
Security & Knowledge Management – a.a. 2019/20

1

• What is different with KBs from DBs is the possibility of automatic
reasoning.

• Because a KB is made of a TBox T (terminological box) and an ABox
A (assertional box) we write:

KB = ‹T,A›

• In logic when we talk about "reasoning" we refer to deductive
reasoning or simply deductions.

• In general, a reasoning is a procedure that allows to verify if a
statement X (example equivalence or subsumption between
two terms) is logic consequence of a KB.

Security & Knowledge Management – a.a. 2019/20

2

• Intuitively a statement X is logic consequence of a KB when X is
true in every situation where are true the terminological axioms
and assertions in the KB.

• More precisely a statement X is the logic consequence of a KB
when X is true in every model of terminological axioms and
assertions in KB

• In this case we write:

KB ⊨ X

KB logically imply X (X is a logical consequence of KB)

T1.

T2.

T3.

T4.

T5.

T6.

PARENT ≡ PERSON ⊓ ∃parentOf

parentOf:PERSON → PERSON

WOMAN ≡ PERSON ⊓ FEMALE

MAN ≡ PERSON ⊓ ¬FEMALE

MOTHER ≡ PARENT ⊓ FEMALE

FATHER ≡ PARENT ⊓ ¬FEMALE

• The T axioms logically imply some statements that are
not present in T but are necessarily true in the hypothesis
that T is true.

• Let's consider the TBox T with the following axioms:

Security & Knowledge Management – a.a. 2019/20

3

• Every mother is a person and a woman:

MOTHER ⊑ PERSON

MOTHER ⊑ WOMAN

• Every father is a person and a man:

FATHER ⊑ PERSON

FATHER ⊑ MAN

• Class of fathers and mothers are disjoint:

MOTHER ⊓ FATHER ≡ ⊥

• To highlight that these statements are logic
consequence of T we write:

T ⊨ MOTHER ⊑ PERSON

• Other statements are not logic consequence of T. For
example the previous TBox does not logically imply
that a person have 2 parents. To state this we write:

T ⊭ PERSON ⊑ =2 parentOf-

Security & Knowledge Management – a.a. 2019/20

4

Reasoning task

Is characterized with the type of statements to be inferred

Reasoning procedure

The algorithm used for reasoning

Reasoning service

A service implemented by a tool, usable from
applications accessing to the KB

• It can be easily seen that fundamental reasoning tasks for TBox
can be reduced to subsumption

• Equivalence

T ⊨ C ≡ D is equivalent to T ⊨ C ⊑ D e T ⊨ D ⊑ C

• Soddisfacibility

T ⊭ C ⊑⊥

• Disjunction

T ⊨ C ⊓ D ⊑⊥

• This the way used to implement reasoning services for low
expressive DLs

Security & Knowledge Management – a.a. 2019/20

5

• The fundamental reasoning tasks for Tboxs can be reduced to
satisfiability

• Subsumption T ⊨ C ⊑ D

T ⊨ C ⊓ ¬D is not satisfiable

• Equivalence T ⊨ C ≡ D

T ⊨ C ⊓ ¬D is not satisfiable and

T ⊨ ¬C ⊓ D is not satisfiable

• Disjunction

T ⊨ C ⊓ D is not satisfiable

• This is the way used to implement reasoning services for
very expressive DLs, ex. SHOIN

 For decidable DLs – as SHOIN – we can find a
procedure that given an arbitrary TBox T and
a complex term C and, in a finite number of
steps, states if C is or not satisfiable
(considering the definitions in T)

 In the most diffuse versions this procedure,
that we will call SAT, is based on the tableaux
method, already studied and applied for FOL.

Security & Knowledge Management – a.a. 2019/20

6

 We will consider now reasoning services that use
not only terminological axioms from TBox but also
assertions from ABox.

 As already noted the assertion in the ABox can be
based on terms or based on roles; that is, the
assertions can be in the following two forms:

C(a) (C complex term ; a nominal)

R(a,b) (R role; a, b nominals)

Instance check

given a TBox T, an ABox A, an arbitrary term C and a
nominal a, find if T,A ⊨ C(a)

Retrieval

given a TBox T, an ABox A and an arbitrary term C, among all
nominals present in the KB find all nominals

a1, …, an so that T,A ⊨ C(ak)

Security & Knowledge Management – a.a. 2019/20

7

An instance check task can be reduced to a statisfiability problem

A retrieval task can be reduced to an instance check for each nominal
in the KB

In principle, all reasoning tasks can be reduced to satisfiability
problems.

(An arbitrary term C is satisfiable if exists at least a
model of T,A where is not empty the set of individuals

that satisfy C, in other words ∃ a t.c. T,A ⊨ C(a))

 Define the following TBox T:

T1. PARENT ≡ PERSON ⊓ ∃parentOf
T2. parentOf: PERSON → PERSON,
T3. WOMAN ≡ PERSON ⊓ FEMALE
T4. MAN ≡ PERSON ⊓ ¬FEMALE
T5. MOTHER ≡ PARENT ⊓ FEMALE
T6. FATHER ≡ PARENT ⊓ ¬FEMALE
T7. STATE ≡ {au,ch,de,es,fr,it,uk},

T8. citizenOf: PERSON → STATE,

T9. ITAL ≡ PERSON ⊓ ∃citizenOf.{it},
T10. BRIT ≡ PERSON ⊓ ∃citizenOf.{uk}.

Security & Knowledge Management – a.a. 2019/20

8

 Define the ABox A:

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

WOMAN(anna)

WOMAN(cecilia)

MAN(bob)

parentOf(anna,cecilia)

parentOf(bob,cecilia)

citizenOf(anna,it)

citizenOf(bob,uk)

citizenOf(cecilia,it)

citizenOf(cecilia,uk)

Instance check

Given term FEMALE ⊓ ∃parentOf and the nominal anna

we have:

?– (FEMALE ⊓ ∃parentOf)(anna) → yes

T,A ⊨ (FEMALE ⊓ ∃parentOf)(anna)

Security & Knowledge Management – a.a. 2019/20

9

 ABox A:

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

WOMAN(anna)

WOMAN(cecilia)

MAN(bob)

parentof(anna,cecilia)

parentOf(bob,cecilia)

citizenOf(anna,it)

citizenOf(bob,uk)

citizenOf(cecilia,it)

citizenOf(cecilia,uk)

 TBox T:

T1. PARENT ≡ PERSON ⊓ ∃parentOf
T2. parentOf: PERSON → PERSON,
T3. WOMAN ≡ PERSON ⊓ FEMALE
T4. MAN ≡ PERSON ⊓ ¬FEMALE
T5. MOTHER ≡ PARENT ⊓ FEMALE
T6. FATHER ≡ PARENT ⊓ ¬FEMALE
T7. STATE ≡ {au,ch,de,es,fr,it,uk},

T8. citizenOf: PERSON → STATE,

T9. ITAL ≡ PERSON ⊓ ∃citizenOf.{it},
T10. BRIT ≡ PERSON ⊓ ∃citizenOf.{uk}.

Security & Knowledge Management – a.a. 2019/20

10

Retrieval

Given term PARENT we have:

?– PARENT → {anna, bob}

T,A ⊨ PARENT(anna) T,A ⊨ PARENT(bob)

 TBox T:

T1. PARENT ≡ PERSON ⊓ ∃parentOf
T2. parentOf: PERSON → PERSON,
T3. WOMAN ≡ PERSON ⊓ FEMALE
T4. MAN ≡ PERSON ⊓ ¬FEMALE
T5. MOTHER ≡ PARENT ⊓ FEMALE
T6. FATHER ≡ PARENT ⊓ ¬FEMALE
T7. STATE ≡ {au,ch,de,es,fr,it,uk},

T8. citizenOf: PERSON → STATE,

T9. ITAL ≡ PERSON ⊓ ∃citizenOf.{it},
T10. BRIT ≡ PERSON ⊓ ∃citizenOf.{uk}.

Security & Knowledge Management – a.a. 2019/20

11

 ABox A:

A1.

A2.

A3.

A4.

A5.

A6.

A7.

A8.

A9.

WOMAN(anna)

WOMAN(cecilia)

MAN(bob)

parentOf(anna,cecilia)

parentOf(bob,cecilia)

citizenOf(anna,it)

citizenOf(bob,uk)

citizenOf(cecilia,it)

citizenOf(cecilia,uk)

 used to decide sasfiability of a set of formula
 we start with propositional logic example:

 prove unsatisfiability of

 { a ∧ c, (¬a ∨ b) ∧ (¬b ∨ ¬ c) }

 The formula have to be in negation normal
form (with not applied to the letterals)

Security & Knowledge Management – a.a. 2019/20

12

 a ∧ c

(¬a ∨ b) ∧ (¬b ∨ ¬ c)

 a

 c

(¬b ∨ ¬ c)

(¬a ∨ b)

¬a b

¬b ¬ c

if all branches are closed
(contain x and ¬ x) the
formula is unsatisfiable

 Algorithm to check if complex concept C is
satisfiable:
 C should be in negation normal form

 start with C(a)

 apply transformation rules, they can be deterministic
or nondeterministic (branch)

 continue until (i) there is a contradiction in all
branches or (ii) there is a branch where no rule is
applicable

 In case (i) the concept C is unsatisfiable, in case (ii) C
is satisfiable

Security & Knowledge Management – a.a. 2019/20

13

 and-rule: (C ⊓ D)(a)  add C(a) and D(a)
 or-rule: (C ⊔ D)(a)  branch with C(a) and D(a)
 some-rule: (∃R.C)(a)  add R(a,b) and C(b)

where b is a new individual
 all-rule: (∀R.C)(a) and R(a,b)  add C(b)

check if ∀hasChild.Male ⊓ ∃hasChild. ¬Male
is satisfiable
1. ∀hasChild.Male ⊓ ∃hasChild.¬Male (given)
2. ∀hasChild.Male (1, and-rule)
3. ∃hasChild. ¬Male (1, and-rule)
4. hasChild(a,b) (3, some-rule)
5. (¬Male)(b) (3, some-rule)
6. Male(b) (2,4, all-rule)
7. Clash (5,6)
the concept is unsatisfiable

Security & Knowledge Management – a.a. 2019/20

14

The same rules can be used to check if the Abox
is satisfiable
1. (Parent ⊓ ∀ haschild.Male)(JOHN) (given)
2. hasChild(JOHN, MARY) (given)
3. (¬Male)(Mary) (given)
4. PARENT(JOHN) (1, and-rule)
5. ∀ haschild.Male(JOHN) (1, and-rule)
6. Male(MARY) (5,2, all-rule)
7. Clash (6,3)

The Abox is unsatisfiable

 Similar rules can be applied for the
satisfiability of a KB made of Tbox and Abox

Security & Knowledge Management – a.a. 2019/20

15

 A set of rules IF...THEN...
 Used to produce new triples on the basis of

the current triples
 Applied iteratively until no more applicable or

found a contradiction

... If then

eq-ref
T(?s, ?p, ?o)

T(?s, owl:sameAs, ?s)
T(?p, owl:sameAs, ?p)
T(?o, owl:sameAs, ?o)

eq-sym T(?x, owl:sameAs, ?y) T(?y, owl:sameAs, ?x)

eq-trans
T(?x, owl:sameAs, ?y)
T(?y, owl:sameAs, ?z)

T(?x, owl:sameAs, ?z)

eq-rep-s
T(?s, owl:sameAs, ?s')
T(?s, ?p, ?o)

T(?s', ?p, ?o)

eq-rep-p
T(?p, owl:sameAs, ?p')
T(?s, ?p, ?o)

T(?s, ?p', ?o)

eq-rep-o
T(?o, owl:sameAs, ?o')
T(?s, ?p, ?o)

T(?s, ?p, ?o')

eq-diff1
T(?x, owl:sameAs, ?y)
T(?x, owl:differentFrom, ?y)

False

Security & Knowledge Management – a.a. 2019/20

16

eq-diff2

T(?x, rdf:type, owl:AllDifferent)
T(?x, owl:members, ?y)
LIST[?y, ?z1, ..., ?zn]
T(?zi, owl:sameAs, ?zj)

false for each 1 ≤ i < j ≤ n

eq-diff3

T(?x, rdf:type, owl:AllDifferent)
T(?x, owl:distinctMembers, ?y)
LIST[?y, ?z1, ..., ?zn]
T(?zi, owl:sameAs, ?zj)

false for each 1 ≤ i < j ≤ n

prp-dom
T(?p, rdfs:domain, ?c)
T(?x, ?p, ?y)

T(?x, rdf:type, ?c)

prp-rng
T(?p, rdfs:range, ?c)
T(?x, ?p, ?y)

T(?y, rdf:type, ?c)

prp-fp

T(?p, rdf:type, owl:FunctionalProperty)
T(?x, ?p, ?y1)
T(?x, ?p, ?y2)

T(?y1, owl:sameAs, ?y2)

prp-ifp

T(?p, rdf:type, owl:InverseFunctionalProperty)
T(?x1, ?p, ?y)
T(?x2, ?p, ?y)

T(?x1, owl:sameAs, ?x2)

prp-irp
T(?p, rdf:type, owl:IrreflexiveProperty)
T(?x, ?p, ?x)

false

prp-symp
T(?p, rdf:type, owl:SymmetricProperty)
T(?x, ?p, ?y)

T(?y, ?p, ?x)

prp-asyp

T(?p, rdf:type, owl:AsymmetricProperty)
T(?x, ?p, ?y)
T(?y, ?p, ?x)

false

Security & Knowledge Management – a.a. 2019/20

17

prp-trp

T(?p, rdf:type, owl:TransitiveProperty)
T(?x, ?p, ?y)
T(?y, ?p, ?z)

T(?x, ?p, ?z)

prp-spo1

T(?p1, rdfs:subPropertyOf, ?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-eqp1
T(?p1, owl:equivalentProperty, ?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-eqp2
T(?p1, owl:equivalentProperty, ?p2)
T(?x, ?p2, ?y)

T(?x, ?p1, ?y)

prp-pdw

T(?p1, owl:propertyDisjointWith, ?p2)
T(?x, ?p1, ?y)
T(?x, ?p2, ?y)

false

prp-inv1
T(?p1, owl:inverseOf, ?p2)
T(?x, ?p1, ?y)

T(?y, ?p2, ?x)

prp-inv2
T(?p1, owl:inverseOf, ?p2)
T(?x, ?p2, ?y)

T(?y, ?p1, ?x)

cax-sco
T(?c1, rdfs:subClassOf, ?c2)
T(?x, rdf:type, ?c1)

T(?x, rdf:type, ?c2)

cax-eqc1
T(?c1, owl:equivalentClass, ?c2)
T(?x, rdf:type, ?c1)

T(?x, rdf:type, ?c2)

cax-eqc2
T(?c1, owl:equivalentClass, ?c2)
T(?x, rdf:type, ?c2)

T(?x, rdf:type, ?c1)

cax-dw

T(?c1, owl:disjointWith, ?c2)
T(?x, rdf:type, ?c1)
T(?x, rdf:type, ?c2)

false

cls-thing T(owl:Thing, rdf:type, owl:Class)

cls-nothing1 T(owl:Nothing, rdf:type, owl:Class)

cls-nothing2 T(?x, rdf:type, owl:Nothing) false

Security & Knowledge Management – a.a. 2019/20

18

cls-int1

T(?c, owl:intersectionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

T(?y, rdf:type, ?c)

cls-int2

T(?c, owl:intersectionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c)

T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

cls-uni

T(?c, owl:unionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?ci)

T(?y, rdf:type, ?c)

cls-com

T(?c1, owl:complementOf, ?c2)
T(?x, rdf:type, ?c1)
T(?x, rdf:type, ?c2)

false

cls-svf1

T(?x, owl:someValuesFrom, ?y)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?v)
T(?v, rdf:type, ?y)

T(?u, rdf:type, ?x)

cls-svf2

T(?x, owl:someValuesFrom, owl:Thing)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?v)

T(?u, rdf:type, ?x)

cls-avf

T(?x, owl:allValuesFrom, ?y)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)
T(?u, ?p, ?v)

T(?v, rdf:type, ?y)

cls-hv1

T(?x, owl:hasValue, ?y)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)

T(?u, ?p, ?y)

cls-hv2

T(?x, owl:hasValue, ?y)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?y)

T(?u, rdf:type, ?x)

Security & Knowledge Management – a.a. 2019/20

19

ls-maxc1

T(?x, owl:maxCardinality, "0"^^xsd:nonNegativeInteger)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)

false

cls-maxc2

T(?x, owl:maxCardinality, "1"^^xsd:nonNegativeInteger)
T(?x, owl:onProperty, ?p)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y1)
T(?u, ?p, ?y2)

T(?y1, owl:sameAs, ?y2)

cls-maxqc1

T(?x, owl:maxQualifiedCardinality, "0"^^xsd:nonNegati..)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, ?c)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)
T(?y, rdf:type, ?c)

false

cls-maxqc2

T(?x, owl:maxQualifiedCardinality, "0"^^xsd:nonNegativ..)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, owl:Thing)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)

false

s-maxqc3

T(?x, owl:maxQualifiedCardinality, "1"...)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, ?c)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y1)
T(?y1, rdf:type, ?c)
T(?u, ?p, ?y2)
T(?y2, rdf:type, ?c)

T(?y1, owl:sameAs, ?y2)

cls-maxqc4

T(?x, owl:maxQualifiedCardinality, "1"...)
T(?x, owl:onProperty, ?p)
T(?x, owl:onClass, owl:Thing)
T(?u, rdf:type, ?x)
T(?u, ?p, ?y1)
T(?u, ?p, ?y2)

T(?y1, owl:sameAs, ?y2)

cls-oo
T(?c, owl:oneOf, ?x)
LIST[?x, ?y1, ..., ?yn]

T(?y1, rdf:type, ?c)
...
T(?yn, rdf:type, ?c)

Security & Knowledge Management – a.a. 2019/20

20

scm-cls T(?c, rdf:type, owl:Class)

T(?c, rdfs:subClassOf, ?c)
T(?c, owl:equivalentClass, ?c)
T(?c, rdfs:subClassOf, owl:Thing)
T(owl:Nothing, rdfs:subClassOf, ?c)

scm-sco
T(?c1, rdfs:subClassOf, ?c2)
T(?c2, rdfs:subClassOf, ?c3)

T(?c1, rdfs:subClassOf, ?c3)

scm-eqc1 T(?c1, owl:equivalentClass, ?c2)
T(?c1, rdfs:subClassOf, ?c2)
T(?c2, rdfs:subClassOf, ?c1)

scm-eqc2
T(?c1, rdfs:subClassOf, ?c2)
T(?c2, rdfs:subClassOf, ?c1)

T(?c1, owl:equivalentClass, ?c2)

scm-op T(?p, rdf:type, owl:ObjectProperty)
T(?p, rdfs:subPropertyOf, ?p)
T(?p, owl:equivalentProperty, ?p)

scm-dp
T(?p, rdf:type,
owl:DatatypeProperty)

T(?p, rdfs:subPropertyOf, ?p)
T(?p, owl:equivalentProperty, ?p)

scm-spo
T(?p1, rdfs:subPropertyOf, ?p2)
T(?p2, rdfs:subPropertyOf, ?p3)

T(?p1, rdfs:subPropertyOf, ?p3)

scm-eqp1
T(?p1,
owl:equivalentProperty, ?p2)

T(?p1, rdfs:subPropertyOf, ?p2)
T(?p2, rdfs:subPropertyOf, ?p1)

scm-eqp2
T(?p1, rdfs:subPropertyOf, ?p2)
T(?p2, rdfs:subPropertyOf, ?p1)

T(?p1,
owl:equivalentProperty, ?p2)

scm-dom1
T(?p, rdfs:domain, ?c1)
T(?c1, rdfs:subClassOf, ?c2)

T(?p, rdfs:domain, ?c2)

scm-dom2
T(?p2, rdfs:domain, ?c)
T(?p1, rdfs:subPropertyOf, ?p2)

T(?p1, rdfs:domain, ?c)

scm-rng1
T(?p, rdfs:range, ?c1)
T(?c1, rdfs:subClassOf, ?c2)

T(?p, rdfs:range, ?c2)

scm-rng2
T(?p2, rdfs:range, ?c)
T(?p1, rdfs:subPropertyOf, ?p2)

T(?p1, rdfs:range, ?c)

Security & Knowledge Management – a.a. 2019/20

21

 is particularly suitable for applications employing ontologies that
define very large numbers of classes and/or properties (e.g
SNOMED-CT medical ontology with about 292.000 logical
axioms),

 captures the expressive power used by many such ontologies, and
consistency, class expression subsumption, and instance checking
can be decided in polynomial time

 Allows operations:

 ∃R.C, ∃R.{v}, ∃R. Self, {v}, C ⊓ D

 class inclusion, class equivalence, class disjointness, object property
inclusion with or without property chains, property equivalence,
transitive object properties, reflexive object properties, domain
restrictions, range restrictions, functional data properties,
assertions,keys.

 designed so that data (assertions) that is stored in a relational
database system can be queried through an ontology by rewriting
the query into an SQL query, without any changes to the data.

 Allowed
 <subclass expression> subClassOf <super class expression>
 where <subclass expressions> can be:

▪ a class, unqualified existential quantification, existential quantification to a data
range.

 and <super class expression> can be:
▪ a class, intersection, negation, qualified existential quantification, existential

quantification to a data range

 subclass axioms, class expression equivalence, class expression
disjointness, inverse object properties, property inclusion (not
involving property chains), property equivalence, property domain,
property range, disjoint properties, symmetric properties , reflexive
properties, irreflexive properties , asymmetric properties , assertions
other than individual equality assertions and negative property
assertions

Security & Knowledge Management – a.a. 2019/20

22

 aimed at applications that require scalable reasoning
without sacrificing too much expressive power

 Allowed
 <subclass expression> subClassOf <super class expression>
 where <subclass expression> can be:

▪ a class other than owl:Thing, an enumeration of individuals,
intersection of class expressions, union of class expressions, existential
quantification to a class expression, existential quantification to a data
range, existential quantification to an individual, existential
quantification to a literal.

 and <superclass expression> can be:
▪ a class other than owl:Thing, intersection of classes, negation, universal

quantification to a class expression, existential quantification to an
individual, at-most 0/1 cardinality restriction to a class expression,
universal quantification to a data range, existential quantification to a
literal, at-most 0/1 cardinality restriction to a data range

 allows to represent additional inference rules
that are specific for a domain and cannot be
derived with OWL
Document(

Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)

Prefix(imdbrel <http://example.com/imdbrelations#>)

Prefix(dbpedia <http://dbpedia.org/ontology/>)

Group(Forall ?Actor ?Film ?Role (

If And(imdbrel:playsRole(?Actor ?Role) imdbrel:roleInFilm(?Role ?Film))

Then dbpedia:starring(?Film ?Actor)

))

)

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://dbpedia.org/ontology/

Security & Knowledge Management – a.a. 2019/20

23

 RIF was designed for interchange, to allow
the transformation of rules in other
languages (e.g. SWRL, RuleML)

261

