
Security & Knowledge Management – a.a. 2019/20

1

• What is different with KBs from DBs is the possibility of automatic
reasoning.

• Because a KB is made of a TBox T (terminological box) and an ABox
A (assertional box) we write:

KB = ‹T,A›

• In logic when we talk about "reasoning" we refer to deductive
reasoning or simply deductions.

• In general, a reasoning is a procedure that allows to verify if a
statement X (example equivalence or subsumption between
two terms) is logic consequence of a KB.

Security & Knowledge Management – a.a. 2019/20

2

• Intuitively a statement X is logic consequence of a KB when X is
true in every situation where are true the terminological axioms
and assertions in the KB.

• More precisely a statement X is the logic consequence of a KB
when X is true in every model of terminological axioms and
assertions in KB

• In this case we write:

KB ⊨ X

KB logically imply X (X is a logical consequence of KB)

T1.

T2.

T3.

T4.

T5.

T6.

PARENT ≡ PERSON ⊓ ∃parentOf

parentOf:PERSON → PERSON

WOMAN ≡ PERSON ⊓ FEMALE

MAN ≡ PERSON ⊓ ¬FEMALE

MOTHER ≡ PARENT ⊓ FEMALE

FATHER ≡ PARENT ⊓ ¬FEMALE

• The T axioms logically imply some statements that are
not present in T but are necessarily true in the hypothesis
that T is true.

• Let's consider the TBox T with the following axioms:

Security & Knowledge Management – a.a. 2019/20

3

• Every mother is a person and a woman:

MOTHER ⊑ PERSON

MOTHER ⊑ WOMAN

• Every father is a person and a man:

FATHER ⊑ PERSON

FATHER ⊑ MAN

• Class of fathers and mothers are disjoint:

MOTHER ⊓ FATHER ≡ ⊥

• To highlight that these statements are logic
consequence of T we write:

T ⊨ MOTHER ⊑ PERSON

• Other statements are not logic consequence of T. For
example the previous TBox does not logically imply
that a person have 2 parents. To state this we write:

T ⊭ PERSON ⊑ =2 parentOf-

Security & Knowledge Management – a.a. 2019/20

4

Reasoning task

Is characterized with the type of statements to be inferred

Reasoning procedure

The algorithm used for reasoning

Reasoning service

A service implemented by a tool, usable from
applications accessing to the KB

• It can be easily seen that fundamental reasoning tasks for TBox
can be reduced to subsumption

• Equivalence

T ⊨ C ≡ D is equivalent to T ⊨ C ⊑ D e T ⊨ D ⊑ C

• Soddisfacibility

T ⊭ C ⊑⊥

• Disjunction

T ⊨ C ⊓ D ⊑⊥

• This the way used to implement reasoning services for low
expressive DLs

Security & Knowledge Management – a.a. 2019/20

5

• The fundamental reasoning tasks for Tboxs can be reduced to
satisfiability

• Subsumption T ⊨ C ⊑ D

T ⊨ C ⊓ ¬D is not satisfiable

• Equivalence T ⊨ C ≡ D

T ⊨ C ⊓ ¬D is not satisfiable and

T ⊨ ¬C ⊓ D is not satisfiable

• Disjunction

T ⊨ C ⊓ D is not satisfiable

• This is the way used to implement reasoning services for
very expressive DLs, ex. SHOIN

 For decidable DLs – as SHOIN – we can find a
procedure that given an arbitrary TBox T and
a complex term C and, in a finite number of
steps, states if C is or not satisfiable
(considering the definitions in T)

 In the most diffuse versions this procedure,
that we will call SAT, is based on the tableaux
method, already studied and applied for FOL.

Security & Knowledge Management – a.a. 2019/20

6

 We will consider now reasoning services that use
not only terminological axioms from TBox but also
assertions from ABox.

 As already noted the assertion in the ABox can be
based on terms or based on roles; that is, the
assertions can be in the following two forms:

C(a) (C complex term ; a nominal)

R(a,b) (R role; a, b nominals)

Instance check

given a TBox T, an ABox A, an arbitrary term C and a
nominal a, find if T,A ⊨ C(a)

Retrieval

given a TBox T, an ABox A and an arbitrary term C, among all
nominals present in the KB find all nominals

a1, …, an so that T,A ⊨ C(ak)

Security & Knowledge Management – a.a. 2019/20

7

An instance check task can be reduced to a statisfiability problem

A retrieval task can be reduced to an instance check for each nominal
in the KB

In principle, all reasoning tasks can be reduced to satisfiability
problems.

(An arbitrary term C is satisfiable if exists at least a
model of T,A where is not empty the set of individuals

that satisfy C, in other words ∃ a t.c. T,A ⊨ C(a))

 Define the following TBox T:

T1. PARENT ≡ PERSON ⊓ ∃parentOf
T2. parentOf: PERSON → PERSON,
T3. WOMAN ≡ PERSON ⊓ FEMALE
T4. MAN ≡ PERSON ⊓ ¬FEMALE
T5. MOTHER ≡ PARENT ⊓ FEMALE
T6. FATHER ≡ PARENT ⊓ ¬FEMALE
T7. STATE ≡ {au,ch,de,es,fr,it,uk},

T8. citizenOf: PERSON → STATE,

T9. ITAL ≡ PERSON ⊓ ∃citizenOf.{it},
T10. BRIT ≡ PERSON ⊓ ∃citizenOf.{uk}.

Security & Knowledge Management – a.a. 2019/20

8

 Define the ABox A:

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

WOMAN(anna)

WOMAN(cecilia)

MAN(bob)

parentOf(anna,cecilia)

parentOf(bob,cecilia)

citizenOf(anna,it)

citizenOf(bob,uk)

citizenOf(cecilia,it)

citizenOf(cecilia,uk)

Instance check

Given term FEMALE ⊓ ∃parentOf and the nominal anna

we have:

?– (FEMALE ⊓ ∃parentOf)(anna) → yes

T,A ⊨ (FEMALE ⊓ ∃parentOf)(anna)

Security & Knowledge Management – a.a. 2019/20

9

 ABox A:

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

WOMAN(anna)

WOMAN(cecilia)

MAN(bob)

parentof(anna,cecilia)

parentOf(bob,cecilia)

citizenOf(anna,it)

citizenOf(bob,uk)

citizenOf(cecilia,it)

citizenOf(cecilia,uk)

 TBox T:

T1. PARENT ≡ PERSON ⊓ ∃parentOf
T2. parentOf: PERSON → PERSON,
T3. WOMAN ≡ PERSON ⊓ FEMALE
T4. MAN ≡ PERSON ⊓ ¬FEMALE
T5. MOTHER ≡ PARENT ⊓ FEMALE
T6. FATHER ≡ PARENT ⊓ ¬FEMALE
T7. STATE ≡ {au,ch,de,es,fr,it,uk},

T8. citizenOf: PERSON → STATE,

T9. ITAL ≡ PERSON ⊓ ∃citizenOf.{it},
T10. BRIT ≡ PERSON ⊓ ∃citizenOf.{uk}.

Security & Knowledge Management – a.a. 2019/20

10

Retrieval

Given term PARENT we have:

?– PARENT → {anna, bob}

T,A ⊨ PARENT(anna) T,A ⊨ PARENT(bob)

 TBox T:

T1. PARENT ≡ PERSON ⊓ ∃parentOf
T2. parentOf: PERSON → PERSON,
T3. WOMAN ≡ PERSON ⊓ FEMALE
T4. MAN ≡ PERSON ⊓ ¬FEMALE
T5. MOTHER ≡ PARENT ⊓ FEMALE
T6. FATHER ≡ PARENT ⊓ ¬FEMALE
T7. STATE ≡ {au,ch,de,es,fr,it,uk},

T8. citizenOf: PERSON → STATE,

T9. ITAL ≡ PERSON ⊓ ∃citizenOf.{it},
T10. BRIT ≡ PERSON ⊓ ∃citizenOf.{uk}.

Security & Knowledge Management – a.a. 2019/20

11

 ABox A:

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

WOMAN(anna)

WOMAN(cecilia)

MAN(bob)

parentOf(anna,cecilia)

parentOf(bob,cecilia)

citizenOf(anna,it)

citizenOf(bob,uk)

citizenOf(cecilia,it)

citizenOf(cecilia,uk)

 used to decide sasfiability of a set of formula
 we start with propositional logic example:

 prove unsatisfiability of

 { a ∧ c, (¬a ∨ b) ∧ (¬b ∨ ¬ c) }

 The formula have to be in negation normal
form (with not applied to the letterals)

Security & Knowledge Management – a.a. 2019/20

12

 a ∧ c

(¬a ∨ b) ∧ (¬b ∨ ¬ c)

 a

 c

(¬b ∨ ¬ c)

(¬a ∨ b)

¬a b

¬b ¬ c

if all branches are closed
(contain x and ¬ x) the
formula is unsatisfiable

 Algorithm to check if complex concept C is
satisfiable:
 C should be in negation normal form

 start with C(a)

 apply transformation rules, they can be deterministic
or nondeterministic (branch)

 continue until (i) there is a contradiction in all
branches or (ii) there is a branch where no rule is
applicable

 In case (i) the concept C is unsatisfiable, in case (ii) C
is satisfiable

Security & Knowledge Management – a.a. 2019/20

13

 and-rule: (C ⊓ D)(a) add C(a) and D(a)
 or-rule: (C ⊔ D)(a) branch with C(a) and D(a)
 some-rule: (∃R.C)(a) add R(a,b) and C(b)

where b is a new individual
 all-rule: (∀R.C)(a) and R(a,b) add C(b)

check if ∀hasChild.Male ⊓ ∃hasChild. ¬Male
is satisfiable
1. ∀hasChild.Male ⊓ ∃hasChild.¬Male (given)
2. ∀hasChild.Male (1, and-rule)
3. ∃hasChild. ¬Male (1, and-rule)
4. hasChild(a,b) (3, some-rule)
5. (¬Male)(b) (3, some-rule)
6. Male(b) (2,4, all-rule)
7. Clash (5,6)
the concept is unsatisfiable

Security & Knowledge Management – a.a. 2019/20

14

The same rules can be used to check if the Abox
is satisfiable
1. (Parent ⊓ ∀ haschild.Male)(JOHN) (given)
2. hasChild(JOHN, MARY) (given)
3. (¬Male)(Mary) (given)
4. PARENT(JOHN) (1, and-rule)
5. ∀ haschild.Male(JOHN) (1, and-rule)
6. Male(MARY) (5,2, all-rule)
7. Clash (6,3)

The Abox is unsatisfiable

 Similar rules can be applied for the
satisfiability of a KB made of Tbox and Abox

Security & Knowledge Management – a.a. 2019/20

15

 A set of rules IF...THEN...
 Used to produce new triples on the basis of

the current triples
 Applied iteratively until no more applicable or

found a contradiction

... If then

eq-ref
T(?s, ?p, ?o)

T(?s, owl:sameAs, ?s)
T(?p, owl:sameAs, ?p)
T(?o, owl:sameAs, ?o)

eq-sym T(?x, owl:sameAs, ?y) T(?y, owl:sameAs, ?x)

eq-trans
T(?x, owl:sameAs, ?y)
T(?y, owl:sameAs, ?z)

T(?x, owl:sameAs, ?z)

eq-rep-s
T(?s, owl:sameAs, ?s')
T(?s, ?p, ?o)

T(?s', ?p, ?o)

eq-rep-p
T(?p, owl:sameAs, ?p')
T(?s, ?p, ?o)

T(?s, ?p', ?o)

eq-rep-o
T(?o, owl:sameAs, ?o')
T(?s, ?p, ?o)

T(?s, ?p, ?o')

eq-diff1
T(?x, owl:sameAs, ?y)
T(?x, owl:differentFrom, ?y)

False

Security & Knowledge Management – a.a. 2019/20

16

eq-diff2

T(?x, rdf:type, owl:AllDifferent)
T(?x, owl:members, ?y)
LIST[?y, ?z1, ..., ?zn]
T(?zi, owl:sameAs, ?zj)

false for each 1 ≤ i < j ≤ n

eq-diff3

T(?x, rdf:type, owl:AllDifferent)
T(?x, owl:distinctMembers, ?y)
LIST[?y, ?z1, ..., ?zn]
T(?zi, owl:sameAs, ?zj)

false for each 1 ≤ i < j ≤ n

prp-dom
T(?p, rdfs:domain, ?c)
T(?x, ?p, ?y)

T(?x, rdf:type, ?c)

prp-rng
T(?p, rdfs:range, ?c)
T(?x, ?p, ?y)

T(?y, rdf:type, ?c)

prp-fp

T(?p, rdf:type, owl:FunctionalProperty)
T(?x, ?p, ?y1)
T(?x, ?p, ?y2)

T(?y1, owl:sameAs, ?y2)

prp-ifp

T(?p, rdf:type, owl:InverseFunctionalProperty)
T(?x1, ?p, ?y)
T(?x2, ?p, ?y)

T(?x1, owl:sameAs, ?x2)

prp-irp
T(?p, rdf:type, owl:IrreflexiveProperty)
T(?x, ?p, ?x)

false

prp-symp
T(?p, rdf:type, owl:SymmetricProperty)
T(?x, ?p, ?y)

T(?y, ?p, ?x)

prp-asyp

T(?p, rdf:type, owl:AsymmetricProperty)
T(?x, ?p, ?y)
T(?y, ?p, ?x)

false

Security & Knowledge Management – a.a. 2019/20

17

prp-trp

T(?p, rdf:type, owl:TransitiveProperty)
T(?x, ?p, ?y)
T(?y, ?p, ?z)

T(?x, ?p, ?z)

prp-spo1

T(?p1, rdfs:subPropertyOf, ?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-eqp1
T(?p1, owl:equivalentProperty, ?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-eqp2
T(?p1, owl:equivalentProperty, ?p2)
T(?x, ?p2, ?y)

T(?x, ?p1, ?y)

prp-pdw

T(?p1, owl:propertyDisjointWith, ?p2)
T(?x, ?p1, ?y)
T(?x, ?p2, ?y)

false

prp-inv1
T(?p1, owl:inverseOf, ?p2)
T(?x, ?p1, ?y)

T(?y, ?p2, ?x)

prp-inv2
T(?p1, owl:inverseOf, ?p2)
T(?x, ?p2, ?y)

T(?y, ?p1, ?x)

cax-sco
T(?c1, rdfs:subClassOf, ?c2)
T(?x, rdf:type, ?c1)

T(?x, rdf:type, ?c2)

cax-eqc1
T(?c1, owl:equivalentClass, ?c2)
T(?x, rdf:type, ?c1)

T(?x, rdf:type, ?c2)

cax-eqc2
T(?c1, owl:equivalentClass, ?c2)
T(?x, rdf:type, ?c2)

T(?x, rdf:type, ?c1)

cax-dw

T(?c1, owl:disjointWith, ?c2)
T(?x, rdf:type, ?c1)
T(?x, rdf:type, ?c2)

false

cls-thing T(owl:Thing, rdf:type, owl:Class)

cls-nothing1 T(owl:Nothing, rdf:type, owl:Class)

cls-nothing2 T(?x, rdf:type, owl:Nothing) false

Security & Knowledge Management – a.a. 2019/20

18

cls-int1

T(?c, owl:intersectionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

T(?y, rdf:type, ?c)

cls-int2

T(?c, owl:intersectionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c)

T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

cls-uni

T(?c, owl:unionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?ci)

T(?y, rdf:type, ?c)

cls-com

T(?c1, owl:complementOf, ?c2)
T(?x, rdf:type, ?c1)
T(?x, rdf:type, ?c2)

false

cls-svf1

T(?x, owl:someValuesFrom, ?y)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?v)
T(?v, rdf:type, ?y)

T(?u, rdf:type, ?x)

cls-svf2

T(?x, owl:someValuesFrom, owl:Thing)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?v)

T(?u, rdf:type, ?x)

cls-avf

T(?x, owl:allValuesFrom, ?y)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)
T(?u, ?p, ?v)

T(?v, rdf:type, ?y)

cls-hv1

T(?x, owl:hasValue, ?y)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)

T(?u, ?p, ?y)

cls-hv2

T(?x, owl:hasValue, ?y)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?y)

T(?u, rdf:type, ?x)

Security & Knowledge Management – a.a. 2019/20

19

ls-maxc1

T(?x, owl:maxCardinality, "0"^^xsd:nonNegativeInteger)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)

false

cls-maxc2

T(?x, owl:maxCardinality, "1"^^xsd:nonNegativeInteger)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y1)
T(?u, ?p, ?y2)

T(?y1, owl:sameAs, ?y2)

cls-maxqc1

T(?x, owl:maxQualifiedCardinality, "0"^^xsd:nonNegati..)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, ?c)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)
T(?y, rdf:type, ?c)

false

cls-maxqc2

T(?x, owl:maxQualifiedCardinality, "0"^^xsd:nonNegativ..)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, owl:Thing)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)

false

s-maxqc3

T(?x, owl:maxQualifiedCardinality, "1"...)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, ?c)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y1)
T(?y1, rdf:type, ?c)
T(?u, ?p, ?y2)
T(?y2, rdf:type, ?c)

T(?y1, owl:sameAs, ?y2)

cls-maxqc4

T(?x, owl:maxQualifiedCardinality, "1"...)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, owl:Thing)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y1)
T(?u, ?p, ?y2)

T(?y1, owl:sameAs, ?y2)

cls-oo
T(?c, owl:oneOf, ?x)
LIST[?x, ?y1, ..., ?yn]

T(?y1, rdf:type, ?c)
...
T(?yn, rdf:type, ?c)

Security & Knowledge Management – a.a. 2019/20

20

scm-cls T(?c, rdf:type, owl:Class)

T(?c, rdfs:subClassOf, ?c)
T(?c, owl:equivalentClass, ?c)
T(?c, rdfs:subClassOf, owl:Thing)
T(owl:Nothing, rdfs:subClassOf, ?c)

scm-sco
T(?c1, rdfs:subClassOf, ?c2)
T(?c2, rdfs:subClassOf, ?c3)

T(?c1, rdfs:subClassOf, ?c3)

scm-eqc1 T(?c1, owl:equivalentClass, ?c2)
T(?c1, rdfs:subClassOf, ?c2)
T(?c2, rdfs:subClassOf, ?c1)

scm-eqc2
T(?c1, rdfs:subClassOf, ?c2)
T(?c2, rdfs:subClassOf, ?c1)

T(?c1, owl:equivalentClass, ?c2)

scm-op T(?p, rdf:type, owl:ObjectProperty)
T(?p, rdfs:subPropertyOf, ?p)
T(?p, owl:equivalentProperty, ?p)

scm-dp
T(?p, rdf:type,
owl:DatatypeProperty)

T(?p, rdfs:subPropertyOf, ?p)
T(?p, owl:equivalentProperty, ?p)

scm-spo
T(?p1, rdfs:subPropertyOf, ?p2)
T(?p2, rdfs:subPropertyOf, ?p3)

T(?p1, rdfs:subPropertyOf, ?p3)

scm-eqp1
T(?p1,
owl:equivalentProperty, ?p2)

T(?p1, rdfs:subPropertyOf, ?p2)
T(?p2, rdfs:subPropertyOf, ?p1)

scm-eqp2
T(?p1, rdfs:subPropertyOf, ?p2)
T(?p2, rdfs:subPropertyOf, ?p1)

T(?p1,
owl:equivalentProperty, ?p2)

scm-dom1
T(?p, rdfs:domain, ?c1)
T(?c1, rdfs:subClassOf, ?c2)

T(?p, rdfs:domain, ?c2)

scm-dom2
T(?p2, rdfs:domain, ?c)
T(?p1, rdfs:subPropertyOf, ?p2)

T(?p1, rdfs:domain, ?c)

scm-rng1
T(?p, rdfs:range, ?c1)
T(?c1, rdfs:subClassOf, ?c2)

T(?p, rdfs:range, ?c2)

scm-rng2
T(?p2, rdfs:range, ?c)
T(?p1, rdfs:subPropertyOf, ?p2)

T(?p1, rdfs:range, ?c)

Security & Knowledge Management – a.a. 2019/20

21

 is particularly suitable for applications employing ontologies that
define very large numbers of classes and/or properties (e.g
SNOMED-CT medical ontology with about 292.000 logical
axioms),

 captures the expressive power used by many such ontologies, and
consistency, class expression subsumption, and instance checking
can be decided in polynomial time

 Allows operations:

 ∃R.C, ∃R.{v}, ∃R. Self, {v}, C ⊓ D

 class inclusion, class equivalence, class disjointness, object property
inclusion with or without property chains, property equivalence,
transitive object properties, reflexive object properties, domain
restrictions, range restrictions, functional data properties,
assertions,keys.

 designed so that data (assertions) that is stored in a relational
database system can be queried through an ontology by rewriting
the query into an SQL query, without any changes to the data.

 Allowed
 <subclass expression> subClassOf <super class expression>
 where <subclass expressions> can be:

▪ a class, unqualified existential quantification, existential quantification to a data
range.

 and <super class expression> can be:
▪ a class, intersection, negation, qualified existential quantification, existential

quantification to a data range

 subclass axioms, class expression equivalence, class expression
disjointness, inverse object properties, property inclusion (not
involving property chains), property equivalence, property domain,
property range, disjoint properties, symmetric properties , reflexive
properties, irreflexive properties , asymmetric properties , assertions
other than individual equality assertions and negative property
assertions

Security & Knowledge Management – a.a. 2019/20

22

 aimed at applications that require scalable reasoning
without sacrificing too much expressive power

 Allowed
 <subclass expression> subClassOf <super class expression>
 where <subclass expression> can be:

▪ a class other than owl:Thing, an enumeration of individuals,
intersection of class expressions, union of class expressions, existential
quantification to a class expression, existential quantification to a data
range, existential quantification to an individual, existential
quantification to a literal.

 and <superclass expression> can be:
▪ a class other than owl:Thing, intersection of classes, negation, universal

quantification to a class expression, existential quantification to an
individual, at-most 0/1 cardinality restriction to a class expression,
universal quantification to a data range, existential quantification to a
literal, at-most 0/1 cardinality restriction to a data range

 allows to represent additional inference rules
that are specific for a domain and cannot be
derived with OWL
Document(

Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)

Prefix(imdbrel <http://example.com/imdbrelations#>)

Prefix(dbpedia <http://dbpedia.org/ontology/>)

Group(Forall ?Actor ?Film ?Role (

If And(imdbrel:playsRole(?Actor ?Role) imdbrel:roleInFilm(?Role ?Film))

Then dbpedia:starring(?Film ?Actor)

))

)

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://dbpedia.org/ontology/

Security & Knowledge Management – a.a. 2019/20

23

 RIF was designed for interchange, to allow
the transformation of rules in other
languages (e.g. SWRL, RuleML)

261

