Q  R   

 begscope _  inbegscope __ endscope _  

 
In the last row of the table, some predicates are defined in order to generally indicate scope 
bounds in expressing TILCO-X mapping independently from the scope. 
 

Precedes: 
The general expression of “S precedes P” for the first three scopes can be written as 

    endscopebegscopeinbegscopeSPstart _,_@0,__?:  . 

The other two scopes potentially define an infinite set of intervals, thus is not possible to 
obtain expression which are evaluated only at start time instant, while the need of using a 
“rule” is evident in order to detect any scope realization (i.e. when a Q-R sequence occurs). 
As depicted in Universality Pattern (see Appendix 1), to assert a property P at any time instant 

after Q until R, it is needed to impose ),@[ RQP   at a single time instant just before a Q-

R sequence; using “rule” the desired expression is obtained and A is asserted in all the Q-R 
sequences along the time axis. 
Thus, the general expression for “S precedes P” is still valid for “After Q until R”, while is 
written with “rule” statement as 

    endscopebegscopeinbegscopeSPrule _,_@0,__?:   

and the expression of “Between Q and R” only adds the existence of the scope (i.e. R must 
happen): 

    endscopebegscopeinbegscopeSP

endscoperule

_,_@0,__?
_:



 

Responds: 
Similarly the general expression of “S responds to P” for the first three scopes (“Globally”, 
“Before R” and “After Q”) can be written as 
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    endscopebegscopeendscopeSPstart _,_@_,0?:  . 

The “After Q until R” and “Between Q and R” scopes can be respectively written as  

    endscopebegscopeendscopeSPrule _,_@_,0?:   

and 

    endscopebegscopeendscopeSPendscoperule _,_@_,0?_:   

Activates: 
Activation pattern can be represented like Response for the first three scopes as 

    endscopebegscopeendscopeSPstart _,_@_,0@:  . 

and for “After Q until R” and “Between Q and R” scopes as 

    endscopebegscopeendscopeSPrule _,_@_,0@:   

and 

    endscopebegscopeendscopeSPendscoperule _,_@_,0@_:   

Some of the pattern mappings could accept simpler expressions. Thus the result of 
maintaining the same clear structure for all the mappings, distinguish among scopes and 
pattern intents it has been considered of great value. This could help in reusing/extending 
these mappings to easily adapt their formulae to specific behavior. In Appendix 1, for some 
Patterns, the alternative and simpler formalizations are also reported. 

5.3.5 Time-Constrained Precedence Pattern 

The above generalization suggested how to generalize Order pattern to add real-time 
quantification of the event relationships. Since TILCO-X enables specification of time 
intervals with both qualitative (i.e., events) and quantitative (i.e., time durations), use of 
dynamic interval allow to introduce metric of time for Order Patterns, still maintaining a 
comprehensible structure.  
For example, for the Time-Constrained Precedence Pattern, a few examples for some scopes 
are: 

 Globally    

 
 
 

 

),0@[

,?
,_?

,_?
_,?

:

minmax

max

min

max





































































kkS

kstartprocesstrue

kstartprocessS

startprocessktrue

Pstart  

 After Q until R 

    
     ),@[

,?,?
,?,?

:
minmaxmax

minmax RQ
kkSkQtrue

kQSQktrue
Prule 





















  

 
The augmented expression introduced for imposing a real-time property to the occurrence of 
S, is made complex to distinguish when the left bound of the scope has occurred before the 
kmax time instants in the past. In Figure 5, two different conditions are presented, please note 
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that S must precede P after the scope boundary if it happens within the requested time 
duration. 

Q P
Between Q 

and R

kmin

begin end

R

kmax

S?
Q P

kmin

R

kmax

S?  

Figure 5 – Scope boundaries and time durations 
 
It has to be highlighted, that all the mappings of these patterns have been realized by reusing 
the same formula structure (see Appendix 1), which is created on the basis of the beginning 
and the end of each scope: 

 
 
 

 

)_,_@[

,?
,__?

,__?
__,?

:

minmax

max

min

max

endscopebegscope

kkS

kinbegscopetrue

kinbegscopeS

inbegscopektrue

Pstart



































































 
If process_start definition also implies that all the examined predicates are false before such 
an instant: 

   startprocessSRQP _,@  . 

the above formalizations can be simplified. Some examples are given: 

 “Globally, S precedes P between kmin and kmax”: 

   ),0@[,?: minmax  kkSPstart  

 “Before R, S precedes P between kmin and kmax”: 

   ),0@[,?: minmax RkkSPstart   

 
Generally, replacing “quantitative” time constants with “qualitative” scope bounds, the Order 
Patterns as defined by [Dwyer et al, 1999] are obtained as a special case of Time-Constrained 
version. In the following, a demonstration of the fact that Time-Constrained Precedence 
generalizes Precedence is provided. It can be proved that expressing “After Q until R, S 
precedes P” is equivalent to express “After Q until R, S precedes P between kmin and kmax” 

where 0min k  and Qk  max  (the left side of the scope). 

 
Therefore, the real-time TILCO-X mapping can be rewritten as: 

    
     ),@[

0,?,?
0,?,?

: RQ
QSQQtrue

QSQQtrue
Prule 



















  

and according to the dynamic interval semantics of TILCO-X, it can be stated that 

  falseQQtrue  ,?  (empty interval) 
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  trueQQtrue  ,? (non-empty interval) 

Thus, the Time-Constrained Precedence mapping can be simplified to  

   ),0@[0,?: RQSPstart   

Which is exactly the same expression of the Precedence Pattern mapping on scope “After Q 
until R”. 

5.3.6 Time-Constrained Response Pattern 

Time-Constrained Response Pattern can be defined in a similar manner to Time-Constrained 
Precedence Pattern. In this case the right bound of the scope has to be evaluated with respect 
to kmax. 
 
Some example of TILCO-X mappings are given in the following, while the complete set of 
pattern mappings is presented in Appendix 1: 

 Before R 

      
     ),0@[

,?,?
,?,?

,0?:
maxminmax

minmax R
kkSRktrue

RkSkRtrue
PRstart 





















  

 After Q:    ),@[,?: maxmin  QkkSPstart  

 
Please note for the “After Q” scope the formula appears simpler since for this scope there is 
not needs to have a right bound. 
 
Even in this case the Time-Constrained Response Pattern is a generalization of the 
corresponding “un-constrained” Response Pattern .The demonstration is taken by proving that 
expressing “Before R, S responds to P” is equivalent to express “Before R, S responds to P 

between kmin and kmax” where 0min k  and Rk max . Therefore, the TILCO-X mapping 

of this pattern can be rewritten as: 

      
     ),0@[

,0?,?
,0?,?

,0?: R
RSRRtrue

RSRRtrue
PRstart 



















  

and according to the dynamic interval semantics of TILCO-X, it can be stated that: 

  falseRRtrue  ,? ; 

  trueRRtrue  ,? . 

Thus, the Time-Constrained Response exactly maps Response in the scope “Before R”.  

     ),0@[,0?,0?: RRSPRstart   

In the specification of real-time constrains, the use of “between kmin and kmax” is a 
generalization with respect to the Bounded Response defined in [Konrad and Cheng, 2006], 
where one-bound constraint has been used. This Pattern can be obtained by replacing one of 
the quantitative boundaries (kmin, kmax) with a qualitative one, that can be “now”, “beginning 
of the scope” or “end of the scope”. 
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5.3.7 Time-Constrained Activation Pattern 

Also Activation Pattern is related to the corresponding real-time version: Time-Constrained 
Activation. For example: 

 After Q:    ),@[,0@:  QkSPstart  

 Between Q and R        ),@[,0@,,0?: RQkSRktruePRrule   

 
Please note that, like [Konrad and Cheng, 2006], the scope end cannot interrupt the time 

length in which S holds (see Figure 6). The formula  Rktrue ,  is placed to state that “R 

occurs after at least k time instants”.  

P R

Before R

k k
begin end

S@
P

 

Figure 6 – Examples of Time-Costrained Activation property 
 
The demonstration that this Pattern generalizes the Activation pattern is very similar to those 
presented for Precedence and Response patterns; thus, it has been left to the reader. 

6 Discussion on Pattern Scopes  
As above mentioned, in [Konrad and Cheng, 2006], other scopes have been presented. These 
additional scopes may be specified according to the following constructs, where P is 
modelled as Universality, while can be any other of the above mentioned. 
 
Scope: in the presence of F – a property has to hold only in an interval in which F occurs at 
least once. 

    ,0@,0?: PFstart  

Scope: in the absence of F – a property has to hold only in an interval in which F never 
occurs: 

    ,0@,0?: PFstart  

Scope: from when F never holds – a property has to hold only from the state/event in which 
F is going to stay false for ever: 

    ,,0?@: FPstart  

Real-time constraints can also extend scopes as defined by [Gruhn and Laue, 2005]. In fact 
scope boundaries can be easily generalized as a given amount of time before or after a 
qualitative event. The scope “After Q” can be extended as “After k time instants after/before 
Q”. This can be useful to model “the airbag system is ready after 10 seconds the car engine 
has started”. The extension is a generalization since the present scopes as defined by [Dwyer 

et al, 1999] are still modelled by applying 0k . In Figure 7, an example of real-time scope 

“After Q + k” is depicted. 
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Q Q
After Q + k

k
begin end

 

Figure 7 – Real-time scope After Q + k 
 
TILCO-X allows to simply modelling the real-time extension of scope. Let us write TILCO-X 
mappings for Universality Pattern on “After Q” scope and on “After Q + k”.  

“After Q, P holds” can be imposed by asserting ),@[ QP  at process start. Similarly, to 

impose that “After k time instants after Q, P holds” the previous formula can be changed in  

)),@(@[  kQP  or QkP  @),@[ . 

7 Conclusions 
In this paper, an analysis of the state of the art about specification patterns in formal logics 
has been presented. The identified patterns have been organized in a systematic and uniform 
manner. The proposed organization is based on their classification considering their nature 
and the behavioural relationships among the patterns. Discussions and demonstrations about 
the identified relationships among patterns have been reported.   
The pattern classification proposed can be used provide organised examples of the usage of 
formal methods in many different notations with respect to the same cases, so that the user 
can reduce the time to understand if a the formal model can be used for modelling the cases 
under specification. In addition, it can be used for shortening the specification time, reusing 
and composing different patterns for the specification of more complex problems and thus for 
producing more understandable specifications referring to other users at the commonly known 
patterns.   
During the presentation of pattern organisation and analysis of their relationships, the pattern 
mappings have been formalised in TILCO-X (an extended version of TILCO temporal 
interval logic), offering in this manner an additional formalism to be compared with those 
already used in the literature for exposing patterns.  
It has been shown that with TILCO-X is possible to formalise all the patterns proposed in  
[Dwyer et al, 1999] and in [Konrad and Cheng, 2006]. Moreover, in some cases, the 
specification provided resulted quite compact and concise due to the presence in TILCO-X of 
(i) a uniform management of past and future, (ii) dynamic interval operator, (iii) bounded 
happen operator, (iv) interval operator; 
During the formalisation of patterns in TILCO-X a particular attention has been given in 
separating the specification of the pattern scope with respect to the description of the pattern 
behaviour. In this manner, we think that the patterns proposed result to be more re-usable. A 
comparison of the patterns produced in TILCO-X with respect to those accessible from the 
literature and produced in other formalisms is presented in Appendix 1.  
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Appendix 1  
(to be included as paper Appendix or make accessible as   a 
WEB page) 
It follows the complete list of Property Patterns. Please note that only the new material has 
been presented. Those Pattern Template parts which are missing are totally reused from what 
presented in [Dwyer et al, 1999]. 
 

Occurrence Patterns 

 
Pattern Name and Classification 
Absence: Occurrence Specification Pattern 
 
Temporal Logic Mappings 
TILCO-X: 
Globally: ),0@[: Pstart  

Before R:    ),0@[,0?: RPRstart   

After Q:  ),@[:  QPstart  

Between Q and R:  RQPRrule  ,@),0?(:  

After Q until R:   RQPrule  ,@:  
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml  
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml  
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml  
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml  
 
Pattern Name and Classification 
Universality: Occurrence Specification Pattern 
 
Temporal Logic Mappings 
TILCO-X: 
Globally: ),0@[: Pstart  

Before R:    ),0@[,0?: RPRstart   

After Q:  ),@[: QPstart  

Between Q and R:  RQPRrule  ,@),0?(:    

After Q until R:   RQPrule  ,@:  
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml  
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml  
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml  
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml  
 
 
Pattern Name and Classification 
Existence: Occurrence Specification Pattern 
 
Temporal Logic Mappings 
TILCO-X: 
Globally: ),0?[: Pstart  

Before R:    ),0?[,0?: RPRstart   

After Q:    ),?[,0?:  QPQstart  
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Between Q and R:    RQPRRQtruerule  ,?),0?(,?:   

 or    RPRRQrule  ,0?,0?:  

After Q until R:     RQPRQtruerule  ,?,?:  

 or  RPRQrule  ,0?:  
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml  
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml  
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml  
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml  
 
 
Pattern Name and Classification 
Bounded Existence: Occurrence Specification Pattern 
 
Temporal Logic Mappings 
TILCO-X: 

Globally: ),0[?: max
min Pstart  

Before R:    ),0[?,0?: max
min RPRstart   

After Q:    ),[?,0?: max
min  QPQstart  

Between Q and R:    RQPRRQtruerule  ,?),0?(,?: max
min   

 or    RPRRQrule  ,0?,0?: max
min  

After Q until R:     RQPRQtruerule  ,?,?: max
min  

 or  RPRQrule  ,0?: max
min  

LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml  
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml  
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml  
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml  
 
Relationships 
It can be considered as a generalization of Existence patterns, since the latter can be obtained 
by substituting min and max with 1 and . 
 
Pattern Name and Classification 
Time-Constrained Recurrence: Real-Time Occurrence Specification Pattern  
“P holds at least every k” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:  ,0@),0?[: kPstart  

Before R:       RkPRktrueRstart  ,0@),0?[,?,0?:  

After Q:  ,@),0?[: QkPstart  

Between Q and R:    ),@[),0?[,?),0@(: RQkPRktrueRrule    

After Q until R:    ),@[),0?[,?: RQkPRktruerule   
MTL: see Bounded Recurrence in [Konrad and Cheng, 2006] 
TCTL: see Bounded Recurrence in [Konrad and Cheng, 2006] 
RTGIL: see Bounded Recurrence in [Konrad and Cheng, 2006] 
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Duration Patterns 

Pattern Name and Classification 
Minimum Duration: Real-Time Occurrence Specification Pattern  
“once P becomes true, it holds for at least k” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:        ,0@,0@1@: kPPPstart  

Before R:         RkPPPRstart  ,0@,0@1@,0?:  

After Q:        ,@,0@1@: QkPPPstart  

Between Q and R:      ),@[,0@1@),0@(: RQkPPPRrule    

After Q until R:      ),@[,0@1@: RQkPPPrule   
MTL: see [Konrad and Cheng, 2006] 
TCTL: see [Konrad and Cheng, 2006] 
RTGIL: see [Konrad and Cheng, 2006] 
 
Pattern Name and Classification 
Maximum Duration: Real-Time Occurrence Specification Pattern  
“once P becomes true, it holds for at most k” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:        ,0@,0?1@: kPPPstart  

Before R:         RkPPPRstart  ,0@,0?1@,0?:  

After Q:        ,@,0?1@: QkPPPstart  

Between Q and R:      ),@[,0?1@),0?(: RQkPPPRrule    

After Q until R:      ),@[,0?1@: RQkPPPrule   
MTL: see [Konrad and Cheng, 2006] 
TCTL: see [Konrad and Cheng, 2006] 
RTGIL: see [Konrad and Cheng, 2006] 
 

Order Patterns 

Pattern Name and Classification 
Precedence: Order Specification Pattern “S precedes P” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:    ),0@[0,_?:  startprocessSPstart  

 or  SPstart  ,0@:  

Before R:      ),0@[)0,_?[,0?: RstartprocessSPRstart   

 or   RSPstart  ,0@:  

After Q:    ),@[)0,?[:  QQSPstart  

 or   QSPstart  @,0@:  

Between Q and R:    ),@[)0,?[),0?(: RQQSPRrule   

 or   RSPRRQrule  ,0@),0?(:   
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After Q until R:    ),@[)0,?[: RQQSPrule   

 or   RSPRQrule  ,0@:  
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml  
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml  
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml  
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml  
 
 
Pattern Name and Classification 
Time-Constrained Precedence: Real-Time Order Specification Pattern  
“S precedes P between kmin and kmax” 
 
Temporal Logic Mappings 
TILCO-X: 

Globally: 

 
 
 

 

),0@[

,?
,_?

,_?
_,?

:

minmax

max

min

max





































































kkS

kstartprocesstrue

kstartprocessS

startprocessktrue

Pstart  

Before R: 

 

 
 
 

 

),0@[

,?
,_?

,_?
_,?

,0?:

minmax

max

min

max

R

kkS

kstartprocesstrue

kstartprocessS

startprocessktrue

PRstart 

































































  

After Q:  
    
     ),@[

,?,?
,?,?

:
minmaxmax

minmax 




















 Q

kkSkQtrue

kQSQktrue
Pstart  

Between Q and R: 

    
     ),@[

,?,?
,?,?

),0?(:
minmaxmax

minmax RQ
kkSkQtrue

kQSQktrue
PRrule 





















   

After Q until R: 

    
     ),@[

,?,?
,?,?

:
minmaxmax

minmax RQ
kkSkQtrue

kQSQktrue
Prule 





















  

MTL: 
Globally: []([]<kmax-kmin!S ->[]=kmax !P) 

Before R: <>R->([]<kmax-kmin!S & []<kmax!R->[]=kmax !P)UR 
After Q:   [](Q->[]([]<kmax-kmin!S ->[]=kmax !P)) 
Between Q and R: [](Q&!R & <>R ->([]<kmax-kmin!S & []<kmax!R->[]=kmax !P)UR) 
After Q until R: [](Q&!R ->([]<kmax-kmin!S & []<kmax!R->[]=kmax !P)WR) 
TCTL: 
Globally: AG(AG<kmax-kmin!S ->AG=kmax !P) 

Before R: AFR->A[(AG<kmax-kmin!S & AG<kmax!R->AG=kmax !P)UR] 
After Q:   AG(Q->AG(AG<kmax-kmin!S ->AG=kmax !P)) 
Between Q and R: AG(Q&!R& AFR -> 
  A[(AG<kmax-kmin!S & AG<kmax!R->AG=kmax !P)UR]) 
After Q until R: AG(Q&!R ->A[(AG<kmax-kmin!S & AG<kmax!R->AG=kmax !P)WR]) 
Relationships 
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It is a behavioural generalization of Precedence pattern, the latter can be obtained from the 
former by using 0min k  and Qk  max . 

 
Pattern Name and Classification 
Response: Order Specification Pattern  
“S responds to P” 
 
Temporal Logic Mappings 
TILCO-X: 

Globally:    ),0@[,0?:  SPstart  
Before R:      ),0@[),0?[,0?: RRSPRstart   

After Q:    ),@[),0?[:  QSPstart  

Between Q and R:     ),@[),0?[,0?: RQRSPRrule    

After Q until R:    ),@[),0?[: RQRSPrule   
LTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml  
CTL: http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml  
GIL: http://patterns.projects.cis.ksu.edu/documentation/patterns/gil.shtml  
QRE: http://patterns.projects.cis.ksu.edu/documentation/patterns/qre.shtml  
 
 
Pattern Name and Classification 
Time-Constrained Response: Real-Time Order Specification Pattern  
“S responds to P between kmin and kmax” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:    ),0@[,?: maxmin  kkSPstart  

Before R:       
     ),0@[

,?,?
,?,?

,0?:
maxminmax

minmax R
kkSRktrue

RkSkRtrue
PRstart 





















  

 
After Q:     ),@[,?: maxmin  QkkSPstart  

 
Between Q and R: 

      
     ),@[

,?,?
,?,?

,0?:
maxminmax

minmax RQ
kkSRktrue

RkSkRtrue
PRrule 





















   

After Q until R: 
    
     ),@[

,?,?
,?,?

:
maxminmax

minmax RQ
kkSRktrue

RkSkRtrue
Prule 





















  

MTL: see Bounded Response in [Konrad and Cheng, 2006], that is a special case of this 
pattern; 
TCTL: see Bounded Response in [Konrad and Cheng, 2006], that is a special case of this 
pattern; 
RTGIL: see Bounded Response in [Konrad and Cheng, 2006], that is a special case of this 
pattern; 
Relationships 
In the specification of real-time constrains, the use of “between kmin and kmax” is a 
generalization with respect to the Bounded Response defined in [Konrad and Cheng, 2006], 
where one-bound constraint has been used. This Pattern can be obtained by replacing one of 
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the quantitative boundaries (kmin, kmax) with a qualitative one, that can be “now”, 
“beginning of the scope” or “end of the scope”. 
 
Pattern Name and Classification 
Activation: Order Specification Pattern  
“P activates S” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:    ),0@[,0@:  SPstart  

Before R:      ),0@[),0@[,0?: RRSPRstart   

After Q:    ),@[),0@[:  QSPstart  

Between Q and R:     ),@[),0@[,0?: RQRSPRrule    

After Q until R:    ),@[),0@[: RQRSPrule   
LTL: 
Globally: [](P ->[]S) 
Before R: <>R -> ((P -> S U R) U R) 
After Q: [](Q -> [] (P -> []S) ) 
Between Q and R: [](( Q & !R  & <>R) -> ((P -> S U R) U R)) 
After Q until R: [](( Q & !R ) -> ((P -> S W R) W R) ) 
CTL: 
Globally: AG (P -> AG S) 
Before R: AFR -> A[(P -> A[S U R]) U R] 
After Q: AG(Q -> AG(P -> AG S) ) 
Between Q and R: AG(Q & !R & AFR -> A[(P -> A[S U R]) U R]) 
After Q until R: AG(Q & !R -> A[(P -> A[S W R]) W R] ) 
 
 
Pattern Name and Classification 
Time-Constrained Activation: Real-Time Order Specification Pattern  
“P activates S holds for at least k” 
 
Temporal Logic Mappings 
TILCO-X: 
Globally:    ),0@[,0@:  kSPstart  

Before R:        ),0@[,0@,,0?: RkSRktruePRstart   

After Q:    ),@[,0@:  QkSPstart  

Between Q and R:        ),@[,0@,,0?: RQkSRktruePRrule    

After Q until R:      ),@[,0@,: RQkSRktruePrule   
MTL: see Bounded Invariance in [Konrad and Cheng, 2006] 
TCTL: see Bounded Invariance in [Konrad and Cheng, 2006] 
RTGIL: see Bounded Invariance in [Konrad and Cheng, 2006] 
Relationships 
It can be considered as a generalization of Activation patterns since the latter can be obtained 
from the former for k equal to +. 
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