

Reasoning

- What is different with KBs from DBs is the possibility of automatic reasoning.
- Because a KB is made of a TBox T (terminological box) and an ABox A (assertional box) we write:

$KB = \langle T, A \rangle$

- In logic when we talk about "reasoning" we refer to **deductive** reasoning or simply **deductions**.
- In general, a reasoning is a procedure that allows to verify if a statement X (example equivalence or subsumption between two terms) is logic consequence of a KB.

UNIVERSITÀ DEGLI STUDI FIRENZE DINFO DISI

Example (1)
Define the following $TBox$ T: T1. PARENT = PERSON \sqcap ∃parentOf T2. parentOf: PERSON \rightarrow PERSON, T3. WOMAN = PERSON \sqcap FEMALE T4. MAN = PERSON \sqcap ¬FEMALE T5. MOTHER = PARENT \sqcap ¬FEMALE T6. FATHER = PARENT \sqcap ¬FEMALE T7. STATE = {au,ch,de,es,fr,it,uk}, T8. citizenOf: PERSON \rightarrow STATE, T9. ITAL = PERSON \sqcap ∃citizenOf.{it}, T10. BRIT = PERSON \sqcap ∃citizenOf.{uk}.
Internet Int

Example
TBox T:
T1. PARENT \equiv PERSON \sqcap JparentOf
T2. parentOf: PERSON \rightarrow PERSON,
T4. MAN \equiv PERSON \sqcap \neg FEMALE
T5. MOTHER \equiv PARENT \sqcap FEMALE
T6. FATHER \equiv PARENT $\sqcap \neg$ FEMALE
T7. STATE = $\{au, ch, de, es, fr, it, uk\},\$
T8. citizenOf: PERSON \rightarrow STATE,
T9. ITAL \equiv PERSON \sqcap d citizenOf.{it},
T10. BRIT = PERSON \sqcap ∃citizenOf.{uk}.

Equality (1)					
	If	then			
eq-ref	T(?s, ?p, ?o)	T(?s, owl:sameAs, ?s) T(?p, owl:sameAs, ?p) T(?o, owl:sameAs, ?o)			
eq-sym	T(?x, owl:sameAs, ?y)	T(?y, owl:sameAs, ?x)			
eq-trans	T(?x, owl:sameAs, ?y) T(?y, owl:sameAs, ?z)	T(?x, owl:sameAs, ?z)			
eq-rep-s	T(?s, owl:sameAs, ?s') T(?s, ?p, ?o)	T(?s', ?p, ?o)			
eq-rep-p	T(?p, owl:sameAs, ?p') T(?s, ?p, ?o)	T(?s, ?p', ?o)			
eq-rep-o	T(?o, owl:sameAs, ?o') T(?s, ?p, ?o)	T(?s, ?p, ?o')			
eq-diff1	T(?x, owl:sameAs, ?y) T(?x, owl:differentFrom, ?y)	False			

Equality (2)						
eq-diff2	T(?x, rdf:type, owl:AllDifferent) T(?x, owl:members, ?y) LIST[?y, ?z ₁ ,, ?z _n] T(?z _i , owl:sameAs, ?z _j)	false	for each 1 ≤ i < j ≤ n			
eq-diff3	T(?x, rdf:type, owl:AllDifferent) T(?x, owl:distinctMembers, ?y) LIST[?y, ?z ₁ ,, ?z _n] T(?z _i , owl:sameAs, ?z _j)	false	for each 1 ≤ i < j ≤ n			
			UNIVERSITÀ DEGLI STUDI FIRENZE	IT		

Properties (1)

prp-dom	T(?p, rdfs:domain, ?c) T(?x, ?p, ?y)	T(?x, rdf:type, ?c)
prp-rng	T(?p, rdfs:range, ?c) T(?x, ?p, ?y)	T(?y, rdf:type, ?c)
prp-fp	T(?p, rdf:type, owl:FunctionalProperty) T(?x, ?p, ?y ₁) T(?x, ?p, ?y ₂)	T(?y ₁ , owl:sameAs, ?y ₂)
prp-ifp	T(?p, rdf:type, owl:InverseFunctionalProperty) T(?x ₁ , ?p, ?y) T(?x ₂ , ?p, ?y)	T(?x ₁ , owl:sameAs, ?x ₂)
prp-irp	T(?p, rdf:type, owl:IrreflexiveProperty) T(?x, ?p, ?x)	false
prp-symp	T(?p, rdf:type, owl:SymmetricProperty) T(?x, ?p, ?y)	T(?y, ?p, ?x)
prp-asyp	T(?p, rdf:type, owl:AsymmetricProperty) T(?x, ?p, ?y) T(?y, ?p, ?x)	false

Properties (2)					
prp-trp	T(?p, rdf:type, owl:TransitiveProperty) T(?x, ?p, ?y) T(?y, ?p, ?z)	T(?x, ?p, ?z)			
prp-spo1	T(?p ₁ , rdfs:subPropertyOf, ?p ₂) T(?x, ?p ₁ , ?y)	T(?x, ?p₂, ?y)			
prp-eqp1	$T(?p_1, owl:equivalentProperty, ?p_2)$ $T(?x, ?p_1, ?y)$	T(?x, ?p ₂ , ?y)			
prp-eqp2	$T(?p_1, owl:equivalentProperty, ?p_2)$ $T(?x, ?p_2, ?y)$	T(?x, ?p ₁ , ?y)			
prp-pdw	$\begin{array}{l} T(?p_1, \text{ owl: propertyDisjointWith, }?p_2) \\ T(?x, ?p_1, ?y) \\ T(?x, ?p_2, ?y) \end{array}$	false			
prp-inv1	T(?p ₁ , owl:inverseOf, ?p ₂) T(?x, ?p ₁ , ?y)	T(?y, ?p₂, ?x)			
prp-inv2	T(?p ₁ , owl:inverseOf, ?p ₂) T(?x, ?p ₂ , ?y)	T(?y, ?p ₁ , ?x)	ISIT		

Classes

ls-thing			T(owl:Thing, rdf:type, owl:Class)	
ls-nothing	L		T(owl:Nothing, rdf:type, owl:Class)	
ls-nothing:	2	T(?x, rdf:type, owl:Nothing)	false	
cax-sco	T(?o T(?)	c ₁ , rdfs:subClassOf, ?c ₂) <, rdf:type, ?c ₁)		T(?x, rdf:type, ?c₂)
cax-eqcı	T(?o T(?)	c ₁ , owl:equivalentClass, ?c ₂) <, rdf:type, ?c ₁)		T(?x, rdf:type, ?c₂)
cax-eqc2	T(?o T(?)	c ₁ , owl:equivalentClass, ?c ₂) <, rdf:type, ?c ₂)		T(?x, rdf:type, ?c₁)
cax-dw	T(?o T(?) T(?)	c ₁ , owl:disjointWith, ?c ₂) <, rdf:type, ?c ₁) <, rdf:type, ?c ₂)		false

Classes (2)				
$ \begin{array}{c} T(?c, \text{ owl:intersectionOf, }?x) \\ LIST[?x, ?c_1,, ?c_n] \\ T(?y, rdf:type, ?c_1) \\ T(?y, rdf:type, ?c_2) \\ \\ T(?y, rdf:type, ?c_n) \end{array} T(?y, rdf:type, ?c) $				
$\begin{array}{c} \label{eq:cls-int2} & T(?c, owl:intersectionOf, ?x) \\ LIST[?x, ?c_1,, ?c_n] \\ T(?y, rdf:type, ?c) \\ \end{array} \begin{array}{c} T(?y, rdf:type, ?c_2) \\ \\ T(?y, rdf:type, ?c_n) \end{array}$				

	T/2c over $Of 2y$	
cls-uni	LIST[?x, c_x ,, c_n] T(?y, rdf:type, c_i)	T(?y, rdf:type, ?c)
cls-com	T(?c ₁ , owl:complementOf, ?c ₂) T(?x, rdf:type, ?c ₁) T(?x, rdf:type, ?c ₂)	false
cls-svf1	T(?x, owl:someValuesFrom, ?y) T(?x, owl:onProperty, ?p) T(?u, ?p, ?v) T(?v, rdf:type, ?y)	T(?u, rdf:type, ?x)
cls-svf2	T(?x, owl:someValuesFrom, owl:Thing) T(?x, owl:onProperty, ?p) T(?u, ?p, ?v)	T(?u, rdf:type, ?x)
cls-avf	T(?x, owl:allValuesFrom, ?y) T(?x, owl:onProperty, ?p) T(?u, rdf:type, ?x) T(?u, ?p, ?v)	T(?v, rdf:type, ?y)
cls-hv1	T(?x, owl:hasValue, ?y) T(?x, owl:onProperty, ?p) T(?u, rdf.type, ?x)	T(?u, ?p, ?y)
cls-hv2	T(?x, owl:hasValue, ?y) T(?x, owl:onProperty, ?p) T(?u, ?p, ?y)	T(?u, rdf:type, ?x)

Cla	sses (4)		
ls-maxc1	T(?x, owl:maxCardinality, "o"^^xsd:nonNegativeInteger) T(?x, owl:onProperty, ?p) T(?u, rdf:type, ?x) T(?u, ?p, ?y)	false	
cls-maxc2	T(?x, owl:maxCardinality, "1"^^xsd:nonNegativeInteger) T(?x, owl:onProperty, ?p) T(?u, rdf:type, ?x) T(?u, ?p, ?y ₁) T(?u, ?p, ?y ₂)	T(?y ₁ , owl:sameAs, ?y ₂)	
cls-maxqcı	T(?x, owl:maxQualifiedCardinality, "o"^^xsd:nonNegati) T(?x, owl:onProperty, ?p) T(?x, owl:onClass, ?c) T(?u, rdf:type, ?x) T(?u, ?p, ?y) T(?y, rdf:type, ?c)	false	
cls-maxqc2	T(?x, owl:maxQualifiedCardinality, "o"^^xsd:nonNegativ) T(?x, owl:onProperty, ?p) T(?x, owl:onClass, owl:Thing) T(?u, rdf:type, ?x) T(?u, ?p, ?y)	false	DISIT

Classes (5)						
s-maxqc3	T(?x, owl:maxQualifiedCardinality, "1") T(?x, owl:onProperty, ?p) T(?x, owl:onClass, ?c) T(?u, rdf:type, ?x) T(?u, ?p, ?y ₁) T(?y ₁ , rdf:type, ?c) T(?u, ?p, ?y ₂) T(?y ₂ , rdf:type, ?c)	T(?y ₁ , owl:sameAs, ?y ₂)				
cls-maxqc4	T(?x, owl:maxQualifiedCardinality, "1") T(?x, owl:onProperty, ?p) T(?x, owl:onClass, owl:Thing) T(?u, rdf:type, ?x) T(?u, ?p, ?y_1) T(?u, ?p, ?y_2)	T(?y ₁ , owl:sameAs, ?y ₂)				
cls-oo	T(?c, owl:oneOf, ?x) LIST[?x, ?y ₁ ,, ?y _n]	T(?y ₁ , rdf:type, ?c) T(?y _n , rdf:type, ?c)	DISIT			

Vocabulary (1)					
scm-cls	T(?c, rdf:type, owl:Class)	T(?c, rdfs:subClassOf, ?c) T(?c, owl:equivalentClass, ?c) T(?c, rdfs:subClassOf, owl:Thing) T(owl:Nothing, rdfs:subClassOf, ?c)			
scm-sco	T(?c11 rdfs:subClassOf, ?c2) T(?c21 rdfs:subClassOf, ?c3)	T(?c ₁ , rdfs:subClassOf, ?c ₃)			
scm-eqc1	T(?c ₁ , owl:equivalentClass, ?c ₂)	T(?c1, rdfs:subClassOf, ?c2) T(?c2, rdfs:subClassOf, ?c1)			
scm-eqc2	T(?c11, rdfs:subClassOf, ?c2) T(?c21, rdfs:subClassOf, ?c1)	T(?c ₁ , owl:equivalentClass, ?c ₂)			
scm-op	T(?p, rdf:type, owl:ObjectProperty)	T(?p, rdfs:subPropertyOf, ?p) T(?p, owl:equivalentProperty, ?p)			
scm-dp	T(?p, rdf:type, owl:DatatypeProperty)	T(?p, rdfs:subPropertyOf, ?p) T(?p, owl:equivalentProperty, ?p)			
scm-spo	T(?p ₁ , rdfs:subPropertyOf, ?p ₂) T(?p ₂ , rdfs:subPropertyOf, ?p ₃)	T(?p ₁ , rdfs:subPropertyOf, ?p ₃)			

Vocabulary (2)

scm-eqp1	T(?p ₁ , owl:equivalentProperty, ?p ₂)	T(?p ₁ , rdfs:subPropertyOf, ?p ₂) T(?p ₂ , rdfs:subPropertyOf, ?p ₁)
scm-eqp2	T(?p ₁ , rdfs:subPropertyOf, ?p ₂) T(?p ₂ , rdfs:subPropertyOf, ?p ₁)	T(?p ₁ , owl:equivalentProperty, ?p ₂)
scm-dom1	T(?p, rdfs:domain, ?c ₁) T(?c ₁ , rdfs:subClassOf, ?c ₂)	T(?p, rdfs:domain, ?c₂)
scm-dom2	T(?p ₂ , rdfs:domain, ?c) T(?p ₁ , rdfs:subPropertyOf, ?p ₂)	T(?p1, rdfs:domain, ?c)
scm-rng1	T(?p, rdfs:range, ?c ₁) T(?c ₁ , rdfs:subClassOf, ?c ₂)	T(?p, rdfs:range, ?c ₂)
scm-rng2	T(?p ₂ , rdfs:range, ?c) T(?p ₁ , rdfs:subPropertyOf, ?p ₂)	T(?p ₁ , rdfs:range, ?c)

OWL2 profile EL

- is particularly suitable for applications employing ontologies that define very large numbers of classes and/or properties (e.g SNOMED-CT medical ontology with about 292.000 logical axioms),
- captures the expressive power used by many such ontologies, and consistency, class expression subsumption, and instance checking can be decided in polynomial time
- Allows operations:
 - ∃R.C, ∃R.{v}, ∃R. Self, {v}, С п D
 - class inclusion, class equivalence, class disjointness, object property inclusion with or without property chains, property equivalence, transitive object properties, reflexive object properties, domain restrictions, range restrictions, functional data properties, assertions,keys.

UNIVERSITÀ DEGLI STUDI FIRENZE

