
Security & Knowledge Management – a.a. 2019/20

1

 is a formal language at the basis of ontolgies
description

 It is decidable

 is a subset of C2 a decidable subset of FOL (FOL is
semi-decidable)

 Many descrition logic languages with
increasing expressivity and increasing
complexity

Security & Knowledge Management – a.a. 2019/20

2

A descriptive language L consists of three finite sets:
(NC; NR; Ob).

 Elements in NC are indicated with letters A, B, ecc.
and are called atomic concepts of L;

 Elements in NR are indicated with letters r, s, ecc.
and are called roles of L;

 Elements in Ob are indicated with letters a, b, ecc.
are called object (names) of L.

 ALC = Attribute concept Language with Complements

 A Basic Description Logic
 Example Axioms

 HappyMan  Human ⊓ ¬Female ⊓  married.Doctor ⊓
  hasChild.(Doctor ⊔ Professor)

  hasChild. Human ⊑ Human

 ...
 NC = {Human, Female, Doctor, Professor,...}

 NR = {married, hasChild, ...}

Security & Knowledge Management – a.a. 2019/20

3

 Let NC be a set of concept names and NR be
a set of role names.

 The set of ALC-concept descriptions is the
smallest set such that:

 T, ⊥, and every concept name A ∈ NC is an ALC-
concept description,

 if C and D are ALC-concept descriptions and r ∈ NR,
then C ⊓ D, C ⊔ D, ¬C, ∀r.C, and ∃r.C
are ALC-concept descriptions.

 I = (I,  I) interpretation
 AI  I for A  NC,
 rI  IxI for r  NR

 TI =  I

 ⊥I = 

 (¬ C)I = I \(C)I

 (C ⊓ D)I = (C)I  (D)I

 (C ⊔ D)I = (C)I  (D)I
 (r.C)I = {x  I | y  I. (x,y)  rI  yCI }
 (r.C)I = { x  I | y  I. (x,y)  rI  yCI }

Security & Knowledge Management – a.a. 2019/20

4

 General concept inclusion (GCI)
 C ⊑ D (C and D are ALC concepts)
 (C ⊑ D)I iff (C)I  (D)I

 C  D iff C ⊑ D and D ⊑ C
 T-Box (Terminological Box) a set of axioms

describing the concepts relations, a set of GCI
 Example TBox
 Human ⊑ Animal
 Bird ⊑ Animal ⊓ CanFly
 Helicopter ⊑ InhanimatedObject ⊓ CanFly
 Animal ⊓ InhanimatedObject ⊑ ⊥

 The ABox (Assertional Box) contains axioms telling:
 that an object with name x belongs to an ALC concept

expression:
▪ x : C

▪ (x : C)I if xI  (C)I

 that two objects are in a role
▪ <x,y> : r

▪ (<x,y> : r)I if (xI,yI)  (r)I

 Examples
 b1 : Bird

 h1 : Helicopter

 <john, jane> : married

Security & Knowledge Management – a.a. 2019/20

5

 An ALC KB is made of a TBox and an ABox
 The TBox states the contaiment relations

among the concepts that typically form a
hierarchy of concepts

 ALC can be translated to FOL inductively
 [A]x = A(x)
 [C ⊓ D]x = [C]x  [D]x
 [C ⊔ D]x = [C]x  [D]x
 [¬C]x = ¬ [C]x
 [∃r.C]x = ∃y. r(x, y) ∧ [C]y
 [∀r.C]x = ∀y. r(x, y) ⇒ [C]y
 [T]x = T, [⊥]x = ⊥
 [C ⊑ D] = ∀x. [C]x ⇒ [D]x
 [C  D] = ∀x. [C]x  [D]x
 [a : C] = [C]a
 [<a,b> : r] = r(a,b)

Security & Knowledge Management – a.a. 2019/20

6

  hasChild. Human ⊑ Human

 [ hasChild. Human ⊑ Human] =
 ∀x. [ hasChild. Human] x ⇒ [Human]x =
 ∀x. ∃y. hasChild(x, y) ∧ [Human]y ⇒ [Human]x =
 ∀x. ∃y. hasChild(x, y) ∧ Human(y) ⇒ Human(x)

Many Descriptive Logics (DL) derived from ALC
 S  ALC + transitive roles (ex. Tr(isPartOf))

 H  role hierarchy (ex., hasDaughter ⊑ hasChild)

 F  functional roles

 O  define concept as enumeration {a1,...,an}

 N  cardinality restrictions (es., ≤2hasChild)

 Q  qualified cardinality restrictions (es., ≥3hasChild.Female)

 I  inverse roles (es., isChildOf ≡ hasChild
−

)

Every DL characterized by the use of particular logical operators

OWL-Lite = SHIF

OWL-DL = SHOIN

Security & Knowledge Management – a.a. 2019/20

7

Atomic (often indicated with letters A and B)
WOMAN
intuitively means “WOMAN”

Complex (often indicated with letters C and D)

PERSON ⊓ FEMALE

reads “PERSON and FEMALE” or “PERSON intersection FEMALE"

intuitively means “person of female genre”

Often called
terms or classes (because represent sets of objects)

Concepts Equivalence

WOMAN ≡ PERSON ⊓ FEMALE

Intuituvely tells that “WOMAN equals to PERSON and FEMALE”

In general

C ≡ D

reads“C equals to D”

Express the equivalence of “C” and “D”

Concepts definition

WOMAN ≡ PERSON ⊓ FEMALE

Definition of term “WOMAN” from terms “PERSON” and “FEMALE”

Security & Knowledge Management – a.a. 2019/20

8

Concepts Subsumption

GIRL ⊑ WOMAN

Reads “GIRL is subsumed from WOMAN” or “WOMAN

subsumes GIRL”

Intuitively means “a girl is a woman”

In general

C ⊑ D

Every individual in “C” is also described by “D”

Equivalence as double subsumption

C ≡ D is the same as C ⊑ D and D ⊑ C

¬ ⊤

¬ ¬ C

equals to
equals to

⊥

C

¬(C ⊓ D) equals to ¬ C ⊔ ¬ D

¬(C ⊔ D) equals to ¬ C ⊓ ¬ D

 operators ¬, ⊓, ⊔, ⊤, ⊥ form a boolean algebra:

Security & Knowledge Management – a.a. 2019/20

9

Example:

MOTHER ⊑ ∃hasChild

Intuitively means “every mother has as child at least an individual”

reads “MOTHER is subsumed from the set of individuals that have at

least one child”

Translated to FOL

MOTHER ⊑ ∃hasChild becomes

[MOTHER⊑ ∃hasChild] = ∀ x ([MOTHER]x →[∃hasChild]x) =

= ∀ x (MADRE(x) → ∃ y hasChild(x, y))

Example:

∃hasChild.FEMALE

denotes the set of all individuals that have a female as child.

Translated to FOL:

∃hasChild.FEMALE becomes

[∃hasChild.FEMALE]x= ∃ y(hasChild(x, y) ⋀ [FEMALE]y) =
= ∃ y(hasChild(x, y) ⋀ FEMALE(y))

Security & Knowledge Management – a.a. 2019/20

10

Example:

∀hasChild.FEMALE

reads“the set of all individuals that have only female children”

Translated to FOL:

∀hasChild.FEMALE becomes

[∀hasChild.FEMALE]x= ∀ y(hasChild(x, y) →[FEMALE]y) =

= ∀ y(hasChild(x, y) → FEMALE(y))

We define “sonOf” starting from “hasChild” using notation “hasChild –”

sonOf ≡ hasChild-

Example

∃ hasChild-.FEMALE becomes

[∃ hasChild-.FEMALE]x = ∃ y(hasChild(y, x) ⋀ [FEMALE]y)

∀ hasChild-.FEMALE becomes
[∀ hasChild-.FEMALE]x= ∀ y(hasChild(y, x) →[FEMALE]y)

In general

R express the relation R(x, y)

R- express relation R(y, x)

∃ R-.C becomes [∃ R-.C]x= ∃ y(R(y, x) ⋀ [C]y)

∀ R-.C becomes [∀ R-.C]x= ∀ y(R(y, x) →[C]y)

Security & Knowledge Management – a.a. 2019/20

11

• Roles, in general, have sense only for certain subsets

of the universe.

 Example

hasChild relates in general two people,
while it does not have sense for other inanimate objects.

• We can associate to a role R two sets, called domain and

range of the role, that represents the sets of individuals

used for the variables x and y in expression R(x,y)

Definition of domain D and range C of role R

⊤ ⊑ ∀ R-.D (domain D) - in FOL ∀x ∀y (R(y, x) →[D]y)

⊤ ⊑ ∀ R.C (range C) - in FOL ∀x ∀y (R(x, y) →[C]y)

Example

⊤ ⊑ ∀ ownerOf-.PERSON

“domain of ownerOf is the set of Person

In short

R : D → C

ownerOf: PERSON → GOOD

⊤ ⊑ ∀ ownerOf.GOOD

“range of ownerOf is the set of Goods

Security & Knowledge Management – a.a. 2019/20

12

It is possible to express cardinality constraints on roles:

≤nR ≥nR

or qualified cardinality constraints:

≤nR.C ≥nR.C

Example:

 PARENT3F ≡ ≥3hasChild.FEMALE

 “PARENT3F is the set of individuals that are parents of at
 least 3 daughters”

where n is an integer >= 0

Translated to FOL

≤nR becomes

[≤nR]x= ∃≤ny R(x, y)

≥nR becomes

[≥nR]x= ∃≥ny R(x, y)

≤nR.C becomes

[≤nR.C]x= ∃≤ny (R(x, y) ⋀ [C]y)

≥nR.C becomes

[≥nR.C]x= ∃≥ny (R(x, y) ⋀ [C]y)

Security & Knowledge Management – a.a. 2019/20

13

The last example:

PARENT3F ≡ ≥3hasChild.FEMALE becomes:

∀x (PARENT3F(x) ↔ ∃y1, ∃y2, ∃y3,
 (hasChild(x,y1) ∧ FEMALE(y1)
 ∧ hasChild(x,y2) ∧ FEMALE(y2)
 ∧ hasChild(x,y3) ∧ FEMALE(y3)
 ∧ y1 ≠ y2
 ∧ y1 ≠ y3
 ∧ y2 ≠ y3).

 Definitions:

 =nR ≜ ≤nR ⊓ ≥nR

 =nR.C ≜ ≤nR.C ⊓ ≥nR.C

 Observations:

≥1R.C

≤0R.C

≥0R.C

same as

same as

same as

∃R.C

¬∃R.C

⊤

Security & Knowledge Management – a.a. 2019/20

14

A functional role is a binary relation where every element
in the domain is in relation with at most an element in the range

Example:
wifeOf : WOMAN → MAN

⊤ ⊑ ∀ wifeOf.MAN
⊤ ⊑ ∀ wifeOf-.WOMAN

role wifeOf is functional
because every wife can have at most a husband

WOMAN⊑ ≤1wifeOf

domain and range:

In many DL it is possible to express subsumption and
equivalence between roles with expressions like::

R ⊑ S becomes in FOL ∀x ∀y (R(x, y) → S(x, y))

R ≡ S becomes in FOL ∀x ∀y (R(x, y) ↔ S(x, y))

Example

parentOf ⊑ relativeOf

parent is a kind of relationship

sonOf ≡ parentOf–

sonOf is the inverse of parentOf

Simmetric property

R ⊑ R– becomes in FOL ∀x ∀y (R(x, y) → R(y, x))

siblingOf ⊑ siblingOf–

Security & Knowledge Management – a.a. 2019/20

15

in some DL it is possible to build complex roles

using composition operator ∘

Given two roles R and S:

R ∘ S becomesin FOL ∃z (R(x, z) ⋀ S(z, y))

Role composition is useful but often it is not admmitted for

problems with decidibility.

.

 Definition
 (R ∘ R) ⊑ R becomes in FOL

 ∀x ∀y (∃z (R(x, z) ⋀ R(z, y)) → R(x, y))

 Many DL (like SHOIN OWL) do not allow role

 composition but provide an operator to declare a role

 as transitive.

 Tr(R)

 Equivalence

∀(R ∘ S).C

∃(R ∘ S).C

same as
same as

∀(R.(∀S.C)

∃(R.(∃S.C)

Security & Knowledge Management – a.a. 2019/20

16

Faculty ⊑ Organization
FullProfessor ⊑ Teacher
FullProfessor ⊑ ∃hasSDS.ScientificDisciplinarySector
Course ⊑ ∃courseTakenAtTime.Interval
Person ⊑ ∃hasCompetence.ConceptSkill
Course ⊑ ∃subject.ConceptSkill

 Paolo Rossi: FullProfessor,
 Knowledge Management and Protection Systems : Course,
 Distributed Systems: ConceptSkill,
 Cloud Computing: ConceptSkill,
 (Paolo Rossi, Knowledge Management and Protection Systems):courseTaken,
 (Paolo Rossi, Cloud Computing):hasCompetence,
 (Knowledge Management and Protection Systems, Distributed Systems):subject

TBox

ABox

• OWL (Web Ontology Language) is the standard proposed by
W3C for the definitions of ontologies
• OWL Lite: SHIF(D);
• OWL DL: corresponds to SHION (D);
• OWL 2 DL: corresponds to SROIQ(D) and is the “normal”

OWL 2 (sublanguage): “maximum” expressivity while
keeping reasoning problems decidable—but still very
expensive;

• (Other) profiles are tailored for specific ends, e.g.,
• OWL 2 QL: is specifically designed for efficient database integration;
• OWL 2 EL: is a lightweight language with polynomial time

reasoning;
• OWL 2 RL: is designed for compatibility with rule-based inference

tools.

http://www.w3.org/TR/owl-ref/

Security & Knowledge Management – a.a. 2019/20

17

• An OWL ontology is made of a TBox and an ABox
both represented as RDF graphs (set of triples)

• Some RDFS constructs are adopted from OWL

• OWL introduces many constructs not present in RDFS,
represented as RDF triples

In OWL

• Terms or concepts are classes

• The Operators to define terms are called
class constructors

• Roles are called properties

• The definitions in the TBox are called class axioms

• ABox assetions are facts

Security & Knowledge Management – a.a. 2019/20

18

• All class descriptions describe a resource of type:

owl:Class

• In the simplest case the description is made of an class identifier (Unique
Resource Identifier = URI), corresponding to an atomic term of the DL

• RDF Syntax:

<owl:Class rdf:ID="ClassName"/>
<owl:Class rdf:about="ClassName"/>

Two class identifiers are predefined in OWL

owl:Thing = the set of all individuals (⊤ for universal class)

All OWL classes are subclass of owl:Thing

owl:Nothing = empty set (⊥ for empty class)

The owl:Nothing class is a subclass of all classes

• A class can be described from enumeration of a finite set of nominals
a1, …, an using operator owl:oneof
• DL syntax:

{a1, …,an}

• RDF syntax:

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#a1" />

...

<owl:Thing rdf:about="#an" />

 </owl:oneOf>

Security & Knowledge Management – a.a. 2019/20

19

• A class A can be described as the intersection of a finite number of
classes C1, …, Cn using operator owl:intersectionOf

• DL syntax:

A ≡ C1 ⊓ … ⊓ Cn

• RDF syntax:

<owl:Class rdf:ID="A">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#C1" />

...

<owl:Class rdf:about="#Cn" />

</owl:intersectionOf>

</owl:Class>

• A class A can be described as union of a finite number of
classes C1, …, Cn using operator owl:unionOf

• DL syntax:

A ≡ C1 ⊔ … ⊔ Cn

• RDF syntax:

<owl:Class rdf:ID="A">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#C1" />

...

<owl:Class rdf:about="#Cn" />

</owl:unionOf>

</owl:Class>

Security & Knowledge Management – a.a. 2019/20

20

• A class A can be described as complement of class B using operator
owl:complementOf

• DL syntax:

A ≡ ¬B

• RDF syntax:

<owl:Class rdf:ID="A">

<owl:complementOf>

<owl:Class rdf:about="#B" />

</owl:complementOf>

</owl:Class>

• Between two class descriptions C e D can be defined the
subclass relation using operator rdfs:subClassOf

• DL syntax:

C ⊑ D

• RDF syntax:

<owl:Class rdf:about="#C">

<rdfs:subClassOf rdf:resource="#D" />

</owl:Class>

Security & Knowledge Management – a.a. 2019/20

21

• Between two call descriptions C and D can be defined the
equality relation using operator owl:equivalentClass

• DL syntax:

C ≡ D

• RDF syntax:

<owl:Class rdf:about="#C">

<owl:equivalentClass rdf:resource="#D" />

</owl:Class>

• A class can be described as a restriction on a property, the restriction
can be the existential qualified role using operator
owl:someValuesFrom

• DL syntax:

∃R.C

• RDF syntax:

<owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:someValuesFrom rdf:resource="#C" />

</owl:Restriction>

Security & Knowledge Management – a.a. 2019/20

22

• A class can be described as a restriction on a property, the restriction
can be the universal qualified role using operator owl:allValuesFrom

• DL syntax:

∀R.C

• RDF syntax:

<owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:allValuesFrom rdf:resource="#C" />

</owl:Restriction>

Examples (W3C OWL Guide: http://www.w3.org/TR/owl-ref/)

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:someValuesFrom rdf:resource="#Doctor" />

</owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:allValuesFrom rdf:resource="#Human" />

</owl:Restriction>

Security & Knowledge Management – a.a. 2019/20

23

• A class can be described as a restriction of all individuals that associate
throught a role R to a single individual a using operator owl:hasValue

• DL syntax

∀R.{a}

• RDF syntax

<owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:hasValue rdf:resource="#a" />

</owl:Restriction>

Example (W3C OWL Guide: http://www.w3.org/TR/2004/REC-owl-guide-

20040210/)

<owl:Class rdf:ID="Burgundy">

 ...

 <rdfs:subClassOf rdf:resource=“Wine" />

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasTaste" />

 <owl:hasValue rdf:resource="#Dry" />

 </owl:Restriction>

 </rdfs:subClassOf>

 ...

</owl:Class>

owl:allValuesFrom

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

Security & Knowledge Management – a.a. 2019/20

24

• A class can be described as a restriction on a set of individuals with
role R with a maximum number n of associated individuals using
operator owl:maxCardinality

• DL syntax:

≤nR

• RDF syntax:

<owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:maxCardinality rdf:datatype=

"&xsd;nonNegativeInteger">n</owl:maxCardinality>

</owl:Restriction>

• A class can be described as a restriction on a set of individuals with
role R with at least n associated individuals, using operator
owl:minCardinality

• DL syntax:

≥nR

• RDF syntax:

<owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:minCardinality rdf:datatype=

"&xsd;nonNegativeInteger">n</owl:minCardinality>

</owl:Restriction>

Security & Knowledge Management – a.a. 2019/20

25

• A class can be described as a restriction on a set of individuals with role
R associated exactly to n individuals, using operator owl:cardinality

 • DL syntax:

=nR

• RDF syntax:

<owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:cardinality rdf:datatype=

"&xsd;nonNegativeInteger">n</owl:cardinality>

</owl:Restriction>

Examples (W3C OWL Guide: http://www.w3.org/TR/owl-ref/)

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:maxCardinality>

</owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality>

</owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasIDFiscalCode" />

 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

owl:allValuesFrom

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

Security & Knowledge Management – a.a. 2019/20

26

• Between two classes C and D can be declared a disjoint
relation using operator owl:disjointWith

• DL syntax:

C ⊓ D ≡ ⊥

• RDF syntax:

<owl:Class rdf:about="#C">

<owl:disjointWith rdf:resource="#D" />

</owl:Class>

• Coherently with RDFS, in OWL also properties (as roles in DL) can be seen as
particular classes

• Can have sub properties and can be combined using some constructors

• As every class is an owl:Class resource, all properties are resources of type
rdf:Property

• In OWL properties can be resources of three types
• owl:ObjectProperty (property between two objects)
• owl:DatatypeProperty (property between an object and a datatype)
• owl:AnnotationProperty (property used to associate metadata)

Security & Knowledge Management – a.a. 2019/20

27

A property R can be defined as a subproperty of property S
using operator rdfs:subPropertyOf

• DL syntax:

R ⊑ S

• RDF syntax:

<owl:ObjectProperty rdf:ID="R">

<rdfs:subPropertyOf rdf:resource="#S" />

</owl:ObjectProperty>

• Of property R can be specified the domain D using
operator rdfs:domain

• DL syntax:

⊤ ⊑ ∀ R-.D

• RDF syntax:

<owl:ObjectProperty rdf:ID="R">

<rdfs:domain>

<owl:Class rdf:about="#D" />

</rdfs:domain>

</owl:ObjectProperty>

Security & Knowledge Management – a.a. 2019/20

28

• Of property R can be specified the range C using operator
rdfs:range

• DL syntax:

⊤ ⊑ ∀ R.C

• RDF syntax:

<owl:ObjectProperty rdf:ID="R">

<rdfs:range>

<owl:Class rdf:about="#C" />

</rdfs:range>

</owl:ObjectProperty>

• A property R can be defined as equivalent to another
property S using operator owl:equivalentProperty

• DL syntax:

R ≡ S

• RDF syntax:

<owl:ObjectProperty rdf:ID="R">

<owl:equivalentProperty rdf:resource="#S" />

</owl:ObjectProperty>

Security & Knowledge Management – a.a. 2019/20

29

• Given property R the inverse property S can be defined
using operator owl:inverseOf

• DL syntax:

S ≡ R-

• RDF syntax:

<owl:ObjectProperty rdf:ID="S">

<owl:inverseOf rdf:resource="#R" />

</owl:ObjectProperty>

• A property R is functional if it associate at max 1 individual for each
element in the domain, expressed from operator
owl:FunctionalProperty

• DL syntax:

⊤ ⊑ ≤1R

• RDF syntax:

<owl:FunctionalProperty rdf:about="#R" />

…

<owl:ObjectProperty rdf:ID="R">

 <rdfs:domain rdf:resource="#D" />

 <rdfs:range rdf:resource="#C" />

</owl:ObjectProperty>

Security & Knowledge Management – a.a. 2019/20

30

Example (W3C OWL Guide: http://www.w3.org/TR/2004/REC-owl-guide-20040210/):

<owl:ObjectProperty rdf:ID=“hasHusband">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Woman" />

 <rdfs:range rdf:resource="#Man" />

</owl:ObjectProperty>

• A property R is inverse functional if the inverse property is
functional, thus each element in the range is associated
from max 1 individual in the domain, expressed from
operator owl:InverseFunctionalProperty

• DL Syntax:

⊤ ⊑ ≤1R-

• RDF Syntax:

<owl:InverseFunctionalProperty rdf:ID="R">

 <rdfs:domain rdf:resource="#D" />

 <rdfs:range rdf:resource="#C" />

</owl:InverseFunctionalProperty>

http://www.w3.org/TR/2004/REC-owl-guide-20040210/

Security & Knowledge Management – a.a. 2019/20

31

• In OWL it is possible to declare that a property is transitive
using operator owl:TransitiveProperty

• DL syntax:

Tr(R)

• RDF syntax:

<owl:TransitiveProperty rdf:ID="R">

 <rdfs:domain rdf:resource="#D" />

 <rdfs:range rdf:resource="#D" />

</owl:TransitiveProperty>

Example (W3C OWL Guide: http://www.w3.org/TR/2004/REC-owl-guide-20040210/):

<owl:ObjectProperty rdf:ID="subRegionOf">

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 <rdfs:domain rdf:resource="#Region"/>

 <rdfs:range rdf:resource="#Region"/>

</owl:ObjectProperty>

http://www.w3.org/TR/2004/REC-owl-guide-20040210/

Security & Knowledge Management – a.a. 2019/20

32

• In OWL it is possible to declare a symmetric property
owl:SymmetricProperty

• DL syntax:

R ⊑ R–

• RDF syntax:

<owl:SymmetricProperty rdf:ID="R">

 <rdfs:domain rdf:resource="#D" />

 <rdfs:range rdf:resource="#D" />

</owl:SymmetricProperty>

Example (W3C OWL Guide: http://www.w3.org/TR/2004/REC-owl-guide-20040210/):

<owl:SymmetricProperty rdf:ID="friendOf">

 <rdfs:domain rdf:resource="#Human"/>

 <rdfs:range rdf:resource="#Human"/>

</owl:SymmetricProperty>

http://www.w3.org/TR/2004/REC-owl-guide-20040210/

Security & Knowledge Management – a.a. 2019/20

33

<owl:ObjectProperty rdf:about="&UniFI#isCoordinatorOf">

 <rdfs:subPropertyOf rdf:resource="&UniFI#isWorkingFor"/>

 <rdfs:domain rdf:resource="&UniFI#Coordinator"/>

 <owl:inverseOf rdf:resource="&UniFI#hasCoordinator"/>

 <rdfs:range>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <rdf:Description rdf:about="&UniFI#Center"/>

 <rdf:Description rdf:about="&UniFI#ResearchProject"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:range>

</owl:ObjectProperty>

• In OWL it is possible to declare that an individual a
belong to class C

• DL syntax:

C(a)

• RDF syntax:

<C rdf:ID="a">

...

</C>

<C rdf:about="a">

...

</C>

Security & Knowledge Management – a.a. 2019/20

34

• In OWL it is possible to specify that property R of an
individual a has value b

• DL syntax:

R(a,b)

• RDF syntax:

<C rdf:ID="a">

<R rdf:resource="#b" />

...

</C>

 Two distinct names are necessary referring to two
different objects?

 Depends... We have two possibilities:

 We use Unique Name Assumption (UNA), every object
has a unique name

 or Not Unique Name Assumption (NUNA), the same
object can be identified using two or more different names

 OWL and semantic web adopt NUNA, this implies
that it should be needed a way to express that two
objects are the same or that are different

 Km4City Smart City Ecosystem, Maggio 2016

Security & Knowledge Management – a.a. 2019/20

35

• OWL allows to assert that two names refers to the same
individual using operator owl:sameAs

• DL syntax:

a = b

• RDF syntax:

<rdf:Description rdf:about="#a">

 <owl:sameAs rdf:resource="#b" />

</rdf:Description>

• It is also possible to assert that two names refer to

different individuals using operators
owl:differentFrom

• RDF syntax:

<C rdf:ID="a">

<owl:differentFrom rdf:resource="#b"/>

…

</C>

Security & Knowledge Management – a.a. 2019/20

36

• It is also possible to express that n names refer to all different
individuals using operator owl:AllDifferent

• RDF syntax:

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<C rdf:about="#a1"/>

...

 <C rdf:about="#an"/>

</owl:distinctMembers>

</owl:AllDifferent>

 A term that is not explicitly asserted and that cannot be
derived as true, is it false?

▪ Closed World Assumption (CWA)  yes, is false

▪ Open World Assumption (OWA)  we don’t know it could
be true or false

 OWL and semantic web adopt the OWA that make it
difficult to check for concistency:
 TBox: A ≡ =2R

 ABox: A(a1), R(a1,x1)

Security & Knowledge Management – a.a. 2019/20

37

 OWL2 introduces some new features:
 DisjointUnion of classes
 DisjointClasses (all classes are pair-wise disjoint)
 Negative object and data properties assertions
 Self restriction on a property

▪ ∃R.Self = {x : R(x,x) }
▪ Narcisist ≡ Person ⊓ ∃loves.Self

 Reflexive and irreflexive properties
▪ T ⊑ ∃R.Self

▪ T ⊑ ¬ ∃R.Self

 Disjoint properties
▪ Disjoint(R1,R2,...)

 Asymmetric properties
▪ Disjoint(R,R-)

 OWL2 introduces some new features:
 Property chains inclusion

▪ role composition can be used to define a new property
▪ R1 o R2 o ... o Rn ⊑ CR

▪ Example:
▪ parentOf o parentOf ⊑ grandParentOf

 Qualified cardinality restrictions
▪ ≤nR.C

▪ =nR.C

▪ ≥nR.C

 Keys of a class
▪ A set of properties uniquely identifies an individual of a class

Security & Knowledge Management – a.a. 2019/20

38

 Protégé (http://protege.stanford.edu/), is an open-source editor for KBs
and Ontologies (RDF, OWL, NT…) developed by Stanford University

 Allows the visualization, creation, editing of:

 Entities

 Classes

 Properties (Object Property & Data Property)

 Instances (Individuals).

 SPARQL Query Interface to query the KB.

 Graphic visualizations of classes, properties and instances.

http://protege.stanford.edu/
http://protege.stanford.edu/

Security & Knowledge Management – a.a. 2019/20

39

Security & Knowledge Management – a.a. 2019/20

40

 Used in Protégé to express restrictions on a class
 C and D C ⊓ D
 C or D C ⊔ D
 not C ¬ C
 p some C ∃p.C
 p only C ∀p.C
 p exactly n C =n.C
 p min n C ≥np.C
 p max n C ≤np.C
 p value v ∀p.{v}
 { v1, v2, ... vn }
 inverse p p-

Security & Knowledge Management – a.a. 2019/20

41

 PERSON and (parentOf some PERSON)

 Human and not Female and (married some Doctor)
and (hasChild only (Doctor or Professor))

 Person and (sonOf exactly 2 Person)

 Linked Open Vocabulary
 Vocabulary descriptions should be available

via Linked Data
 If you open the URL of a property or class

with a browser it forwards to the HTML
documentation of the vocabulary

 If you request (Accept) rdfxml or turtle
formats it provides a machine readable
description

Security & Knowledge Management – a.a. 2019/20

42

 a repository where are
available links to
vocabularies
(ontologies) available
as linked open data.

 contains a RDF
description of
vocabularies

 Used for Taxonomy representation
 Taxonomies are used for classification, are hierarchies of

concepts
 SKOS = Simple Knowledge Organization System
 Describes a set of skos:Concepts
 Related via properties:
 broader (e.g. <Ontology> skos:broader <KnowledgeRepresentation>),

▪ read "has broader"

 narrower (e.g. <Animal> skos:narrower <Mammifer>),
▪ read "has narrower"

 related (e.g. <Human> skos:related <Philosophy>),
 ...

Security & Knowledge Management – a.a. 2019/20

43

 broader & narrower build hierarchies, related used
to associate concepts from different hierarchies

 broader & narrower are not transitive
 broader ⊑ broaderTransitive ⊑ semanticRelation
 narrower ⊑ narrowerTransitive ⊑ semanticRelation
 related ⊑ semanticRelation
 x brd y, y brd z  x brdTr y, y brdTr z  x brdTr z
 broaderTransitive disjoint with related
 related is symmetric

 semanticRelation: ConceptConcept
 narrower inverse of broader
 narrowerTransitive inverse of broaderTransitive

 Can represent different ConceptSchemes

 cs rdf:type ConceptScheme

 c1 skos:inScheme cs

 cs skos:hasTopConcept cx

 cx skos:topConceptOf cs

 skos:topConceptOf ⊑ skos:inScheme

 skos:topConceptOf inverse of skos:hasTopConcept

Security & Knowledge Management – a.a. 2019/20

44

 concepts from different concept schemes can
be associated using specific properties:

 exactMatch

 closeMatch

 broadMatch

 narrowMatch

 relatedMatch

 properties:
 exactMatch ⊑ closeMatch ⊑ mappingRelation
 mappingRelation ⊑ semanticRelation
 broadMatch ⊑ mappingRelation
 narrowMatch ⊑ mappingRelation
 relatedMatch ⊑ mappingRelation
 broadMatch ⊑ broader
 narrowMatch ⊑ narrower
 relatedMatch ⊑ related
 exactMatch, closeMatch, relatedMatch are symmetric
 exactMatch is transitive
 narrowMatch inverse of broadMatch

Security & Knowledge Management – a.a. 2019/20

45

 SKOS introduces some annotationProperties
for labelling resources

 skos:prefLabel – one for each language

 skos:altLabel – other alternative labels

 skos:hiddenLabel – labels used for search (e.g.
mispelled names)

 US library of congress publish as linked data
the Library of Congress Subject Headings

 http://id.loc.gov/authorities/subjects.html

 Example Concept "Security measures"

▪ http://id.loc.gov/authorities/subjects/sh99005297

http://id.loc.gov/authorities/subjects.html
http://id.loc.gov/authorities/subjects.html
http://id.loc.gov/authorities/subjects/sh99005297

Security & Knowledge Management – a.a. 2019/20

46

 15 properties used to associate content with the usual
bibliographic descriptions
 title,
 creator,
 contributor,
 subject,
 language,
 publisher,
 identifier,
 date,
 description,
 rights,
 coverage,
 format,
 relation,
 source,
 type

 Two prefixes
 dc: <http://purl.org/dc/elements/1.1/>

 dcterms: <http://purl.org/dc/terms/>
 The first is the legacy one
 "dc" properties can be used as both data

properties and object properties
 Example:
 <divinacommedia> dc:creator "Dante Alighieri"

 <divinacommedia> dc:creator
<http://dbpedia.org/resource/DanteAlighieri>

Security & Knowledge Management – a.a. 2019/20

47

 "dcterms" properties introduce many sub-properties:
 abstract ⊑ description
 license ⊑ rights
 spatial ⊑ coverage
 available ⊑ date
 bibliographicCitation ⊑ identifier
 conformsTo ⊑ relation
 created ⊑ date
 dateAccepted ⊑ date
 dateCopyrighted ⊑ date
 dateSubmitted ⊑ date
 extent ⊑ format
 hasPart ⊑ relation
 isPartOf ⊑ relation
 ...

 FOAF = Friend Of a Friend
 allows to describe people and their relations

Security & Knowledge Management – a.a. 2019/20

48

 Supported by search engines (google, yahoo)
 Used to describe content to be indexed
 Many classes and properties

 Given two vocabularies, we can build a
mapping between:

 classes using:

▪ subClassOf

▪ equivalentClass

 properties using:

▪ subPropertyOf

▪ equivalentProperty

 Aka Ontology Alignment

Security & Knowledge Management – a.a. 2019/20

49

 Objects can be linked using:

 owl:sameAs

▪ to state that two URL refers exacly to the same entity

 rdfs:seeAlso

▪ to state that two URL refers to related entities

 Use sameAs relations with care, is a
transitive, symmetric, reflexive property

