
Security & Knowledge Management – a.a. 2019/20

1

 In practical terms, developing an ontology
includes:

 defining classes in the ontology,

 arranging the classes in a taxonomic (subclass–
superclass) hierarchy,

 defining properties and describing allowed values
for these properties,

 filling in the values for properties for instances.

263

Security & Knowledge Management – a.a. 2019/20

2

264

BBC core news data model

 Why would someone want to develop an
ontology? Some of the reasons are:

 To share common understanding of the structure
of information among people or software agents.

 To enable reuse of domain knowledge.

 To make domain assumptions explicit.

 To separate domain knowledge from the
operational knowledge

 To analyze domain knowledge

265

Security & Knowledge Management – a.a. 2019/20

3

 Foundational/Top level/Upper Level Ontologies
 Generic ontologies applicable to many domains (DOLCE,

BFO, ...)
 General Ontologies
 Not dedicated to a specific domain (OpenCyc)

 Core reference ontologies
 A standard used by different groups of users.

 Domain Ontologies
 Applicable to a specific domain with a specific viewpoint.

 Local or Application Ontologies
 Specific for a single user/application view point

266

 Information Ontologies

 MindMap

 Linguistic/Terminological Ontologies

 Thesauri, taxonomies (SKOS)

 Software Ontologies

 UML, ER

 Formal Ontologies

 OWL, Desciption Logic, FOL

 267

Security & Knowledge Management – a.a. 2019/20

4

 Due to the distributed nature of semantic web,
Anyone can say Anything about Anything (AAA)

 Open World Assumption (OWA)
▪ If something it is not explicitly stated or derived we cannot say it is

true/false

 Not Unique Name Assumption
▪ The same resource can be identified with different URI

268

 Many methodologies for Ontologies Engineering

 METHONTOLOGY, NeOn, Cyc, etc.

 A review in «An Analysis of Ontology Engineering
Methodologies: A Literature Review»

 N. F. Noy, D. L. McGuinness, “Ontology
Development 101: A Guide to Creating Your First
Ontology”

 http://protege.stanford.edu/publications/ontology_develo
pment/ontology101.pdf

269

Security & Knowledge Management – a.a. 2019/20

5

1. There is no one correct way to model a domain— there
are always viable alternatives. The best solution almost
always depends on the application that you have in mind
and the extensions that you anticipate.

2. Ontology development is necessarily an iterative
process.

3. Concepts in the ontology should be close to objects
(physical or logical) and relationships in your domain of
interest. These are most likely to be nouns (objects) or
verbs (relationships) in sentences that describe your
domain.

270

 Remember that an ontology is a white box
 Adopt a naming convention and be consistent

with it
 Camel case or use underscores to separate words
 Classes are capitalized, properties start with lower

case
 has... prefix for object properties (e.g. hasPart) or

is...Of (e.g. isPartOf) for inverse
 Choosing the right name for a class/property is

very important
 Use english words
 Check for english grammar errors

Security & Knowledge Management – a.a. 2019/20

6

 What is the domain that the ontology will cover?
 For what we are going to use the ontology?
 For what types of questions the information in the

ontology should provide answers?
 Who will use and maintain the ontology?

272

 One of the ways to determine the scope of the
ontology is to sketch a list of questions that a
knowledge base based on the ontology should be
able to answer, competency questions.

 Examples for Pizza Ontology (tutorial of Protégé)
▪ What vegetarian pizzas are there that don’t have olives?

▪ How many pizzas in the menu contain meat?

▪ Find pizzas with a single meat ingredient

▪ Find all the pizzas with less than 3 toppings

▪ If I have 3 ingredients, how many kinds of pizza I would
make?

▪ Find all pizzas which are sharing 3 or more ingredients
273

Security & Knowledge Management – a.a. 2019/20

7

 Consider reusing existing ontologies. It is
almost always worth considering what
someone else has done and checking if we
can refine and extend existing sources for our
particular domain and task.

 Linked Open Vocabularies http://lov.okfn.org/dataset/lov/

 Schema.org http://schema.rdfs.org/

 Dbpedia ontology

 ...

274

 some times it is possible to reuse a model or
structure already developed (e.g. UML/ER
model of a domain or application)

 in this case the risk is to be too specific, an
ontology should fit general and specific
aspects of a domain

http://lov.okfn.org/dataset/lov/
http://lov.okfn.org/dataset/lov/
http://schema.rdfs.org/
http://schema.rdfs.org/

Security & Knowledge Management – a.a. 2019/20

8

 Enumerate important terms in the ontology.
It is useful to write down a list of all terms we
would like either to make statements about
or to explain to a user.

 What are the terms we would like to talk about?

 What properties do those terms have?

 What would we like to say about those terms?

276

 There are several possible approaches in developing a class
hierarchy:

 Top-down

 Bottom-up

 A combination
 From the list created in Step 3, we select the terms that

describe objects having independent existence rather than
terms that describe these objects. These terms will be
classes in the ontology and will become anchors in the class
hierarchy.

 Organize the classes into a hierarchical taxonomy by asking
if by being an instance of one class, the object will
necessarily (i.e., by definition) be an instance of some other
class. 277

Security & Knowledge Management – a.a. 2019/20

9

 The classes alone will not provide enough information to
answer the competency questions from Step 1.

 Once we have defined some of the classes, we must
describe the internal structure of concepts.

 We have already selected classes from the list of terms we
created in Step 3. Most of the remaining terms are likely to
be properties of these classes.

 In general, there are several types of object properties that
can become slots in an ontology:
 “intrinsic” properties such as the flavor of a wine;
 “extrinsic” properties such as a wine’s name, and area it comes

from;
 parts, if the object is structured; these can be both physical and

abstract “parts” (e.g., the courses of a meal)
 relationships to other individuals; these are the relationships

between individual members of the class and other items
278

 Properties can have different facets describing the value type,
allowed values, the number of the values (cardinality), and other
features of the values the property can take

 Property cardinality defines how many values a property can
have. Some systems distinguish only between single cardinality
(allowing at most one value) and multiple cardinality (allowing any
number of values).

 Props-value type A value-type facet describes what types of
values can fill in the property.

 Domain and range of a property
 When defining a domain or a range for a property, find the most

general classes or class that can be respectively the domain or the
range for the properties .

 Define Property hierarchy
 One property can be a sub property of another

279

Security & Knowledge Management – a.a. 2019/20

10

 The last step is creating individual instances
of classes in the hierarchy.

 Defining an individual instance of a class
requires:

 choosing a class,

 creating an individual instance of that class, and

 filling in the properties values.

280

 Use a tool (e.g. Protegè) to validate the ontology to
see if there are inconcistencies.

 Check the inferred statements to see if they make
sense.

 Try to make the «competencies query» over the KB
using SPARQL or complex concept description with
manchester syntax and check the result.

281

Security & Knowledge Management – a.a. 2019/20

11

 Evaluate the ontology «quality», using an evaluation tool
that checks if some good pratices has been followed or
not.
 OOPS! - OntOlogy Pitfall Scanner! http://oops.linkeddata.es/

“OOPS! helps you to detect some of the most common pitfalls appearing
within ontology developments. For example, OOPS! warns you when:
The domain or range of a relationship is defined as the intersection of
two or more classes. This warning could avoid reasoning problems in case
those classes could not share instances.
No naming convention is used in the identifiers of the ontology
elements. In this case the maintainability, the accessibility and the clarity
of the ontology could be improve.
A cycle between two classes in the hierarchy is included in the ontology.
Detecting this situation could avoid modelling and reasoning problems.”

 All the siblings in the hierarchy (except for the ones at
the root) must be at the same level of generality

 If a class has only one direct subclass there may be a
modeling problem or the ontology is not complete.

 If there are more than a dozen subclasses for a given
class then additional intermediate categories may be
necessary

 Subclasses of a class usually have additional
properties that the superclass does not have, or
restrictions different from those of the superclass, or
participate in different relationships than the
superclasses

 Classes in terminological hierarchies do not have to
introduce new properties

 … 283

http://oops.linkeddata.es/
http://oops.linkeddata.es/
http://oops.linkeddata.es/

Security & Knowledge Management – a.a. 2019/20

12

 Ontology Design Patterns and good
practices
 http://ontologydesignpatterns.org

 http://www.gong.manchester.ac.uk/odp/html/

 http://www.mkbergman.com/911/a-reference-guide-to-
ontology-best-practices/

 http://www.w3.org/2001/sw/BestPractices/OEP/

 Interesting also the patterns for Linked Data
 Leigh Dodds, Ian Davis, «Linked Data Patterns»

http://patterns.dataincubator.org

284

 allow to represent "parthood" relations
 partOf, directPartOf
 partOf is transitive
 directPartOf sub property of partOf

http://ontologydesignpatterns.org/
http://ontologydesignpatterns.org/
http://www.gong.manchester.ac.uk/odp/html/
http://www.gong.manchester.ac.uk/odp/html/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/
http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.w3.org/2001/sw/BestPractices/OEP/
http://patterns.dataincubator.org/
http://patterns.dataincubator.org/
http://patterns.dataincubator.org/

Security & Knowledge Management – a.a. 2019/20

13

 model an N-ary relation among things
 ex: Performance(Artist, WorkOfArt, Place, TimeInterval)

 Introduce a class associated with the N-ary
relation, with a property for each term in the
relation

 Performance = (artist some Artist) and
(workOfArt some WorkOfArt) and
(place some Place) and
(timeInterval some TimeInterval)

 we need to add some contextual information
to a relation e.g. bob married anna in 2006

 the relation is transformed to a resource and
properties are used to relate the subject and
object of the relation and properties are
introduced for the contextual information
(similar to N-ary relation)

Security & Knowledge Management – a.a. 2019/20

14

 Include data modelling patterns but also:

 publishing patterns

 identity patterns

 data management patterns

 application patterns

 Similar to Software life-cycle

 Waterfall

▪ Requirements  Design  Test  Maintenace

 Iterative

▪ Requirements1  Design1  Test1 
Requirements2  Design2  Test2 
...

289

Security & Knowledge Management – a.a. 2019/20

15

 Developed for the ICARO project
 Focused on modelling the cloud aspects for

validation and verification
 Competency questions:
 «Is an instance of an application consistent with its

definition?»
 «Can Host machine X host VM Y in terms of CPU,

memory, disk?»
 «Which host machine can host VM X?»
 «Which host machine is over-used?»
 ...

290

 Represent the different aspects of cloud
 Infrastructure

▪ Host machine, virtual machine, network, network adapter, storage, local
storage, external storage, firewall, router, ...

 Applications & Services
▪ Applications based on services (Tomcat, http server, dbms, mail server, ...)
▪ An application can be deployed differently, all services on one VM, each service

on a different VM

 Business Configuration
▪ Aggregate different applications to create a business, but also simple VMs and

hosts

 SLA & metrics
▪ Define service level agreement for applications & VMs/hosts
▪ Define metrics and metric values

 Monitoring info
▪ Information for monitoring services

291

Security & Knowledge Management – a.a. 2019/20

16

ex:datacenter1 rdf:type cld:DataCenter;
 cld:hasName “production data center”;
 cld:hasPart ex:host1;
 …
 cld:hasPart ex:host100;
 cld:hasPart ex:storage1;
 cld:hasPart ex:firewall1;
 cld:hasPart ex:firewall2;

293

Security & Knowledge Management – a.a. 2019/20

17

ex:vm1 rdf:type cld:VirtualMachine
 cld:hasName “vm 1, windows xp”;
 cld:hasCPUCount “2”;
 cld:hasMemorySize “1”;
 cld:hasVirtualStorage ex:vm1_disk;
 cld:hasNetworkAdapter ex:vm1_net1;
 cld:hasOS cld:windowsXP_Prof;
 cld:isStoredOn ex:host1_disk
 cld:isPartOf ex:host1;

ex:vm1_disk rdf:type cld:VirtualStorage;
 cld:hasDiskSize 10.

294

ex:host1 rdf:type cld:HostMachine;
 cld:hasName “host 1”;
 cld:hasCPUCount 16;
 cld:hasCPUSpeed 2.2;
 cld:hasCPUType “Intel Xeon X5660”;
 cld:hasMemorySize 16;
 cld:hasDiskSize 300;
 cld:hasLocalStorage ex:host1_disk;
 cld:hasNetworkAdapter ex:host1_net1;
 cld:hasNetworkAdapter ex:host1_net2;
 cld:hasOS cld:vmware_esxi;
 cld:isPartOf ex:datacenter1;

ex:host1_net1 rdf:type cld:NetworkAdapter;
 cld:hasIPAddress “192.168.1.1”;
 cld:boundToNetwork ex:network1;

ex:host1_disk rdf:type cld:LocalStorage;
 cld:hasDiskSize 300.
…
ex:firewall1 rdf:type cld:Firewall;
 cld:hasName “Firewall 1”;
 cld:hasNetworkAdapter ex:firewall1_net1;
 cld:hasNetworkAdapter ex:firewall1_net2.

DISIT Lab DINFO UNIFI), Corso x Dottorato, 2015 295

Security & Knowledge Management – a.a. 2019/20

18

CloudApplication = Software
and (hasIdentifier exactly 1 string)
and (hasName exactly 1 string)
and (developedBy some Developer)
and (developedBy only Developer)
and (createdBy exactly 1 Creator)
and (createdBy only Creator)
and (administeredBy only Administrator)
and (needs only (Service or CloudApplication or CloudApplicationModule))
and (hasSLA max 1 ServiceLevelAgreement)
and (hasSLA only ServiceLevelAgreement)
and (useVM some VirtualMachine)
and (useVM only VirtualMachine)

296

JoomlaBalancedApp SubClassOf CloudApplication

and (needs exactly 1 MySQLServer)

and (needs exactly 1 HttpBalancer)

and (needs exactly 1 NFSServer)

and (needs min 1 (ApacheWebServer and (supportsLanguage value
php_5)))

297

Security & Knowledge Management – a.a. 2019/20

19

ex:Joomla1 rdf:type app:JoomlaBalancedApp;
 cld:hasName “Joomla for my business”;
 cld:developedBy ex:user;
 cld:createdBy ex:u1;
 cld:needs ex:mysql1, ex:apache1, ex:apache2, ex:httpbalancer1,
 ex:nfsserver1;
 cld:hasSLA ex:sla1;
 …
ex:mysql1 rdf:type cld:MySQLServer;
 runsOnVM ex:vm1;
 …
ex:apache1 rdf:type cld:ApacheWebServer;
 cld:runsOnVM ex:vm2;
 cld:supportsLanguage cld:php_5;
…

298

ex:bc1 rdf:type cld:BusinessConfiguration;
 cld:hasName “My business”;
 cld:createdBy ex:user1
 cld:hasPart ex:joomla1;
 cld:hasPart ex:crmTenant1;
 …

ex:crmTenant1 rdf:type cld:CloudApplicationTenant;
 cld:hasName “My CRM tenant”;
 cld:hasIdentifier “crm:tenant:16373”;
 cld:createdBy ex:user1
 cld:isTenantOf ex:crmApp1;

299

Security & Knowledge Management – a.a. 2019/20

20

300

 Service Level Agreement
 AND/OR Conditions on metric values with

reference values
 «AVG responseTime 30Min»(apache1)<5s

AND «LAST databaseSize»(mysql)<1GB

301

Security & Knowledge Management – a.a. 2019/20

21

ex:sla1 rdf:type cld:ServiceLevelAgreement;
 cld:hasSLObjective ex:slobj1;
 cld:hasStartTime “2013-01-01T00:00:00”;
 cld:hasEndTime “2014-01-01T00:00:00”.

ex:slobj1 rdf:type cld:ServiceLevelObjective;
 cld:hasSLMetric ex:slmetric;
 cld:hasSLAction ex:slaction1.

ex:slmetric rdf:type cld:ServiceLevelAndMetric;
 cld:dependsOn ex:slmetric1;
 cld:dependsOn ex:slmetric2.

302

ex:slmetric1 rdf:type cld:ServiceLevelSimpleMetric;
 cld:hasMetricName “AVG responseTime 30Min”;
 cld:hasMetricValueLessThan “5”;
 cld:hasMetricUnit “seconds”;
 cld:dependsOn ex:apache1.

ex:slmetric2 rdf:type cld:ServiceLevelSimpleMetric;
 cld:hasMetricName “LAST databaseSize”;
 cld:hasMetricValueLessThan “1”;
 cld:hasMetricUnit “GB”;
 cld:dependsOn ex:mysql.

 Low Level Metrics

 Defined by the monitoring tool for the
VM/host/service/application

 High Level Metrics

 Combine the low level metrics to produce a higher
level indicator

 High Level Metric values

303

Security & Knowledge Management – a.a. 2019/20

22

 HighLevelMetric

 Syntax tree with basic mathematic operators (+,-
,/,*) that combine constants and temporal
aggregations on low level metrics:

▪ Max, min, avarage, last value over a temporal interval
expressed in seconds, minutes, hours, days, months

▪ In case the metric has multiple values for each time
instant (e.g. Multiple disks) they can be combined with
sum, min, max, avarage

304

ex:apache1 rdf:type cld:ApacheWebServer;
 cld:runsOnVM ex:vm2;
 cld:hasMonitorInfo ex:minfo1;
…
ex:minfo rdf:type cld:MonitorInfo;
 cld:hasMetricName “responseTime”;
 cld:hasArguments “http://...”; #specific
arguments to be provided to the plugin
 cld:hasWarningValue 1;
 cld:hasCriticalValue 4;
 cld:hasMaxCheckAttempts 3;
 cld:hasCheckInterval 5; #check every 5 min

305

Security & Knowledge Management – a.a. 2019/20

23

306

KB
Services

RDF
Store

DataCenter

BusinessConfiguration

MetricTypes

ApplicationTypes
A

P
I R

E
S

T

MetricValues

RDF/XML format

 Use an OWL2 reasoner (e.g. Pellet) to check
for inconcistencies
 Problem with Open World Assumption. Some

inconsitencies are not found.
▪ An application needs one web server but none is

specified, this is not inconsistent.

 Problem with not Unique Name Assumption.
Some inconsistencies not found.
▪ An application needs exacly one MySQL instance, two

are specified, no inconcistencies are found, they are
assumed to be the same.

DISIT Lab (DINFO UNIFI), Corso x Dottorato, 2015 307

Security & Knowledge Management – a.a. 2019/20

24

 Solution: Use SPARQL queries to check the
configuration submitted

 One query for each aspect, e.g. Is the OS valid?

 SELECT ?vm ?os WHERE {

 GRAPH <…> {

 ?vm a cld:VirtualMachine;

 cld:hasOS ?os.

 }

 FILTER NOT EXISTS {

 ?os a cld:OperativeSystem.

 }

 }

DISIT Lab (DINFO UNIFI), Corso x Dottorato, 2015 308

 We can have problems with inference

 cld:hasOS rdfs:range cld:OperativeSytem (in
ontology)

 ex:vm1 cld:hasOS ex:aWrongOS

 Inferred:

▪ ex:aWrongOS rdf:type cld:OperativeSystem

 The previuos query will not identify ex:aWrongOS
as not correct.

DISIT Lab (DINFO UNIFI), Corso x Dottorato, 2015 309

Security & Knowledge Management – a.a. 2019/20

25

 Using SPARQL has the advantage that can be
checked aspects that cannot be modeled with
OWL (e.g. The host machine has now enough
resources to host the VM?)

 SPARQL validation queries can be stored in a
configuration and can be updated if the
ontology change, without modifiying the
application.

DISIT Lab (DINFO UNIFI), Corso x Dottorato, 2015 310

 The ontology can be easily adapted to
support other concepts (e.g. containers)

 the configuration language can be adapted
and extended to support new features

 the validation can be extended defining new
SPARQL queries for the validation of
configurations

Security & Knowledge Management – a.a. 2019/20

26

 Create a unified knowledge base grounded on a
common ontology that allows to combine all data
coming from different sources making them
semantically interoperable

 To.
 Create coherent queries independently from the source,

format, date, time, provider, etc.
 Enrich the data, make it more complete, more reliable, more

accessible
 Enable to perform inference as triple materialization from

some of the relations
 to enable the implementation of new integrated services

related to mobility
 to provide repository access to SMEs to create new services

 314

Security & Knowledge Management – a.a. 2019/20

27

 The data model provided have been mapped
into the ontology, it covers different aspects:

 Administration

 Street-guide

 Points of interest

 Local public transport

 Sensors

 Temporal aspects

 Metadata on the data

DISIT Lab (DINFO UNIFI), x Dottorato, 2015 315

Temporal
Macroclass

Point of
Interest

Macroclass

Sensors
Macroclass

Local public
transport

Macroclass

Administration
Macroclass

Street-guide
Macroclass

PA  hasPublicOffice  OFFICE

SENSOR  measuredTime  TIME

SERVICE  isInRoad  ROAD

CARPARKSENSOR 
observeCarPark  CARPARK

BUS  hasExpectedTime  TIME

CARPARK 
isInRoad 

ROAD

BUSSTOPFORECAST 
atBusStop  BUSSTOP

WEATHERREPORT  refersTo  PA

BUSSTOP  isInRoad  ROAD

ADMINISTRATIVEROAD 
ownerAuthority PA

MetaData

 Metadata: modeling the additional information associated with:
 Descriptor of Data sets that produced the triples: data set ID, title, description,

purpose, location, administration, version, responsible, etc..

 Licensing information

 Process information: IDs of the processes adopted for ingestion, quality improvement,
mapping, indexing,.. ; date and time of ingestion, update, review, …;

When a problem is detected, we have the information to understand when and how the
problem has been included

 Including basic ontologies as:
 DC: Dublin core, standard metadata

 OTN: Ontology for Transport Network

 FOAF: for the description of the relations among people or groups

 Schema.org: for a description of people and organizations

 wgs84_pos: for latitude and longitude, GPS info

 OWL-Time: reasoning on time, time intervals

 GoodRelations: commercial activities models

316

P. Bellini, M. Benigni, R. Billero, P. Nesi and N. Rauch, "Km4City Ontology Building vs Data Harvesting and Cleaning for
Smart-city Services", International Journal of Visual Language and Computing, Elsevier,
http://dx.doi.org/10.1016/j.jvlc.2014.10.023

http://dx.doi.org/10.1016/j.jvlc.2014.10.023

Security & Knowledge Management – a.a. 2019/20

28

84 Classes
93 ObjectProperties
103 DataProperties

 km4city ontology is a LOV
 http://www.disit.org/km4city/schema

Security & Knowledge Management – a.a. 2019/20

29

Other
SPARQL

End points

Other
SPARQL

End points

Data Ingestion Manager
Admin. Interface

Data Ingestion Manager
Admin. Interface

Distributed Scheduler
Admin. Interface

Distributed Scheduler
Admin. Interface

RDF Store Indexer
Admin. Interface

RDF Store Indexer
Admin. Interface

Indexing
Configuration

Database

Indexing
Configuration

Database

Data Ingestion
Configuration

Database

Data Ingestion
Configuration

Database

Distributed
Scheduler
Database

Distributed
Scheduler
Database

Static Data
harvesting
Static Data
harvesting Data

Mapping
To triple

Data
Mapping
To triple

Quality
Improve

ment

Quality
Improve

ment

In
d

e
x

in
g

In

d
e

x
in

g

Real Time
Data

Ingestion

Real Time
Data

Ingestion

RDF Store
Validation
RDF Store
Validation

Semantic
Interoperability
Reconciliation

Semantic
Interoperability
Reconciliation

Km4City
Ontology
Km4City
Ontology

triple triple tr
ip

le

tr
ip

le

RDF
Store +

indexes:

SPARQL
End point

RDF
Store +

indexes:

SPARQL
End point

Distributed
Bigdata store

R2RML
Models
R2RML
Models

Distributed processing

Data Ingestion and Mining RDF Indexing

Sporadic:
-Validation
-Reconciliation
-Enrichment

RDF Store
Enrichment
RDF Store

Enrichment

Reasoning

Data Status
web pages

Data Status
web pages

 W3C R2RML: RDB to RDF Mapping Language
 is a standard for the mapping of relational

tables to RDF

Security & Knowledge Management – a.a. 2019/20

30

<http://data.example.com/employee/7369> rdf:type ex:Employee.
<http://data.example.com/employee/7369> ex:name "SMITH".
<http://data.example.com/employee/7369> ex:department <http://data.example.com/department/10>.

<http://data.example.com/department/10> rdf:type ex:Department.
<http://data.example.com/department/10> ex:name "APPSERVER".
<http://data.example.com/department/10> ex:location "NEW YORK".
<http://data.example.com/department/10> ex:staff 1.

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://example.com/ns#>.
<#TriplesMap1>
 rr:logicalTable [rr:tableName "EMP"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
 rr:class ex:Employee;];
 rr:predicateObjectMap [
 rr:predicate ex:name;
 rr:objectMap [rr:column "ENAME"];].

<http://data.example.com/employee/7369> rdf:type ex:Employee.
<http://data.example.com/employee/7369> ex:name "SMITH".

Security & Knowledge Management – a.a. 2019/20

31

<#DeptTableView> rr:sqlQuery """
SELECT DEPTNO, DNAME, LOC,
 (SELECT COUNT(*) FROM EMP WHERE EMP.DEPTNO=DEPT.DEPTNO) AS
STAFF FROM DEPT; """.

<#TriplesMap2> rr:logicalTable <#DeptTableView>;
 rr:subjectMap [
 rr:template "http://data.example.com/department/{DEPTNO}";
 rr:class ex:Department;];
 rr:predicateObjectMap [
 rr:predicate ex:name;
 rr:objectMap [rr:column "DNAME"];];
 rr:predicateObjectMap [
 rr:predicate ex:location;
 rr:objectMap [rr:column "LOC"];];
 rr:predicateObjectMap [
 rr:predicate ex:staff;
 rr:objectMap [rr:column "STAFF"];].

<#TriplesMap1> rr:predicateObjectMap [
 rr:predicate ex:department;
 rr:objectMap [
 rr:parentTriplesMap <#TriplesMap2>;
 rr:joinCondition [
 rr:child "DEPTNO";
 rr:parent "DEPTNO";];
];
].

<http://data.example.com/employee/7369> ex:department
<http://data.example.com/department/10>.

Security & Knowledge Management – a.a. 2019/20

32

<http://data.example.com/employee=7369/department=10>
 ex:employee <http://data.example.com/employee/7369> ;
 ex:department <http://data.example.com/department/10> .

<http://data.example.com/employee=7369/department=20>
 ex:employee <http://data.example.com/employee/7369> ;
 ex:department <http://data.example.com/department/20> .

<http://data.example.com/employee=7400/department=10>
 ex:employee <http://data.example.com/employee/7400> ;
 ex:department <http://data.example.com/department/10> .

<#TriplesMap3>
 rr:logicalTable [rr:tableName "EMP2DEPT"];
 rr:subjectMap [
 rr:template
 "http://data.example.com/employee={EMPNO}/department={DEPTNO}"
];
 rr:predicateObjectMap [
 rr:predicate ex:employee;
 rr:objectMap [
 rr:template "http://data.example.com/employee/{EMPNO}"];
];
 rr:predicateObjectMap [
 rr:predicate ex:department;
 rr:objectMap [
 rr:template "http://data.example.com/department/{DEPTNO}"];
].

Security & Knowledge Management – a.a. 2019/20

33

<#TriplesMap3>
 rr:logicalTable [rr:tableName "EMP2DEPT"];
 rr:subjectMap [
 rr:template "http://data.example.com/employee/{EMPNO}";
];
 rr:predicateObjectMap [
 rr:predicate ex:department;
 rr:objectMap [
 rr:template
 "http://data.example.com/department/{DEPTNO}"
];
].

